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Abstract

In this work, we mechanistically formulate a generalized cholera model with nonlocal time delay to
study the impact of bacterial hyperinfectivity on cholera epidemics in a spatially heterogeneous environ-
ment. Mathematical challenges lie in the fact that (i) the generalized cholera model considers the intrinsic
growth of short-lived hyperinfectious (HI vibrios) state of V. cholerae and lower-infectious (LI vibrios)
state of V. cholerae simultaneously; and (ii) this article originally derives the detailed classifications of spa-
tial dynamics for the cholera model with some generally functional response functions, non-uniformness
of diffusion rates and nonlocal time delay. We introduce three basic reproduction numbers: one is for HI
state of V. cholerae, the other is for LI state of V. cholerae, and another is for the cholera disease in the host
population. Based on these basic reproduction numbers, we further establish the global threshold dynamics.
Under some conditions, the basic reproduction number of infection is strictly decreasing with respect to the
diffusion coefficients of infectious hosts.
© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Cholera is an ancient disease characterized by severe intestinal infection caused by the bac-
terium Vibrio cholerae, and its source of infection is mainly contaminated water. Despite exten-
sive theoretical and clinical researches, it remains a serious public health burden in developing
countries [1,48]. According to the World Health Organization [49], there are 1.3 to 4.0 million
cases of cholera each year and 21,000 to 143,000 deaths from cholera worldwide. Researches
have shown that vibrio cholerae, shed freshly from the infected human host through the gastroin-
testinal tract, can survive for several hours and possess a high level of infectivity, known as the
short-lived HI vibrios state of V. cholerae [3,18]. Nelson et al. [32] demonstrated that HI vibrios
can be up to 700 times more infectious than vibrio cholerae, which grows in the environment
for several months (known as the LI vibrios state of V. cholerae). This hyperinfectivity is key to
understanding the explosive nature of human-to-human transmission in outbreaks [18]. Further-
more, since the decay from the HI state occurs within hours, Hartley et al. [18] suggested that
rapid local transmission through the direct route is responsible for rapid spread and the “explo-
sive” nature of cholera epidemics while the much slower environmental route accounts for much
slower dynamics.

A lot of mathematical models have been proposed to provide insights into cholera prevention
[7,8,12,14,18,59,63]. Capasso and Paveri-Fontana [9] firstly proposed an ordinary differential
equation (ODE) model of cholera, which concerned the evolution of the infected individuals
and bacteria population. Later, Codeco [11] extended the Capasso and Paveri-Fontana’s cholera
model [9] with an additional equation for the susceptible individuals and illustrated the influence
of aquatic hosts on the dynamics of cholera transmission. Joh et al. [21] developed a family of
iSIR (indirectly transmitted SIR) models by considering the minimum infection dose (MID) into
the incidence term and showed that an outbreak can result from noninfinitesimal introductions of
either infected individuals or additional pathogens in the reservoir. Tien and Earn [45] proposed a
waterborne disease model incorporating environment-human and human-human infection path-
ways simultaneously. Jensen et al. [20] modified the model in [11], with the new model including
phage compartment P and dividing the infectors into bacteria and phage-infected individuals
and phage-infected individuals. Subsequently, Kong et al. [24] improved the model in [21] by
incorporating bacteriophage and showed that oscillating trajectories could exist at the microbial
and population scales. Shuai et al. [40] developed a cholera model that combines hyperinfectiv-
ity and temporary immunity using distributed delays. Capasso and Maddalena [10] proposed a
partial differential equation (PDE) model to study the spatial spread of bacterial diseases by as-
suming that the bacteria diffuse randomly in the habitat. Bertuzzo et al. [4] introduced the spatial
motion of concentrated pathogens in cholera epidemics and calculated the transmission veloc-
ity of cholera waves under different topologies. Zhou et al. [62] established a reaction-diffusion
waterborne pathogen model with general incidence rate in a homogeneous environment. Wang
et al. [52] extended the model in [62] by using space-dependent coefficients in a heterogeneous
environment.

1.1. Model formulation

The nonlocal infection demonstrates that individuals in the latency period can be mobile,
resulting in infectious individuals being present at any location in the habitat [15,26,39]. One
of the immediate ways to address this nonlocal infection is to introduce the concept of age of

infection. Suppose that host population is divided into four categories: susceptible (S := S(x, 1)),
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exposed (E := E(x,1t)), infectious (I := I(x,t)) and recovered (R := R(x,t)) class, and all
humans live in a bounded spatial habitat €2 with a smooth boundary 9€2. The concentrations of
HI and LI state of V. cholerae are denoted by B := By(x,t) and B, = Ba(x, 1), respectively.
Applying the standard SIR model, we have the following model

85(3);7” =V - (Ds(x)VS(x,1)) +n(x,S(x,1)) — f1(S(x,1), I (x,1))
— f2(S(x, 1), Bi(x, 1) — f3(S(x,1), Ba(x, 1)),
% =V - (DR(X)VR(x, 1) + B (x,1) — dr(x)R(x, 1),
% =V - (Dp,(x)VBj(x, 1)) + u(x)I (x,1) + hy(x, Bi(x,1)) — o, (x) By (x,1),
% =V (D, (0)VBa(x. 1)) + 05, (x) B1 (x, 1) + ha(x, By(x. 1)) = dp, (x) By (x. 1),

where V and V- represent the usual gradient and divergence operators. D;(x) (i =S, R, By, B2)
denote the diffusion rates of susceptible hosts, recovered hosts, HI and LI state of V. cholerae,
respectively. n(x, S(x, t)) is the growth rate of susceptible hosts, including the influx and nat-
ural death. f;(S(x,t), I(x,?)) denotes the direct transmission rate, f>(S(x,t), B1(x,t)) (resp.
f3(S(x,1), Bo(x,t)) represents the indirect transmission rate contacting with HI (resp. LI) state
of V. cholerae. B(x) is the recovery rate of infectious hosts, i1 (x, By (x, 1)) (resp. ha(x, Ba(x,1)))
denotes the growth rate of HI (resp. LI) state of V. cholerae. 1(x) is the shedding rate of HI state
of V. cholerae. dgr(x), o, (x) and dp, (x) are the natural death rates of recovered hosts, HI and LI
state of V. cholerae, respectively. With infection age a;, & (x, t, ay) is the density of infectious
individuals at location x and time ¢. By the standard system of structured population and spatial
diffusion [30], we have

a a
—+ E(x,t,a]):_d(x,a])E(x,t,a])+V' (Di(x5al)VE(x’t5a1))7
Jt day

E(x,1,0) = fi(SCx, 1), I(x, 1)) + f2(S(x, 1), Bi(x, 1)) + f3(S(x, 1), B2(x, 1)),

(1.1)

for x € Q,t > 0and ay > 0, where D;(x, a;) > 0 stands for the diffusion rate at location x with
infection age a;. d(x, ay) > 0 includes natural and disease-induced death rates and recovery rate
of infectious individuals at location x and age a;. From the biological point of view, we assume
that 5 (x, ¢, o0) = 0, and the average infection period is fixed by t, D;(x,ay) and d(x, aj) are
given as follows:

Dg(x), forx e Qanda; <rT,
Di(x,ar) =

D;(x), forx e Qandaj > T,

dp(x), forxeQanday <7,

di(x), forx eQanda; > 7,

d(x,al)={

where D, Dy, dr and d; are continuous and positive on €. Denote
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T oo

E(X,t)=f5(x,t,a1)da1, I(x,t)=fE(x,r,az)daz.

0 T

From model (1.1), we obtain

% =V (Dp(X)VE. 1) —dp () Ex, 1) + E(x.1,0) — & (x. 1, 7),
al(x,t) — —
rYe V-(Dix)VI(x,t)) —dy(x)I(x,t) + E(x,t,7) — E(x,1,00).

Considering solutions of model (1.1) along the characteristic line g = ¢ — a; by letting
7(x,t,8) =& (x,t,t — g), model (1.1) is rewritten as

3z(x, 1, g) { —dp(x)z(x,1,8) + V- (Dp(x)Vz(x,1,8)), forx e Qand0 <1 —g <7,
T

—d;(x)z(x,t,8) + V- (D;(x)Vz(x,t,g)), forx e Qandt — g > 1,
and
z(x,8,8)=E(x,8,0)

= f1(S(x, 8), [ (x,8) + f2(S(x, g), Bi(x, 8) + f3(S(x, g), B2(x, 8)), g=0,
72(x,0,2) =EZ(x,0,—g), g<0.

Taking g as a parameter and solving the above equation:

(it—9&(,g0), forxeQ, 0<t—g<tandt>g >0,

hit—g—1)E(,g+71,7), forxeQ, t—g>tandt>g >0,
z(x,1,8) =

TiHE(G,0,—g), forxeQ, 0<t—g<tandt>0>g,

Lt)E(,0,—g), forxeQ, t—g>tandt>0>g,

where T1(¢) and T»(¢t) are Cp semigroups generated by V - (DgV) —dg and V - (D;V) —dj,
respectively, with Neumann boundary condition on 2. Further, we get

Ti(o)Z(¢,t—r1,0), fort >,

Ex,t,1)=z(x,t,t —1) =
Ti(H))E(,0,t —1), fort <.

Denote y (x, v, t) as the kernel function of T/ (¢). Then T1(t)Z (-, t — 7, 0) is rewritten as

/V(x,y’f)[fl(s()’»t _T)fl(yvt_t))+f2(s(yvt _T)s Bl(yvt _T))

Q
+ f3(S(y,t = 1), Ba(y, 1 — 1)) ]dy.

Thus, we have
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8E;)tc,t) =V .- (DE(X)VE(x,1)) —dg(x)E(x,1) + fi(S(x,1), I(x,1))
+ f2(S(x, 1), Bi(x,0) + f3(S(x, 1), Ba(x, 1)
_/”x’y’f)[fl(s(y’f—f>vl<y’f—r>>+fz(s<y,r—r>,31<y,r—f>>
Q
+ f3(S(y, t = 1), Ba(y, t — 1)) |dy,
81(3);7 2 =V .- (D;(x)VI(x,1)) —d;(x)I(x,1)

+/y(x,y,r>[f1<5(y,t—r>,1<y,r—r>>+fz(s<y,r—r),Bl(y,r—r»
Q

+ f3(S(y.t — 1), Ba(y, t — 1)) ]dy.

Note that the equations of E and R are decoupled from the model system. Denote (D1, D3, D3,
D) = (Ds, Dy, Dp,, Dp,), (d2,0,ds4) = (d;,0p,,dp,), (21,22,23,24) = (S, 1, By, B) and
Zi—t(x,t) =z;(x,t — 1) for i =1, 2,3,4. From the discussions above, we get the following
generalized cholera model with nonlocal time delay:

% =V - (D1(x)Vz1) +n(x.21) — f1(z1.22) — f2(21.23) — 3(21. 24).
0
% =V - (D2(x)V22)
+ () [ fiz1,—1, 22—2) + @1 —c. 23—0) + 3211, 24,—0) | — da()z2,  (1.2)
0
§ =V - (D3(x)Vz3) + h1 (x, 23) + w(x)22 — 0 ()23,
% =V - (D4(x)Vz4) + ha(x, z4) + 0 (x)z3 — da(x)z4,

for x € 2, t > 0, associated with Neumann boundary condition
Vzi-v=0,i=1,2,3,4, x€0R, t >0,
and nonnegative initial condition

72(x,0)=¢(x,0), xeQ, 0e[-1,0],
where
(I'(®E)x z/y(x,y,f)é(y)dy, ¢t € C(Q). (1.3)
Q

It is worth mentioning that our mathematical model (1.2) is very generalized, which includes
some nice existing models such as those described in [38,52,61,62], as particular cases. Con-
sidering the properties of T7(t), we generalize model (1.2) in a more general sense of kernel
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function. We still choose y(x, y, T) to represent a general nonnegative kernel function, which
satisfies the following basic assumption:

(HO) Fort >0, fQ y (x,y, T)dy is continuous in x € €, fQ y(x, y, T)dx is continuous in y € Q,
and fQ y(x,y, 0)¢(y)dy > 0 for any x € Q and ¢ € C(2, R;) with ¢ > 0. Furthermore,
forany w, v € C (), there is G, (7) > 0 satisfying

/w(x) [V(xayvt)v()’)dy]dxSGV(T)/I:WZ(X)+U2(X)]dX- (1.4)
Q

Q

If y(x,y,7) is the kernel function for Tj(¢), by a standard energy estimate, L? norm of
fQ v (-, y, T)v(y)dy = Ti(t)v is bounded by the L? norm of v. By Cauchy inequality, we get
(1.4).

For any t > 0, let C; := C([—7, 0], X) be the Banach space, where X = C(£2, R4). For ¢ €
C-, the norm of ¢ is defined by

= -0 .
(1] pnax e, Nlx

The nonnegative cone of X and C; are given by Xt =: C(Q,R%) and C} := C([—7,0],XT).
Then both (X, X*) and (C,, C;") are strongly ordered [41]. Suppose that D; (x) (i =1,2,3,4),
di(x) (i =2,4), u(x) and o (x) are positive and continuous functions on Q.

Throughout this paper, we make the following basic assumptions:

(H1) n(x,z1) € CO’I(_Q x Ry) and 9;,n(x,z1) <0 for x € Q and z; > 0. There is a unique
Z1(x) > 0in C(£2, Ry ) such that n(x,Zz1(x)) = 0.

(H2) fi(m,s) e C'(Ry x Ry),i=1,2,3. 9, fi(m,s) and 9 f;(m, s) are positive for x € Q
andm, s >0, % < 0. Furthermore, f;(m,s) =0 if and only if ms = 0.

(H3) h;(x,m) e C¥V (€ x Ry), i = 1,2 are nonnegative for m > 0, ZHCm 0 p.(x m) =0
g amZ
if and only if m = 0. Moreover, for x € 5_2, we assume

lim M <o(x), and lim M < dy(x).
m— 00 m m— 00 m
Remark 1.1. The assumption (H2) is given due to technique requirements. Note that the as-
sumption is also reasonable from a biological point of view, since the bilinear incidence rate
Biz1zi (i =2,3,4), the Holling type II functional response 8;z1z;/(1 + a;z;) (i =2,3,4), and
the Beddington-DeAngelis functional response 8;z1z; /(1 +a;z1 +bizi) (i =2, 3,4) are included
as special cases.

1.2. Motivation and goal
Bacterical hyperinfectivity is a nonnegligible factor in cholera dynamics [18,35]. Recently,
Wang and Wang [54] proposed a reaction-advection-diffusion model by considering bacterical

hyperinfectivity, and studied the impact of bacterical hyperinfectivity on the spread of cholerea.

108



W. Wang, X. Wang and H. Wang Journal of Differential Equations 405 (2024) 103—150

Wang and Wu [53] further considered a diffusive cholera model with bacterial hyperinfectiv-
ity, and investigated the threshold-type results and asymptotic profiles when the dispersal rate
of susceptible humans approaches zero or infinity, where the diffusion of HI and LI state of
V. cholerae are ignored. In epidemiology, the basic reproduction number is a critical threshold
for disease outbreak [2,47,57,65]. Thus, one natural question is how do the basic reproduction
number for HI state of V. cholerae, LI state of V. cholerae and infectious host work together to
determine the threshold dynamics of cholera.

In fact, the spread of infectious diseases is significantly influenced by spatial heterogeneity,
such as spatial location, water availability, and sanitation. Thus, it is essential to consider spatial
heterogeneity for disease prevention and control [4,23,34,46]. Mukandavire et al. [31] estimated
the basic reproduction numbers for 10 provinces in Zimbabwe and showed that the transmission
mode of cholera varies widely across the country. Tuite et al. [46] established different basic
reproduction numbers for 10 administrative departments of Haiti. Wang et al. [50] developed a
host-pathogen model in which the susceptible and infected hosts have the same diffusion coeffi-
cient but the pathogen does not spread. Wang et al. [55] proposed a reaction-convection-diffusion
model with time-periodic coefficients to study the dynamics of cholera transmission.

Inspired by the above discussions, the main purpose of this paper is to address these ques-
tions: How does the bacterial hyperinfectivity affect the global dynamics of cholera epidemics in
heterogeneous environments? How to quantify the infection risk of cholera in a spatially hetero-
geneous environment? Specifically, the existence and stability of infection-free steady state and
endemic steady state of model (1.2) are investigated by exploring the effects of the basic repro-
duction numbers for the HI state of V. cholerae (R,.1), LI state of V. cholerae (R.») and cholera
disease in the host population (R() on the global dynamics of model (1.2). Many interesting and
important phenomena have been found in this work, which are briefly summarized as follows:

(F1) When max {R.1, R.»} < 1 and Ry < 1, the infection-free steady state is globally asymp-
totically stable (see Theorem 5.1). In biology, when there are few HI vibrios recently shed
from individuals (R,; < 1) and few LI vibrios in the environment (R, < 1), under the as-
sumption that the expected number of secondary cases produced by an infective individual
is less or equal than one (R < 1), then the disease will die out.

(F2) When Case 1: R,y > 1 or R,» > 1, or Case 2: max {R,1, R.p} <1 and Ry > 1 is satisfied,
the disease will persist and there exists at least one endemic steady state (see Theorem
[5.2]). Moreover, under some conditions, the infection steady state is globally attractive in
some special case (see Theorem [5.9]). In biology, when Case 1: there are a large number
of HI vibrios recently shed from individuals (R,; > 1) or a large number of LI vibrios in the
environment (R.> > 1), or Case 2: there are few HI vibrios recently shed from individuals
(R.1 < 1) and few LI vibrios in the environment (R,2 < 1) under the assumption that the
expected number of secondary cases produced by an infective individual is larger than one
(Rp > 1), then the disease will persist and become endemic.

(F3) When Case 1: R, > 1 and R, > 1, or Case 2: max {R,i, R.2} < 1 and Ry > 1 is satisfied,
the unique positive homogeneous steady state is globally asymptotically stable (see Theo-
rem [6.2]). In biology, when Case 1: there are a large number of HI vibrios recently shed
from individuals (R, > 1) and a large number of LI vibrios in the environment (R.> > 1),
or Case 2: there are few HI vibrios recently shed from individuals (R.; < 1) and few LI
vibrios in the environment (R.> < 1) under the assumption that the expected number of
secondary cases produced by an infective individual is larger than one (Rg > 1), then the
disease will persist in a homogeneous environment.
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(F4) Under some conditions, Ry is a decreasing function in D (see Proposition [4.5]). In bi-
ology, if the habitat is homogeneous, the diffusion of infectious hosts will reduce cholera
infection.

The remainder of the work is organized as follows. Section 2 focus on the well-posedness
of the model. In Section 3, we investigated the dynamics of cholera model without shedding
resource and obtain the expressions of R,; and R,;. In Section 4, we define the basic reproduc-
tion number for infection, denoted by Ry. In Section 5, we investigate the global dynamics of
the cholera model with nonlocal time delay. In Section 6, the unique positive steady state of a
homogeneous model is considered. In Section 7, conclusions and discussions are given.

2. The well-posedness

By [41, Corollary 7.2.3], let T, (t) (i =1,2,3,4) be the compact and strongly positive
Co semigroup generated by V - (D1(x)V), V - (D2(x)V) — da(x), V - (D3(x)V) — o (x),
V - (D4(x)V) — d4(x) with Neumann boundary condition, respectively. Let A;, (i = 1,2, 3,4) be
the generator of T,. By [36], T3, = (1,, T3, T35, Tz,) is a Co semigroup generated by the opera-
tor A = (A;,, Ay, Ags, Agy). Define Z(t) = z(-,t+-) € C;" fort > 0, where z = (21, 22, 23, 24) €
C(Q x [—1, 00), R*). Then model (1.2) can be written as

AZ(M)]
01,0 =1 9
A{ZOIC, 0} +FE@), 6 =0,

(-,0), 0 €[—1,0),

with Z(0) = ¢ € C, where F = (F1, F», F3, F4) : C;F — X is defined by

Fi(g)(x) =n(x, g1(x,0)) — fi(s1(x,0), 2(x,0)) — f2(s1(x, 0), 53(x, 0))
— f3(51(x, 0), 64(x, 0)),

Fa($)x) =T (@[ fi(51(, —1), 22, =) + f2(51(:, 1), §3(, = 1))
+ f3(s1(, =), g4, =),

F3(5)(x) = hi(x, 63(x, 0)) + pu(x)s2(x, 0),

Fy(5)(x) = ha(x, g4(x,0)) + 0 (x)g3(x,0),
for any ¢ = (1, 62, 63, 64) € C{ . Note that y(x, y,7) > 0 and [,y (x, y, T)dy is continuous.
Thus, ¥ (t)v € C(Q) for v e C(). It follows that F(¢) € X for ¢ € C;. There exists a > 0
satisfying

f1(s1(x,0), 62(x,0)) + f2(51(x,0), 53(x,0)) + f3(51(x, 0), ca(x,0)) < agci(x,0),
for any ¢ € C; and x € Q. We have
¢ (x,0) +7F () (x) = (51(x, 0)(1 —an), 62(x. 0), 53(x, 0), a(x,0) ",
for x € Q. Choose n > 0 sufficiently small, one gets ¢ (-, 0) +nF(¢) € X*. Then
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1 .
lim —dist(¢(-,0) 4+ nF(¢c), X™)=0.
U]

By [29, Corollary 4] (or [41, Theorem 7.3.1]), we have the following result.
Lemma 2.1. For each ¢ € C}, model (1.2) admits a unique solution z(x,t) on a maximal in-
terval of existence [0, Tmax). If Tmax < 00, then lim,_. 7, sup||z(-, t)|lx = oo. Furthermore,

z(x,t) >0 fort € [—7, Tmax)-

To show that Ti,x = 00, we next prove that the solutions are bounded. Following by [38,
Lemma 2.2], we have the following Lemma.

Lemma 2.2. Assume that the function n satisfies (H1), the equation

du(x, 1) =V-(D1(x)Vu(x,t)) +n(x,u(x,1)), x €, t >0,
« @2.1)

Vu(x,t)-v=0, x €9, t >0,

has a unique and strictly positive steady state u*(x), which is globally asymptotically stable in
C(Q,Ry), Furthermore, if D(x) = D and n(x, u) = n(u) are independent of x, then 71 (x) =71
is also independent of x and u*(x) =7.

Theorem 2.3. For any ¢ € C;", model (1.2) admits a unique solution z(x,t) >0 on t € [0, 00).
There is a positive constant K, independent of ¢, such that tlim supzi(x,t) <K (i=1,2,3,4)
—00

for x € Q. The solution semiflow {®(1)},;=¢ : C — C of model (1.2) by ()¢ =z(-,t +) €
Ct, t > 0 admits a global compact attractor in C;f.

Proof. Given any ¢ € C;7, from Lemma [2.2] and comparison principle, we obtain z;(x, ) <
u(x,t) for t € [0, Tinax), Where u(x,t) is the solution of (2.1) with u(x, 0) = ¢1(x, 0). Due to

u(x,t) — u*(x) as t — oo, we have that z; (x, r) is uniformly bounded for ¢ € [0, Tax)-
By (H3), there exist positive constants by, b3, bs such that

hi(x,m) —o(x)m <bg— bsm and hy(x, m) — dy(x)m < by — bam
for m > 0. Especially,
hi(x,z3(x, 1)) — o (X)z3(x, 1) < b — b3z3(x, 1), (2.2)
ha(x,z4(x, 1)) —da(x)z4(x, 1) < by — baz4(x, 1), (2.3)
forx e Q,and r € [_E’ Tax)-

Let T, (1), 7~"z3 (1), Tz, (t) be the Cp semigroups generated by V- (D2 V) —d, V- (D3V) — b3,
V - (D4V) — bg with Neumann boundary condition, respectively. We have

22(x, 1) =T, (1)$2(x, 0)
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t

+/Tzz(t_S)F(T)[fl(Zl,—raZZ,—r)+f2(Zl,—1713,—f)+f3(Zl,—rvz4,—r)]dss
0

=T, ()¢2(x,0)

t—1

+ / Tyt =T =T @[ fiz1¢9), 220, 9) + f2(21(,9), 23, 9)

-7

+ f3z1C, ), 24, ) ]ds,

t
23(x, 1) §i3(1)¢3(x,0)+fi3(t—S)[Mzz(-,S)+bo]ds,
0

t
74(x, 1) 5724(t)¢4(x,0) +/i4(t —$)[oz3(-,8) +bolds.
0
Assume that —A; < 0, —A3 < 0 and —X4 < 0 is the principal eigenvalues of V - (QZV) —dy, V-

(D3V)~— b3 and V - (D4V) — by, respectively. It follows that || T, () || < et 1T, < et

and || T, (0] < e M Let Zim (t) =maxz;(x, t), then z1 ) is uniformly bounded in [0, Tinax). By
xeQ

(H2) and continuity of [T'(7)1](x) = fQ y(x,y,T)dy in Q, there exist positive constants p, p3
and p4 satisfying
L(7) [fi1(z1(x,9), 22(x, 8)) + fa(z1(x, 5), 23(x, ) + f3(z1(x, 5), z4(x, 5))]

< p22om(8) + p3z3m(s) + pazam(s)
for s € [—71, Tmax). Then we have

-t

2am (1) < pao + / 2T [y 2o (5) + pazam () + pazan (5)1ds.
0

e—)\3 (t—s)

z3m (1) < p3o + p3i 22m(s)ds,

—

0
t

2am (1) < pao + pa1 /€_A4(’_S)Z3M(S)ds,
0

where p;o (i =2,3,4) > 0 and p;; (i =3,4) > 0 are constants. We substitute the second and
third inequalities into the first one to get

t
22m(t) < My + Mz/ZZM(S)dS,
0
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where M7 and M> are both positive constants. By Gronwall’s inequality, we have zoy < M eMat

for t € [0, Tmax). It follows that

M
z3m (1) < p3o + P31 LMot
M,

pa1p3iMi
zam (1) < pao + pa1p3ot + —r e,
2

for ¢t € [0, Tmax)- Thus, by Lemma [2.1], we obtain Tipax = 0o and the solution z(x, t) exists for
t>0.

In what follows, we show that z(x,7) is ultimately bounded. By Lemma [2.2],
tlim supzi(x,t) <u*(x). Especially, there are #; > 0 and K > 0 satisfying z1(x,t) < K; for
—00

t > t1. By (H2), there is a p; > 0 such that

filzi(x, ), z22(x, 1) + fa(z1(x, 1), 23(x, 1)) + f3(z1(x, 1), z4(x, 1))
<pilzax, 1) +z3(x, 1) + z4(x, 1)]

2.4)

for x € Q, t > t;. Denote Zij(t) = fQ z{(x, t)dx,fori=1,2,3,4, j > 1. Integrating the equa-
tions of z; and zp, we get

ijl(t)zfn(x,m(x,t))dx

Q

- / [fiz1(x, 1), 22(x, 1)) + fa(z1(x, 1), z3(x, 1)) + f3(z1(x, 1), za(x, 1)) ] dx,
Q

Z5 1 (1) Spo/[fl(m(XJ —0), 220, =10) + folzi(x, 1 = 1), 23(x, 1 — 7))
Q

+ 3@t = 1), 24,1 = 1) Jdx — daZa 1 (1),

where

P0=maX/V(x,y,r)dx, dy = mind;(x).
yeQ 5 T xeQ

Let
p= po/n(x, 0)dx + pod2K1|£2|
Q

for t > 11 + 7, from the above two formulas, z;(x,# — 7) < Ky, and 9;,n(x, z1) <0, we have
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8, g 8

poZy (1 —1)+ 25 (1) < po/n(x,zl(x,t —))dx —dyZ (1)
Q

<P-d[poZi1(t — )+ Zo1(1)].

According to the comparison principle, we obtain tlim sup Z.1(t) < p/d,. It follows that there
—>00 -

exist tp > t; and Kp > O satisfying Z» 1(¢) < K, for ¢t > 1.
By (2.2), we integrate the equation of z3 and obtain

Zg’](t):/,u(x)zz(x,t)dx+/[hl(x,Z3(x,t))—a(x)Z3(x,t)]dx
Q Q
< K2 +bolS2| = b3 Z31 (1),

for t > tp, where i = max u(x). It follows from comparison principle that tlim supZ3,1(t) <
XeEQ —>00
(LK2 + bo|2|) /b3. Thus, we have Z3 1 (t) < K3 for t > t3, where #3 > t. Similarly, by (2.3), we

integrate the equation of z4 and get

Zgﬁl(t):/cr(x)&(x,t)dx—l—/[hg(x,m(x,t))—d4(x)24(x,t)]dx
Q Q

<0 K3+ bolS2| — baZs (1),

for t > t3, where ¢ = max o (x). It follows that [lim sup Z4,1(t) < (0 K3 + bo|S2|) /ba, thus, we
xXeQ — 0
have Z4,1(t) < K4 for t > t4, where t4 > 13.

In order to estimate Z 2(¢), Z32(¢) and Z4 2(¢t) for t > t4. We first multiple the equation for
z2 by zo and integrate on 2. By (1.4) and (2.4), we have

1 /
Ezz,z(t)

:/zg(x,t)v-(Dg(x)sz(x,t))dx —/dg(x)z%(x,t)dx
Q Q
+fzz(x,r>r(r) LA Gt — 1) 22(ent — 1))

Q

+ fZ(Zl(th_ t)v Z3(.X,t— T)) + f3(zl(xvt - T)v Z4(.X,t_ T))]d-x

<D, / VealPdx + p1Gy (1) [3Za2() + Zaalt — 1) + Z3a(t — 1) + Zaa(t — )]
Q

where Dy = min D3 (x) > 0. Similarly, multiplying the equation for z3 (resp. z4) by z3 (resp. z4)

xe
and integrating on 2. By (2.2), (2.3) and Cauchy inequality, we have
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1
—Zé,z(f)=/Z3(x,t)V~(D3(x)VZ3(x,t))dx+/M(X)zz(x,t)zs(x,t)dx

2
Q Q
+/Z3<x,r> [h1(x. 23) — 0 ()23 (x. 1)) dx
Q

< —&/ IVz3)2dx + [Z22(t) + Z32(0)] + b Z3,1 (1),

Q
%Zﬁhz(t) :/24(x, 1V - (D4(x)Vza(x,t))dx +/a(x)Z3(x, t)z4(x, t)dx
Q Q
+/Z4(x,t) [12(x, z4) — da(x)z4(x, 1)]dx

Q

<-n, / VealPdx +6 [Z3.2(0) + Zs2(D)] + boZs 1 (1),
Q

where D; = minD;(x) (i = 3,4), it = maxu(x) and 6 = maxo(x). In view of Gagliardo-
 xeQ xXeQ xeQ
Nirenberg interpolation inequality, there is p > 0 such that

I0l13 < el Voll3 + pe 2 ilT. (2.5)
For any v € W!2(Q) and small & > 0, adding the above three inequalities, we have

Zh 2() + Z5 (1) + Zj 5(t) <Dype 5" [zg,l )+ Z2,() + 73, (r)]
- ﬂe_l [Z22(0) + Z32(t) + Zap(1)]
+ P16y (D) [Z22( = 1) + Z32(t = ©) + Za2(t — 1) +3Z2,(1)]
+ 1 [Z22(0) + Z3 2 (1) ]| + 6 [Z32(0) + Zap (1) ] + bo(K3 + K4)
<M+ My [Zoo(t — 1)+ Z32(t —T) + Zao(t — 7)]
— (Ma 4 M3) [Z22(t) 4+ Z32(1) + Za2(1)],

where Dy = max { D2, D3, Dy}, Dy = min{Dy, D3, D4} and M; (i =1,2,3) are positive
constants. Then, by comparison principle, we have

. / / / M
Jlim sup [Z5,() + Z5 (1) + Zi 5, (D)] < ra

there are t5 > t4 and K5 > O such that Z» »(¢) + Z32(¢) + Z42(t) < K5 for t > ts.
Finally, let

Jp = lim sup [Zon (1) + Z3.1 (1) + Zan(0)],

115



W. Wang, X. Wang and H. Wang Journal of Differential Equations 405 (2024) 103—150

in order to estimate J»;,, multiplying the equation for z, by 2hz§h ~land integrating on 2. Define

D, (t) = max ma_x/y(x,y,r)dx, ma_x/y(x,y,r)dy ,

yeQ xe
Q

by (2.4), Young inequality and # > 1, one gets

Zh (1) < —2Dy / IVZh2dx + / 2h23" T (@) [p1 (22— + 23— + 24, —) | dx
Q Q

= _zﬂf V251 7dx + p1Dy (D)[(6h — 3)Z2 24 (1)
Q

+ Zoon(t — 1)+ Zapn(t — ) + Zaon(t — 1)),

then multiplying the equation for z3 by 2hz§h ~!and integrating on €2, by (2.2), Young inequality

and h > 1, we get
Z5 (1)

<-2D; f V24 2dx + i [(2h — 1) Z3 25 (1) + Zoon (1)) + bo [2h — D Z3 21(1) + 1R2]] .
Q

Similarly, multiplying the equation for z4 by 2hz§h_1

inequality and 4 > 1, we obtain

and integrating on €2, by (2.3), Young

Zon(®)

<-2D4 / \VZi12dx + 6 [(2h — 1) Zaon(t) + Z320 ()] + bo [(2h — 1) Za 20 (1) +1921] -
Q

Denote
Lyp(t) = Zop(t) + Z31(t) + Zan (1),
by (2.5), adding the above three inequalities, one gets
Loy () = =D[e™ Lon(0) = pe™ 5 LYW + Mk [Lan(0) + Laa(t = D] + 2bol 2],

where D = min{Z&, 2D3, 2&} and My = 6p1Dy, (1) + 2t + 20 + 2by. Note that
tlim sup Ly (t) = Jp, there is t, > 0 satisfying Ly, (t) < Jy + 1 for t > 13,. Set
—> 00

k
¢! =hM>, My= (M, +1)/D, M= pDMZ"" +2bo|<2],
we get
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k
Ly, (t) < Mih [Lop(t — ©) — Lop(t)] — hLoj(£) + M3h 2T (), + 12,

for t > t,. By comparison principle, Jo, < M3h% (Jn + 1)?, where Mj is independent of 4 and
0.

Now, by induction, we prove that Jo;» < oo forn =0, 1,2, ---. Let f,, be an infinite sequence
defined as f,1 = M2~ 2727 £ with initial condition fo = J; + 1 and M = M3 + 1, it
follows that Jo» < ( fn)z" and

o o
. 1 nk k
nll)l’l;.lolllfn=1nf0+lnM E W+ln2 E W=1nf0+lnM+§ln2
n=0 n=0

Therefore, we get
lim sup(J»)*> < lim f,=(J; + )h)M2** <C,
n—0o0o n—0o0

where C = (K5 + l)MZk/2 + K. This indicates that llim supz;(x,t) <C,fori=1,2,3,4 and
—00

x € Q. Especially, ®(¢) is point dissipative. By [60, Theorem 2.1.8], ®(¢) is compact for ¢ > 7,
thus, it follows from [16, Theorem 3.4.8] that ®(¢) has a nonempty global attractor in C f . O

Proposition 2.4. Let z(x,t) = (z1(x, 1), z2(x, 1), z3(x, 1), 24(x, 1)) be the solution of model (1.2)
with ¢ € Cj‘ , then z1(x,t) > 0 fort > 0, x € Q, and there exists a constant ko > 0 independent

of ¢ satisfying

tlim infzy(x, 1) > ko, uniformly for x € Q.
—00

Furthermore, if there are some xo € Q2 and ty > 0 such that z;(xg, to) > 0 or z3(xg, tp) > 0 or
z4(x0,10) > O, then z;(x,t) > 0fori =2,3,4,t > to+ 7 and x € Q.

Proof. If z;(x,0) £ 0, by strong maximum principle, z1(x,t) > 0 for t > 0 and x € Q. If
z1(x,0) = 0, then %’;O) =n(x,0) > 0. Thus, there is t, > 0 satisfying z;(x,7) > 0 for
0 <t <t and x € €, this together with strong maximum principle, one gets z1(x,?) > 0 for
t>0and x € Q. ~ ~

From Theorem [2.3], there exist 7 > 0 and K > 0 such that z; (x,¢) < K for¢ >7 and x € Q.
By (H2), we have

0z1(x, 1)

” >V (Di1(x)Vzi(x,1) +n(x, z1) — coz1(x, 1),

for r > 7 and ¢p > 0. It follows from Lemma [2.2] and comparison principle that zj(x,?) is
ultimately bounded below by a unique positive steady state u™(x). Denote ko = minu*(x) > 0,
xeQ
one gets tlim infzy(x,t) > ko for x € Q.
—00

Suppose that z(xg, fo) > 0 or z3(xo, o) > 0 or z4(xo, fo) > 0 for some xp € 2 and 1y > 0.
By the equation for z3 and strong maximum principle, we have z3(x,t) > 0 for t > fp and x €
Q. Similarly, we get za(x,7) > 0 for t > 1y + 7, x € Q and z4(x,t) > 0 for r > 19, x € Q,
respectively. The proof is complete. O
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3. Dynamics of environment model without shedding source

Without shedding source, the dynamics of HI state of V. cholerae is determined by

dB1(x,1)
—r = V- (D3(x)VBi(x,t)) +hi(x, Bi(x,1)) —o(x)Bi(x,1), x€Q, t>0, 3.0)

VBi(x,t)-v=0, xe€0Q, t>0,

the dynamics of LI state of V. cholerae is determined by

8328(;6, 1) =V - (Ds(x)VBy(x,1)) + ho(x, Ba(x,1)) —ds(x)Br(x,t), x €, t >0, 32)

VBy(x,t)-v=0, x€02, t>0.

Obviously, for every initial condition z3g (resp. z40) € C (Q, R), model (3.1) (resp. (3.2)) has
a nonnegative, unique and ultimately bounded solution Bj(x,?) (resp. Ba(x,t)) € C (S_Z, Ry).
Further, if z30 (resp. z40) # 0, then Bj(x,t) (resp. Ba(x,1)) > 0fort > 0 and x € Q.

Note that /1 (x, 0) = 0, linearizing model (3.1) at the trivial steady state 0, we have

0B1(x,1)
ot
VBi(x,t)-v=0, x€9Q, t>0,

=V - (D3(x)VB;(x,1)) + 11 (x)B1(x,1) — o (x)B; (x,1), x€Q, t>0,

where 7 (x) = %;l()) Similarly, since /i (x,0) = 0, we linearize model (3.2) at the trivial
steady state 0, we have

0By (x,t)
at
VBy(x,t)-v=0, x€0, t >0,

=V . (D4(x)VBy(x,1)) +i[2(x)Bz(x, 1) —ds(x)By(x,1), x€, t>0,

where fzz(x) = %.

Denote A;; = V- (D3(x)V)—o(x) and Ay, = V- (D4(x)V) —dys(x) with Neumann boundary
condition. We define the spectral radius of the next generation operator —hlAZ’}1 as the basic
reproduction number for HI state of V. cholerae, that is,

R :=r(— A7)
=sup {1211 €0 (=R azh},
similarly, we also define the basic reproduction number for LI state of V. cholerae as follows
Rey i=r(=h2AZ")
— sup { AL A € 0(—712AZ_41)} :
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Recall that T, and T, are the solution semigroups associated with A, and A, respectively.
Assume that ¢(x) and v (x) are the initial densities of HI state of V. cholerae and LI state of
V. cholerae, respectively. [T, (t)¢](x) and [T, () ](x) represent the densities of survived HI
and LI state of V. cholerae at time t. Then the densities of newly generated HI and LI state
of V. cholerae are El (X)[T; (Hel(x) and ﬁz(x)[TZ4 (t)¥1(x), respectively. Therefore, the total
densities of next generation HI and LI state of V. cholerae during the life cycle of initial bacteria
are calculated as

/ (T (09100t =~ (OIAZ 91 (0),
0
f o () [Ty (Y1)t = —ho ()AL Y1),
0

respectively, which indicates that both —ElAZ’sl and —EzAzjl are the next generation operators.
It follows from [13, Remark 1.6] and [57, Theorem 3.2] that 1/ R, is the principal eigenvalue of
the following equation:

— V- (D3(x)V@) + o (x)g = A1 (x)g, x €Q,
Ve -v=0, x €012,

and 1/R,> is the principal eigenvalue of the following equation:

— V- (Da(X)VY) +da(0)Y = M2 ()Y, x € 2,
Vi-v=0, x €9Q.

Additionally, R, and R, have the following variational representations, respectively

hy (x)p*d
Reo=  sup Johemdx 1 (33)
peH(Q), 90 fgz D3(x)|Vo|* + o (x)p=dx

(3.4)

Jo M2 ()Y 2dx
Jo DaIVY 2 +da(x)y2dx |

R = sup
veH!(Q), y#0

By Krein-Rutman theorem, the spectral bounds of /2; + A - and hy+ A -, are the same as their
principal eigenvalues, respectively, and have the following variational representations:

Ay =— inf / D30 |Vel — 1 (x) — o (0)]¢dx b
peH(Q), [q@?dx=1

ha=— inf / D) VI — [ia(x) — (o) Ty 2dx
ver(@, foyrar=t | J
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Note that A;, (i = 3,4) are resolvent-positive with s(A;) < 0 (i =3,4). Moreover, Zl + Az,
and Ez + A, are both resolvent-positive, thus, by [44, Theorem 3.5], R.1 — 1 has the same sign
as A3 and R.» — 1 has the same sign as A4.

Following [38, Theorem 3.1], we obtain the following result.

Theorem 3.1. The trivial steady state for model (3.1) (resp. (3.2)) is globally asymptotically
stable if R,1 <1 (resp. Roy < 1) and unstable if R,1 > 1 (resp. Rer > 1).

4. Basic reproduction number for infection

It follows from Lemma [2.2] that model (2.1) admits a unique and strictly positive steady state
u*(x). Therefore, there exists a unique infection-free steady state (u*(x), 0, 0, 0) for model (1.2).
Denote

af1(u*(x), 0) df2(u*(x),0) af3(u*(x),0)

Bz (x) = Y s B (x) = 0 v Bau(x) = o

Linearizing model (1.2) at (#*(x), 0, 0, 0) yields

a
% =V - (D2(x)Vz2) + T(7) [Bey ()22~ + By ()23, —1 + By (¥)24,—1 | — d2(¥)22,

0 ~

§ =V (D3(x)Vz3) + 1 ()22 + (1 (x) — 0 (1)]z3, (4.1)
a ~

% =V - (D4(x)Vz4) + 0 (x)23 + [h2(x) — dy(x)]za4,

with Neumann boundary condition, where z; . (x,t) = z;(x,f — 1) (i =2,3,4). Let U(¢) be
the solution semigroup of model (4.1), and w (U) be the exponential growth bound of U (¢).
Define

(@) o, (x) T(r)ofry(x) T(z)ofry(x)
0

F = 0 0 ,
0 0 0
—V - (D2(xX)V) + da(x) 0 0
V= —p(x) =V - (D3(x)V) —hi(x) + 0 (x) 0
0 —o(x) —V - (D4(x)V) — ha(x) + da(x)

4.2)
By [22, Section 4] and Krein-Rutman theorem, we have the following result.

Lemmad4.1. Let F and V be given as in (4.2). The spectral bound s(e **F — V) is a continuous
and decreasing function of L. Let \* € R be the unique solution of \* = s(e ' TF — V), we get
2* = w(U). Moreover, A* is the principal eigenvalue ofe_)‘*TIF — V with positive eigenfunction
and it has the same sign as s(F — V).

Let (£o, @0, ¥0) be the positive eigenfunction with the principal eigenvalue A* of e TR — V.
We get
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A& =V - (D2(x)V&) — dr(x)& + efk*rr(f)[ﬂzz (x)&0 + B3 () @0 + Bz, (x) o],
Vo=V - (D3(x)Veo) + p(x)& + [h1(x) — o (x)]g0, 4.3)
Vo =V - (Da(x) Vo) 4 0 (x)go + [ha(x) — da(x)]ho.

Note that A3 and X4 are the principal eigenvalues of hi+ A 23 and hy+ A -4 With positive eigen-
functions @3 and 4, respectively. Thus, we have

A3 =V - (D3(x)V3) + [h1(x) — o (x)]g3,

- 4.4)
Mg =V - (Da(x)Via) + [ha(x) — da(x)]a,

with Neumann boundary condition. Multiplying the second equation of model (4.3) and the first
equation of model (4.4) by @3 and ¢y, respectively, one gets

(A" = 23) / @o(x)@3(x)dx =/M(X)SO(X)¢3(X)61X >0,
Q Q
which implies 1* > A3.

Similarly, we multiply the third equation of model (4.3) and the second equation of model
(4.4) by Y4 and g, respectively, we have

(A — 1) / o(x) Y (r)dx = / o (X)p0 (X) Y4 (¥)dx > 0,
Q Q

which indicates that 1* > A4. Note that A3 has the same sign as R,; — 1, and A4 has the same
sign as R,y — 1, thus, we get the following result.

Lemma4.2. If R, > 1 or R, > 1, then A* > 0.

Suppose that max {R,1, R.2} < 1, we define the spectral radius of FV~! as the basic repro-
duction number for model (1.2), that is,

Ro=rFV™.
Since max {R.1, Re2} < 1, the operator —V is resolvent-positive with s(—V) < 0. By [44, The-
orem 3.12], F — V is resolvent-positive because it generates a positive semigroup. Thus, by [44,

Theorem 3.5], Ry — 1 has the same sign as s(IF — V). It follows from Lemma [4.1] that s (F — V)
has the same sign as A*. We get the following result.

Lemma 4.3. If max {R.1, R.2} < 1 and Ry > 1, then A* > 0.

Next, we want to find another expression of Ry such that the direct and indirect transmission
mechanism are clearly separated in the expression.
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Lemma 4.4. Let

0 Fui Fi2
F=10 0 0
0 0 0
be a positive operator, and
V - (DyV) — By 0 0
B= Boi V- (D3V) — B 0
0 B3 V- (D4V) — B33

be a resolvent-positive operator with s(B) < 0. Then we have
r(=FB™) =r(Lys+ L),
where
Lyi=Fii[Bn—V-(D3V)] "' By[Bi1 — V- (D,V)] 7',
and
Ly = Fia[Bs — V- (D4V)] ™' Bxa[Bay — V- (D3V)] ™' Bui[Bi1 — V- (D2V)] .
Proof. Let  =F¢ and ¢ = —B~'¢. Then

o1 =[B11 — V- (D2V)]é1,
@2 =[By — V- (D3V)]¢2 — Br1¢1,
@3 =[B33 — V- (D4V)]¢3 — B32¢h2,

thus, we have
¢1=[B11— V- (D2V)] g1,
¢2=[Bxn —V-(D;V)]"! {§02 + By [Bi1 — V- (D2V)]71<P1} ,
¢3=[B33 — V- (D4sV)]"!
X {903 + B3[By — V- (D3V)] 7! [902 + B (B — V- (DZV))il(Pl]} .
Consequently,
Y1 =Fi1[Bn— V- (D3V)]"! {(pz + Bai[Bi1 — V- (D2V)]_1<P1}
+ Fi2[ B3z — V- (D4V)] ™!
X {<ﬂ3 + B3[Byn — V- (D3V)]! [<ﬂ2 + By1(B;1 — V- (D2V))_1<ﬂ1]] ,
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Y2 =0, ¥3=0,
and
¥1 Lipy + Lags + L33
—FB~!'| o | = 0 ,
@3 0
where

Ly =Fi1[Bn— V- (D3V)] "By [Biy — V- (D2V)] !

+ Fia[B33 — V- (D4V)] "' B[ By — V- (D3V)] ' Boy[Bi1 — V- (D2 V)],
Ly =F11[Bx — V- (DsV)]"' + Fi[B33 — V- (D4V)] ' Bxo[Byy — V- (D3V)] ',
Ly =Fpp[B33 — V- (D4V)]7"

By iteration, it follows that

1 @1 Lo + L'f*] Lopo + L'f*l L33
FB™)"| o2 | = 0
@3 0

Thus, we get
1L < IG=FBY™ ) < 1L ALy + L2l + L3 ) -

By Gelfand’s formula and the squeeze theorem, one gets r(—IFIB%_l) =r(L1),where Ly =Lyg;+
Lp;. O

By Lemma [4.4], we obtain
Ro=r(Aq+ Aj),
where Ay =T'(t)o B, 0[dr — V- (DQV)]_I represents the next generation operator for direct

transmission, and A; = Lyy + L is the next generation operator for indirect transmission,
where

Lyr=T(®opyolo—h —V-(D3V)]  opold— V- (D)7},
and

Ly =T op,o0lds—hy—V-(DsV)] ' ooofo —h —V-(D3V)] ' op
oldr — V- (DV)] 7.

Now, we analyze the dependence of Ry on D;. Assume that D5 is - constant and '(x, y, 1)
is a constant multiplication of delta function satisfies (I'(t) o ¢)(x) = ['(7)¢(x). It follows from
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Krein-Rutman theorem that Ry is a principal eigenvalue of A; + A; with a positive eigenfunction
¢ (x). We have
T(@)fzy(dr = D2A) '+ T(0)Bey (0 — 1 = D3A) ' pldr = D2A) '
+T(0)Bey(ds — hy — D4A) o (0 — iy — D3A) ' u(dy — DyA) ' = Rogp.
Define
»=T(@)/Ro,
§=(d2— D209,
¢ =(0 —hy — D38)™" (ub),
¥ =(ds —hy = Dy o (0 — ki — D3 &) ().

Since max {R.1, Re2} < 1, by strong maximum principle, &, ¢ and i are positive functions. We
get

ABr& + Moy + APy = (da — D2 A, (4.5)
1éE = (0 — hy — D3A)g, (4.6)
ouE = (0 —hy — D3A)(dy — ha — DAY 4.7)

Taking D» as a variable and taking the derivatives of D, on both sides of the above equations
yield

)‘/(:322%_ + :823(:0 + ﬂzﬂ”) + )‘.3225/ + )‘ﬂm §0/ + qu = (dZ - DZA)E/ - A.’;:, (48)
nE = (o —hy — D3A)g/, 4.9)
opug = (0 —hy — D3A)(dy — hy — DyA)Y'. (4.10)

Multiplying (4.5) and (4.8) by &” and &, respectively, and then integrating the difference, one gets

» / (Boyk + Pesp + Posh)Edx = A / Boy (0E' — ¢6) + Puy (WE — Y'E)dx + / VEdx.
Q Q Q

Similarly, multiplying (4.6) and (4.9) by ¢ and @, respectively, we have
/ 1E'e —£¢)dx =0.
Q

Multiplying (4.7) and (4.10) by v and 1, respectively, we get

/ ou(EY — EY')dx =O0.

Q
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If the ratios B;/u and B;, /o are both independent of x (especially, if B, B,, 1 and o are
constants), we get A’ > 0. It follows from A = F(r) / Rp that Ry is a decreasing function of D;.

Proposition 4.5. Assume that D>, B3/ and B, /o are constant functions on Qand (I'(t) o
Hx) = F(r);(x)for x € Qand & € C(Q), then Ry is a decreasing function in D».

5. Global dynamics of the cholera model in a heterogeneous case

Theorem 5.1. [f max {R.|, R.2} < 1 and Ry < 1, then the infection-free steady state (u*(x), 0, 0, 0)
for model (1.2) is globally asymptotically stable.

Proof. Recall that Rp — 1 and s(IF — V) have the same sign as A*, where A* is the principal
eigenvalue of e TF — V witha positive eigenfunction (&, ¢, ). We have
ME@) =V - (Dy(x)VEWX)) — da(X)E(x) + ¥ TT(D)[ Bz (0)E(x)
+ B ()@ (x) + B2, ()Y (X)),
W) =V (D3(0)Ve(x) + u(0)EE) + [h1(x) — o (0)]p(x),
WY () =V - (Da(0) Vi (1)) + 0 ()@ (x) + [ha(x) — dy(0)]¥ (x).

Note that if Ry < 1, then A* < 0. Given any solution z = (z1, 22, 23, 24), following [6], for ¢ > 0,
we define

I(t;2)

= max max 2, 1+0) BA.1+0) M
veQ, e[—7,01 € ITDEX) 1@, e[—r,00 X D P(x) " xe@, be[—7,00 € DY (x)

If z5 or z3 or z4 is not identically zero, it follows from the strong maximum principle that there
exists 7y > 0 such that z;(x,7) > 0 (i =2, 3,4) for t > 1y — t. Furthermore, if z;(x, ) < u*(x)
for t > —t, by (H2) and (H3), we have

%):’t) <V - (D2(x)Vza(x, 1)) — da(x)z2(x, 1)

+ () [Bey (2203, 1 = T) + By (0)23(x, 1 — ) + By (V)zalx, 1 — )],

0 ) n
B0 v (D33, 1)+ )220, + i () — o ()23, ),
9z4(x, 1) n
— 7 <V (Da@)Vaa(x, 0) +0 (0235, 1) + (2 (6) = da(0]za(x, 1),

It follows from strong maximum principle that

220, 1) <I(t1, )" E(x), z3(x, 1) <t 2)e 'p(x), za(x,t) <l(t, 2)e" Y (x),

for t > t; > t9. Thus, I(t, z) is strictly decreasing in . We claim that z; (i =2,3,4) — 0 as
t — oo. If A* < 0, the claim is clear. If A* =0, denote [ = tlim [(t, 7), the claim is true when
— 00
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1 =0. When [ > 0, there is a subsequence f, such that z(x, t + ;) — Z(x, t) when n — oo and
Zi(x,1) (i =2,3,4) is not identically zero. Furthermore, 7| (x, ) < u*(x) for t > —. Similarly,
we get that [(¢; ) is strictly decreasing for all sufficiently large . However, [(#;7) = nll)rgo I(t+
ty; ) =1, which leads to a contradiction. Thus, we have proved the claim.

Due to the limiting model when z, = z3 = z4 = 0 admits a unique globally asymptotically
stable steady state z(x, 1) = u*(x), by [43, Theorem 4.1], (u*(x), 0, 0, 0) attracts all initial con-
ditions in the positively invariant set

D:={peCl:¢1(x) <u*(0)}.

Since tlim supzi(x,t) <u*(x), any omega set of any positive orbit lies in D. By [64, Theorem
—00

1.2.1], (u™(x), 0,0, 0) is globally attractive.

Next, we prove the stability of (#*(x), 0,0, 0) when Ry < 1. By Lemma [4.1], we get w(U) <
0. Thus, there is M > 0 satisfying || U (¢)|| < M, for t > 0. Suppose z is a solution of model (1.2)
with

2(x, 1 46) € Do = {p € C g1 —u™ll + I p2ll + Id3ll + lldall < &} .

Following Theorem [2.3], there is a constant K satisfying 0 < z;(x,7) < K (i =1,2,3,4) for
x € Q,and t > —7. By (H1), we get

an(x, m)
—k:= max ———<0.
xeQ, 0<m<K om

Thus, we have

n, 2 0) = nut @)
z1(x, 1) —u*(x)

x(x, 1) =

Subtracting the equations of z; and u™ gives

0
g(m —u*) =V [Di(x)V(zi —u®)]+ x(z1 —u®) — fi(z1,22) — f2(z1, 23) — f3(21, 24).

By comparison principle, one gets z; (x, ) < u*(x) + ce * for x € Q and t > —7. By (H2), we
have

FO[fii1x. 1= 1), 22(x, 1 — 1) + fa(21(x, 1 — 1), 23(x, 1 — T))
+ fS(Zl(xJ - T), Z4(x’ r— T))]
<T(1) [Bepz2(x,t — 1) + By 23 (x, 1 — T) + By z4(x, 1 — 1) ]| + Mage™

for constant M, > 0. Therefore, we obtain
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%’;J) <V [Dy(x)Vza(x, )] — da(x)z2(x, 1)
+ (0 [Bo (223, 1 = 1) + By ()73 (6,1 = ©) + Boy (D 24(x, 1 = T)]
+ Mpee ™,
w <V [D3(0)Vz3(x, D] + px)za(x, 1) + [h1 (x) — 0 ()23 (x, 1),
w <V - [D4(x)Vza(x, )] + 0 (x)z3(x, 1) + [h2(x) — da(x)]za(x, ).

Due to |[U ()] < M, we have

t
lzaCx, O + Nlz3 e, O + llzalx, )] 5M18+/M1Mzee_”dsse(M1 + M M>/x)
0

for x € 2, t > 0. By (H2), there exists a constant M3 > 0 such that
S1(zi(x, 1), z2(x, 1) + fa(zi(x, 1), z3(x, 1)) + f3(21(x, 1), za(x, 1)) <eM3

for x € @, t > 0. Note that

d
g(u* —z2) =V [DIVW* —z)]+ xw* —z1) + fi(z1,22) + fa(z1,23) + f3(21, 24),

where x(x,t) < —« for x € , t > 0. It follows from comparison principle that u*(x) —
71(x,t) <eM3/k for x € Q, ¢t > 0. Choosing M = M| + M1 M, /k + M3/k, we have

lz1(x, 1) —u™ ()] + lz2(x, D] + z3(x, )] + |24 (x, )] < Me

for x € Q, t > —7. This indicates that the solution lies in M D, if the initial condition lies in D,.
Due to M is a constant independent of ¢, we obtain the stability of (u*(x), 0,0, 0). Hence, we
get that (#*(x), 0, 0, 0) is globally asymptotically stable if Ry < 1. The proof is complete. O

Let
Wo :={(¢1, 02,93, 04) € C : 2 #0, @3 #0and 4 # 0},
and
IWo := C\Wo {(@1, 92, 93.92) € CF -2 =0 0r o3 =0 0or 4 =0}
Let

My ={(¢1, 92,93, 92) € C; : 92 =0and g3 =0 and 4 =0}

be the largest positively invariant set in 9 Wy. By Lemma [2.2], (u*(x), 0, 0, 0) is globally attrac-
tive in M,. We introduce a generalized distance function p : C; — R as
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ple)= _min  ¢;(x,0), for o = (p1, 92, 93, 1) € C{.

xeQ, i=2,3,4

From strong maximum principle, we have p(®(r)¢) > 0 for ¢ € Wy, where & () is the solution
semiflow of model (1.2) on C;. Since p~1(0, 00) C Wy, the condition (P) in [42, Section 3] is
satisfied.

Theorem 5.2. If Case 1: R,1 > 1 or R.o > 1, or Case 2: max{R.1, Rp2} <1 and Ry > 1 is
satisfied, then there exists an ¢ > 0 such that for any ¢ € Wy and z(x,t + 0) = ®(1)p, we have
tlim infz;(x,t) > o foralli =1,2,3,4 and x € Q. Furthermore, model (1.2) admits at least
—00

one endemic steady state (z}(x), z5(x), 23 (x), 23 (x)).

Proof. If R,; > 1 or R, > 1, by Lemma [4.2], we have 1* > 0. If max {R,1, Re2} < 1 but Ry >
1, by Lemma [4.3], we still have A* > 0. Note that A* is the principal eigenvalue of ¢ =* 7F — V.
For any sufficiently small @ > 0, consider a small perturbation of FF':

(@) o (B, —w) T(T)o (B —w) T(r)o(fy —w)
Fo, = 0 0 0
0 0 0

By [22, Section 4], there exists a principal eigenvalue A% with positive eigenfunction (£, ¢w, V)
of e *»"IF — V. Thus, we have

Moo =V - (D2(x)VEy) — dr ()&
+ e R TT(O)[(B2y (X) — @) + (Boy () — ©)0 + (B2, (%) — @) o],
Moo=V (D3(X)Veu) + w(x)éy + [ () — 0 (x)1g0,

Mo =V - (Ds(0) Vo) + 0 (1)@ + [h2(x) — da(x) 10
By continuity of the operator, one gets 1* — A* > 0 as w — 0". Choose a small @ > 0 such
that A > 0. We claim that the stable manifold of (1*(x), 0, 0, 0) does not intersect p‘l(O, 00).
By way of contradiction, we assume that there is ¢ € C; with p(¢) > 0 satisfying z(x, 1) —
(u*(x),0,0,0) as t - oo, where z(x,t + 0) = ®(t)¢. Especially,

fi(z1, z2) B fo(z1,23) B, f3(z1, 24)

— B
22 23 24

as t — oo. Thus, there is 7 > 0 satisfying

f1(z1,22) > (B, —w)z2, f2(21,23) > Bz —@)z3, f3(21,24) > (B, — )24,
for t >t — . Choose ¢ > 0 such that
2, T+60) > e o, (x), 230, T+0) = e’ T, (x), 24(x,T+0) > 0Ty, (x),
for x € Q and 6 € [—1, 0]. By maximum principle, we get
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22(x,1) > g€ E,(x), z3(x,1) > g€’ 0, (x), za(x,1) > ge™o P, (x),

for x € Q and 7 > 7, which leads to a contradiction with (z2, z3, z4) — 0 as r — oo. By [42,
Theorem 3], there is ¢ > O satisfying tlim inf p(®(t)p) > o for any ¢ € C;. Thus, together
— 00

with Proposition [2.4] (by choosing ¢ < k), shows that tlim infz;(x,1) > o fori =1,2,3,4
—00

and x € Q. In view of [28, Theorem 4.7], model (1.2) has at least one endemic steady state
(7 (x), Z5(x), 25 (x), 2} (x)). The proof is complete. O

In general, it is very challenging to investigate the global stability of the infection steady
state of model (1.2) in a heterogeneous environment. In the following, we consider a simple
mathematical model in the absence of nonlocal time delay by assuming Dy = D, = D4 = 0.

21

5 =n(x,z1) — f1(z1,22) — f2(21,23) — f3(21,24), x €Q, t >0,

022

= =f1(z1,22) + f2(z1,23) + f3(21,24) —d2(X)z2, x €, 1 =0,

93 _ pAzs+h Q,1>0

5 —Dadn A 1(x,23) + ()22 —o(x)z3, x €, 1 =0, (5.1)
024

o =hy(x,z4) +0(x)z3 —da(x)z4, x €2, t >0,

Vzz-v=0, x €0, t >0,
zi(x,00>0, xe, i=1,2,3,4.

Similar to the proof of [58, Proposition 2.2], we easily obtain the following result.

Lemma 5.3. For any ¢ € X%, model (5.1) has a unique solution z(x,t,v¥) € XT ont € [0, +00).
Furthermore, 71(x,t) > 0 for (x,t) € Q x (0, 00). There is a K > 0, independent of \r, satisfying
tlim supz;(x,1) <K (i=1,2,3,4),x € Q.

—00

Define the continuous semiflow {I1;},5¢ : XT — X* of model (5.1) by [T,y (-) :=z(-, 1, %),
¢ > 0. From Lemma [5.3], we obtain that each orbit y T () = |J,~ I1; ¥ is ultimately bounded.
However, this does not indicate that the orbit y+(Q) = Uz//e_Q yT () is bounded for any
bounded set Q. Let

N P bo+ i (M+5)
A=V X" <M, Y1+ =M+ Y3 —— ——,
a 3
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where M > maxZj(x) > 0, b; (i =0, 3, 4) are constants, 7 = maxn(x,0), & =maxu(x), 6 =
xeQ xeQ xeQ

maxo (x), dy =mind>(x).

xeQ T xeQ

Lemma 5.4. For any |21 || < M, the set 2y is positively invariant for the semiflow T1;. Further-
more, for any bounded set Q € X7, the orbit y+(Q) is bounded and there exists a t > 0 such
that Tl € Ayy for t >t and ¥ € Q.

Proof. We first apply a contradiction argument to indicate that the set

Ay ={¥ = W1, 92, Y3, 90) X2y < M}

is positively invariant. Suppose that z1 (x, t) is the solution of model (5.1) with ¢ € Ql}w Ifz(x,1)
leaves Ql}w for the first time at x = xo and ¢ = g, we obtain z(xg, fp) = M and 9z (xg, tp) /0t >
0. By model (5.1), we have 0 < 9z (xo, t0) /3t < n(xg, M) < n(xp,z1(x0)) = 0, which leads to a
contradiction. Adding the first two equations of model (5.1), we can similarly prove that the set

2[121/12{WZ(W17‘#2,W3»¢4)EX+:I//IfM,wl+1/f2§M+d£2}

is positively invariant.
For any solution z(x,?) of model (5.1) with ¥ € Ay C 91/2‘,,, we obtain zj(x,t) < M,
22(x,t) <M + g’l—’z for x € Q and ¢ > 0. It follows from (H3) and comparison theorem that

B < 4 [bo—i—ﬁ (M+ E)] and z4(x.1) < - [b0+ g (bo—i—ﬂ (M+ d—z))] for x € ©
and ¢ > 0. Thus, the positive invariance of 2/ is obtained. o

Let Q be any bounded subset in X+, we can find a large M’ > |[Z1]|| such that Q C 2.
By the positive invariance of 2/, we can immediately obtain the boundedness of y*(Q). For
each ¥ € Q, there exists a / > 0 such that T,y € A for ¢t > . We next have to show that
the choice of ¢ is independent of . If M’ < M, the result is clear by choosing 7 = 0. Thus, we
only assume that M’ > M. Since ||Z1|| < M, we may choose ¢ > 0 sufficiently small such that
My =M —3e > |[z1]|, where e = (M — |[Z1])) /4.

Denote

My=M —2e+ —, M3 = —= My =
dy b3 by
Consider 38%1 =n(x, e;(x, 1)) with e; (x,0) = M'. It follows from the comparison principle that
21(x, 1) <ej(x,t) fort >0 and x € Q. Due to n(x, e;) <n(x, M) < maxn(x, My) <0 when-
xeQ

ever e; > M/, we choose

In(M /M’y In[(M —3¢)/M'] 0

= = >
maxn(x, M) maxn(x, My)
xeR xeR
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such that e (x, 1) < M, for t > {;. Consider €}(1) =1 +dy M| — dpe(t) for t > iy with e(f1) =

M+ d% By the comparison principle, z1 (x, t) +z2(x, ) < ex(t) fort > ) and x € Q. Whenever
ex(t) £M2, we obtain e/z(t) < —&d,. By choosing

i llM/M/+ﬁ 11 M2+ﬁ/M/+ﬁ 0
=——1In —||=——In -2+ — — >
e | d edy d )| "

it follows that z1 (x, 1) +2z2(x, 1) < ex(t) < M5 fort > f; +1» and x € Q. Consider ey(t) = iMr+
bo—bses(t) for t > i+ with e3(F| +12) = % (bo + i (M’ + ;—2>> Therefore, z3(x, 1) < e3(t)

for r > f; + f, and x € Q. Furthermore, since eg (t) < —f1e whenever e3(t) > M3, we choose

3 = —_Lln |:M3b3/ (b()-i-,ll (M/-i- i))]
fre o)
=——1In||bop+pa[M—-c+—))/bo+p[M +— >0,
e da da

to get z3(x, 1) < e3(t) < M3 for t > f; +i> +f3 and x € Q. Finally, consider ¢} (t) = 5 M3 + by —
baes(t) fort = iy + iy + i3 with eq(iy + 2 +13) = /- [bo +ok (bo i (M’ n d%))] Using the

comparison principle yields z4(x, t) < e4(t) for t > f; + i + i3 and x € Q. Due to ¢/(¢) < —5€
whenever e4(t) > M4, we choose \

b0+;l(M/+%>
In | Mabs/ | bo+ & ——5—=
Z:4= — —
[ b0+ﬁ<M+%) ho+ﬁ<M’+%>
In| {bo+6——5—=|/|bo+6——5—=
= — = >0

to get z4(x, 1) < e4(t) < My fort > iy +ir+i3+is and x € Q. Let t = £ +f» + 3 + f4. Therefore,
wegetII,Q e Ay fort >1. O

Apparently, model (5.1) always admits a unique infection-free steady state (Z1(x), 0,0, 0).
The linear operator for the linearized system of model (5.1) is decomposed as A =F — V, where
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,Bzz (x) /313 (x) ,3z4 (x)

F= 0 0 0 )
0 0 0
da (x) 0 0
V=|—u@) —DA-Ti@+o® 0 ,
0 ~o(x) T (x) + da(x)

for V to be well-defined, we impose the following assumption:
(H4) du(x) > ha(x).

Suppose that R,; < 1 and (H4) holds, since —V is resolvent-positive with s(—V) <0, [ is
positive and A is also resolvent-positive, by [44, Theorem 3.5], we obtain that Ryp — 1 has the
same sign as s(A), where Ry is defined as the spectral radius of FV~L thatis, Ry =r(FV1).

By Lemma [5.3] amd Lemma [5.4] that the semiflow IT; of model (5.1) is point dissipative
and the orbit of any bounded set is also bounded. In order to use [17, Theorem 2.1], we need
to show that I1; is asymptotically smooth. Due to the equations of z1, z2 and z4 in model (5.1)
have no diffusion terms, the solution semiflow IT; loses its compactness. Thus, we introduce the
Kuratowski measure R, for any bounded set Q, denoted by

R =inf{R : Q has a finite cover of diameter < R}.

Let

n(x,z1) — fi(z1,z2) — f2(z1, 23) — f3(z1, 24)
G(z1,22,23,24) = | f1(z21,22) + f2(21,23) + f3(21,24) — d2(x)22
ho(x,z4) +0(x)z3 — da(x)z4

be the vector field corresponding to the equations of z1, zo and z4 in model (5.1). The Jacobian
of G with (z1, 22, z4) is

a(n_fl_fZ_f3) _AfL s
9z 922 0Z4
Grp = 262252 | s+ h+ ) o o
e T S _ g, s
9(z1, 22, 24) 921 322 324
0 0 o _ g
0z4 4

Following [58, Lemma 4.3], we have the following result.

Lemma 5.5. I1; is asymptotically smooth and R-contracting if there is a r > 0 satisfying
TGz <—rzl'z 5.2)

forzeRz,x eQandzteM.

Remark 5.6. A sufficient condition for (5.2) is
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(H5) gg a(flgflﬁf}); 3(f1+3§12+f3) +1 3f3 <dy; da; 2];3 ahz < d4 for z € Apy.

Let P, : E — E be the solution semiflow of the linearized system of model (5.1), where
E := C(€,R?) is a functional space for the linearized system of model (5.1), we have
Py = (z2(, t,¥), z23(C, t, V), z4(-, t,¢)) for t > 0 and € E. Apparently, P; is a positive Cp-
semigroup on E and its infinitesimal generator A = — V is closed and resolvent positive. Note
that by (HS5), we have d4(x) > hy(x), which means that (HS) contains (H4).

Lemma 5.7. If R,1 < 1 < Ry and (HS5) holds, then s(A) is the principal eigenvalue of the eigen-
value problem

By ()W 4 By ()W3 + By (X)Wa — da(X) Y2 = A2, x € 2,
D3AY3 + u(x)¥n + [1(x) —o ()] ¥3 =3, x € Q,

o (V3 + [h2(x) — da(x)] s = Aa, x € Q,
Vzz-v=0, x € 9%,

(5.3)

and there is a strongly positive eigenfunction associated with s(A).

Proof. It follows from Ry > 1 that s(A) > 0. Define £(¢) and A (r) on E as
E([)l// = (e_(dZ(')_ﬁzz ('))IWZ’ 0’ e—(d4(~)—52(.))1 1,04) )

and N ()¢ =

t

/e_(d2(')_ﬂzz(‘))(t—s) [/313(.)&(., $,9) + By (D24 s, w)] ds,z3(, t, ),
0
t

/e—(d4(<)—h2(<))(t—S)o(,)Z3(,’ 5. 0)ds

0

for ¢ = (Y2, Y3, ¥4) € E. Denote a := min {mip {dg(x) — Bz (x)} , min {d4(x) — Eg(x)} }, it
xeQ xeQ
follows from (HS) that @ > 0. Then, the operator £(¢) can be estimated as

1@ = sup OV pmar o WV ar

vey Nl vey V]

Let TZ3 (1) = P32+ =00 pe the compact and strongly positive Co semigroup generated by
D3A + ﬁl (-) — o (+) subject to Neumann boundary condition. Then Tzs (t) is compact for ¢ > 0,
this together with the boundness of P; indicates that N (¢) is compact for ¢ > 0. Suppose that O
is a bounded set in [E. Since N'(¢) Q is precompact, we obtain R(N () Q) = 0 for ¢ > 0, Thus we
have R(P; Q) < R(L() Q) + RN @) Q) < |IL®)IR(Q) < e~ “R(Q) for t > 0. Furthermore,
we get pe(P) <e 9 < 1 <@ = p(P,) for t > 0, where p,(P;) and p(P;) are the essential
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spectral radius and spectral radius of P, respectively. P; is a strongly positive and bounded
operator on [E. By the generalized Krein-Rutman theorem [33], we get that s(A) is the principal
eigenvalue of model (5.3) with a strictly positive eigenfunction. O

Theorem 5.8.If R.,;1 < 1 < Ry and (HS) hold, then model (5.1) is uniformly persistent in
X*, that is, there is ¢ > 0 such that for any ¥ € X* with ; #0, i =2,3,4, we have
tlim infz;(x,t,¥) > ¢, i =1,2,3,4, uniformly for x € Q. Furthermore, model (5.1) has at
—00

least one infection steady state (z](x), z5(x), 23 (x), 23 (x)).

Proof. Let

Wo = {¥ € Xt :9() #0,¥3(-) #0and Y4 () 0},
AWy =XT \ Wp = {Iﬂ eXT:yn()=0or y¥3(-) =0 or Ya(-) EO} .

We shall prove that for ¢ € Wy, one has z; (x,7,¥) >0, i =2,3,4, for x € Q and t > 0. By
model (5.1), one gets

d
§ > D3Azz +hi(x,23) —0(x)z3, x €2, t >0,

similar to [19, Lemma 2.1] and [51, Proposition 3.1], by strong maximum principle [37, Theo-
rem 4] and the Hopf boundary theorem [37, Theorem 3], z3(x, ¢, ¥) > 0 for r > 0 and x € Q.
Suppose that there exist #; > 0 and x; € Q such that 74(x1, t1, ¥) = 0. It follows from the fourth
equation of model (5.1) that 0 = 2411 — & (x)z3(xy, 71), thus, z3(x1, 1) = 0, which leads to
a contradiction. Therefore, we have z4(x,#,%) > 0 fort > 0 and x € Q. We next assume that
there exist 1, > 0 and x; €  such that z» (x2, 2, ¥) = 0. By the second equation of model (5.1),

one get

_ 0z2(x2, 12)
ot

0 = f2(z1(x2, 12), 23(x2, 12)) + f3(z1(x2, 12), 24(x2, 12)),

therefore, z3(xp, ) = z4(x2, ) = 0, which also leads to a contradiction. Thus, we obtain
z2(x,t,¢¥) >0forx € Q and ¢ > 0. That is, [T, Wy € W, for ¢ > 0.

Let My := {y € dWy : I,y CO0Wp, t >0}, w(¥) be the omega limit set of the orbit
YT () = {I,y:1>0}.

Claim 1: w(¢) = {(z1(x),0,0,0)} for ¢ € My. When ¢ € My, we know I1,¢ € My fort > 0.
Therefore, z2(x,t,9) =0 or z3(x,f,¢) =0 or z4(x,t,¢) =0. If z4(x,t,9) =0, t > 0, by the
fourth equation of model (5.1), one gets z3(x,t,¢) =0, t > 0. Then by the third equation of
model (5.1), one gets za(x, t,9) =0, t > 0, thus, we obtain tl_1)rgo z1(x,t, 9) =7Z1(x) uniformly

for x € Qand ¢ > 0. If z4(x, 1, @) % 0 for some 75 > 0, we have z4(x, f, ¢) > 0 for ¢ > 7y. Thus,
one gets z2(x,1,9) =0 or z3(x,t,9) =0, t > 7. For the case z3(x,t, ) =0, t > 7, one gets
z2(x,t,9)=0and z4(x,t, @), t > 7o, which leads to a contradiction. For the case z3 (x,t,9)#0
for some 7; > 0, we have z3(x,t,¢) > 0 for ¢ > 7. Thus, one gets z2(z,,¢) =0, t > 1], by
the second equation of model (5.1), this leads to a contradiction. Therefore, we obtain w(¢) =
{(Z1(x),0,0,0)} for ¢ € Mj.
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Claim 2: (71 (x), 0, 0, 0) is a uniformly weak repeller for Wy in the sense that

lim sup || TT,¢ — (Z1(x),0,0,0)|| > 8, ¥ € W,.
—>00

If not, there exists a {5 € Wy such that tlim sup ||1'I,1Z —(Z1(x),0,0,0)| <$.
—00

Hence, there is a 7 > 0 such that z; (x, f, J) >7Z1(x) — 8 and z; (x, t, J) <6 (i=2,3,4) for
t >7 and x € Q. It follows from [44, Theorem 3.5] that Ry > 1 and s(A) > 0. From Lemma
[5.7], s(A) is the principal eigenvalue of the eigenvalue problem (5.3). Then there exists a small
8§ > 0 such that s(AZ™=%) s the principal eigenvalue of the eigenvalue problem (5.3) with
s(ATI™=8) 5 0, where A7)~ ig a closed and resolvent positive operator that depends on
Z1(x) — 6.

Denote ¢ = (¢2, @3, ¢4) as the strongly positive eigenfunction associated with S(A?1 )=y,
Then z(x, t, {/7) satisfies

0z
a—f > &, ()70 + £ (023 + £, ()24 — da(X)z2, X EQ, £ >

0z
8—: > D3Az3 4 ju(X)22 + Ly ()23 — 0 (x)23, X €Q, 1 =7,

0z ~
a—; >0(x)z3 + &7 (X)24 —da(X)z4, x €2, 1 > 1,

Vzz-v=0, x €9, t > 71,

where

dfi—1@1(x) =8, 3)’ £, () = 3hj—2(X,5)7
0z 0z;

Em(x)z

fori =2,3,4 and j =3,4. By z;(x,1, 1/~/) >0(G{=23,4) for x € Q and ¢ > 0, there exists
a ¢ > 0 such that (za(x, 7, %), z3(x, 1, ), z4(x, 1, %)) > 1p. Furthermore, Le‘*(Azl(x)fa)(’_’)gb isa
solution of the following system

022 ~
o §, ()72 + 623 (x)z23 + 67, (X)74 —d2(X)22, X €Q, 1 =1
073 -
rri D3Az3 + u(x)z2 + &5 (x)z3 —0(x)z3, X €Q, 1 > 1,
024 ~

o 0(x)z3 + &7y (X)z4 —da(x)z4, x €Q, t =11,
Vz3-v=0, x €9, t >T,

by the companson principle, one gets (z2(x, 1, D), 23, 1,0, za(x, 1, 9)) > 18 A O (- t)(/_),
x €Q,t>1,since s(A? 21— %) >0, z(x, t, ¥) is unbounded, which leads to a contradiction.
Define a continuous function p : X* — [0, +00) by

p(¥) =min {mi{l ¥2(x), min 3 (x), min Iﬂ4()€)} , pext
xe xeQ xeQ
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Note that p(IT;v) > 0 for ¥ € p_l (0, c0) U(WyN p_l (0)). Thus, p(x) is a generalized distance
function for the semiflow I1; [42]. Note that by Claim 1 and Claim 2, any forward orbit of I1; in
M} converges to (Z1(x), 0, 0, 0) which is isolated in X and W*(Z1(x), 0, 0, 0) N Wy = @, where
W*(Z1(x), 0,0, 0) denotes the stable set of (Z1(x), 0,0, 0) [42]. Clearly, there is no cycle in My
from {(Z1(x), 0,0, 0)} to {(Z1(x), 0,0, 0)}. From [42, Theorem 3] and [17, Theorem 2.1], there is
a¢ > 0suchthat min p(y) > ¢, ¢ € Wy. Thus, lim infz;(x,7,¥)>¢, i =2,3,4, y € Wy.
Vew(p) 1—>00
Next, we will prove tl_l)l’Iolo infzy(x, t,¥) > 0 by contradiction. Ile—i>nolo infzy(x,t,¥) =0, there

exists a sequence t, — +oo such that zi(x, t,,¥) — 0 and 9z1(x, t,, )/t = 0, which con-

tradicts to the first equation of model (5.1). Theref_ore, by choosing ¢ > 0 sufficiently small,

we have tlim infzy(x,t,¥) > ¢ uniformly for x € Q. By [28, Theorem 3.7 and Remark 3.10],
—00

IT; : Wy — W) has a global attractor Ag. Hence, it follows from [28, Theorem 4.7] that I1; has
a positive steady state 7(-) € Wy. O

To prove the global attractivity of infection steady state (z7(x), z5(x), z3(x), zj (x)) of model
(5.1), we make the following assumption.

(H6) f1(z1,22)/f2(z1,23) and fi(z1, Zz)/f3(Z1 z4) is independent on z 1, that is, there is a func-
tion g(z1) satisfying fi(z1,22) = gD f1(z2), fo(z1,23) = g(z1) f2(z3) and f3(z1. 24) =
g(z1) f3(za).

Theorem 5.9. Assume that (H5) and (H6) hold. If R.1 < 1 < Ry, then the infection steady state
(27 (%), 25 (x), 25 (x), 2j (x)) of model (5.1) is globally attractive.

Proof. Set J(s)=s —1—1Ins > J(1) =0, for any s > 0. Let
V()= /k(X)(Yl (x, 1)+ Ya(x, 1) + Y3(x, 1) + Ya(x, 1) + Y5(x, 1))dx,
Q

where

p(x)z3 (x)25 (x)

k(x)=
f2(Z7 (%), 253(x0) + f3(z] (%), 25 (X))

is strictly positive in €2, and

Yi(x,t) =z1(x, 1),

Va(x, 1) =23 () (zz(x,t)> ’

z3(x)
Ys(e.t) = [f2(z] (%), 253(x)) + fsfz’f(X), 73 ())]z5(x) ¥ <Z3ix, t)>
w(x)z5(x) z3(x)
Yi(e.1) = A& ), z4(X))z4(X)J<Z4ix,t)>’
o (x)z5(x) 73 (x)
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z1(x,

fl(Zl(x) ZQ(X)) 40

seen=- )

Z7 (x)
We calculate the time derivative of )(¢) along the solution of model (5.1):

aY) (x,
k(X)% =k(x)[n(z1) —n@}) + A1z}, 23) + (2. 2) + f3(F. 25

= f1z1,22) — f2(z1,23) — f3(21, 24) ],

" )8Y2(x )

=k()[ f1(z1,22) — i—ifl(ZuZz) - i—ifl(ZT,Zﬁ) + fi(z}. 23)]

2

+k(x) [fz(zu 23) — i—ifz(m, 73) — i—ifz(z’f, z3) + fa (2], zﬁ)}

2

+k(x) [fa(m Lz4) — i—ifg(zl 20) = ZHGELD + HE zb} ,

)
8Y3(x t)

k(x) —k(x) [Z—ifz(ZT,ﬁ)—z—ifz(zl ) - 258 f( 3+ AGEL za]
25 23 75

2%
Z Z ZZZ
+k(x) [—iﬁ(z? 73) — —if3(zT, 73) — Z*—3f3(z’{, z3) + f3(z7, ZI)]

2%
[fz(Zl(x) Zg(x))+f3(21(x) z3(0)] ) |:h1(23) hl(Zéﬂ)}
3 - *
23 23

HZQ

Z*
+ D3 [Z§ (1 - Z—3> Azz + (25 — Zs)AZE‘} ,
3

3Y4(X )

(z3 —

k(x)

—k(x) [Z—iﬁ(z’f,zi)— 2 pEh - f3< 2D+ AE w}
23 )

£ 28) N [hz(Z4) hz(q)}
Z* 23) - ’

+ k(x) » =
4

(z4 —

3Y5(x 1) fi(z},23)

k =k(x
(x) ()f( =

[n(z1) — fi(z1,22) — f2(21,23) — f3(21, 24)].

Thus, one gets

% Z/k(x)[n(m) —n(zH] [1 A (Zl,z2)i| "
Q

fi(z1,23)

m (z3 —

nZy

+fk(x)[f2(z’;‘,z3‘)+fg(zT,zz)l z;‘)[’“(“) hl(z3)} )

23 Z3

73 24 7y

*’ * h *
+/k(x)f3(§1 D (04— ) [hz(“) - 2(f4)]dx
Q
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Z*
+ D3/ [z§ <1 — Z—3> Azz + (25 — 13)Az§} dx
3
Q

+ / k) 1], 2) Vi + fa(z],23) Vo + f3(z], 23) V3ldx
Q

. fl(ZT»Z§)> <Z§f1(z1,z2)> <z2f1(11,z§))}
—k , J J| ——- J|———= ) |d
(/1@ Zz)[ <f1(zl,z§) + 22 f1(z],25) * 75 f1(z1,22) *
- fl(ZTvZ§)> <Z§f2(z1,z3)> <zzz’3">
—k , J J| ——- J
(012 Z3)[ <f1(Z1,z§) * 2. f2(z7, 23) * 7523
J <Z3f1(z1,z§‘)fz(z’f,zf{))]dx

23 /121, 23) f2(21, 23)

v % fl(z’f,z’z‘)) <z’2‘f3(z1,Z4)> (ZzZE‘) <Z3ZZ>
—k , J J =) +J J
() f3 Z4)[ <f1 (z1,23) * 2 f3(25, 2}) " 25723 i 2324
Ly <Z4f1(21,z§)f3(ZT,ZZ))]dx

2 [1(25,25) f3(21, 24)

where

_2 [fl(m,zz) a 1} [ﬁ 3 f1(Z1,z§)]

LA 2 fiz,22)
vy — [fl(m,zﬁ)fz(z’f,z;) B 1} |:Z_3 3 fl(z]“,zﬁ)fz(m,zs)}
f1(@}, 25) f2(z1, 23) % fiz, ) 225, 23)
Vs — [fl(m,z;)fs(zi‘,zﬁ) 3 1} [1_4 3 fl(zT,zﬁ)f3(Z1,Z4)]
f1(z7, 25) f3(z21, z4) zy f1(z1,23) f3(27, 2

By (H6), one gets

Vo — [fz(zﬁ) 1} [13 fz(z3):|

2 - v - _* - v 9
f2(z3) 3 fa(z3)

y _[ﬁ(z::) 1} [u ;%(u)}

3= % - - == .
f3(z4) g f3(z})

By (H2), f/ > 0and f/ <0 (i =2,3). We have V; <0 (i = 1,2,3). By (H1) and (H2), we
obtain

<

[n(z1) — n(z))] [1 _ fl(zl’zz)j|

fi(z1,23)
by (H3), we obtain

Y LT )

23 73
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<0.

h ho (X
(14_12)[ 2(24) 2(24)}

24 7

By Green’s identity and Neumann boundary condition, we have

ey 222
/ |:Z§ (1 B z_3> Az3+ (35— Z3)AZ§} dx = _/ [V <Z>3k - Zi) Vz3 + V(z5 — Z3)Vz§:| dx

3 3

@ Q
n * %\ 2
z3 0 0z
:_/Z<_3£__3> dx
o jZ] 23 ax] axj
<0.

These together with the nonnegativity of J indicate that % < 0. The largest invariant set of

% = 0 is the signleton (2}, 23, 23, z;). By LaSalle invariance principle, the infection steady
state (z], 23, 23, 23) of model (5.1) is globally attractive. O

6. Global stability of the cholera model in a homogeneous case

We assume that f;(m,n) = mfi(n) (i =1,2,3) and consider the following homogeneous
model

% =Di1Az1 +n(z1) — 21 f1(z2) — 21 f2(23) — 21 f3(z4),

% =DyAZ + () [21, 1 fi(22,m0) + 21— f2(23,—0) + 211 324, —0)] — doza, o
% =D3Az3 +hi(23) + 22 — 023, '
% =D4Az4 + h2(z4) + 023 — dyz4,

where [I'(7)1](x) = F(r) for x € Q. Note that both heat kernel and delta kernel satisfy model
(6.1). Thus, we get u*(x) =71, where 7] is the unique positive solution of n(z;) = 0. The for-
mulas (3.3) and (3.4) can be simplified as

2

Rei = ,
el da

hy
K] RL’2:
o

where /1] = ' (0), hy = 15(0). If max {R,1, Re2} < 1, by Krein-Rutman theorem, Ay + A; is a
compact and positive operator with a positive eigenfunction 1 corresponding to a positive princi-
pal eigenvalue

_Twp, w08, pol(0)psy
d> dr(c —hy)  da(o —h1)(ds—h)’

where :322 :/Z\l fl/ (O)’ /323 :’Z\l fz/(o) and ﬁZ4 Z,Z\l f3/ 0).

Ro
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Lemma 6.1. If Case 1: R,; > 1 and Re» > 1, or Case 2: max{R.(, Re2} <1 and Ry > 1 is
satisfied, then model (6.1) admits a unique positive homogeneous steady state (z}, 25, 23, 2}3)-

Proof. Obviously, z = (z1, 22, 23, z4) satisfies

d d
n(z1) =21 1fi1(z2) + f(z3) + f3(za)] = Ti)zz = ﬁ [o23 — h1(23)]
D diza — h1(23) — ha(za)].

" Tou

Let z; € (0,Z1) be an independent variable, and regard z; (i = 2, 3, 4) as functions of z| defined
as follows

e T()n(z))
d
T(t)u
dy

n(z1) =023 — h1(z3) = daza — h1(23) — h2(z4),

by (H1) and (H3), the second equation admits a unique solution for z; > z; (i = 3,4), where z; =

0if R,y <1l and R,y <1, and z; > 0 (i =3,4) is the unique positive solution of 073 = thz3)

and h1(z3) = daza — ha(z4), respectively, if R, > 1 and Rep > 1. o o
Consider

V(z1) =n(z1) — 21 [fi(z2) + f2(z3) + f3(z4)], 21 €[0,Z1].
A homogeneous positive steady state exists if and only if V has a root in (0,Z1). Obviously,

V(0)=n(0) >0.If Rey > 1 and Rep > 1, then 20 =0, z; =z; > 0 (i =3,4) when z) =7.
Thus,

V@) =-21[/f2(z3) + f3(z4)] <0,

which implies that V (z) has at least one root z} € (0,71). If max {R.1, Re2} < 1 and Rg > 1, then
70 = z3 = z4 = 0 when z; =7Z. Furthermore,

F /
z/z(?l)=—(r)dnz@),
e Gl (r)
z3(?1)—7d2((7 e
4G = n'(@)uol (1)

dy(o — ) (ds — )’
therefore, V (z1) =0 and
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_ T, _ w8, poT(0)fz }
da da(o —h1)  dy(o —h1)(ds — h2)

V@) =n'1) [1
=n"(Z1))(1 — Ro)

> 0.

This implies that V(z) admits at least one root in z} € (0,Z7). For the critical condition R.; =
Reo =1, we still get zp = z3 = z4 =0, when z; =7Z;. Consequently, V (z1) = 0 and

V'(z1) =n'(z1) — [[1(z2) + f2(z3) + f3(z4)]

[ A@Tore) | AT - feT@n @)k
: d b0 —h(@3) | dalo —hi(z3))(da—h(z)) |

As z1 approaches 71 from the left, z3 and z4 approach to O from the right, and o — h’l(z3) and
dy — h,(z4) approach zero from the right, thus, V'(z1) — oo. Especially, V(z1) <0 for z; close
to z1. It follows that V (z) has at least one root z} € (0,71). Let 25 = ['(1)n(z})/d2, z5 and z} be
the unique positive solutions of

n(z¥) ~
M1“(1) =o02z; —h1(23).
da

pn(zy)
2

T(t) = dyz} — h1(z3) — ha(z)),

respectively. Hence, the existence of positive homogeneous steady state is proved.
In order to prove the uniqueness, we consider the following model

dz
d—: =n(z1) — 21 f1(22) — 21 f2(23) — 21 f3(24),
dza  ~
v =I'(7) [z1 f1(z2) + 21 f2(23) + 21 f3(z4)] — d222,
6.2
@—h(z)—i- 2 —02Z °
7, —M@)+uz 3,
dza
— =h —daz4.
o 2(z4) + 023 —daza

The set of positive homogeneous steady states of model (6.1) is the same as the set of positive
equilibria of model (6.2). Set J(s) =s — 1 —Ins > J(1) =0, for any s > 0. Let

W(g) = Wi(¢) + W2(¢) + W3(¢) + Wa(9),

where
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W) =217 (fl),
1

b2
Wa(¢) = F(‘L’) <Z§> ,

Wa() = (D) +*f3(ZZ)) (¢3)’

Hz5 73

Wap) = LD (B,

73 7

for ¢ = (¢1, P2, P3,Pa) € R*. We calculate the time derivative of W(z) along the solution of
model (6.2):

aw Z] .
d—tl = <1 - i) [n(zl) — n(zl)]

+ |:_Zlf1 (z2) + 2] [1(z3) + 2] fi(z2) —

* %

Zlfl AGD = 215G3) + 25 @) + 2 fe3)

zlzl ZZ)]v
aw: x
d—f =21 fi(z2) — (@) + 2113 + 21 2z
Z2Z1
5
f3(Z4) +Zlf3(Z4)
dW3 Zl(f2(2§) + f3(Z4)) o [M1(z3)  hi(z3)
d = * (z3 —23) - *
t H«Z2 23 Z3
[ml ) - ml R - 3 2*1 HE) + 2D
232y
12 1 23222
4)— f( 4)— Z3 f3(Z4)+11f3(Z4)i|

dWs _zlfa(z4)

- *
dt 0273

[ 32}

aw 4 B Z(HE) + f2D)
P —<1 . )[n@) nzH]+ =

h h
(za—120) [ 2(z4) 2(24)]

2

2 311

4) - f (z 4) f3( 4)+21f3(24):|

Therefore,

h hi(z%
(23 3)[ 1z3) 1(13)}

)
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_’_Zsz»(ZZ)( )[hz(m) hz(ZZ)]
g % )
It o[ fi2)  fi@D)]
f1( [fl(Zz) fl(Zz)]_ > =
123 | @) @)
e )[f2(13) £@3)] T |
124 [ f3(z4)  f3=D)]
+f3( [f3(z4) — 3] T =
. b4 2221f1(Z2)> <sz1(Z2)>:|
- )4y
A (11) * (ZZZlfl(Zz) 75 f1(z2)
s (E) e () ()
1255 222} f2(23) 2325
. zzz1f3(Z4)> ( ) <
21 f3(23) ( ) +J (zzzlf3(z4) +J

Note that n is decreasing, we get

*

b4
1= 2L
21

(

By (H3), we have

> [n(z1) —n@zD)] <0.

h *
(&5 —28) [h](z3) 1(53)} <0,
23
S
24 2y
Moreover, since f/ >0 and f” <0 (i = 1,2, 3), we have
(/1) — i3] fiz2) S (52 <o,
) Zz i
[fZ(Z3) o fZ(Z?;()] f2(z3) N f2(§3) 50,
L Z3 Z3 ;.
[/Ga) — D] f3(za) f3(§4) 0.
L ‘Z4 Z4 ;.

These together with the nonnegativity of J, we obtain 4V

dt (Z)

73.2(23)
73 f2(23)

oo

7423

Z4Z3

)

24 f3(2})

24 f3(z4)

)]

< 0, and the largest invariant set of

=0 is a singleton {z*}. It follows from LaSalle invariance principle that z* is globally

attractive, which indicates that it is the unique positive homogeneous steady state of model (6.1).

The proof is complete. O
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Theorem 6.2. If Case 1: R,1 > 1 and R,y > 1, or Case 2: max{R., Re2} <1 and Ry > 1 is
satisfied, then the positive homogeneous steady state of model (6.1) is globally asymptotically
stable.

Proof. We divide the proof into two claims.

Claim 1: The positive homogeneous steady state 7* is globally attractive.

Assuming that [['(t) o ¢] (x) = F(t)g“(x) for ¢ € C(), this requires the kernel to be local,
thus the heat kernel can not be satisfied. Note that J(s) =s — 1 —Ins. For ¢ = (¢1, 2, 3, Pa) €
Ct, let

V(g) = / Vi(p)dx,

Q
where
V(@) =2t <Z1)+ ~z§ J(z_i> +Zl(fz(z§)+f3(z4))z3J<Z3) +z’ff3(z§)zjj<z_i)
4 'ty \z nzs 73 023 2y
0
.o % 2100, x) fi (22(9,)6))>
J do
+z1f1(zZ)_[ ( S hE)
do

0
. % 21(0, x) f2(z3(0, x))
J
+Z]f2(23)_[ ( Zsz(Z;)

0
(200,334 6. 1)
+EAED _f J( S )de,

We calculate the time derivative of V(¢) along the solution of model (6.1):

av _ <1_i>A 1+~ < _§> AZ2+Dazl(f2(z3)+f3(z4))< zg)%
dl 21 22

I'(7) Kz5 23
I D411f3(z4) ( Z_4> Az
073 24 4
* h *
N (1 B z_) [n(z1) = n(H] + 27 (f2(23) +fz(z4))( 2 [hl(ZS) 1(53)}
z nz 23 z
4 ZTf3(Z4)( )[h2(14) hz(&;)}
azg‘ %4 )
“l [f1 @)~ fiz))] [f @) @]
f 2
7}z 3 f2(z3) fz(%‘)]
G [fz(Z3) f@)] [ =
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2124 f3(z4) f3(zj)]
+ e [f3<z4> f(z 4>][ z

N 2521,—¢ f1(22, r)) <z2f1(z’2‘)>]
- J g2
ANE) < ) * < 2221 f1(z3) * 25 f1(22)
X 7521,—7 f2(z23, —r)) <z§‘zz> <z3f2(z§)>:|
— J J J| —
GLE) ( ) ( 222] f2(23) * 7325 - 73 f2(23)
— 1 (@) ( )+J<Z2Zl‘ff3(Z4 ")>+J<¥>+J<Z4Zi>
2227 f3(z3) 2325 7473
; (z4f3(z4))}
23z /)]
A simple computation yields

b4 zr ’ .
1— 2 ) Azidx =— —2|Vz,-| dx <0, i=1,2,3,4.
Zi Z;
Q Q

1

+

Through a similar discussion in the proof of Lemma [6.1], we get f o v i dx < 0. The largest

invariant set of ”Q; = 0 is the singleton z* = (z7, 23, z3, z;). By LaSalle 1nvar1ant principle, the
positive homogeneous steady state z* is globally attractive.

Claim 2: The positive homogeneous steady state z* is locally asymptotically stable.

Note that all eigenvalues of model (6.1) linearized about z* have negative real parts. By way
of contradiction, we assume that the linearized model has an eigenvalue A € C such that ReA > 0.
It follows that there is an eigenvalue ¢ > 0 of —A such that

N Aq _ZTf{(Z;) N f2(13) f3(24)
T(D)e ™ [f1(z3) + f2@3) + f3(2))] Axn F(r)e*“ 1)) F(r)e*“ 1HED
0 % A3z 0
0 0 o Agq
=0,
where

A =n'(z}) — f1(z5) — f2(z3) — f3(z}) — + — D1,
An=T()e 2} f{(z5) —dr — L — Dag,

A3 =h\(z3) —o — 1 — Dsg,

Ausg = h5(z)) —ds — L — Dat.

A simple computation yields

[A+ D3¢ +0 — h| (@3] [A+ Dag +ds — 15 (2})]
x [A+ D¢ —n'@) + fi(@3) + f2(25) + @D ] A+ Dt + da)
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=T(@e ™ [A+ D1t —n' @] {[* + Dag +ds — hy@] [* + D3¢ + 0 — h(23)]
+[A+ Dag +dy — hy(2) |z} f5@5) + nozi f3D}

which is rewritten as

[A+ D3¢ +0 — hi @] [A+ Dat +da — hS(2))]
JT.'
L Dt —n'(Z)) + f1(@3) + f2(23) + f3(25) ()»+sz N 1)

A+ Dic — 'z a (63)
T(r) _ uzy f5(z3) o7125 f5(2})
L0 [+ LILE) BRG],
2 g — hl (Zg) 2y (ds — h2(14))
where
Fi
F=—
Fa
with

Fir={[*+ Dat +ds — hy@D] [ + D3¢ + 0 — By (2D)] 25 f1(25)

+ [2+ Dag +da — Wy () | 12} f5(@5) + ozl f3@D} 25 [0 — Ry (@5)] [da — Wy (D)),
Fo=2125 f1(25) [0 — By (23] [da — Ry ()] + 12125 f5(23) [da — h5(2}) ]

+o2i23 f3) [0 — @)

Note that z* = (z], 23, 23, 7j) satisfies

023 =pzs +hi(z3),

dazy =075 + ha(2}).
Especially, due to 2] < 0 and ) < 0, we have

hi(z3) 33

o—h\(Z3) >0 - — = >0,
23 23
ha(z}) o0z
ds —By(Z5) > dys — —2 =3 > 0.
k4 z;

Additionally, it follows fromn’ <0, ReA >0and ¢ >0 tﬁat the modulus of the left-hand side of
equality (6.3) is larger than 1, by f/ <0 (i =1,2,3) and I'(7) [z’]“fl (z3) + 21 f2(z3) + zfﬁ(zj)]
= d»z5, we obtain that the modulus of the right-hand side of equality (6.3) is less than

NG [ @) pERE/E GZTZ§f3(ZI)/ZI} 1

4
2
d. s nz3/zs 02573/
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which leads to a contradiction. Thus, z* is locally asymptotically stable if Case 1: R,; > 1 and
R.» > 1, or Case 2: max {R.1, Rep} < 1 and Ry > 1 is satisfied. Combined with Claims 1 and 2,
the proof is complete. O

7. Concluding remarks

In this paper, we proposed a generalized cholera model with nonlocal time delay to study
the impact of bacterial hyperinfectivity on cholera epidemics in a spatially heterogeneous envi-
ronment. Main features of our model system are summarized as follows: (i) we simultaneously
considered the intrinsic growth of HI and LI state of V. cholerae; (ii) some generally functional
response functions, non-uniformness of diffusion rates and nonlocal time delay of the model
system are incorporated.

We derived three basic reproduction numbers for HI state of V. cholerae (R,1), LI state of V.
cholerae (R¢>) and cholera disease in the host population (Rp). The impact of the diffusion of
infectious hosts on cholera dynamics was discussed under some conditions. It is shown that Ry
is a decreasing function in D, when D», B,,/u and B, /o u are constant functions.

Furthermore, the detailed classifications of spatial dynamics for the proposed model were
investigated: (i) when max {R,1, R.2} < 1 and Ry < 1, the infection-free steady state is globally
asymptotically stable; (ii) when Case 1: R,; > 1 or R, > 1, or Case 2: max {R,1, Rz} < 1 and
Ro > 1 is satisfied, the disease will persist and there exists at least one endemic steady state;
(iii) when Case 1: R,; > 1 and R,y > 1, or Case 2: max {R,, R.2} < 1 and Rg > 1 is satisfied,
the unique positive homogeneous steady state is globally asymptotically stable. In general, in a
heterogeneous environment, the analysis of global stability of the infection steady state is highly
challenging. When the diffusion coefficient of HI state of V. cholerae (D3) is a positive constant
independent of x, and the nonlocal time delay and the spatial diffusion of susceptible hosts
(D), infectious hosts (D) and LI state of V. cholerae (D4) are not considered, we obtained
the global attractivity of the infectious steady state. Namely, assume that (HS) and (H6) hold, if
R.1 <1 < Ry, then the infection steady state of model (5.1) is globally attractive.

The innovation of mathematical results lies in (i) the global dynamics is determined by three
basic reproduction numbers; (ii) the global attractiveness of a simplified model in a heteroge-
neous environment is proved by constructing appropriate Lyapunov functional; (iii) our analytical
approach works for general functional response functions and thus can be applied to specific wa-
terborne disease models, such as those described in [38,52,61,62].

One of the further steps to take with this model is to study the global stability of the infection
steady state in a heterogeneous environment when D; > 0, D> > 0, and D4 > 0. Meanwhile, the
model system can be extended to incorporate other important epidemiological features, such as
seasonality [27,55], human behavior [56], bacteriophage [5,24] and immunological threshold (a
minimum dose of bacteria is required to yield an infection) [21,25,27].
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