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A B S T R A C T

Methane is a potent greenhouse gas with significant climate implications, being approximately 84 times more 
impactful than CO2 over a 20-year timeframe. Accurately predicting the spatiotemporal distribution of methane 
concentrations, particularly near industrial sources, is essential for effective environmental monitoring and 
provides a critical foundation for subsequent emission source identification. This study introduces a novel 
Spatial-Temporal Cross-Attention Network (ST-CAN) to address the challenge of fusing sparse, high-frequency 
ground-based observations with spatially extensive but temporally infrequent satellite imagery. Using the 
Athabasca oil sands region as a case study, ST-CAN incorporates three synergistic innovations that work together 
to address data fusion challenges: (1) wavelet decomposition transforming high-frequency ground measurements 
into multi-scale temporal features capturing both long-term trends and short-term emission events; (2) envi
ronmental semantic clustering that identifies distinct atmospheric patterns from these wavelet features, 
providing interpretable contextual labels; and (3) a bidirectional cross-attention mechanism where these se
mantic cluster labels dynamically guide how ground temporal features query and fuse with satellite spatial in
formation, adaptively prioritizing relevant features based on identified environmental states. The model is 
designed to leverage time-dense ground data to enhance the temporal resolution of weekly satellite-derived 
concentration maps, generating high-fidelity spatially representative methane concentration predictions by 
integrating information from four spatially distributed monitoring stations and satellite imagery, capturing 
regional-scale atmospheric dynamics. Extensive evaluations demonstrate ST-CAN significantly outperforms all 
the baseline models in predictive accuracy and robustness. The bidirectional mechanism notably improves 
interpolation during satellite data gaps, mitigating cloud cover and data sparsity challenges. By combining 
interpretability with advanced AI techniques, ST-CAN provides a transparent and scalable framework for high- 
resolution methane concentration modelling, advancing environmental monitoring capabilities and supporting 
targeted climate mitigation efforts.

1. Introduction

The increasing climate crisis requires immediate efforts on the 
mitigation of potent but short-lived greenhouse gas (GHG) emissions, of 
which methane is the most critical due to its short lifetime and sub
stantial influence on near-term global warming. The efficacy of the 

methane molecular in trapping heat is much greater than CO2, which is 
reported to be more than 80 times that of CO2 over an important 20-year 
timeframe (Etminan et al., 2016). This characteristic makes methane 
mitigation not only beneficial, but essential for any feasible strategy 
aiming to rapidly slow down the planetary warming. The oil and gas 
industry is a primary contributor, tackling methane leaks all along its 
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supply chain from wells to pipelines (Kong et al., 2019) to local delivery, 
which remains a difficult and ongoing task. Therefore, it is essential to 
develop accurate modelling approaches for effective environmental 
management and targeted climate action.

Traditional methane detection methods face significant limitations. 
Field measurements provide high accuracy with clear temporal patterns 
but suffer from limited spatial coverage, requiring interpolation for 
regional applications (Jacob et al., 2016). Satellite imagery offers 
broader spatial coverage through platforms like MethaneSAT 
(MethaneSAT, 2024), TROPOMI (Veefkind et al., 2012), and GHGSat 
(GHGSat, 2024a,b), but faces constraints from cloud interference, 
restricted data access, and infrequent revisit cycles. Multi-source data 
integration has emerged as necessary, yet cross-platform validation er
rors of 30–50% highlight fusion challenges (Fan et al., 2024).

However, recent advances in multimodal spatiotemporal fusion have 
demonstrated significant promise across various environmental moni
toring applications (Li et al., 2022). provided a comprehensive review of 
deep learning approaches for multimodal remote sensing data fusion, 
highlighting the evolution from pixel-level to decision-level fusion 
strategies. For atmospheric and environmental applications specifically, 
multimodal frameworks integrating ground sensors with satellite im
agery have shown remarkable improvements in prediction accuracy 
(Hameed et al., 2023). demonstrated an 18–20% enhancement in air 
quality forecasting by fusing ground sensor data with CCTV imagery 
through deep learning architectures, while (Lilhore et al., 2025) ach
ieved superior air quality predictions using hybrid models combining 
CNNs, Bidirectional Long Short-Term Memory (Bi-LSTM), and attention 
mechanisms with multimodal data sources.

In recent years, the maturation of AI and Machine Learning (ML) has 
led to widespread consensus regarding their rapid emergence across 
multiple engineering fields. AI and ML have become transformative 
tools for methane emission modelling. For example, Xu conducted a 
systematic review of 110 papers showing that AI models have evolved 
from single-modal to multi-modal approaches: deep learning achieves 
over 98% accuracy in leak detection using hyperspectral imagery, 
random forest provides interpretable models for agricultural emissions, 
while physics-informed models enhance dynamic prediction capabilities 
by incorporating fluid dynamics equations (Xu et al., 2025). Notably, 
deep learning architectures, particularly those adapted from the field of 
computer vision, are demonstrating remarkable success in processing 
satellite imagery for methane plume identification. Vision Transformers 
(ViTs), for example, represent a significant breakthrough in detecting 
methane plumes as small as 0.01 km2 from Sentinel-2 data (Rouet-Leduc 
and Hulbert, 2024). LSTM provides early warnings up to two weeks in 
advance using Sentinel-5P data (Chen et al., 2023). In addition, 
cross-attention mechanisms have emerged as particularly effective for 
multimodal fusion tasks (Wen et al., 2024). developed a Cross-Attention 
Spatio-Temporal Spectral Fusion (CASTSF) model for integrating 
Sentinel-2 and Sentinel-3 data, demonstrating superior performance 
over traditional methods like FSDAF and STARFM in capturing both 
spatial texture and spectral information. Similarly (Wang et al., 2024), 
proposed a spatial-temporal cross-attention fusion module for multi
modal trajectory prediction, achieving significant improvements in 
capturing spatiotemporal interactions. The attention mechanism's abil
ity to dynamically weight feature importance has proven essential for 
handling heterogeneous data sources with varying spatial and temporal 
resolutions (Nagrani et al., 2021). In terms of multi-source collabora
tion, a federated learning framework enables distributed model training, 
protecting the privacy of oilfield data while improving cross-regional 
detection accuracy by 25% (Quamar et al., 2023). However, the tran
sition to operational systems faces critical hurdles.

Despite these advances, several architectural challenges remain 
inadequately addressed. Multimodal fusion framework must effectively 
handle the inherent trade-offs between spatial and temporal resolutions 
inherent in multi-sensor systems. Recent work in remote sensing has 
explored hierarchical fusion strategies (Lian et al., 2025). reviewed 

attention-based CNN methods that retain fine details from 
high-resolution images while capturing large-scale patterns from 
low-resolution data, while (Zhou et al., 2025) proposed bidirectional 
cross-fusion modules to model temporal changes and spatial details 
simultaneously. Current AI approaches employ simplistic fusion strate
gies with early concatenation or intermediate fusion layers that fail to 
capture complex interactions between temporally dense ground mea
surements and spatially extensive satellite imagery. These methods 
render models overly sensitive to noise or fail to leverage complemen
tary strengths, leading to unsatisfactory performance. Second, deep 
learning models lack interpretability, creating “black box" problems that 
hinder scientific validation and operational trust (Li et al., 2020). 
Finally, satellite monitoring faces temporal gaps from cloud cover while 
ground networks provide sparse spatial coverage, with standard inter
polation techniques often smoothing over critical “super-emitter" events 
(IEA, 2024).

To address the critical challenges of sophisticated data fusion, model 
interpretability, and robustness against spatio-temporal data sparsity 
and dynamics, this paper introduces the ST-CAN. ST-CAN is proposed as 
an innovative framework specifically designed for high-accuracy 
methane concentration prediction by synergistically integrating multi- 
source data streams of ground-based stations and satellite imagery 
data. Utilizing the Athabasca Valley oil sands region in Alberta, Canada, 
as a complex and relevant case study, where previous work has 
demonstrated the value of machine learning approaches for methane 
source detection and concentration prediction using ground-based 
monitoring data (Sysoeva et al., 2025), ST-CAN aims to advance 
methane monitoring through a novel architecture. While prior studies 
have successfully applied Random Forest models to identify methane 
sources and predict concentrations from weather station data, our work 
extends this foundation by incorporating satellite-based spatial infor
mation and developing physics-guided attention mechanisms for 
multi-source data fusion. Its core design focuses on employing 
physics-guided attention mechanisms to effectively fuse ground-based 
temporal patterns with satellite spatial information, enhancing inter
pretability through integrated pattern analysis, and incorporating stra
tegies for robust handling of temporal misalignments and data gaps 
inherent in real-world monitoring scenarios. This approach seeks to 
provide a more reliable, transparent, and dynamically adaptive solution 
compared to existing methods, providing a transparent and reproducible 
framework for modelling the regionally representative methane con
centration in complex industrial landscapes. This work addresses a 
critical data gap in the methane monitoring pipeline, paving the way for 
more reliable subsequent emission estimation.

2. Experimental and methodology

2.1. Case study

The Athabasca Valley oil sands (AVOS) in northeastern Alberta 
represent one of North America's most contentious energy frontiers. 
Those vast deposits have become both an economic lifeline and an 
environmental flashpoint for Canada's resource economy. AVOS extends 
beyond just the Athabasca formation, incorporating the less publicized 
Cold Lake and Peace River deposits. Together, this triumvirate com
mands a staggering 95% of Canada's proven oil reserves. Our research 
focuses specifically on the Athabasca region, which is by far the most 
extensively developed and economically significant of the three. Span
ning roughly 142,200 km2, this massive geological formation dwarfs 
many European countries in size (BOE Report, 2025).

Despite their importance to national energy security, the extraction 
process raises serious ecological concerns. The oil sands are a significant 
source of greenhouse gas emissions, including methane. Methane is 
released during various stages of oil extraction and processing, partic
ularly from equipment leaks, process upsets, and tailings ponds 
(Government of Alberta, 2025).
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2.2. Data Description

This study integrates ground-based air quality and meteorological 
measurements with satellite-derived atmospheric methane concentra
tion data to develop and validate the proposed ST-CAN. The datasets 
were selected to provide comprehensive spatio-temporal coverage of the 
AOSR study area.

2.2.1. Ground monitoring data
This study utilizes data from the Wood Buffalo Environmental As

sociation (WBEA) to capture ground-level methane concentrations 
within the AVOS. WBEA operates an extensive network of continuous 
ambient air quality monitoring stations throughout the region. Fig. 1
presents the spatial distribution of the four selected WBEA stations 
within the AVOS study area. The stations are strategically positioned to 
capture diverse emission sources and atmospheric conditions: AMS09 
(Barge Landing) in the core industrial zone, AMS02 (Mildred Lake) at 
the industrial fenceline, AMS04 (Buffalo Viewpoint) near tailings ponds, 
and AMS07 (Athabasca Valley) in the Fort McMurray urban center. This 
spatial configuration enables comprehensive monitoring across 
approximately 220 km north-south extent, representing distinct expo
sure environments from near-source industrial emissions to community- 
level impacts.

AMS 09 (Barge Landing) represents the core industrial zone moni
toring aspect in WBEA. The Barge Landing station is situated within the 
core industrial area, approximately 10 km SW of the CNRL Albian Sands 
plant and 20 km SE of the CNRL Horizon plant. It is near Barge Landing 
Road and Highway 63. AMS 09 is strategically selected to capture 
emissions signals close to major oil sands processing facilities. Its loca
tion within the densest industrial activity provides data minimally 
affected by atmospheric dilution or transport, serving as a crucial 
reference point for understanding near-source concentrations and 

validating emissions originating directly from the primary industrial 
complexes. It monitors key pollutants, including Total Hydrocarbon 
(THC), CH4, Non-Methane Hydrocarbons (NMHC), SO2, NOx, PM2.5, and 
meteorological parameters.

AMS 02 (Mildred Lake) represents the industrial fenceline and 
transport influence areas. It is located near the fenceline of the Syncrude 
Mildred Lake oil sands facility. It is also proximate to an airport runway 
(~20m) and Highway 63 (~300m). AMS 02 monitors air quality at the 
edge of a major industrial facility, capturing pollutants potentially 
dispersing from the Syncrude operations. It is close to significant 
transportation infrastructure allows for the assessment of combined in
dustrial and traffic-related emissions influences. Data from this site 
helps characterize the transition from near-source to ambient conditions 
and understand the interactions between different emission types at the 
industrial edge zone.

AMS 04 (Buffalo Viewpoint) represents tailings pond influence. It is 
positioned to specifically monitor emissions from tailings ponds, which 
are known significant sources of methane in the AVOS. Data from this 
station is vital for understanding the magnitude and variability of 
emissions from these large area sources, which differ significantly from 
fugitive emissions from processing plants. Monitoring at this location 
helps isolate the contribution of tailings ponds to regional CH4 levels and 
assess the effectiveness of mitigation efforts targeting these specific 
sources.

The last selected station is AMS 07 (Athabasca Valley), which rep
resents community and urban influence. It is situated in the downtown 
area of Fort McMurray within the Athabasca River valley and provides 
insights into the air quality experienced by the urban population of Fort 
McMurray. This site is crucial for assessing the potential impact of 
regional industrial emissions on community health and understanding 
pollutant transport dynamics from the industrial core towards populated 
areas.

Fig. 1. Spatial distribution of WBEA air monitoring stations in the AVOS. AMS09 (Barge Landing, 57.198◦N, 111.600◦W) monitors the core industrial zone near 
CNRL facilities; AMS02 (Mildred Lake, 57.050◦N, 111.564◦W) captures fenceline emissions from Syncrude operations; AMS04 (Buffalo Viewpoint, 56.996◦N, 
111.594◦W) assesses tailings pond influence at the South Mine; and AMS07 (Athabasca Valley, 56.733◦N, 111.390◦W) evaluates community exposure in downtown 
Fort McMurray.
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Together, these four stations provide spatially distributed, contin
uous ground-based measurements representing distinct source in
fluences within the AVOS. This multi-perspective dataset forms the 
foundation for training and validating the spatio-temporal models 
developed in this study, particularly when fused with satellite obser
vations. The WBEA data portal can be found at https://wbea.org/dat 
a/continuous-monitoring-data/.

2.2.2. Satellite imagery data from GHGSAT.SPECTRA
To complement the point-source ground measurements with broader 

spatial context, this study incorporated atmospheric methane data from 
GHGSat's SPECTRA platform. Specifically, we utilized the 'Spectra Basic' 
tier, which provides weekly heatmaps of area-averaged, cloud-free at
mospheric methane concentrations. This dataset is publicly available 
and free of charge. (GHGSat, 2024a,b). Researchers can access the data 
by visiting the product page at https://www.ghgsat.com/en/products 
-services/spectra/. From this page, users can navigate to the registra
tion portal and create a free Spectra Basic account by providing a valid 
email address. Upon registration, users are granted immediate access to 
the global methane map interface, where the specific weekly datasets for 
the Athabasca region can be visualized and extracted. This open-access 
policy ensures that our methodology can be reproduced by other re
searchers without concerns over restrictive data access policies or costs.

Specifically, the data represent the column-averaged dry-air mole 
fraction of methane (XCH4). This metric quantifies the average concen
tration of methane in a vertical column of air extending from the ground 
to the top of the atmosphere, effectively representing the total atmo
spheric methane burden over a given area, rather than a surface-level 
measurement. These data are provided at a spatial resolution of 
approximately 10 km and a weekly temporal resolution. For this study, 
satellite data were acquired for the same one-year interval as the ground 
observations (early January 2024 to early January 2025). The weekly 
XCH4 heatmaps were then manually cropped to a geographic extent that 
encompasses the four WBEA ground monitoring stations, ensuring direct 
relevance to the regions under investigation.

It is critical to explicitly define the prediction target given this het
erogeneity of our input data. The WBEA ground station data, which 
provides in-situ, ground-level CH4 concentration in ppm, serves as the 
ground truth and the sole prediction target for our model. The satellite- 
derived XCH4 data, representing the column-averaged dry-air mole 
fraction, are used exclusively as an input feature to provide spatial 
context. Therefore, the model's task is to learn the complex, non-linear 
relationship between the column-averaged atmospheric state (from 
satellite) and the specific, in-situ concentration at the surface (from 
ground stations). All performance metrics, Coefficient of Determination 
(R2), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) 
are calculated by comparing the model's output directly against these 
ground-level station measurements.

2.3. Data pre-processing

Before model development, the collected ground station and satellite 
datasets must undergo several pre-processing steps to ensure data 
quality, consistency, and suitability for input into the spatio-temporal 
fusion framework. These steps included treatment of meteorological 
variables, imputation of missing values, feature engineering through 
wavelet decomposition, and temporal pattern identification via cluster 
analysis.

2.3.1. Transformation of wind direction feature
Wind direction, inherently a periodic variable (0–360◦), presents 

challenges for direct input into the machine learning models, as the 
numerical proximity for examples 359◦ and 1◦ does not reflect their 
actual physical proximity. To address this, the raw wind direction data 
were decomposed into their zonal components, which are vector U 
representing the east-west component and vector V representing the 

north-south component. This transformation converts the circular wind 
direction into two continuous linear variables, which are more 
amenable to standard modelling techniques and accurately represent 
the directional flow of air masses.

2.3.2. Imputation of missing data
The continuous hourly monitoring data from the WBEA stations 

contained instances of missing values. For isolated or short sequences of 
missing data points across most variables and stations, linear interpo
lation was employed as a primary imputation strategy. This method 
estimates missing values based on a linear trend between the nearest 
available data points before and after the gap. However, a significant 
period of continuous missing data was identified for the wind speed and 
wind direction features at the AMS04 station. Direct application of linear 
interpolation over such an extended gap would likely introduce sub
stantial discrepancy. Therefore, an alternative substitution-based 
approach was adopted. Based on a correlation analysis of wind pat
terns and the relative geographical positioning of the stations, wind data 
from AMS02 corresponding to the missing time intervals at AMS04 were 
used as a substitute. To rigorously validate this substitution strategy, a 
comparative analysis of wind characteristics between AMS02 and 
AMS04 was conducted. This analysis utilized concurrent valid hourly 
observations from July and August 2024, encompassing the periods 
immediately adjacent to the specific data gap (July 26, 19:00 to July 31, 
10:00). This temporal selection ensures that the validation captures the 
specific seasonal wind dynamics relevant to the imputed period. This 
involved calculating the correlation between the respective wind speed 
and the derived U/V vector components, alongside a visual comparison 
of their wind patterns using wind rose diagrams. The results of this 
analysis are presented in Figs. 2 and 3.

2.3.3. Wavelet decomposition for feature extraction
We have applied wavelet decomposition to capture both long-term 

trends and short-term momentary dynamics within the ground station 
time series data. This technique is well-suited for analyzing non- 
stationary environmental time series, as it can effectively separate sig
nals into different frequency components at various time scales. For this 
study, each original time series feature, including pollutant concentra
tions and meteorological variables from all four ground stations, was 
decomposed into multiple wavelet coefficients. We employed the Dau
bechies 4 (db4) wavelet as the basis function based on several reasons. 
First, we have collected the quantitative evidence from multi-feature 
sensitivity analysis. The results could be found in the subsequent sec
tion 3.1.1. In addition, from the literature precedent, db4 is standard for 
environmental time series analysis (Percival and Walden, 2000). 
Regarding the decomposition level selection, we applied five-level 
wavelet decomposition (A5, D1-D5). This selection is primarily based 
on energy distribution validation results, which are also demonstrated in 
Section 3.1.1. To optimize the feature set for model training by reducing 
redundancy and potential noise often present in higher-order detail 
coefficients (Feng et al., 2019), only the A5, D1, and D2 components 
were used to replace each original feature.

This selection was not arbitrary but was based on a rigorous quan
titative energy distribution analysis conducted during our preliminary 
experiments. We analyzed the percentage of total signal energy con
tained in each wavelet component (A5, D1-D5) for all four stations. The 
results, which are included in the Supplementary Material 
(Fig. S3a–S3d), were definitive. For all stations, the A5, D1, and D2 
components cumulatively accounted for the vast majority of the signal 
energy (e.g., 99.5% for the AMS02 and AMS04 stations). Conversely, the 
higher-level detail coefficients (D3, D4, and D5) combined contained 
less than 1% of the total energy. This quantitative analysis illustrates 
that the D3-D5 components are statistically insignificant and primarily 
represent high-frequency noise. Given this evidence, we concluded that 
including these components would introduce noise and unnecessary 
complexity without adding meaningful predictive information. 
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Furthermore, consistent with findings in the literature, higher-level 
detail coefficients (D3-D5), although capable of capturing finer-scale 
features, often predominantly represent noise or irrelevant high- 
frequency vibrations that may compromise model performance 

(Alfaouri and Daqrouq, 2008). This selection of A5, D1, and D2 aims to 
provide a rich, multi-scale representation of the temporal data while 
mitigating the risk of overfitting and reducing computational 
complexity due to high dimensionality (Sahoo et al., 2024).

Fig. 2. Comparison between AMS 02 and AMS 04 on wind speed. Scatter plot showing the correlation between wind speeds measured at AMS02 and AMS04 
stations during periods with valid data from both stations. The analysis reveals a strong positive correlation with Pearson correlation coefficient r = 0.83 and 
Spearman rank correlation coefficient ρ = 0.82, indicating high concordance in wind speed measurements between the two locations. The regression line demon
strates the linear relationship used for data substitution, with statistical parameters displayed. Time series comparison and correlation heatmap provide additional 
validation of the strong relationship between stations.

Fig. 3. Comparison Analysis between AMS 02 and AMS 04 on wind direction. Wind vector analysis comparing directional patterns between AMS02 and AMS04 
stations. Vector component scatter plot showing U and V wind components from both stations. The wind rose diagrams for AMS02 and AMS04 exhibit considerable 
similarity in dominant wind directions. These quantitative and qualitative assessments confirm a high degree of concordance in wind patterns between the two 
locations, supporting the decision to use AMS02 data as a reliable substitute for the missing wind measurements at AMS04 during the identified period. Correlation 
analysis of U and V components with fitted regression lines, demonstrating consistent wind directional behaviour between stations. The high correlation in both U 
and V components supports the reliability of using AMS02 data to substitute missing wind direction measurements at AMS04.
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2.3.4. Temporal pattern labelling through clustering analysis
To identify distinct operational or emission patterns within the 

ground station data and subsequently guide the attention mechanisms of 
the ST-CAN, a cluster analysis was performed on the wavelet- 
decomposed features. Because high-dimensional data can pose chal
lenges for clustering algorithms, we have evaluated several clustering 
algorithms, including K-Means, DBSCAN, Hierarchical clustering, and 
Gaussian Mixture Models (GMM), which combined with several 
dimensionality reduction techniques, such as Principal Component 
Analysis (PCA), Kernel PCA (KPCA), and t-distributed Stochastic 
Neighbour Embedding (t-SNE) to visualize the combination results of 
clustering.

This process was separated into two parts to capture different tem
poral scales of atmospheric behaviour, aiming to assign two distinct sets 
of categorical labels to each time point in the ground station dataset. 
First, clustering was applied to the A5 approximation coefficients for all 
features. The A5 components, representing the low-frequency baseline 
trends, are well-suited for identifying longer-term patterns, such as 
seasonal variations in background pollution levels or persistent meteo
rological situations. The labels generated from A5 clustering, for 
example, “Seasonal High Pollution Baseline," or “Seasonal Low Pollution 
Baseline," are intended to provide the ST-CAN with context about the 
broader, slowly evolving environmental state. Second, a separate clus
tering analysis was performed on the D2 detail coefficients. The D2 
components, capturing higher-frequency, short-term fluctuations, can 
point out the moment events like potential methane leaks, rapid 
pollutant dispersion, or sudden meteorological shifts. Labels derived 
from D2 clustering aim to alert the model to more immediate, rapidly 
changing conditions.

By generating the combinations of these two complementary sets of 
temporal pattern labels, we aim to provide the ST-CAN with a richer and 
deeper understanding of the ground-level emission patterns. This dual- 
labelling strategy is supposed to enhance the model's ability to pre
cisely assign attentions to satellite imagery features and to improve both 
its overall prediction accuracy and its responsiveness to anomalous 
events.

2.3.5. Temporal alignment strategy and its limitations
A significant challenge in this study is the temporal misalignment 

between the high-frequency (hourly) ground station data and the low- 
frequency (weekly) satellite-derived features. To enable the fusion of 
these different data streams within a single deep learning framework, an 
up-sampling of the satellite features to an hourly frequency was neces
sary. For this purpose, we employed a time-weighted interpolation 
method. This approach calculates a value for each hourly timestamp 
based on a weighted average of the two nearest weekly data points, with 
weights being inversely proportional to the temporal distance. This 
gives greater influence on the closer weekly observation.

We explicitly acknowledge that this temporal up-sampling is a pri
mary limitation of our study. This interpolation process, by its nature, 
cannot recreate true atmospheric variability that occurs at sub-weekly 
timescales and risks introducing artificial temporal smoothness. This 
study should therefore be viewed as an exploration of the potential of a 
deep learning architecture to fuse multi-modal data under conditions of 
significant data sparsity. The model's performance and the resulting 
concentration fields should be interpreted within the context of this 
inherent data limitation. Overcoming this challenge will require future 
research using data from next-generation satellites with higher revisit 
rates.

2.4. Baseline models training

To comprehensively evaluate the performance of the proposed ST- 
CAN, a series of baseline models was implemented and trained. These 
models were strategically selected to serve two key purposes: 1) to 
establish the performance of single-modality models, using a single data 

stream, like only ground or only satellite, and 2) to compare ST-CAN 
against other well-known models with dual data streams. Addition
ally, to ensure a fair and rigorous comparison, all baseline models 
described in this section were trained and evaluated on the same pre- 
processed dataset used by ST-CAN. This includes the wavelet- 
decomposed ground features and the time-weighted interpolated hour
ly satellite features. For the dual-stream baselines, the ground and sat
ellite features were combined into a single input vector at each hourly 
time step via simple concatenation.

2.4.1. Single data stream baseline models
Two baseline models were developed to assess the predictive power 

of each data stream. LSTM was designed due to its powerful prediction 
performance on time-series data. For ground data, its input consists of 
the pre-processed time-series features from the WBEA stations, including 
meteorological variables and the wavelet-decomposed components of 
CH4 concentrations. The architecture comprises a bidirectional LSTM 
layer with 64 hidden units followed by a fully connected prediction 
layer. This baseline serves to quantify the predictive accuracy achiev
able with high-frequency temporal data alone. For the satellite data 
stream, its input is a time series derived from the satellite features, 
which are extracted from the pre-trained model ResNet18 corresponding 
to the pixel closest to the target ground station. The architecture is 
identical to the ground-only model, featuring a bidirectional LSTM layer 
with 64 hidden units. This baseline helps to understand the inherent 
predictive value, or lack thereof, of the temporally sparse satellite data.

2.4.2. Dual data stream baseline models
Three distinct baseline models were implemented and trained to 

compare with the performance of the proposed ST-CAN Support Vector 
Regression (SVR), LSTM, and a Transformer-based model. These models 
were carefully selected to provide a rigorous and fair benchmark. The 
SVR serves as a strong classical machine learning baseline. The LSTM 
was chosen as a powerful standard for time-series forecasting. Crucially, 
the Transformer model was included as a state-of-the-art deep learning 
baseline specifically because its self-attention mechanism provides the 
most relevant and fair comparison for evaluating the novel cross- 
attention framework of ST-CAN. To ensure a rigorous and fair evalua
tion, the performance of all baseline models was optimized prior to 
comparison. We conducted a systematic hyperparameter tuning process 
for each baseline model. For example, adjusting kernel parameters for 
SVR, hidden layers for LSTM and Transformer. The final configurations 
selected for comparison represent the optimal settings that achieved the 
lowest error on the validation dataset, ensuring that the proposed ST- 
CAN is benchmarked against the strongest possible versions of these 
established methods.

The SVR model was selected as a strong classical machine learning 
baseline, valued for its efficiency in capturing non-linear relationships, 
with relatively few parameters to reduce overfitting risk. Key configu
ration parameters for the SVR included the use of a Radial Basis Function 
(RBF) kernel, chosen for its ability to effectively model the non-linear 
interaction between methane emissions and various meteorological 
and atmospheric variables. A regularization parameter C of 1.0 was 
used, allowing the model to more closely fit the training data, which is 
beneficial for capturing critical emission patterns, including sporadic 
events. An epsilon value of 0.1 was set to enhance the model's sensitivity 
to subtle changes in methane levels, enabling it to respond to both 
gradual trends and short-term emission incidents. To ensure robustness 
and the temporal nature of the methane emission data, a time-series 
cross-validation approach (5-fold) was implemented, preventing future 
observations from leaking into past predictions. An ensemble model was 
then created by averaging the predictions from all cross-validation folds, 
enhancing stability and mitigating the influence of anomalous periods 
on the final forecast. Input features were scaled using Min-Max 
normalization. This configuration positions the SVR as a capable base
line, adept at handling non-linear environmental data influenced by 
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multiple factors.
An LSTM network was selected as a representative deep learning 

architecture, well known for its ability to learn long-range dependencies 
in sequential data. The architecture comprised a two-layer LSTM with 
64 units in the first layer and 32 units in the second. This design allows 
the model to initially capture complex patterns and subsequently refine 
them into higher-level features. This structure is well-suited for model
ling the intricate non-linear relationships in methane time series. The 
input to the LSTM consisted of sequences with a 24-h time step, enabling 
the model to learn daily cycles and human activity-related periodicities 
in emissions. The training process was conducted with a batch size of 32 
and an initial learning rate of 0.001, utilizing the Adam optimizer. The 
LSTM layers employed the tanh activation function, while dense layers 
used ReLU. A dropout rate of 0.2 was applied to mitigate overfitting, 
particularly important for potentially noisy environmental data, while 
retaining sufficient network capacity.

A Transformer model was included as a state-of-the-art deep learning 
baseline, recognized for its efficiency in processing long sequences via 
its self-attention mechanism. A more comprehensive architecture was 
adopted, featuring a three transformer encoder layer with eight atten
tion heads, an embedding dimension of 128, and a feed-forward network 
dimension of 256. This streamlined design aimed to balance perfor
mance with computational efficiency and reduce the risk of overfitting 
on the available dataset. A relatively high dropout rate of 0.1 was 
applied, crucial for mitigating overfitting given the potential noise and 
variability in methane data. The model processed inputs with a 24-h 
time step, the same as the LSTM configuration.

2.5. Spatio-temporal cross-attention network

To effectively integrate the distinct yet complementary information 
streams from ground-based monitoring stations and satellite observa
tions, we propose the ST-CAN. This novel deep learning architecture, 
illustrated schematically in Figs. 4 and 5, is designed to explicitly model 
the complex interactions between high-frequency temporal data and 
spatially extensive, lower-frequency imagery, while adapting to the 
inherent dynamics and potential data gaps in environmental moni
toring. The ST-CAN processes the pre-processed ground station data, 
including the multi-scale wavelet features and temporal pattern cluster 
labels, and the satellite-derived methane concentration maps through 
parallel pathways initially, before employing specialized fusion 
mechanisms.

The core innovations of ST-CAN are its bidirectional cross-attention 

mechanism, which facilitates deep information exchange, and its 
semantic-guided dynamic fusion gate, which provides an interpretable 
and adaptive weighting strategy.

2.5.1. Bidirectional cross-attention mechanism
To effectively model the interplay between ground-based time-series 

data and satellite imagery, we employ a bidirectional cross-attention 
mechanism. This process, illustrated in the Stage 4 panel of Fig. 5, 
consists of two parallel streams where each modality's feature repre
sentation is enhanced by the context of the other before the final fusion. 
The first stream is the Ground to Satellite (G-S) attention. In this stream, 
the ground temporal features (hg) from the Bi-LSTM act as the Query, 
while the satellite spatial features (hs) from ResNet18 serve as the Key 
and Value. The calculation is defined as follows: 

Qg = hgWQg Ks,Vs = hsWKs , hsWVs hg→s =Attention
(
Qg,Ks,Vs

)

= softmax
(

QgKT
s̅̅̅̅̅

dk
√ Vs

)

Here, hg and hs are the input feature representations from the ground 
and satellite encoders, respectively. WQg , WKs , and WVs are learnable 
weight matrices used to project the inputs into the Query (Q), Key (K), 
and Value (V) spaces. This results in Qg (the query derived from ground 
features), and Ks and Vs (the key and value derived from satellite fea
tures). dk is the dimension of the key, used for scaling the dot product. 
The final output, hg→s, represents the satellite spatial features as atten
ded to by the ground temporal context. This stream produces a repre
sentation that determines the most relevant spatial context from the 
satellite, given the ground station's temporal patterns. For example, if 
the ground station detects a sudden spike, the model can query the 
satellite image to confirm if a large-scale emission plume is spatially 
present.

The second, complementary stream is the Satellite to Ground (S-G) 
attention. Here, the satellite spatial features (hs) conversely act as the 
Query, while the ground temporal features (hg) serve as the Key and 
Value. The calculation is: 

Qs=hsWQs Kg,Vg = hgWKg ,hgWVg hs→g =Attention
(
Qs,Kg,Vg

)

=softmax

(
QsKT

g
̅̅̅̅̅
dk

√ Vg

)

This stream produces hs→g, which identifies the most relevant high- 
frequency temporal dynamics from the ground stations given the satel

Fig. 4. Schematic Diagram of the Proposed ST-CAN for Multi-Source Methane Data Fusion. Inputs include hourly ground station data, processed via wavelet 
decomposition and clustering analysis, and weekly satellite methane maps. Data streams are encoded using LSTMs and CNNs before entering the Bidirectional Cross- 
Attention module, guided by temporal pattern weights. Fused features are adaptively weighted by the Dynamic Fusion Gate before passing to the prediction head.
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lite's spatial overview. For example, if the satellite sees a faint anomaly 
over a region, the model can query the ground station's time series to 
confirm if this corresponds to a genuine, dynamic emission event. These 
two outputs, hg→s and hs→g, represent features from both modalities that 
are now mutually aware of each other's context. They are then passed to 
the Dynamic Fusion Gate.

2.5.2. Semantic-guided dynamic fusion gate
Another critical innovation of ST-CAN is that the final fusion of these 

two enhanced feature streams is not static. It is dynamically controlled 
by the environmental semantic labels derived from our clustering 
analysis. This mechanism allows the model to adaptively trust one 
modality more than the other based on the real-world physical context. 
The gate mechanism (as shown at stage 4 in Fig. 5) is a learnable neural 
network module that takes three inputs. These are the G-S enhanced 
features hg→s, the S-G enhanced features hs→g, and the current environ
mental semantic label with a categorical value from 0 to 8, representing 
the nine cluster combinations. The working principle of this gate in
volves several steps. First, the categorical cluster label is converted into a 
dense vector representation. Specifically, we utilize a learnable 
embedding layer (dimension demb = 16) rather than simple one-hot 
encoding. This allows the network to learn a continuous representa
tion of the environmental states, capturing latent similarities between 
different semantic conditions. Second, the two enhanced feature vectors 
and the new cluster embedding vector are concatenated. This combined 
vector is then passed through a small feed-forward network that ter
minates in a Softmax function. The network outputs two scalar weights, 
wg and ws, which sum to one. Because the cluster label is a direct input to 
this network, the resulting weights are dynamically generated based on 
the environmental state. Finally, the fused feature representation, hfused, 
is computed as a dynamically weighted sum of the two mutually aware 
feature streams, as shown in the following equation: 

hfused =wg ⋅ hg→s +ws⋅hs→g 

This semantic guidance is physically interpretable. For instance, 
during a sudden, high-emission event, for example, Cluster A5-0 + D2-1, 
the model learns to assign a higher weight wg (wg = 0.8, ws = 0.2). This 

reflects a learned strategy to trust the high-frequency ground data more, 
as the weekly satellite data is too coarse and likely misses the peak. In 
contrast, during a large-scale regional transport event with Cluster A5-2 
+ D2-0, the model learns to assign a higher weight ws (wg = 0.3, ws =

0.7). This reflects a strategy to trust the satellite's wide-area spatial 
coverage more, as a single ground station cannot capture the full spatial 
extent of the event. This adaptive, interpretable fusion mechanism 
moves beyond simple concatenation or static attention, providing a 
robust representation that is passed to the final prediction layer.

Finally, to ensure stable and effective learning, the ST-CAN is trained 
end-to-end using a robust optimization strategy, specifically the opti
mization combined with learning rate warmup and cosine annealing 
schedules. This approach helps stabilize training in the early phases and 
promotes convergence towards optimal model parameters. The adap
tively fused spatio-temporal representation generated through these 
steps is then fed into a final prediction layer of a fully connected network 
to output the target variable for methane regression prediction.

By integrating these components, ST-CAN aims to provide a robust 
and adaptive framework for methane monitoring that leverages the 
strengths of both ground-based and satellite observations while 
addressing key challenges in multi-source data fusion, interpretability, 
and temporal dynamics.

3. Results and discussion

3.1. Results of data pre-processing and clustering analysis

3.1.1. Multi-scale feature extraction using wavelet decomposition
After the data cleaning and interpolation, wavelet decomposition 

was applied to all hourly time series variables, including pollutants and 
meteorological parameters from the four selected WBEA stations. As 
detailed in Section 2.3.3, this technique transferred the original signal 
into components representing different time scales, effectively sepa
rating underlying trends from transient fluctuations. The low-frequency 
approximation component (A5) captures the smoother, long-term vari
ations, while the detail components (D1-D5) isolate higher-frequency 
fluctuations corresponding to short-term events like emission spikes, 

Fig. 5. Five-stage Workflow Pipeline of ST-CAN for Methane Predictions. (1) Multi-scale feature extraction via wavelet decomposition (A5, D1, D2) and satellite 
imagery processing; (2) Environmental pattern definition through separate clustering of A5 (long-term baseline) and D2 (short-term dynamics), generating nine 
combined environmental states; (3) Parallel encoding of ground features via Bi-LSTM and satellite features via ResNet18; (4) Semantic-guided bidirectional fusion 
where cluster labels dynamically control the fusion gate weights; and (5) Prediction generation through fully connected layers. This workflow demonstrates how 
wavelet decomposition, clustering, and cross-attention work synergistically to enable physics-informed adaptive fusion.
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plume transport, or rapid meteorological changes. The selection criteria 
are based on the energy distribution validation as shown in Fig. S1a and 
S1b in the Supplement Materials. For CH4, the approximation compo
nent A5 represents the dominant energy component, and cumulative A5- 
D2 energy exceeds 97%, confirming that five levels sufficiently capture 
meaningful information while minimizing noise. Furthermore, to 
rigorously validate db4's suitability, we conducted a comprehensive 
sensitivity analysis comparing four common wavelets (db2, db4, db6, 
sym4) across all 17 features in our dataset. As shown in Fig. 6, db4 
achieves the highest average approximation coefficient energy concen
tration of 68.2h% with the most stable performance across different 
feature types, demonstrating its superior applicability to our environ
mental dataset.

Fig. 7 presents an example of this decomposition applied to the CH4 
time series data at the AMS09 (Barge Landing) station. It displays the 
smoothed A5 component onto the original signal, visually demon
strating how A5 captures the underlying baseline trend. This multi-scale 
representation, separating trends from fluctuations and enabling the 
identification of anomalous periods via components like D2, formed the 
basis for the subsequent clustering analysis and provided enhanced 
feature inputs for the ST-CAN.

3.1.2. Clustering analysis for temporal pattern identification
We applied a clustering analysis to identify distinct seasonal emis

sion patterns and short-term leakage events within the ground station 
data and subsequently provided a guiding temporal context to the ST- 
CAN. We have evaluated combinations of four clustering algorithms 
(K-Means, DBSCAN, Hierarchical, GMM) and three dimensionality 

reduction techniques (PCA, KPCA, t-SNE) applied to the wavelet features 
A5 and D2 derived from all measured variables to extract emission 
patterns from the high-dimensional wavelet-decomposed ground station 
data, and to subsequently provide guiding temporal context to the ST- 
CAN.

This comprehensive comparison aimed to select the most effective 
combination for classifying the data into meaningful groups. We eval
uated 12 combinations of four clustering algorithms, including K-Means 
Clustering (K-Means), Density-Based Spatial Clustering of Applications 
with Noise (DBSCAN), Hierarchical Clustering (Hierarchical) and 
Gaussian Mixture Model (GMM) and three dimensionality reduction 
techniques (PCA, KPCA, t-SNE). As demonstrated in Supplementary 
Fig. S4a and S4b, the PCA + K-Means combination yielded the most 
distinct and well-separated clusters, which also aligned best with sub
sequent physical interpretation. In addition, as detailed in Supplemen
tary Table S1, this combination achieved the highest Calinski-Harabasz 
Index (12,845.2 for A5 and 7476.2 for D2) among all tested methods, 
indicating superior cluster definition and compactness. Furthermore, 
unlike density-based methods such as DBSCAN, which exhibited poor 
structural scores (CH Index <300) and failed to provide complete tem
poral coverage (98.1%), K-Means ensured 100% data availability with 
distinct, robust boundaries required for the semantic gating mechanism. 
Moreover, the selection of k = 3 was quantitatively validated using the 
Elbow Method, Silhouette Score, and Bayesian Information Criterion 
(BIC). The results of this analysis shown in Fig. 8 below clearly indicate 
that k = 3 is the optimal number of clusters, as evidenced by a distinct 
peak in the Silhouette Score, representing the best balance of cluster 
cohesion and separation.

Fig. 6. Wavelet Basis Function Sensitivity Analysis. Four panels show complementary perspectives of approximation coefficient energy concentration: (a) 
grouped comparison across features; (b) energy distribution by wavelet type; (c) mean energy showing db4 (red) achieves the highest average concentration; (d) box 
plot demonstrating db4's superior stability (smallest variance). Results collectively validate db4 as the optimal wavelet basis for environmental time series 
decomposition.
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Fig. 9 visually presents the resulting cluster distributions in the PCA- 
reduced feature space by using K-Means clustering methods for both the 
A5 and D2 components, illustrating the separation achieved for these 
two distinct types of temporal characteristics. The resulting cluster 
boundaries show minimal overlap, suggesting robust segregation of 
different emission patterns.

Characterization of these three temporal patterns was performed by 
examining the distribution of the A5 and D2 wavelet features within 
each cluster. Fig. 10 presents radar charts summarizing the standardized 
coefficients for all atmospheric parameters within each cluster.

These nine distinct environmental states, which capture both the 
underlying baseline and the immediate dynamics, form the core of our 
semantic guidance. Each state corresponds to a specific, interpretable 
environmental event. We have defined and provided detailed examples 
for all nine combinations in Table 1. For instance, 'State 6' (A5-1 + D2-2) 
represents normal stable conditions, while 'State 2' (A5-0 + D2-1) rep
resents a critical emission spike during a summer stagnation period. 
These dual labels were subsequently used as guidance to assign the 
appropriate attention weights to the ST-CAN, enabling it to adapt its 
fusion strategy with greater precision based on a comprehensive 

understanding of the current environmental context.

3.2. Baseline models training and performance evaluation

The three baseline models, including SVR, LSTM, and a Transformer- 
based model, were trained and evaluated to establish a benchmark for 
the proposed ST-CAN. The performance of these models provides a 
reference point against which the capabilities of the more complex ST- 
CAN architecture can be assessed.

The overall predictive accuracy of the baseline models that evaluated 
on all cross-validation folds, is initially assessed. Here, we provided an 
example result of SVR as a reference. Fig. 11 below summarizes a 
comprehensive prediction performance on the SVR model. While the 
SVR model demonstrates a certain level of predictive capability, its 
performance, for example, a relatively lower R2 of 0.68, may not be 
entirely satisfactory. One potential explanation for this could be the 
inherent limitations of SVR in effectively processing and integrating 
complex spatial features. The training dataset, which combines ground 
station time series with satellite image features which are extracted 
using ResNet18 and subsequently interpolated, presents a multi-modal 

Fig. 7. Example of Wavelet Decomposition applied to hourly CH4 concentration data from AMS09.

Fig. 8. Quantitative Validation for Optimal Cluster Number Selection for A5 Features. Objective metrics validate the selection of k = 3 for A5 feature clus
tering. The Elbow Method (left) shows a diminishing return in WCSS reduction after k = 3. The Silhouette Method (center) provides the strongest evidence, dis
playing a clear optimal peak at k = 3. The BIC Method (right) also shows an inflection point at k = 3, collectively confirming k = 3 as the optimal choice for 
cluster separation.
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challenge. SVR models, while adept at handling non-linear temporal 
relationships, might struggle to fully capture and leverage the rich 
spatial information contained within the numerous satellite-derived 
features. This could lead to a poor representation of the spatio- 
temporal interaction on CH4 concentrations, potentially explaining 
some of the observed discrepancies between predicted and actual 
values. The following evaluation of the deep learning baselines (LSTM 
and Transformer) and the ST-CAN will explore whether architectures 
more explicitly designed for spatio-temporal and multi-modal fusion can 
offer improved performance.

From the performance metrics, we can observe that the Deep 
Learning models, including LSTM and Transformer, dominated the SVR 
in this prediction problem. The Transformer model showed the smallest 

RMSE of 0.0479, which means that it effectively reduced the large 
prediction error values. The LSTM model came in second place with an 
RMSE of 0.0508. The superior performance of the Transformer, partic
ularly in achieving the lowest RMSE and MAE and the highest R2, 
highlights the potential benefits of attention-based architectures for this 
type of environmental forecasting. This comprehensive evaluation of the 
baseline models establishes a clear performance benchmark, paving the 
way for assessing the advancements offered by the proposed ST-CAN, 
which is specifically designed for enhanced spatio-temporal fusion.

The performance of the single data stream baseline models reveals 
critical insights into the nature of the data modalities. The Ground-Only 
model achieved an acceptable R2 of 0.64, indicating that ground-based 
time-series data contains significant predictive power. In contrast, the 

Fig. 9. Visualization of Environmental Semantic Clusters in PCA Feature Space. The left panel shows the clustering of A5 (long-term trend) features, and the 
right panel shows the clustering of D2 (short-term dynamic) features. The clusters are labelled with their derived environmental meanings: A5-0 = Summer High- 
Emission, A5-1 = Moderate Baseline, A5-2 = Winter High-Transport; D2-0 = Pollution Decrease, D2-1 = Pollution Increase, D2-2 = Stable. These figures demonstrate 
clear separation in the feature space, forming the basis for the semantic labels. The detailed environmental interpretation of each cluster is presented in Fig. 4
and Table 1.

Fig. 10. Radar chart characterizing the three clusters based on the A5 trend. Each radar chart displays the measured atmospheric parameters. The radial 
distance from the center represents the magnitude of standardization, with positive values (extending outward) indicating above-average levels and negative values 
(closer to the center) indicating below-average levels for each parameter. The shadow areas represent the characteristic “fingerprint" of each cluster: Cluster 0 (n =
634) shows summer high-emission stagnant pattern, Cluster 1 (n = 5432) represents moderate photochemical baseline conditions, and Cluster 2 (n = 2719) indicates 
winter high-pollution transport pattern. Parameters include pollutants, including CO, NO, NO2, NOx, O3, PM2.5, SO2, CH4, Total Hydrocarbons (THC), Non-Methane 
Hydrocarbons (NMHC), Total Reduced Sulfur (TRS), meteorological variables (temperature, barometric pressure, relative humidity, wind speed), and wind com
ponents (U: easterly, V: southerly).
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Satellite-Only model performed exceptionally poorly (R2 ≈ 0.01), con
firming that the weekly satellite features, when interpolated to an hourly 
frequency, do not possess sufficient temporal resolution to act as a 
standalone predictor and behave largely as noise at this scale. This result 
highlights the severe challenge of temporal data sparsity.

3.3. Comparative analysis and ST-CAN evaluation

The ST-CAN, with its architecture designed for enhanced multi- 
source data fusion and contextual understanding, was trained and 
evaluated using the same five-fold cross-validation procedure applied to 
the baseline models to compare the differences. A direct visual com
parison of the predictive precision across all models is presented in 
Fig. 12, which displays density scatter plots of predicted versus actual 
CH4 concentrations. Each panel illustrates the linear fit between 

predictions and observations, with the colour intensity representing the 
density of data points. The ST-CAN exhibits a notably tight clustering of 
points, indicating a strong linear relationship and high agreement be
tween its predictions and the actual CH4 concentrations. In contrast, 
while the SVR, LSTM, and Transformer models show varying degrees of 
correlation, their scatter plots generally display a greater dispersion of 
points and potentially more deviation from the ideal line compared to 
ST-CAN, suggesting a less precise fit to the observed data.

A more comprehensive quantitative and qualitative assessment is 
provided in the dashboard presented in Fig. 13. The bar charts in the 
upper section directly compare the key evaluation metrics with R2, 
RMSE, and MAE for ST-CAN against the three baseline models. Across all 
three metrics, ST-CAN demonstrates markedly superior performance. It 
achieves the highest R2 value of 0.96, the lowest RMSE of 0.0214, and 
the lowest MAE of 0.0141. These figures represent a significant 
improvement over the best-performing baseline model of Transformer, 
with R2 = 0.79, RMSE = 0.0479, and MAE = 0.0316, indicating that ST- 
CAN explains a substantially larger proportion of the variance in CH4 
predictions with considerably smaller errors on average.

Finally, the full-year CH4 prediction comparison at the bottom il
lustrates enhanced predictive capability of ST-CAN. The plot presents 
the actual observed CH4 concentrations alongside the predictions from 
all four models over the entire year. It is visually apparent that the ST- 
CAN's prediction line tracks the actual CH4 dynamics much more closely 
than those of the SVR, LSTM, and Transformer. ST-CAN demonstrates a 
superior ability to capture both the baseline fluctuations and, crucially, 
the peaks and troughs in CH4 concentration, which often represent 
significant emission events or dispersion phenomena. The baseline 
models, while capturing some general trends, tend to oversmoothed 
these variations in their response to rapid changes.

To provide a definitive assessment of the ST-CAN, a comprehensive 
comparative analysis was conducted against all baseline models. The 
results are presented in Fig. 14, offering clear insights into the models' 
performance. The quantitative metrics in Fig. 14 establish the superi
ority of the ST-CAN. It achieved the highest R2 of 0.95, the lowest RMSE 
of 0.020, and the lowest MAE of 0.014. This represents a substantial 
34.76% improvement in R2 over the best-performing single-modality 
model of Ground-Only (R2 = 0.714), validating the significant benefits 
of multimodal fusion. The poor performance of the Satellite-Only model 
(R2 = 0.006) further underscores that neither data stream is sufficient in 
isolation. Notably, the time-series plot in Fig. 14 provides strong visual 
confirmation of the quantitative results. The prediction from the ST-CAN 
(green line) demonstrates an excellent fit, closely tracking the dynamics 
of the actual observed concentrations (black line) from September to 
December, including both baseline fluctuations and peak events. In 
contrast, while the Ground-Only model (red line) captures the general 
trend, it exhibits significantly higher volatility and larger prediction 
errors, especially during peak periods.

Therefore, the combined quantitative and qualitative evidence leads 
to a clear conclusion: the ST-CAN, through its semantic-guided cross- 
attention mechanism, effectively fuses the high-frequency temporal in
formation from ground stations with the spatial context from satellite 
data. This fusion process successfully leverages the strengths of both 
modalities to produce predictions that are not only more accurate on 
average but also more stable and reliable than those from single-data- 
stream models.

To provide a qualitative validation of ST-CAN's fusion mechanism, 
we conducted a case study on the model's behaviour during two distinct 
peak events in late 2024, where the Ground-Only model failed. This 
analysis moves beyond R2 scores to demonstrate how the satellite data 
provides practical, corrective value. As a preliminary step, a review of 
public reports for the study period (Jan 2024–Jan 2025) confirmed that 
no major, acute leakage events were reported. Instead, literature con
firms emissions are dominated by persistent, ongoing sources, for 
example, tailings ponds and operational fluctuations, which are known 
to be systemically under-reported. This finding highlights the value of 

Table 1 
Definition and environmental interpretation of the nine semantic cluster 
combinations.

A5 (Long- 
term) Cluster

D2 (Short- 
term) Cluster

Combination 
(State)

Environmental Meaning & 
Specific Event Example

A5-0 (Summer 
High- 
Emission)

D2- 
0 (Pollution 
Decrease)

State 1 High-Emission (Cooling 
Down): A high-pollution 
event (e.g., from stagnant 
air) that is beginning to 
disperse.

A5-0 (Summer 
High- 
Emission)

D2-1 
(Pollution 
Increase)

State 2 Critical Emission Spike 
(Summer): A sudden, acute 
emission event (e.g., 
industrial leak) occurring 
during an already high- 
pollution summer period. 
(Critical Event)

A5-0 (Summer 
High- 
Emission)

D2-2 (Stable) State 3 Persistent Stagnation: A 
prolonged period of high 
pollution, typically caused 
by stagnant air masses in 
summer, with no significant 
short-term changes.

A5-1 
(Moderate 
Baseline)

D2- 
0 (Pollution 
Decrease)

State 4 Post-Event Recovery: The 
environment is returning to 
normal background levels 
after a minor pollution 
event.

A5-1 
(Moderate 
Baseline)

D2-1 
(Pollution 
Increase)

State 5 Minor Emission Event: A 
typical, short-term emission 
spike (e.g., from operational 
upsets) under normal 
background conditions.

A5-1 
(Moderate 
Baseline)

D2-2 (Stable) State 6 Normal Stable Conditions: 
The most frequent state, 
representing typical 
background concentrations 
with no significant events. 
(Baseline State)

A5-2 (Winter 
High- 
Transport)

D2- 
0 (Pollution 
Decrease)

State 7 Regional Transport 
(Ending): The tail-end of a 
large-scale pollution 
transport event, where 
concentrations are 
decreasing but still high.

A5-2 (Winter 
High- 
Transport)

D2-1 
(Pollution 
Increase)

State 8 Regional Transport 
(Arriving): The arrival of a 
large-scale plume from an 
external source, causing a 
rapid increase in local 
pollution during winter.

A5-2 (Winter 
High- 
Transport)

D2-2 (Stable) State 9 Persistent Transport 
Event: A prolonged period 
where the region is sitting 
within a large, stable high- 
pollution air mass, often 
associated with winter 
conditions.
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ST-CAN in modelling complex dynamics beyond simple event detection. 
The case study, presented in Fig. 15, compares the performance of the 
full ST-CAN (green) against the Ground-Only model (red) and the actual 
ground truth (black) during two challenging periods. 

Case 1. Early November 2024. As shown in Fig. 15a, the Ground-Only 
model significantly over-predicted a peak, spiking to ~2.34 ppm while 
the actual value was ~2.27 ppm. The full ST-CAN, however, correctly 
suppressed this temporal spike, holding its prediction near the ground 
truth.

Case 2. Early December 2024. Conversely, in Fig. 15c, the Ground- 
Only model under-predicted a peak, rising only to ~2.30 ppm while 
the actual event peaked at ~2.34 ppm. ST-CAN correctly boosted this 
prediction, accurately matching the true peak.

The explanation for ST-CAN's success in both cases lies in the satellite 
data. The GHGSat heatmaps for both the November (Fig. 15b) and 
December (Fig. 15d) periods show high regional XCH4 concentrations. 
ST-CAN's fusion mechanism learned to use this consistent spatial context 
as a critical “corrector" for the volatile, time-only predictions. This is 
particularly evident in Case 2, which highlights the specific contribution 
of satellite data in capturing spatial diffusion events. The satellite 
heatmap revealed a widespread high-concentration field (purple zones), 
characteristic of large-scale spatial diffusion rather than a localized 
point source. The Ground-Only model, lacking this spatial context, 
treated the signal as localized noise and failed to capture the full 
magnitude of the event. By integrating this spatial diffusion signal, the 
ST-CAN framework correctly identified the regional scale of the trans
port. This analysis provides definitive qualitative proof that the satellite 
data is not a minor contributor; it is an active, intelligent component that 

makes the model more robust by capturing regional transport dynamics 
invisible to the ground-only stream. This behaviour corresponds to the 
model semantically identifying these periods as “State 9: Persistent 
Transport Event" (Winter High-Transport + Stable) in Table 1, vali
dating the physical interpretability of our framework.

To rigorously quantify the contribution of satellite data across these 
contrasting scenarios, Table 2 presents a direct performance comparison 
between the Ground-Only and full ST-CAN models during these critical 
peak moments. The results demonstrate that incorporating satellite 
spatial context yields substantial quantifiable gains. In the November 
localized scenario, ST-CAN achieved an 86% error reduction, effectively 
corrected the Ground-Only model's false overshoot (2.34 ppm) and 
brought the prediction within 0.01 ppm of the ground truth. Even more 
critical is the result for the December spatial diffusion event. In this 
scenario, the Ground-Only model failed to capture the full magnitude of 
the event due to a lack of spatial awareness (under-predicting at 2.30 
ppm). In contrast, the ST-CAN model, guided by the high-concentration 
regional signal from the satellite, achieved a near-complete error 
reduction (>95%), closely tracking the observed peak at 2.34 ppm with 
negligible residual error. This result confirms that in the presence of 
large-scale spatial diffusion, satellite data acts as an indispensable 
spatial regularizer, providing the necessary context to capture regional 
transport dynamics that are mathematically inaccessible to temporal- 
only models.

3.4. Interpretability of semantic clustering-guided attention

A foundational innovation of the ST-CAN framework is its enhanced 
interpretability, addressing the “black-box" nature common in many 

Fig. 11. Comprehensive performance evaluation of the SVR model for all stations on CH4 concentration prediction. (a) Cross-validation performance metrics 
showing R2, RMSE, and MAE with error bars representing standard deviation across 5 folds. (b) R2 scores for individual CV folds with mean performance indicated by 
the dashed line. (c) Density scatter plot comparing predicted versus actual CH4 concentrations, with darker colours indicating higher data density; the dashed line 
represents perfect prediction, and the solid line shows the linear fit. (d) Full-year time series comparison of actual (blue) and predicted (red) CH4 concentrations with 
95% confidence intervals within the shaded area.

Y. Xu et al.                                                                                                                                                                                                                                       Journal of Environmental Management 401 (2026) 128845 

13 



deep learning models. This interpretability is primarily rooted in a 
model-inherent explanation, rather than a post-hoc analysis. The envi
ronmental semantic labels, derived from the interpretable A5 and D2 
wavelet components, are not merely used for analysis after prediction; 
they serve as direct, real-time control signals to the dynamic fusion gate. 
This design fundamentally integrates environmental understanding into 
the model's adaptive information processing, allowing the semantic 
context to actively steer how information from ground and satellite 
sources is weighted and combined.

This model-based interpretability is particularly valuable for domain 
experts. Unlike the traditional machine learning features, our semantic 
labels, for example, “Summer High-Emission “or “Pollution Increase," 
are clearly linked to physically meaningful environmental conditions, 
making them directly comprehensible and trustworthy to atmospheric 
scientists and environmental managers. The mechanism allows domain 
experts to trace the model's adaptive strategies, for instance, observing 
how the model “prioritizes" satellite spatial context during a regional 
transport event, or ground temporal dynamics during a localized emis
sion spike. The subsequent visualization and analysis of attention 
weights, conditioned on these familiar environmental states, provides a 
clear and intuitive manifestation of this enhanced interpretability. This 
approach transcends simple input-output correlations, offering insights 
into why the model makes certain fusion decisions under specific envi
ronmental contexts.

To provide insight into this adaptive fusion process, Fig. 16 visualizes 
the learned attention importance within the bidirectional cross- 
attention mechanism, specifically showing how different combinations 
of long-term (A5) and short-term (D2) environmental states influence 
the information flow between the two data modalities.

The heatmaps in Fig. 16 reveal that the model learns a sophisticated 
trust strategy, dynamically deciding when to trust or suppress infor
mation from each modality based on the environmental context. The left 
panel, illustrating Ground-to-Satellite (G-S) attention, shows the trust 
placed on satellite data when queried by ground data. A high positive 
weight (0.41) emerges during the “High Pollution + Stable" state. This 
suggests that when the model receives confirmation of a stable, high- 
pollution baseline from ground sensors, it learns to “High Trust" and 
heavily query the satellite's spatial context. The model's logic is similar 
to a learned policy: when ground sensors confirm a severe pollution 
event, the model adaptively increases the importance of the satellite's 
spatial view to confirm and locate that event. Conversely, a strong 
negative weight (− 0.42) appears during the “Low Pollution/Decreasing" 
state (A5-Low, D2-Decreasing). This demonstrates that the model learns 
to actively distrust or suppress the satellite data. The physical inter
pretation is that during these low-concentration periods, the satellite's 
column-averaged data (XCH4) is likely dominated by background at
mospheric concentrations and is not sensitive to the tiny local variations 
measured at the ground level. In this state, the satellite data is likely 
considered irrelevant or as potential noise, and its influence is therefore 
actively minimized.

The right panel, showing Satellite-to-Ground (S-G) attention, reveals 
a different dynamic where satellite data queries the ground time series. 
The highest weight (0.59) occurs during the “Medium Pollution +
Increasing" state. Here, the model learns to “High Trust" the satellite 
data to act as the Query, guiding its search for specific information 
within the ground station's temporal data. This demonstrates a learned 
strategy where the model leverages the satellite's broad spatial context 
to guide its attention. This guidance allows the model to precisely 

Fig. 12. Comparison of linear fit between baseline models and ST-CAN.
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identify and extract the most relevant temporal details of an emerging 
pollution event from the high-frequency ground-station data.

Together, these visualizations demonstrate the adaptive nature of 
ST-CAN's fusion mechanism. Unlike traditional “black-box" attention 
models, where the drivers of attention weights are unclear, this semantic 
clustering-guided approach offers a degree of interpretability by linking 
attention patterns to recognizable environmental conditions. This not 
only contributes to understanding the model's decision-making process 
but also highlights a key factor in its enhanced predictive accuracy and 
resilience to real-world data imperfections.

3.5. Ablation study on ST-CAN components

To validate the independent contribution of each novel component 
in the ST-CAN, we conducted a comprehensive ablation study. We 
trained four ablated versions of the model: (1) Ablation No Fusion Gate 
(using simple concatenation); (2) Ablation No Gate Guidance (a “blind" 
gate without cluster labels), and two unidirectional variants (S-G Only 
and G-S Only). Both ablation models are trained and validated on the 

same dataset and compared their performance (R2, RMSE) against the 
full ST-CAN. The results are presented in Table 3.

The results in Table 3 confirm that every component of ST-CAN is 
necessary for its high performance, as the removal of any part leads to a 
measurable drop in accuracy. The analysis reveals three key findings. 
First, bidirectional attention is critical. Both unidirectional models 
performed poorly. The most significant finding is the dramatic perfor
mance drop with +63.9% increase in RMSE when the S-G attention 
stream is removed. This quantitatively proves that using the satellite's 
spatial context to query the high-frequency temporal data is the single 
most important mechanism in the framework. Secondly, the semantic 
guidance is a key performance driver. The No Gate Guidance model with 
RMSE = 0.02652 displayed a +14.0% increase in RMSE. This is a sub
stantially larger error increase than that of the No Fusion Gate model 
with +4.1%, proving that the interpretable cluster labels are a major 
contributor to the model's predictive accuracy. Finally, the dynamic 
gating outperforms concatenation. The No Fusion Gate model, which 
use simple concatenation features as input, performed worse than the 
full model, confirming that the learnable, adaptive weighting of the 

Fig. 13. Comprehensive Performance Dashboard for ST-CAN and Baseline Models in CH4 Concentration Prediction. The dashboard presents a multi-faceted 
comparison of model performance: (Top row) Bar charts comparing R2, RMSE, and MAE metrics across ST-CAN, SVR, LSTM, and Transformer models. (Middle row) 
Boxplot visualization displaying error distribution characteristics for each model, including median (horizontal line), mean (red diamond), quartile ranges (box), and 
whiskers; annotated with mean (μ) and standard deviation (σ) values below each distribution. (Bottom row) Individual time series subplots for each model showing 
predicted CH4 concentrations (colored lines) against actual observations (gray reference lines) across a full year, with unified y-axis scales for direct comparison; 
performance metrics (R2, RMSE, MAE) are embedded in each subplot.
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dynamic gate is a superior fusion strategy.

4. Conclusions

The ST-CAN demonstrates significant advancement in methane 
concentration prediction through its novel environmental semantic 
clustering-guided approach and bidirectional cross-attention mecha
nism. The superior performance over established baselines validates the 
effectiveness of integrating semantic understanding of environmental 
states with adaptive fusion strategies. The framework's ability to identify 
distinct long-term baseline patterns and short-term dynamic states en
ables more accurate predictions of the regionally representative con
centration, while simultaneously enhancing interpretability. This 
approach addresses persistent challenges in multi-source environmental 
data fusion, particularly the heterogeneity and temporal misalignment 
of diverse data streams. Unlike traditional data-driven deep learning 
models that operate attention mechanisms as “black boxes," the pro
posed architecture achieves not only superior performance but also 
provides meaningful interpretability through environmental semantic 

understanding.
As noted in our methodology, the temporal up-sampling of weekly 

satellite data to an hourly resolution remains a key limitation of this 
work. While our ST-CAN demonstrates a strong capability to fuse the 
available information, the fidelity of its predictions at fine temporal 
scales is inherently constrained by the low frequency of the satellite 
observations. This underscores a critical need within the environmental 
monitoring field for next-generation satellite missions with higher 
revisit rates, which would fully unlock the potential of the data fusion 
framework proposed here. Furthermore, we must note that our perfor
mance evaluation metrics of R2, RMSE, and MAE are necessarily vali
dated against the in-situ measurements from the ground stations, as 
these provide the only available ground truth. As this study serves pri
marily as pilot research to develop and test the advantages of multi
modal fusion modelling, we have focused on demonstrating the 
methodology's effectiveness using available ground truth data. In future 
research, we will conduct comprehensive validation across all available 
ground stations in the study area to more thoroughly assess the model's 
spatial predictive performance. Evaluating the model's accuracy at 

Fig. 14. Comprehensive Performance Comparison of ST-CAN against Single-Modality and Multimodal Baseline Models. The figure presents a detailed 
evaluation of all models after correcting a data processing artifact in the visualization code. (a) Bar charts comparing three key statistical metrics: R2, RMSE, and 
MAE. (b) The time-series plot from September to December compares the hourly predicted CH4 concentrations from all models against the actual observed values 
(black line). The models evaluated include the proposed ST-CAN (green line) and single-modality baselines, Ground-Only in red, Satellite-Only in blue. Both the 
quantitative metrics and the qualitative time-series visualization consistently demonstrate the superior accuracy and stability of the ST-CAN.
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unobserved, non-ground station locations remains a significant chal
lenge that requires a dedicated spatial validation dataset, which we plan 
to address in subsequent work. Additionally, we must acknowledge the 

inherent physical heterogeneity of our input modalities. Our model fuses 
surface-level in-situ measurements (ppm) with satellite-derived column- 
averaged dry-air mole fractions (XCH4). While XCH4 provides invaluable 

Fig. 15. Case Study on Satellite Data Correction of Temporal Prediction Errors. (a) In early November, the Ground-Only model (red) overshoots the actual peak 
(black), while ST-CAN (green) correctly suppresses it. (b) The corresponding GHGSat map (Nov 2–8) shows high regional XCH4. (c) In early December, the Ground- 
Only model undershoots the actual peak, while ST-CAN correctly boosts it. (d) The corresponding GHGSat map (Nov 30-Dec 6) also shows high regional XCH4. This 
demonstrates how ST-CAN uses spatial context to correct errors in the temporal-only prediction.

Table 2 
Quantitative comparison of satellite data contribution in correction of peak estimation errors.

Event Scenario Ground Truth Ground-Only Model ST-CAN Satellite Contribution

​ ​ Prediction Abs. Error Prediction Abs. Error Error Reduction (%)
Nov: Localized (False Peak) 2.27 2.34 0.07 2.26 0.01 85.70%
Dec: Spatial Diffusion 2.34 2.3 0.04 ~2.34 <0.01 > 95.0%
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spatial context, it does not directly measure surface concentrations, and 
the relationship between the two can be complex and non-linear, 
influenced by boundary layer height, atmospheric mixing, and local 
emission sources. Our model's task is to learn this complex relationship. 
Consequently, all predictions from ST-CAN must be strictly interpreted 
as estimations of the ground-level concentration, as this is the target 
against which the model was trained and validated. Finally, a further 
limitation, related to the spatial sparsity of the ground network, is the 
scope of our model validation. Our validation was performed 

temporally, assessing the model's ability to predict the spatially aver
aged concentration over time. We did not perform spatial cross- 
validation. However, ST-CAN was designed for a different objective: to 
enhance the temporal fidelity of predictions at known, monitored lo
cations by fusing multi-modal data, rather than to generalize to entirely 
unobserved coordinates. Given the sparse (n = 4) and non-uniformly 
distributed training network, applying spatial cross-validation would 
be a significantly different and challenging research task.

Looking forward, enhancing the model's spatial generalization 
capability to unobserved locations is the primary direction for our future 
work. To address the inherent sparsity of ground monitoring networks, 
we are currently developing a next-generation framework that moves 
beyond pure data-driven approach. Our strategy focuses on two syner
gistic advancements. First, we aim to integrate Graph Neural Networks 
(GNNs) to model the non-Euclidean spatial dependencies among 
monitoring sites. Unlike standard interpolation, GNNs can learn adap
tive edge weights based on wind vectors and industrial source proximity, 
capturing the complex topology of pollution transport. Second, we plan 
to embed physical laws directly into the learning process using Physics- 
Informed Neural Networks (PINNs). By incorporating the atmospheric 
Advection-Diffusion partial differential equations (PDEs) as a regulari
zation term in the loss function, we can constrain the model's predictions 
to be physically consistent. This approach aims to simulate realistic 
methane plume dispersion and chemical decay in unmonitored areas, 
effectively bridging the gap between sparse ground observations and 
continuous spatial fields without requiring a prohibitively dense sensor 
network.

Applications extend beyond the AVOS, offering potential for 

Fig. 16. Visualization of Average Learned Attention Importance in ST-CAN. Heatmaps illustrate the aggregated attention weights for G-S and S-G interactions, 
conditioned on the nine environmental states. The value in each cell represents the average attention importance across all time steps belonging to that specific 
environmental state, demonstrating the model's consistent and systematic learned fusion strategy rather than an instantaneous snapshot.

Table 3 
Ablation study results comparing the full ST-CAN model to Abridged variants.

Model 
Variant

Description R2 RMSE % Increase in 
RMSE (vs. 
Full)

ST-CAN (Full 
Model)

The completely proposed 
model.

0.9513 0.02325 ​

Ablation: No 
Fusion Gate

Replaces the Dynamic 
Gate with simple 
concatenation.

0.9468 0.02420 +4.1%

Ablation: No 
Gate 
Guidance

The Dynamic Gate runs 
“blind" without cluster 
label inputs.

0.9342 0.02652 +14.0%

Ablation: S- 
> G Only

Unidirectional. Removes 
the G- > S attention 
stream.

0.9227 0.02896 +24.5%

Ablation: G- 
> S Only

Unidirectional. Removes 
the S- > G attention 
stream.

0.8675 0.03811 +63.9%

Y. Xu et al.                                                                                                                                                                                                                                       Journal of Environmental Management 401 (2026) 128845 

18 



standardized methane monitoring protocols across diverse industrial 
contexts. Beyond the spatial expansions mentioned above, other future 
directions include exploring federated learning approaches for privacy- 
preserving collaborative modelling and further improving the inter
pretability of attention mechanisms. The ST-CAN represents a signifi
cant step toward more robust, transparent, and actionable methane 
monitoring systems essential for effective climate mitigation strategies.
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