Journal of Environmental Management 401 (2026) 128845

Contents lists available at ScienceDirect

ol of
Environmental
“Management

Journal of Environmental Management

ELSEVIER journal homepage: www.elsevier.com/locate/jenvman

Research article

Environmental semantic clustering-guided multimodal fusion for enhanced
interpretability in methane concentration prediction

Yang Xu“®, Hao Wang"®, Jude D. Kong """

2 Artificial Intelligence and Mathematic Modelling Lab, Dalla Lana School of Public Health, University of Toronto, 155 College Street, Office 662, Toronto, ON, M5T
3M7, Canada

b The Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2J5, Canada

¢ Institute of Health Policy, Management and Evaluation (IHPME), University of Toronto, Canada

9 Department of Mathematics, University of Toronto, Bahen Centre for Information Technology, Room 6291, 40 St. George Street, Toronto, Ontario, M5S 2E4, Canada
¢ Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC), Canada

f Global South Artificial Intelligence for Pandemic and Epidemic Preparedness and Response Network (AI4PEP), Canada

ARTICLE INFO ABSTRACT
Keywords: Methane is a potent greenhouse gas with significant climate implications, being approximately 84 times more
Methane monitoring impactful than CO over a 20-year timeframe. Accurately predicting the spatiotemporal distribution of methane

Multimodal fusion
Wavelet decomposition
Bidirectional cross-attention networks

concentrations, particularly near industrial sources, is essential for effective environmental monitoring and
provides a critical foundation for subsequent emission source identification. This study introduces a novel
Semantic cluster Spatial-Temporal Cross-Attention Network (ST-CAN) to address the challenge of fusing sparse, high-frequency
Remote sensing ground-based observations with spatially extensive but temporally infrequent satellite imagery. Using the
Dynamic fusion gate Athabasca oil sands region as a case study, ST-CAN incorporates three synergistic innovations that work together
to address data fusion challenges: (1) wavelet decomposition transforming high-frequency ground measurements
into multi-scale temporal features capturing both long-term trends and short-term emission events; (2) envi-
ronmental semantic clustering that identifies distinct atmospheric patterns from these wavelet features,
providing interpretable contextual labels; and (3) a bidirectional cross-attention mechanism where these se-
mantic cluster labels dynamically guide how ground temporal features query and fuse with satellite spatial in-
formation, adaptively prioritizing relevant features based on identified environmental states. The model is
designed to leverage time-dense ground data to enhance the temporal resolution of weekly satellite-derived
concentration maps, generating high-fidelity spatially representative methane concentration predictions by
integrating information from four spatially distributed monitoring stations and satellite imagery, capturing
regional-scale atmospheric dynamics. Extensive evaluations demonstrate ST-CAN significantly outperforms all
the baseline models in predictive accuracy and robustness. The bidirectional mechanism notably improves
interpolation during satellite data gaps, mitigating cloud cover and data sparsity challenges. By combining
interpretability with advanced Al techniques, ST-CAN provides a transparent and scalable framework for high-
resolution methane concentration modelling, advancing environmental monitoring capabilities and supporting
targeted climate mitigation efforts.

1. Introduction methane molecular in trapping heat is much greater than CO,, which is
reported to be more than 80 times that of CO, over an important 20-year

The increasing climate crisis requires immediate efforts on the timeframe (Etminan et al., 2016). This characteristic makes methane
mitigation of potent but short-lived greenhouse gas (GHG) emissions, of mitigation not only beneficial, but essential for any feasible strategy
which methane is the most critical due to its short lifetime and sub- aiming to rapidly slow down the planetary warming. The oil and gas
stantial influence on near-term global warming. The efficacy of the industry is a primary contributor, tackling methane leaks all along its
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supply chain from wells to pipelines (Kong et al., 2019) to local delivery,
which remains a difficult and ongoing task. Therefore, it is essential to
develop accurate modelling approaches for effective environmental
management and targeted climate action.

Traditional methane detection methods face significant limitations.
Field measurements provide high accuracy with clear temporal patterns
but suffer from limited spatial coverage, requiring interpolation for
regional applications (Jacob et al., 2016). Satellite imagery offers
broader spatial coverage through platforms like MethaneSAT
(MethaneSAT, 2024), TROPOMI (Veefkind et al., 2012), and GHGSat
(GHGSat, 2024a,b), but faces constraints from cloud interference,
restricted data access, and infrequent revisit cycles. Multi-source data
integration has emerged as necessary, yet cross-platform validation er-
rors of 30-50% highlight fusion challenges (Fan et al., 2024).

However, recent advances in multimodal spatiotemporal fusion have
demonstrated significant promise across various environmental moni-
toring applications (Li et al., 2022). provided a comprehensive review of
deep learning approaches for multimodal remote sensing data fusion,
highlighting the evolution from pixel-level to decision-level fusion
strategies. For atmospheric and environmental applications specifically,
multimodal frameworks integrating ground sensors with satellite im-
agery have shown remarkable improvements in prediction accuracy
(Hameed et al., 2023). demonstrated an 18-20% enhancement in air
quality forecasting by fusing ground sensor data with CCTV imagery
through deep learning architectures, while (Lilhore et al., 2025) ach-
ieved superior air quality predictions using hybrid models combining
CNNs, Bidirectional Long Short-Term Memory (Bi-LSTM), and attention
mechanisms with multimodal data sources.

In recent years, the maturation of Al and Machine Learning (ML) has
led to widespread consensus regarding their rapid emergence across
multiple engineering fields. AI and ML have become transformative
tools for methane emission modelling. For example, Xu conducted a
systematic review of 110 papers showing that AI models have evolved
from single-modal to multi-modal approaches: deep learning achieves
over 98% accuracy in leak detection using hyperspectral imagery,
random forest provides interpretable models for agricultural emissions,
while physics-informed models enhance dynamic prediction capabilities
by incorporating fluid dynamics equations (Xu et al., 2025). Notably,
deep learning architectures, particularly those adapted from the field of
computer vision, are demonstrating remarkable success in processing
satellite imagery for methane plume identification. Vision Transformers
(ViTs), for example, represent a significant breakthrough in detecting
methane plumes as small as 0.01 km? from Sentinel-2 data (Rouet-Leduc
and Hulbert, 2024). LSTM provides early warnings up to two weeks in
advance using Sentinel-5P data (Chen et al., 2023). In addition,
cross-attention mechanisms have emerged as particularly effective for
multimodal fusion tasks (Wen et al., 2024). developed a Cross-Attention
Spatio-Temporal Spectral Fusion (CASTSF) model for integrating
Sentinel-2 and Sentinel-3 data, demonstrating superior performance
over traditional methods like FSDAF and STARFM in capturing both
spatial texture and spectral information. Similarly (Wang et al., 2024),
proposed a spatial-temporal cross-attention fusion module for multi-
modal trajectory prediction, achieving significant improvements in
capturing spatiotemporal interactions. The attention mechanism's abil-
ity to dynamically weight feature importance has proven essential for
handling heterogeneous data sources with varying spatial and temporal
resolutions (Nagrani et al., 2021). In terms of multi-source collabora-
tion, a federated learning framework enables distributed model training,
protecting the privacy of oilfield data while improving cross-regional
detection accuracy by 25% (Quamar et al., 2023). However, the tran-
sition to operational systems faces critical hurdles.

Despite these advances, several architectural challenges remain
inadequately addressed. Multimodal fusion framework must effectively
handle the inherent trade-offs between spatial and temporal resolutions
inherent in multi-sensor systems. Recent work in remote sensing has
explored hierarchical fusion strategies (Lian et al., 2025). reviewed
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attention-based CNN methods that retain fine details from
high-resolution images while capturing large-scale patterns from
low-resolution data, while (Zhou et al., 2025) proposed bidirectional
cross-fusion modules to model temporal changes and spatial details
simultaneously. Current Al approaches employ simplistic fusion strate-
gies with early concatenation or intermediate fusion layers that fail to
capture complex interactions between temporally dense ground mea-
surements and spatially extensive satellite imagery. These methods
render models overly sensitive to noise or fail to leverage complemen-
tary strengths, leading to unsatisfactory performance. Second, deep
learning models lack interpretability, creating “black box" problems that
hinder scientific validation and operational trust (Li et al., 2020).
Finally, satellite monitoring faces temporal gaps from cloud cover while
ground networks provide sparse spatial coverage, with standard inter-
polation techniques often smoothing over critical “super-emitter" events
(IEA, 2024).

To address the critical challenges of sophisticated data fusion, model
interpretability, and robustness against spatio-temporal data sparsity
and dynamics, this paper introduces the ST-CAN. ST-CAN is proposed as
an innovative framework specifically designed for high-accuracy
methane concentration prediction by synergistically integrating multi-
source data streams of ground-based stations and satellite imagery
data. Utilizing the Athabasca Valley oil sands region in Alberta, Canada,
as a complex and relevant case study, where previous work has
demonstrated the value of machine learning approaches for methane
source detection and concentration prediction using ground-based
monitoring data (Sysoeva et al., 2025), ST-CAN aims to advance
methane monitoring through a novel architecture. While prior studies
have successfully applied Random Forest models to identify methane
sources and predict concentrations from weather station data, our work
extends this foundation by incorporating satellite-based spatial infor-
mation and developing physics-guided attention mechanisms for
multi-source data fusion. Its core design focuses on employing
physics-guided attention mechanisms to effectively fuse ground-based
temporal patterns with satellite spatial information, enhancing inter-
pretability through integrated pattern analysis, and incorporating stra-
tegies for robust handling of temporal misalignments and data gaps
inherent in real-world monitoring scenarios. This approach seeks to
provide a more reliable, transparent, and dynamically adaptive solution
compared to existing methods, providing a transparent and reproducible
framework for modelling the regionally representative methane con-
centration in complex industrial landscapes. This work addresses a
critical data gap in the methane monitoring pipeline, paving the way for
more reliable subsequent emission estimation.

2. Experimental and methodology
2.1. Case study

The Athabasca Valley oil sands (AVOS) in northeastern Alberta
represent one of North America's most contentious energy frontiers.
Those vast deposits have become both an economic lifeline and an
environmental flashpoint for Canada's resource economy. AVOS extends
beyond just the Athabasca formation, incorporating the less publicized
Cold Lake and Peace River deposits. Together, this triumvirate com-
mands a staggering 95% of Canada's proven oil reserves. Our research
focuses specifically on the Athabasca region, which is by far the most
extensively developed and economically significant of the three. Span-
ning roughly 142,200 km?, this massive geological formation dwarfs
many European countries in size (BOE Report, 2025).

Despite their importance to national energy security, the extraction
process raises serious ecological concerns. The oil sands are a significant
source of greenhouse gas emissions, including methane. Methane is
released during various stages of oil extraction and processing, partic-
ularly from equipment leaks, process upsets, and tailings ponds
(Government of Alberta, 2025).
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2.2. Data Description

This study integrates ground-based air quality and meteorological
measurements with satellite-derived atmospheric methane concentra-
tion data to develop and validate the proposed ST-CAN. The datasets
were selected to provide comprehensive spatio-temporal coverage of the
AOSR study area.

2.2.1. Ground monitoring data

This study utilizes data from the Wood Buffalo Environmental As-
sociation (WBEA) to capture ground-level methane concentrations
within the AVOS. WBEA operates an extensive network of continuous
ambient air quality monitoring stations throughout the region. Fig. 1
presents the spatial distribution of the four selected WBEA stations
within the AVOS study area. The stations are strategically positioned to
capture diverse emission sources and atmospheric conditions: AMS09
(Barge Landing) in the core industrial zone, AMS02 (Mildred Lake) at
the industrial fenceline, AMS04 (Buffalo Viewpoint) near tailings ponds,
and AMSO07 (Athabasca Valley) in the Fort McMurray urban center. This
spatial configuration enables comprehensive monitoring across
approximately 220 km north-south extent, representing distinct expo-
sure environments from near-source industrial emissions to community-
level impacts.

AMS 09 (Barge Landing) represents the core industrial zone moni-
toring aspect in WBEA. The Barge Landing station is situated within the
core industrial area, approximately 10 km SW of the CNRL Albian Sands
plant and 20 km SE of the CNRL Horizon plant. It is near Barge Landing
Road and Highway 63. AMS 09 is strategically selected to capture
emissions signals close to major oil sands processing facilities. Its loca-
tion within the densest industrial activity provides data minimally
affected by atmospheric dilution or transport, serving as a crucial
reference point for understanding near-source concentrations and
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validating emissions originating directly from the primary industrial
complexes. It monitors key pollutants, including Total Hydrocarbon
(THC), CH4, Non-Methane Hydrocarbons (NMHC), SO,, NOy, PM; 5, and
meteorological parameters.

AMS 02 (Mildred Lake) represents the industrial fenceline and
transport influence areas. It is located near the fenceline of the Syncrude
Mildred Lake oil sands facility. It is also proximate to an airport runway
(~20m) and Highway 63 (~300m). AMS 02 monitors air quality at the
edge of a major industrial facility, capturing pollutants potentially
dispersing from the Syncrude operations. It is close to significant
transportation infrastructure allows for the assessment of combined in-
dustrial and traffic-related emissions influences. Data from this site
helps characterize the transition from near-source to ambient conditions
and understand the interactions between different emission types at the
industrial edge zone.

AMS 04 (Buffalo Viewpoint) represents tailings pond influence. It is
positioned to specifically monitor emissions from tailings ponds, which
are known significant sources of methane in the AVOS. Data from this
station is vital for understanding the magnitude and variability of
emissions from these large area sources, which differ significantly from
fugitive emissions from processing plants. Monitoring at this location
helps isolate the contribution of tailings ponds to regional CHy4 levels and
assess the effectiveness of mitigation efforts targeting these specific
sources.

The last selected station is AMS 07 (Athabasca Valley), which rep-
resents community and urban influence. It is situated in the downtown
area of Fort McMurray within the Athabasca River valley and provides
insights into the air quality experienced by the urban population of Fort
McMurray. This site is crucial for assessing the potential impact of
regional industrial emissions on community health and understanding
pollutant transport dynamics from the industrial core towards populated
areas.
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Fig. 1. Spatial distribution of WBEA air monitoring stations in the AVOS. AMS09 (Barge Landing, 57.198°N, 111.600°W) monitors the core industrial zone near
CNRL facilities; AMS02 (Mildred Lake, 57.050°N, 111.564°W) captures fenceline emissions from Syncrude operations; AMS04 (Buffalo Viewpoint, 56.996°N,
111.594°W) assesses tailings pond influence at the South Mine; and AMS07 (Athabasca Valley, 56.733°N, 111.390°W) evaluates community exposure in downtown

Fort McMurray.
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Together, these four stations provide spatially distributed, contin-
uous ground-based measurements representing distinct source in-
fluences within the AVOS. This multi-perspective dataset forms the
foundation for training and validating the spatio-temporal models
developed in this study, particularly when fused with satellite obser-
vations. The WBEA data portal can be found at https://wbea.org/dat
a/continuous-monitoring-data/.

2.2.2. Satellite imagery data from GHGSAT.SPECTRA

To complement the point-source ground measurements with broader
spatial context, this study incorporated atmospheric methane data from
GHGSat's SPECTRA platform. Specifically, we utilized the 'Spectra Basic'
tier, which provides weekly heatmaps of area-averaged, cloud-free at-
mospheric methane concentrations. This dataset is publicly available
and free of charge. (GHGSat, 2024a,b). Researchers can access the data
by visiting the product page at https://www.ghgsat.com/en/products
-services/spectra/. From this page, users can navigate to the registra-
tion portal and create a free Spectra Basic account by providing a valid
email address. Upon registration, users are granted immediate access to
the global methane map interface, where the specific weekly datasets for
the Athabasca region can be visualized and extracted. This open-access
policy ensures that our methodology can be reproduced by other re-
searchers without concerns over restrictive data access policies or costs.

Specifically, the data represent the column-averaged dry-air mole
fraction of methane (X¢cp4). This metric quantifies the average concen-
tration of methane in a vertical column of air extending from the ground
to the top of the atmosphere, effectively representing the total atmo-
spheric methane burden over a given area, rather than a surface-level
measurement. These data are provided at a spatial resolution of
approximately 10 km and a weekly temporal resolution. For this study,
satellite data were acquired for the same one-year interval as the ground
observations (early January 2024 to early January 2025). The weekly
Xcn4 heatmaps were then manually cropped to a geographic extent that
encompasses the four WBEA ground monitoring stations, ensuring direct
relevance to the regions under investigation.

It is critical to explicitly define the prediction target given this het-
erogeneity of our input data. The WBEA ground station data, which
provides in-situ, ground-level CH4 concentration in ppm, serves as the
ground truth and the sole prediction target for our model. The satellite-
derived Xcp4 data, representing the column-averaged dry-air mole
fraction, are used exclusively as an input feature to provide spatial
context. Therefore, the model's task is to learn the complex, non-linear
relationship between the column-averaged atmospheric state (from
satellite) and the specific, in-situ concentration at the surface (from
ground stations). All performance metrics, Coefficient of Determination
(Rz), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE)
are calculated by comparing the model's output directly against these
ground-level station measurements.

2.3. Data pre-processing

Before model development, the collected ground station and satellite
datasets must undergo several pre-processing steps to ensure data
quality, consistency, and suitability for input into the spatio-temporal
fusion framework. These steps included treatment of meteorological
variables, imputation of missing values, feature engineering through
wavelet decomposition, and temporal pattern identification via cluster
analysis.

2.3.1. Transformation of wind direction feature

Wind direction, inherently a periodic variable (0-360°), presents
challenges for direct input into the machine learning models, as the
numerical proximity for examples 359° and 1° does not reflect their
actual physical proximity. To address this, the raw wind direction data
were decomposed into their zonal components, which are vector U
representing the east-west component and vector V representing the
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north-south component. This transformation converts the circular wind
direction into two continuous linear variables, which are more
amenable to standard modelling techniques and accurately represent
the directional flow of air masses.

2.3.2. Imputation of missing data

The continuous hourly monitoring data from the WBEA stations
contained instances of missing values. For isolated or short sequences of
missing data points across most variables and stations, linear interpo-
lation was employed as a primary imputation strategy. This method
estimates missing values based on a linear trend between the nearest
available data points before and after the gap. However, a significant
period of continuous missing data was identified for the wind speed and
wind direction features at the AMS04 station. Direct application of linear
interpolation over such an extended gap would likely introduce sub-
stantial discrepancy. Therefore, an alternative substitution-based
approach was adopted. Based on a correlation analysis of wind pat-
terns and the relative geographical positioning of the stations, wind data
from AMSO02 corresponding to the missing time intervals at AMS04 were
used as a substitute. To rigorously validate this substitution strategy, a
comparative analysis of wind characteristics between AMS02 and
AMS04 was conducted. This analysis utilized concurrent valid hourly
observations from July and August 2024, encompassing the periods
immediately adjacent to the specific data gap (July 26, 19:00 to July 31,
10:00). This temporal selection ensures that the validation captures the
specific seasonal wind dynamics relevant to the imputed period. This
involved calculating the correlation between the respective wind speed
and the derived U/V vector components, alongside a visual comparison
of their wind patterns using wind rose diagrams. The results of this
analysis are presented in Figs. 2 and 3.

2.3.3. Wavelet decomposition for feature extraction

We have applied wavelet decomposition to capture both long-term
trends and short-term momentary dynamics within the ground station
time series data. This technique is well-suited for analyzing non-
stationary environmental time series, as it can effectively separate sig-
nals into different frequency components at various time scales. For this
study, each original time series feature, including pollutant concentra-
tions and meteorological variables from all four ground stations, was
decomposed into multiple wavelet coefficients. We employed the Dau-
bechies 4 (db4) wavelet as the basis function based on several reasons.
First, we have collected the quantitative evidence from multi-feature
sensitivity analysis. The results could be found in the subsequent sec-
tion 3.1.1. In addition, from the literature precedent, db4 is standard for
environmental time series analysis (Percival and Walden, 2000).
Regarding the decomposition level selection, we applied five-level
wavelet decomposition (A5, D1-D5). This selection is primarily based
on energy distribution validation results, which are also demonstrated in
Section 3.1.1. To optimize the feature set for model training by reducing
redundancy and potential noise often present in higher-order detail
coefficients (Feng et al., 2019), only the A5, D1, and D2 components
were used to replace each original feature.

This selection was not arbitrary but was based on a rigorous quan-
titative energy distribution analysis conducted during our preliminary
experiments. We analyzed the percentage of total signal energy con-
tained in each wavelet component (A5, D1-D5) for all four stations. The
results, which are included in the Supplementary Material
(Fig. S3a-S3d), were definitive. For all stations, the A5, D1, and D2
components cumulatively accounted for the vast majority of the signal
energy (e.g., 99.5% for the AMS02 and AMS04 stations). Conversely, the
higher-level detail coefficients (D3, D4, and D5) combined contained
less than 1% of the total energy. This quantitative analysis illustrates
that the D3-D5 components are statistically insignificant and primarily
represent high-frequency noise. Given this evidence, we concluded that
including these components would introduce noise and unnecessary
complexity without adding meaningful predictive information.
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AMS 2 vs AMS 4 Wind Speed Scatter Plot

AMS 2 and AMS 4 Wind Speed Series
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Fig. 2. Comparison between AMS 02 and AMS 04 on wind speed. Scatter plot showing the correlation between wind speeds measured at AMS02 and AMS04
stations during periods with valid data from both stations. The analysis reveals a strong positive correlation with Pearson correlation coefficient r = 0.83 and
Spearman rank correlation coefficient p = 0.82, indicating high concordance in wind speed measurements between the two locations. The regression line demon-
strates the linear relationship used for data substitution, with statistical parameters displayed. Time series comparison and correlation heatmap provide additional

validation of the strong relationship between stations.
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Fig. 3. Comparison Analysis between AMS 02 and AMS 04 on wind direction. Wind vector analysis comparing directional patterns between AMS02 and AMS04
stations. Vector component scatter plot showing U and V wind components from both stations. The wind rose diagrams for AMS02 and AMS04 exhibit considerable
similarity in dominant wind directions. These quantitative and qualitative assessments confirm a high degree of concordance in wind patterns between the two
locations, supporting the decision to use AMS02 data as a reliable substitute for the missing wind measurements at AMS04 during the identified period. Correlation
analysis of U and V components with fitted regression lines, demonstrating consistent wind directional behaviour between stations. The high correlation in both U
and V components supports the reliability of using AMS02 data to substitute missing wind direction measurements at AMS04.

Furthermore, consistent with findings in the literature, higher-level
detail coefficients (D3-D5), although capable of capturing finer-scale
features, often predominantly represent noise or irrelevant high-
frequency vibrations that may compromise model performance

(Alfaouri and Dagrougq, 2008). This selection of A5, D1, and D2 aims to
provide a rich, multi-scale representation of the temporal data while
mitigating the risk of overfitting and reducing computational
complexity due to high dimensionality (Sahoo et al., 2024).
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2.3.4. Temporal pattern labelling through clustering analysis

To identify distinct operational or emission patterns within the
ground station data and subsequently guide the attention mechanisms of
the ST-CAN, a cluster analysis was performed on the wavelet-
decomposed features. Because high-dimensional data can pose chal-
lenges for clustering algorithms, we have evaluated several clustering
algorithms, including K-Means, DBSCAN, Hierarchical clustering, and
Gaussian Mixture Models (GMM), which combined with several
dimensionality reduction techniques, such as Principal Component
Analysis (PCA), Kernel PCA (KPCA), and t-distributed Stochastic
Neighbour Embedding (t-SNE) to visualize the combination results of
clustering.

This process was separated into two parts to capture different tem-
poral scales of atmospheric behaviour, aiming to assign two distinct sets
of categorical labels to each time point in the ground station dataset.
First, clustering was applied to the A5 approximation coefficients for all
features. The A5 components, representing the low-frequency baseline
trends, are well-suited for identifying longer-term patterns, such as
seasonal variations in background pollution levels or persistent meteo-
rological situations. The labels generated from A5 clustering, for
example, “Seasonal High Pollution Baseline," or “Seasonal Low Pollution
Baseline," are intended to provide the ST-CAN with context about the
broader, slowly evolving environmental state. Second, a separate clus-
tering analysis was performed on the D2 detail coefficients. The D2
components, capturing higher-frequency, short-term fluctuations, can
point out the moment events like potential methane leaks, rapid
pollutant dispersion, or sudden meteorological shifts. Labels derived
from D2 clustering aim to alert the model to more immediate, rapidly
changing conditions.

By generating the combinations of these two complementary sets of
temporal pattern labels, we aim to provide the ST-CAN with a richer and
deeper understanding of the ground-level emission patterns. This dual-
labelling strategy is supposed to enhance the model's ability to pre-
cisely assign attentions to satellite imagery features and to improve both
its overall prediction accuracy and its responsiveness to anomalous
events.

2.3.5. Temporal alignment strategy and its limitations

A significant challenge in this study is the temporal misalignment
between the high-frequency (hourly) ground station data and the low-
frequency (weekly) satellite-derived features. To enable the fusion of
these different data streams within a single deep learning framework, an
up-sampling of the satellite features to an hourly frequency was neces-
sary. For this purpose, we employed a time-weighted interpolation
method. This approach calculates a value for each hourly timestamp
based on a weighted average of the two nearest weekly data points, with
weights being inversely proportional to the temporal distance. This
gives greater influence on the closer weekly observation.

We explicitly acknowledge that this temporal up-sampling is a pri-
mary limitation of our study. This interpolation process, by its nature,
cannot recreate true atmospheric variability that occurs at sub-weekly
timescales and risks introducing artificial temporal smoothness. This
study should therefore be viewed as an exploration of the potential of a
deep learning architecture to fuse multi-modal data under conditions of
significant data sparsity. The model's performance and the resulting
concentration fields should be interpreted within the context of this
inherent data limitation. Overcoming this challenge will require future
research using data from next-generation satellites with higher revisit
rates.

2.4. Baseline models training

To comprehensively evaluate the performance of the proposed ST-
CAN, a series of baseline models was implemented and trained. These
models were strategically selected to serve two key purposes: 1) to
establish the performance of single-modality models, using a single data
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stream, like only ground or only satellite, and 2) to compare ST-CAN
against other well-known models with dual data streams. Addition-
ally, to ensure a fair and rigorous comparison, all baseline models
described in this section were trained and evaluated on the same pre-
processed dataset used by ST-CAN. This includes the wavelet-
decomposed ground features and the time-weighted interpolated hour-
ly satellite features. For the dual-stream baselines, the ground and sat-
ellite features were combined into a single input vector at each hourly
time step via simple concatenation.

2.4.1. Single data stream baseline models

Two baseline models were developed to assess the predictive power
of each data stream. LSTM was designed due to its powerful prediction
performance on time-series data. For ground data, its input consists of
the pre-processed time-series features from the WBEA stations, including
meteorological variables and the wavelet-decomposed components of
CH4 concentrations. The architecture comprises a bidirectional LSTM
layer with 64 hidden units followed by a fully connected prediction
layer. This baseline serves to quantify the predictive accuracy achiev-
able with high-frequency temporal data alone. For the satellite data
stream, its input is a time series derived from the satellite features,
which are extracted from the pre-trained model ResNet18 corresponding
to the pixel closest to the target ground station. The architecture is
identical to the ground-only model, featuring a bidirectional LSTM layer
with 64 hidden units. This baseline helps to understand the inherent
predictive value, or lack thereof, of the temporally sparse satellite data.

2.4.2. Dual data stream baseline models

Three distinct baseline models were implemented and trained to
compare with the performance of the proposed ST-CAN Support Vector
Regression (SVR), LSTM, and a Transformer-based model. These models
were carefully selected to provide a rigorous and fair benchmark. The
SVR serves as a strong classical machine learning baseline. The LSTM
was chosen as a powerful standard for time-series forecasting. Crucially,
the Transformer model was included as a state-of-the-art deep learning
baseline specifically because its self-attention mechanism provides the
most relevant and fair comparison for evaluating the novel cross-
attention framework of ST-CAN. To ensure a rigorous and fair evalua-
tion, the performance of all baseline models was optimized prior to
comparison. We conducted a systematic hyperparameter tuning process
for each baseline model. For example, adjusting kernel parameters for
SVR, hidden layers for LSTM and Transformer. The final configurations
selected for comparison represent the optimal settings that achieved the
lowest error on the validation dataset, ensuring that the proposed ST-
CAN is benchmarked against the strongest possible versions of these
established methods.

The SVR model was selected as a strong classical machine learning
baseline, valued for its efficiency in capturing non-linear relationships,
with relatively few parameters to reduce overfitting risk. Key configu-
ration parameters for the SVR included the use of a Radial Basis Function
(RBF) kernel, chosen for its ability to effectively model the non-linear
interaction between methane emissions and various meteorological
and atmospheric variables. A regularization parameter C of 1.0 was
used, allowing the model to more closely fit the training data, which is
beneficial for capturing critical emission patterns, including sporadic
events. An epsilon value of 0.1 was set to enhance the model's sensitivity
to subtle changes in methane levels, enabling it to respond to both
gradual trends and short-term emission incidents. To ensure robustness
and the temporal nature of the methane emission data, a time-series
cross-validation approach (5-fold) was implemented, preventing future
observations from leaking into past predictions. An ensemble model was
then created by averaging the predictions from all cross-validation folds,
enhancing stability and mitigating the influence of anomalous periods
on the final forecast. Input features were scaled using Min-Max
normalization. This configuration positions the SVR as a capable base-
line, adept at handling non-linear environmental data influenced by
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multiple factors.

An LSTM network was selected as a representative deep learning
architecture, well known for its ability to learn long-range dependencies
in sequential data. The architecture comprised a two-layer LSTM with
64 units in the first layer and 32 units in the second. This design allows
the model to initially capture complex patterns and subsequently refine
them into higher-level features. This structure is well-suited for model-
ling the intricate non-linear relationships in methane time series. The
input to the LSTM consisted of sequences with a 24-h time step, enabling
the model to learn daily cycles and human activity-related periodicities
in emissions. The training process was conducted with a batch size of 32
and an initial learning rate of 0.001, utilizing the Adam optimizer. The
LSTM layers employed the tanh activation function, while dense layers
used ReLU. A dropout rate of 0.2 was applied to mitigate overfitting,
particularly important for potentially noisy environmental data, while
retaining sufficient network capacity.

A Transformer model was included as a state-of-the-art deep learning
baseline, recognized for its efficiency in processing long sequences via
its self-attention mechanism. A more comprehensive architecture was
adopted, featuring a three transformer encoder layer with eight atten-
tion heads, an embedding dimension of 128, and a feed-forward network
dimension of 256. This streamlined design aimed to balance perfor-
mance with computational efficiency and reduce the risk of overfitting
on the available dataset. A relatively high dropout rate of 0.1 was
applied, crucial for mitigating overfitting given the potential noise and
variability in methane data. The model processed inputs with a 24-h
time step, the same as the LSTM configuration.

2.5. Spatio-temporal cross-attention network

To effectively integrate the distinct yet complementary information
streams from ground-based monitoring stations and satellite observa-
tions, we propose the ST-CAN. This novel deep learning architecture,
illustrated schematically in Figs. 4 and 5, is designed to explicitly model
the complex interactions between high-frequency temporal data and
spatially extensive, lower-frequency imagery, while adapting to the
inherent dynamics and potential data gaps in environmental moni-
toring. The ST-CAN processes the pre-processed ground station data,
including the multi-scale wavelet features and temporal pattern cluster
labels, and the satellite-derived methane concentration maps through
parallel pathways initially, before employing specialized fusion
mechanisms.

The core innovations of ST-CAN are its bidirectional cross-attention
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mechanism, which facilitates deep information exchange, and its
semantic-guided dynamic fusion gate, which provides an interpretable
and adaptive weighting strategy.

2.5.1. Bidirectional cross-attention mechanism

To effectively model the interplay between ground-based time-series
data and satellite imagery, we employ a bidirectional cross-attention
mechanism. This process, illustrated in the Stage 4 panel of Fig. 5,
consists of two parallel streams where each modality's feature repre-
sentation is enhanced by the context of the other before the final fusion.
The first stream is the Ground to Satellite (G-S) attention. In this stream,
the ground temporal features (hg) from the Bi-LSTM act as the Query,
while the satellite spatial features (hs) from ResNet18 serve as the Key
and Value. The calculation is defined as follows:

Qg =h, WK, V, = h,W*s h,W" h,_ = Attention(Qg, K;, V;)

T
= softmax (?;g{f Vs)

Here, h, and h; are the input feature representations from the ground
and satellite encoders, respectively. W&, WX, and W" are learnable
weight matrices used to project the inputs into the Query (Q), Key (K),
and Value (V) spaces. This results in Q; (the query derived from ground
features), and K; and V; (the key and value derived from satellite fea-
tures). di is the dimension of the key, used for scaling the dot product.
The final output, h,_;, represents the satellite spatial features as atten-
ded to by the ground temporal context. This stream produces a repre-
sentation that determines the most relevant spatial context from the
satellite, given the ground station's temporal patterns. For example, if
the ground station detects a sudden spike, the model can query the
satellite image to confirm if a large-scale emission plume is spatially
present.

The second, complementary stream is the Satellite to Ground (S-G)
attention. Here, the satellite spatial features (hs) conversely act as the
Query, while the ground temporal features (hy) serve as the Key and
Value. The calculation is:

Q =h;W%K,,V, =h,W*s h,W"h,_, = Attention(Q;, K, V,)

QK]
=softmax %
f ( \/d_k‘ 8
This stream produces h;_,, which identifies the most relevant high-
frequency temporal dynamics from the ground stations given the satel-
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Fig. 5. Five-stage Workflow Pipeline of ST-CAN for Methane Predictions. (1) Multi-scale feature extraction via wavelet decomposition (A5, D1, D2) and satellite
imagery processing; (2) Environmental pattern definition through separate clustering of A5 (long-term baseline) and D2 (short-term dynamics), generating nine
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lite's spatial overview. For example, if the satellite sees a faint anomaly
over a region, the model can query the ground station's time series to
confirm if this corresponds to a genuine, dynamic emission event. These
two outputs, h,_.; and h,_,, represent features from both modalities that
are now mutually aware of each other's context. They are then passed to
the Dynamic Fusion Gate.

2.5.2. Semantic-guided dynamic fusion gate

Another critical innovation of ST-CAN is that the final fusion of these
two enhanced feature streams is not static. It is dynamically controlled
by the environmental semantic labels derived from our clustering
analysis. This mechanism allows the model to adaptively trust one
modality more than the other based on the real-world physical context.
The gate mechanism (as shown at stage 4 in Fig. 5) is a learnable neural
network module that takes three inputs. These are the G-S enhanced
features hg_;, the S-G enhanced features h;_g, and the current environ-
mental semantic label with a categorical value from O to 8, representing
the nine cluster combinations. The working principle of this gate in-
volves several steps. First, the categorical cluster label is converted into a
dense vector representation. Specifically, we utilize a learnable
embedding layer (dimension denmp = 16) rather than simple one-hot
encoding. This allows the network to learn a continuous representa-
tion of the environmental states, capturing latent similarities between
different semantic conditions. Second, the two enhanced feature vectors
and the new cluster embedding vector are concatenated. This combined
vector is then passed through a small feed-forward network that ter-
minates in a Softmax function. The network outputs two scalar weights,
w, and ws, which sum to one. Because the cluster label is a direct input to
this network, the resulting weights are dynamically generated based on
the environmental state. Finally, the fused feature representation, Aged,
is computed as a dynamically weighted sum of the two mutually aware
feature streams, as shown in the following equation:

hfused =Wg- hg_.s + W5~h5—>g

This semantic guidance is physically interpretable. For instance,
during a sudden, high-emission event, for example, Cluster A5-0 + D2-1,
the model learns to assign a higher weight w, (w, = 0.8, w; = 0.2). This

reflects a learned strategy to trust the high-frequency ground data more,
as the weekly satellite data is too coarse and likely misses the peak. In
contrast, during a large-scale regional transport event with Cluster A5-2
+ D2-0, the model learns to assign a higher weight w, (wy = 0.3, w; =
0.7). This reflects a strategy to trust the satellite's wide-area spatial
coverage more, as a single ground station cannot capture the full spatial
extent of the event. This adaptive, interpretable fusion mechanism
moves beyond simple concatenation or static attention, providing a
robust representation that is passed to the final prediction layer.

Finally, to ensure stable and effective learning, the ST-CAN is trained
end-to-end using a robust optimization strategy, specifically the opti-
mization combined with learning rate warmup and cosine annealing
schedules. This approach helps stabilize training in the early phases and
promotes convergence towards optimal model parameters. The adap-
tively fused spatio-temporal representation generated through these
steps is then fed into a final prediction layer of a fully connected network
to output the target variable for methane regression prediction.

By integrating these components, ST-CAN aims to provide a robust
and adaptive framework for methane monitoring that leverages the
strengths of both ground-based and satellite observations while
addressing key challenges in multi-source data fusion, interpretability,
and temporal dynamics.

3. Results and discussion
3.1. Results of data pre-processing and clustering analysis

3.1.1. Multi-scale feature extraction using wavelet decomposition

After the data cleaning and interpolation, wavelet decomposition
was applied to all hourly time series variables, including pollutants and
meteorological parameters from the four selected WBEA stations. As
detailed in Section 2.3.3, this technique transferred the original signal
into components representing different time scales, effectively sepa-
rating underlying trends from transient fluctuations. The low-frequency
approximation component (A5) captures the smoother, long-term vari-
ations, while the detail components (D1-D5) isolate higher-frequency
fluctuations corresponding to short-term events like emission spikes,
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plume transport, or rapid meteorological changes. The selection criteria
are based on the energy distribution validation as shown in Fig. S1a and
S1b in the Supplement Materials. For CHy, the approximation compo-
nent A5 represents the dominant energy component, and cumulative A5-
D2 energy exceeds 97%, confirming that five levels sufficiently capture
meaningful information while minimizing noise. Furthermore, to
rigorously validate db4's suitability, we conducted a comprehensive
sensitivity analysis comparing four common wavelets (db2, db4, db6,
sym4) across all 17 features in our dataset. As shown in Fig. 6, db4
achieves the highest average approximation coefficient energy concen-
tration of 68.2h% with the most stable performance across different
feature types, demonstrating its superior applicability to our environ-
mental dataset.

Fig. 7 presents an example of this decomposition applied to the CHy
time series data at the AMS09 (Barge Landing) station. It displays the
smoothed A5 component onto the original signal, visually demon-
strating how A5 captures the underlying baseline trend. This multi-scale
representation, separating trends from fluctuations and enabling the
identification of anomalous periods via components like D2, formed the
basis for the subsequent clustering analysis and provided enhanced
feature inputs for the ST-CAN.

3.1.2. Clustering analysis for temporal pattern identification

We applied a clustering analysis to identify distinct seasonal emis-
sion patterns and short-term leakage events within the ground station
data and subsequently provided a guiding temporal context to the ST-
CAN. We have evaluated combinations of four clustering algorithms
(K-Means, DBSCAN, Hierarchical, GMM) and three dimensionality

Wavelet Sensitivity Analysis: Multi
Grouped Bar Chart: All Features
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reduction techniques (PCA, KPCA, t-SNE) applied to the wavelet features
A5 and D2 derived from all measured variables to extract emission
patterns from the high-dimensional wavelet-decomposed ground station
data, and to subsequently provide guiding temporal context to the ST-
CAN.

This comprehensive comparison aimed to select the most effective
combination for classifying the data into meaningful groups. We eval-
uated 12 combinations of four clustering algorithms, including K-Means
Clustering (K-Means), Density-Based Spatial Clustering of Applications
with Noise (DBSCAN), Hierarchical Clustering (Hierarchical) and
Gaussian Mixture Model (GMM) and three dimensionality reduction
techniques (PCA, KPCA, t-SNE). As demonstrated in Supplementary
Fig. S4a and S4b, the PCA + K-Means combination yielded the most
distinct and well-separated clusters, which also aligned best with sub-
sequent physical interpretation. In addition, as detailed in Supplemen-
tary Table S1, this combination achieved the highest Calinski-Harabasz
Index (12,845.2 for A5 and 7476.2 for D2) among all tested methods,
indicating superior cluster definition and compactness. Furthermore,
unlike density-based methods such as DBSCAN, which exhibited poor
structural scores (CH Index <300) and failed to provide complete tem-
poral coverage (98.1%), K-Means ensured 100% data availability with
distinct, robust boundaries required for the semantic gating mechanism.
Moreover, the selection of k = 3 was quantitatively validated using the
Elbow Method, Silhouette Score, and Bayesian Information Criterion
(BIC). The results of this analysis shown in Fig. 8 below clearly indicate
that k = 3 is the optimal number of clusters, as evidenced by a distinct
peak in the Silhouette Score, representing the best balance of cluster
cohesion and separation.
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cluster separation.

Fig. 9 visually presents the resulting cluster distributions in the PCA-
reduced feature space by using K-Means clustering methods for both the
A5 and D2 components, illustrating the separation achieved for these
two distinct types of temporal characteristics. The resulting cluster
boundaries show minimal overlap, suggesting robust segregation of
different emission patterns.

Characterization of these three temporal patterns was performed by
examining the distribution of the A5 and D2 wavelet features within
each cluster. Fig. 10 presents radar charts summarizing the standardized
coefficients for all atmospheric parameters within each cluster.

These nine distinct environmental states, which capture both the
underlying baseline and the immediate dynamics, form the core of our
semantic guidance. Each state corresponds to a specific, interpretable
environmental event. We have defined and provided detailed examples
for all nine combinations in Table 1. For instance, 'State 6' (A5-1 + D2-2)
represents normal stable conditions, while 'State 2' (A5-0 + D2-1) rep-
resents a critical emission spike during a summer stagnation period.
These dual labels were subsequently used as guidance to assign the
appropriate attention weights to the ST-CAN, enabling it to adapt its
fusion strategy with greater precision based on a comprehensive

10

understanding of the current environmental context.

3.2. Baseline models training and performance evaluation

The three baseline models, including SVR, LSTM, and a Transformer-
based model, were trained and evaluated to establish a benchmark for
the proposed ST-CAN. The performance of these models provides a
reference point against which the capabilities of the more complex ST-
CAN architecture can be assessed.

The overall predictive accuracy of the baseline models that evaluated
on all cross-validation folds, is initially assessed. Here, we provided an
example result of SVR as a reference. Fig. 11 below summarizes a
comprehensive prediction performance on the SVR model. While the
SVR model demonstrates a certain level of predictive capability, its
performance, for example, a relatively lower R? of 0.68, may not be
entirely satisfactory. One potential explanation for this could be the
inherent limitations of SVR in effectively processing and integrating
complex spatial features. The training dataset, which combines ground
station time series with satellite image features which are extracted
using ResNet18 and subsequently interpolated, presents a multi-modal
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Fig. 9. Visualization of Environmental Semantic Clusters in PCA Feature Space. The left panel shows the clustering of A5 (long-term trend) features, and the
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and Table 1.
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Fig. 10. Radar chart characterizing the three clusters based on the A5 trend. Each radar chart displays the measured atmospheric parameters. The radial
distance from the center represents the magnitude of standardization, with positive values (extending outward) indicating above-average levels and negative values
(closer to the center) indicating below-average levels for each parameter. The shadow areas represent the characteristic “fingerprint" of each cluster: Cluster 0 (n =
634) shows summer high-emission stagnant pattern, Cluster 1 (n = 5432) represents moderate photochemical baseline conditions, and Cluster 2 (n = 2719) indicates
winter high-pollution transport pattern. Parameters include pollutants, including CO, NO, NO,, NOy, O3, PM, 5, SO,, CHy4, Total Hydrocarbons (THC), Non-Methane
Hydrocarbons (NMHC), Total Reduced Sulfur (TRS), meteorological variables (temperature, barometric pressure, relative humidity, wind speed), and wind com-

ponents (U: easterly, V: southerly).

challenge. SVR models, while adept at handling non-linear temporal
relationships, might struggle to fully capture and leverage the rich
spatial information contained within the numerous satellite-derived
features. This could lead to a poor representation of the spatio-
temporal interaction on CHj4 concentrations, potentially explaining
some of the observed discrepancies between predicted and actual
values. The following evaluation of the deep learning baselines (LSTM
and Transformer) and the ST-CAN will explore whether architectures
more explicitly designed for spatio-temporal and multi-modal fusion can
offer improved performance.

From the performance metrics, we can observe that the Deep
Learning models, including LSTM and Transformer, dominated the SVR
in this prediction problem. The Transformer model showed the smallest
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RMSE of 0.0479, which means that it effectively reduced the large
prediction error values. The LSTM model came in second place with an
RMSE of 0.0508. The superior performance of the Transformer, partic-
ularly in achieving the lowest RMSE and MAE and the highest R?
highlights the potential benefits of attention-based architectures for this
type of environmental forecasting. This comprehensive evaluation of the
baseline models establishes a clear performance benchmark, paving the
way for assessing the advancements offered by the proposed ST-CAN,
which is specifically designed for enhanced spatio-temporal fusion.
The performance of the single data stream baseline models reveals
critical insights into the nature of the data modalities. The Ground-Only
model achieved an acceptable R? of 0.64, indicating that ground-based
time-series data contains significant predictive power. In contrast, the
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Table 1
Definition and environmental interpretation of the nine semantic cluster
combinations.

A5 (Long- D2 (Short- Combination Environmental Meaning &
term) Cluster term) Cluster (State) Specific Event Example
A5-0 (Summer  D2- State 1 High-Emission (Cooling
High- 0 (Pollution Down): A high-pollution
Emission) Decrease) event (e.g., from stagnant
air) that is beginning to
disperse.

A5-0 (Summer  D2-1 State 2 Critical Emission Spike
High- (Pollution (Summer): A sudden, acute
Emission) Increase) emission event (e.g.,

industrial leak) occurring
during an already high-
pollution summer period.
(Critical Event)

A5-0 (Summer D2-2 (Stable) State 3 Persistent Stagnation: A
High- prolonged period of high
Emission) pollution, typically caused

by stagnant air masses in
summer, with no significant
short-term changes.

A5-1 D2- State 4 Post-Event Recovery: The
(Moderate 0 (Pollution environment is returning to
Baseline) Decrease) normal background levels

after a minor pollution
event.

A5-1 D2-1 State 5 Minor Emission Event: A
(Moderate (Pollution typical, short-term emission
Baseline) Increase) spike (e.g., from operational

upsets) under normal
background conditions.

A5-1 D2-2 (Stable) State 6 Normal Stable Conditions:
(Moderate The most frequent state,
Baseline) representing typical

background concentrations
with no significant events.
(Baseline State)

A5-2 (Winter D2- State 7 Regional Transport
High- 0 (Pollution (Ending): The tail-end of a
Transport) Decrease) large-scale pollution

transport event, where
concentrations are
decreasing but still high.

A5-2 (Winter D2-1 State 8 Regional Transport
High- (Pollution (Arriving): The arrival of a
Transport) Increase) large-scale plume from an

external source, causing a
rapid increase in local
pollution during winter.

A5-2 (Winter D2-2 (Stable) State 9 Persistent Transport

High-
Transport)

Event: A prolonged period
where the region is sitting
within a large, stable high-
pollution air mass, often
associated with winter
conditions.

Satellite-Only model performed exceptionally poorly (R? ~ 0.01), con-
firming that the weekly satellite features, when interpolated to an hourly
frequency, do not possess sufficient temporal resolution to act as a
standalone predictor and behave largely as noise at this scale. This result
highlights the severe challenge of temporal data sparsity.

3.3. Comparative analysis and ST-CAN evaluation

The ST-CAN, with its architecture designed for enhanced multi-
source data fusion and contextual understanding, was trained and
evaluated using the same five-fold cross-validation procedure applied to
the baseline models to compare the differences. A direct visual com-
parison of the predictive precision across all models is presented in
Fig. 12, which displays density scatter plots of predicted versus actual
CH4 concentrations. Each panel illustrates the linear fit between
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predictions and observations, with the colour intensity representing the
density of data points. The ST-CAN exhibits a notably tight clustering of
points, indicating a strong linear relationship and high agreement be-
tween its predictions and the actual CH4 concentrations. In contrast,
while the SVR, LSTM, and Transformer models show varying degrees of
correlation, their scatter plots generally display a greater dispersion of
points and potentially more deviation from the ideal line compared to
ST-CAN, suggesting a less precise fit to the observed data.

A more comprehensive quantitative and qualitative assessment is
provided in the dashboard presented in Fig. 13. The bar charts in the
upper section directly compare the key evaluation metrics with R
RMSE, and MAE for ST-CAN against the three baseline models. Across all
three metrics, ST-CAN demonstrates markedly superior performance. It
achieves the highest R? value of 0.96, the lowest RMSE of 0.0214, and
the lowest MAE of 0.0141. These figures represent a significant
improvement over the best-performing baseline model of Transformer,
with R% = 0.79, RMSE = 0.0479, and MAE = 0.0316, indicating that ST-
CAN explains a substantially larger proportion of the variance in CHy4
predictions with considerably smaller errors on average.

Finally, the full-year CH,4 prediction comparison at the bottom il-
lustrates enhanced predictive capability of ST-CAN. The plot presents
the actual observed CH4 concentrations alongside the predictions from
all four models over the entire year. It is visually apparent that the ST-
CAN's prediction line tracks the actual CH4 dynamics much more closely
than those of the SVR, LSTM, and Transformer. ST-CAN demonstrates a
superior ability to capture both the baseline fluctuations and, crucially,
the peaks and troughs in CH4 concentration, which often represent
significant emission events or dispersion phenomena. The baseline
models, while capturing some general trends, tend to oversmoothed
these variations in their response to rapid changes.

To provide a definitive assessment of the ST-CAN, a comprehensive
comparative analysis was conducted against all baseline models. The
results are presented in Fig. 14, offering clear insights into the models'
performance. The quantitative metrics in Fig. 14 establish the superi-
ority of the ST-CAN. It achieved the highest R? of 0.95, the lowest RMSE
of 0.020, and the lowest MAE of 0.014. This represents a substantial
34.76% improvement in R? over the best-performing single-modality
model of Ground-Only (R? = 0.714), validating the significant benefits
of multimodal fusion. The poor performance of the Satellite-Only model
(R? = 0.006) further underscores that neither data stream is sufficient in
isolation. Notably, the time-series plot in Fig. 14 provides strong visual
confirmation of the quantitative results. The prediction from the ST-CAN
(green line) demonstrates an excellent fit, closely tracking the dynamics
of the actual observed concentrations (black line) from September to
December, including both baseline fluctuations and peak events. In
contrast, while the Ground-Only model (red line) captures the general
trend, it exhibits significantly higher volatility and larger prediction
errors, especially during peak periods.

Therefore, the combined quantitative and qualitative evidence leads
to a clear conclusion: the ST-CAN, through its semantic-guided cross-
attention mechanism, effectively fuses the high-frequency temporal in-
formation from ground stations with the spatial context from satellite
data. This fusion process successfully leverages the strengths of both
modalities to produce predictions that are not only more accurate on
average but also more stable and reliable than those from single-data-
stream models.

To provide a qualitative validation of ST-CAN's fusion mechanism,
we conducted a case study on the model's behaviour during two distinct
peak events in late 2024, where the Ground-Only model failed. This
analysis moves beyond R? scores to demonstrate how the satellite data
provides practical, corrective value. As a preliminary step, a review of
public reports for the study period (Jan 2024-Jan 2025) confirmed that
no major, acute leakage events were reported. Instead, literature con-
firms emissions are dominated by persistent, ongoing sources, for
example, tailings ponds and operational fluctuations, which are known
to be systemically under-reported. This finding highlights the value of
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Fig. 11. Comprehensive performance evaluation of the SVR model for all stations on CH4 concentration prediction. (a) Cross-validation performance metrics
showing R? RMSE, and MAE with error bars representing standard deviation across 5 folds. (b) R? scores for individual CV folds with mean performance indicated by
the dashed line. (c¢) Density scatter plot comparing predicted versus actual CH4 concentrations, with darker colours indicating higher data density; the dashed line
represents perfect prediction, and the solid line shows the linear fit. (d) Full-year time series comparison of actual (blue) and predicted (red) CH4 concentrations with
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ST-CAN in modelling complex dynamics beyond simple event detection.
The case study, presented in Fig. 15, compares the performance of the
full ST-CAN (green) against the Ground-Only model (red) and the actual
ground truth (black) during two challenging periods.

Case 1. Early November 2024. As shown in Fig. 15a, the Ground-Only
model significantly over-predicted a peak, spiking to ~2.34 ppm while
the actual value was ~2.27 ppm. The full ST-CAN, however, correctly
suppressed this temporal spike, holding its prediction near the ground
truth.

Case 2. Early December 2024. Conversely, in Fig. 15c, the Ground-
Only model under-predicted a peak, rising only to ~2.30 ppm while
the actual event peaked at ~2.34 ppm. ST-CAN correctly boosted this
prediction, accurately matching the true peak.

The explanation for ST-CAN's success in both cases lies in the satellite
data. The GHGSat heatmaps for both the November (Fig. 15b) and
December (Fig. 15d) periods show high regional Xcy4 concentrations.
ST-CAN's fusion mechanism learned to use this consistent spatial context
as a critical “corrector” for the volatile, time-only predictions. This is
particularly evident in Case 2, which highlights the specific contribution
of satellite data in capturing spatial diffusion events. The satellite
heatmap revealed a widespread high-concentration field (purple zones),
characteristic of large-scale spatial diffusion rather than a localized
point source. The Ground-Only model, lacking this spatial context,
treated the signal as localized noise and failed to capture the full
magnitude of the event. By integrating this spatial diffusion signal, the
ST-CAN framework correctly identified the regional scale of the trans-
port. This analysis provides definitive qualitative proof that the satellite
data is not a minor contributor; it is an active, intelligent component that

13

makes the model more robust by capturing regional transport dynamics
invisible to the ground-only stream. This behaviour corresponds to the
model semantically identifying these periods as “State 9: Persistent
Transport Event" (Winter High-Transport + Stable) in Table 1, vali-
dating the physical interpretability of our framework.

To rigorously quantify the contribution of satellite data across these
contrasting scenarios, Table 2 presents a direct performance comparison
between the Ground-Only and full ST-CAN models during these critical
peak moments. The results demonstrate that incorporating satellite
spatial context yields substantial quantifiable gains. In the November
localized scenario, ST-CAN achieved an 86% error reduction, effectively
corrected the Ground-Only model's false overshoot (2.34 ppm) and
brought the prediction within 0.01 ppm of the ground truth. Even more
critical is the result for the December spatial diffusion event. In this
scenario, the Ground-Only model failed to capture the full magnitude of
the event due to a lack of spatial awareness (under-predicting at 2.30
ppm). In contrast, the ST-CAN model, guided by the high-concentration
regional signal from the satellite, achieved a near-complete error
reduction (>95%), closely tracking the observed peak at 2.34 ppm with
negligible residual error. This result confirms that in the presence of
large-scale spatial diffusion, satellite data acts as an indispensable
spatial regularizer, providing the necessary context to capture regional
transport dynamics that are mathematically inaccessible to temporal-
only models.

3.4. Interpretability of semantic clustering-guided attention

A foundational innovation of the ST-CAN framework is its enhanced
interpretability, addressing the “black-box" nature common in many
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Fig. 12. Comparison of linear fit between baseline models and ST-CAN.

deep learning models. This interpretability is primarily rooted in a
model-inherent explanation, rather than a post-hoc analysis. The envi-
ronmental semantic labels, derived from the interpretable A5 and D2
wavelet components, are not merely used for analysis after prediction;
they serve as direct, real-time control signals to the dynamic fusion gate.
This design fundamentally integrates environmental understanding into
the model's adaptive information processing, allowing the semantic
context to actively steer how information from ground and satellite
sources is weighted and combined.

This model-based interpretability is particularly valuable for domain
experts. Unlike the traditional machine learning features, our semantic
labels, for example, “Summer High-Emission “or “Pollution Increase,"
are clearly linked to physically meaningful environmental conditions,
making them directly comprehensible and trustworthy to atmospheric
scientists and environmental managers. The mechanism allows domain
experts to trace the model's adaptive strategies, for instance, observing
how the model “prioritizes" satellite spatial context during a regional
transport event, or ground temporal dynamics during a localized emis-
sion spike. The subsequent visualization and analysis of attention
weights, conditioned on these familiar environmental states, provides a
clear and intuitive manifestation of this enhanced interpretability. This
approach transcends simple input-output correlations, offering insights
into why the model makes certain fusion decisions under specific envi-
ronmental contexts.

To provide insight into this adaptive fusion process, Fig. 16 visualizes
the learned attention importance within the bidirectional cross-
attention mechanism, specifically showing how different combinations
of long-term (A5) and short-term (D2) environmental states influence
the information flow between the two data modalities.

The heatmaps in Fig. 16 reveal that the model learns a sophisticated
trust strategy, dynamically deciding when to trust or suppress infor-
mation from each modality based on the environmental context. The left
panel, illustrating Ground-to-Satellite (G-S) attention, shows the trust
placed on satellite data when queried by ground data. A high positive
weight (0.41) emerges during the “High Pollution + Stable" state. This
suggests that when the model receives confirmation of a stable, high-
pollution baseline from ground sensors, it learns to “High Trust" and
heavily query the satellite's spatial context. The model's logic is similar
to a learned policy: when ground sensors confirm a severe pollution
event, the model adaptively increases the importance of the satellite's
spatial view to confirm and locate that event. Conversely, a strong
negative weight (—0.42) appears during the “Low Pollution/Decreasing"
state (A5-Low, D2-Decreasing). This demonstrates that the model learns
to actively distrust or suppress the satellite data. The physical inter-
pretation is that during these low-concentration periods, the satellite's
column-averaged data (Xcp4) is likely dominated by background at-
mospheric concentrations and is not sensitive to the tiny local variations
measured at the ground level. In this state, the satellite data is likely
considered irrelevant or as potential noise, and its influence is therefore
actively minimized.

The right panel, showing Satellite-to-Ground (S-G) attention, reveals
a different dynamic where satellite data queries the ground time series.
The highest weight (0.59) occurs during the “Medium Pollution +
Increasing" state. Here, the model learns to “High Trust" the satellite
data to act as the Query, guiding its search for specific information
within the ground station's temporal data. This demonstrates a learned
strategy where the model leverages the satellite's broad spatial context
to guide its attention. This guidance allows the model to precisely
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Fig. 13. Comprehensive Performance Dashboard for ST-CAN and Baseline Models in CH4 Concentration Prediction. The dashboard presents a multi-faceted
comparison of model performance: (Top row) Bar charts comparing R2, RMSE, and MAE metrics across ST-CAN, SVR, LSTM, and Transformer models. (Middle row)
Boxplot visualization displaying error distribution characteristics for each model, including median (horizontal line), mean (red diamond), quartile ranges (box), and
whiskers; annotated with mean (p) and standard deviation (c) values below each distribution. (Bottom row) Individual time series subplots for each model showing
predicted CHy4 concentrations (colored lines) against actual observations (gray reference lines) across a full year, with unified y-axis scales for direct comparison;

performance metrics (Rz, RMSE, MAE) are embedded in each subplot.

identify and extract the most relevant temporal details of an emerging
pollution event from the high-frequency ground-station data.

Together, these visualizations demonstrate the adaptive nature of
ST-CAN's fusion mechanism. Unlike traditional “black-box" attention
models, where the drivers of attention weights are unclear, this semantic
clustering-guided approach offers a degree of interpretability by linking
attention patterns to recognizable environmental conditions. This not
only contributes to understanding the model's decision-making process
but also highlights a key factor in its enhanced predictive accuracy and
resilience to real-world data imperfections.

3.5. Ablation study on ST-CAN components

To validate the independent contribution of each novel component
in the ST-CAN, we conducted a comprehensive ablation study. We
trained four ablated versions of the model: (1) Ablation No Fusion Gate
(using simple concatenation); (2) Ablation No Gate Guidance (a “blind"
gate without cluster labels), and two unidirectional variants (S-G Only
and G-S Only). Both ablation models are trained and validated on the

same dataset and compared their performance (R%, RMSE) against the
full ST-CAN. The results are presented in Table 3.

The results in Table 3 confirm that every component of ST-CAN is
necessary for its high performance, as the removal of any part leads to a
measurable drop in accuracy. The analysis reveals three key findings.
First, bidirectional attention is critical. Both unidirectional models
performed poorly. The most significant finding is the dramatic perfor-
mance drop with +63.9% increase in RMSE when the S-G attention
stream is removed. This quantitatively proves that using the satellite's
spatial context to query the high-frequency temporal data is the single
most important mechanism in the framework. Secondly, the semantic
guidance is a key performance driver. The No Gate Guidance model with
RMSE = 0.02652 displayed a +14.0% increase in RMSE. This is a sub-
stantially larger error increase than that of the No Fusion Gate model
with +4.1%, proving that the interpretable cluster labels are a major
contributor to the model's predictive accuracy. Finally, the dynamic
gating outperforms concatenation. The No Fusion Gate model, which
use simple concatenation features as input, performed worse than the
full model, confirming that the learnable, adaptive weighting of the
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Fig. 14. Comprehensive Performance Comparison of ST-CAN against Single-Modality and Multimodal Baseline Models. The figure presents a detailed
evaluation of all models after correcting a data processing artifact in the visualization code. (a) Bar charts comparing three key statistical metrics: R%, RMSE, and
MAE. (b) The time-series plot from September to December compares the hourly predicted CH4 concentrations from all models against the actual observed values
(black line). The models evaluated include the proposed ST-CAN (green line) and single-modality baselines, Ground-Only in red, Satellite-Only in blue. Both the
quantitative metrics and the qualitative time-series visualization consistently demonstrate the superior accuracy and stability of the ST-CAN.

dynamic gate is a superior fusion strategy. understanding.
As noted in our methodology, the temporal up-sampling of weekly
4. Conclusions satellite data to an hourly resolution remains a key limitation of this
work. While our ST-CAN demonstrates a strong capability to fuse the
The ST-CAN demonstrates significant advancement in methane available information, the fidelity of its predictions at fine temporal
concentration prediction through its novel environmental semantic scales is inherently constrained by the low frequency of the satellite
clustering-guided approach and bidirectional cross-attention mecha- observations. This underscores a critical need within the environmental
nism. The superior performance over established baselines validates the monitoring field for next-generation satellite missions with higher
effectiveness of integrating semantic understanding of environmental revisit rates, which would fully unlock the potential of the data fusion
states with adaptive fusion strategies. The framework's ability to identify framework proposed here. Furthermore, we must note that our perfor-
distinct long-term baseline patterns and short-term dynamic states en- mance evaluation metrics of R%, RMSE, and MAE are necessarily vali-
ables more accurate predictions of the regionally representative con- dated against the in-situ measurements from the ground stations, as
centration, while simultaneously enhancing interpretability. This these provide the only available ground truth. As this study serves pri-
approach addresses persistent challenges in multi-source environmental marily as pilot research to develop and test the advantages of multi-
data fusion, particularly the heterogeneity and temporal misalignment modal fusion modelling, we have focused on demonstrating the
of diverse data streams. Unlike traditional data-driven deep learning methodology's effectiveness using available ground truth data. In future
models that operate attention mechanisms as “black boxes," the pro- research, we will conduct comprehensive validation across all available
posed architecture achieves not only superior performance but also ground stations in the study area to more thoroughly assess the model's
provides meaningful interpretability through environmental semantic spatial predictive performance. Evaluating the model's accuracy at
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Fig. 15. Case Study on Satellite Data Correction of Temporal Prediction Errors. (a) In early November, the Ground-Only model (red) overshoots the actual peak
(black), while ST-CAN (green) correctly suppresses it. (b) The corresponding GHGSat map (Nov 2-8) shows high regional Xcp4. (c) In early December, the Ground-
Only model undershoots the actual peak, while ST-CAN correctly boosts it. (d) The corresponding GHGSat map (Nov 30-Dec 6) also shows high regional Xcp4. This
demonstrates how ST-CAN uses spatial context to correct errors in the temporal-only prediction.

Table 2
Quantitative comparison of satellite data contribution in correction of peak estimation errors.
Event Scenario Ground Truth Ground-Only Model ST-CAN Satellite Contribution
Prediction Abs. Error Prediction Abs. Error Error Reduction (%)
Nov: Localized (False Peak) 2.27 2.34 0.07 2.26 0.01 85.70%
Dec: Spatial Diffusion 2.34 2.3 0.04 ~2.34 <0.01 > 95.0%

unobserved, non-ground station locations remains a significant chal-
lenge that requires a dedicated spatial validation dataset, which we plan
to address in subsequent work. Additionally, we must acknowledge the

inherent physical heterogeneity of our input modalities. Our model fuses
surface-level in-situ measurements (ppm) with satellite-derived column-
averaged dry-air mole fractions (Xcp4). While Xcp4 provides invaluable
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Fig. 16. Visualization of Average Learned Attention Importance in ST-CAN. Heatmaps illustrate the aggregated attention weights for G-S and S-G interactions,
conditioned on the nine environmental states. The value in each cell represents the average attention importance across all time steps belonging to that specific
environmental state, demonstrating the model's consistent and systematic learned fusion strategy rather than an instantaneous snapshot.

Table 3
Ablation study results comparing the full ST-CAN model to Abridged variants.

Model Description R? RMSE % Increase in
Variant RMSE (vs.
Full)
ST-CAN (Full The completely proposed ~ 0.9513  0.02325
Model) model.
Ablation: No Replaces the Dynamic 0.9468 0.02420 +4.1%
Fusion Gate  Gate with simple
concatenation.
Ablation: No The Dynamic Gate runs 0.9342 0.02652 +14.0%
Gate “blind" without cluster
Guidance label inputs.
Ablation: S- Unidirectional. Removes 0.9227 0.02896 +24.5%
> G Only the G- > S attention
stream.
Ablation: G- Unidirectional. Removes 0.8675 0.03811 +63.9%
> S Only the S- > G attention

stream.

spatial context, it does not directly measure surface concentrations, and
the relationship between the two can be complex and non-linear,
influenced by boundary layer height, atmospheric mixing, and local
emission sources. Our model's task is to learn this complex relationship.
Consequently, all predictions from ST-CAN must be strictly interpreted
as estimations of the ground-level concentration, as this is the target
against which the model was trained and validated. Finally, a further
limitation, related to the spatial sparsity of the ground network, is the
scope of our model validation. Our validation was performed
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temporally, assessing the model's ability to predict the spatially aver-
aged concentration over time. We did not perform spatial cross-
validation. However, ST-CAN was designed for a different objective: to
enhance the temporal fidelity of predictions at known, monitored lo-
cations by fusing multi-modal data, rather than to generalize to entirely
unobserved coordinates. Given the sparse (n = 4) and non-uniformly
distributed training network, applying spatial cross-validation would
be a significantly different and challenging research task.

Looking forward, enhancing the model's spatial generalization
capability to unobserved locations is the primary direction for our future
work. To address the inherent sparsity of ground monitoring networks,
we are currently developing a next-generation framework that moves
beyond pure data-driven approach. Our strategy focuses on two syner-
gistic advancements. First, we aim to integrate Graph Neural Networks
(GNNs) to model the non-Euclidean spatial dependencies among
monitoring sites. Unlike standard interpolation, GNNs can learn adap-
tive edge weights based on wind vectors and industrial source proximity,
capturing the complex topology of pollution transport. Second, we plan
to embed physical laws directly into the learning process using Physics-
Informed Neural Networks (PINNs). By incorporating the atmospheric
Advection-Diffusion partial differential equations (PDEs) as a regulari-
zation term in the loss function, we can constrain the model's predictions
to be physically consistent. This approach aims to simulate realistic
methane plume dispersion and chemical decay in unmonitored areas,
effectively bridging the gap between sparse ground observations and
continuous spatial fields without requiring a prohibitively dense sensor
network.

Applications extend beyond the AVOS, offering potential for
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standardized methane monitoring protocols across diverse industrial
contexts. Beyond the spatial expansions mentioned above, other future
directions include exploring federated learning approaches for privacy-
preserving collaborative modelling and further improving the inter-
pretability of attention mechanisms. The ST-CAN represents a signifi-
cant step toward more robust, transparent, and actionable methane
monitoring systems essential for effective climate mitigation strategies.
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