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One of the simplest predator-prey models that tracks the quantity and the quality of prey is the one
proposed by [I. Loladze, Y. Kuang, and J.J. Elser, Stoichiometry in producer-grazer systems: Linking
energy flow with element cycling, Bull. Math. Biol. 62 (2000) pp. 1137–1162.] (LKE model). In it, the
ratio of two essential chemical elements, carbon to phosphorus, C:P, represents prey quality. However,
that model does not explicitly track P neither in the prey nor in the media that supports the prey. Here, we
extend the LKE model by mechanistically deriving and accounting for P in both the prey and the media.
Bifurcation diagrams and simulations show that our model behaves similarly to the LKE model. However,
in the intermediate range of the carrying capacity, especially near the homoclinic bifurcation point for the
carrying capacity, quantitative behaviour of our model is different. We analyze positive invariant region
and stability of boundary steady states. We show that as the uptake rate of P by producer becomes infinite,
LKE models become the limiting case of our model. Furthermore, our model can be readily extended to
multiple producers and consumers.

Keywords: stoichiometry; Droop model; logistic equation; producer-grazer model; phosphorus uptake

AMS Subject Classification: 92D25; 34C60

1. Introduction

Ecological stoichiometry is the study of the balance of energy (carbon) and multiple chemical
elements (phosphorus, nitrogen, etc.) in ecological interactions [11]. All organisms are composed
of these elements. The relative abundances of them vary considerably among species and across
trophic levels; hence, this chemical heterogeneity among species can have significant effects on
food web dynamics. From the stoichiometric point of view, both food quantity and food quality
need to be implicitly or explicitly modeled in producer–consumer interactions, since it is observed
that the plant quality as well as its quantity can dramatically affect the growth rate of herbivorous
grazers and may even lead to their extinction. On the other hand, plants are indeed limited by
nutrient availability [3], and herbivores are more nutrient-rich organisms than plants, inducing
food quality constraints. Stoichiometric theory has strong potential for both quantitative and
qualitative improvements in the predictive power of population ecology [2,10].
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The rapidly growing empirical study of ecological stoichiometry facilitates a variety of
stoichiometric population models in recent years [1,4,5,7,8,9]. Simple phenomenological two-
dimensional producer–consumer models, such as [8,9], are mathematically tractable but some
of its simplifying assumptions may not hold in reality. Kuang et al. [7] gave a reasonable inter-
pretation of the Loladze, Kuang and Elser (LKE) model using the Droop equation for the plant
growth. This paper is to formulate the stoichiometric plant-herbivore model more mechanistically
by explicitly modelling P content in the prey and in the media, thus relaxing a main assumption
in the LKE model. Our model is a system of four autonomous ordinary differential equations,
which can be reduced to a three-dimensional system.

To compare our model formulation with the LKE model, it is convenient to recall the main
assumptions used in the LKE model.

(A1) The total mass of phosphorus in the entire system is fixed.
(A2) Phosphorus to carbon ratio (P:C) in the plant varies, but it never falls below a minimum q

(mgP/mgC); the herbivore maintains a constant P:C ratio, denoted by θ (mgP/mgC).
(A3) Phosphorus in the system is divided into two pools: phosphorus in the herbivore and

phosphorus in the plant.

2. Model formulation

Let x be the density of carbon content in the producer, p be the density of phosphorus content in the
producer, y be the density of carbon content in the grazer and P be the density of free phosphorus
in the media. Our first two equations are similar to LKE model, except that the phosphorus density
of producer, p, and the free media phosphorus, P , are now explicitly modeled here. The above
Assumption (A3) is no longer needed. The new model takes the form of

dx

dt
= rx

(
1 − x

min{K, p/q}
)

︸ ︷︷ ︸
producer growth limited by nutrient and light

− f (x)y︸ ︷︷ ︸
uptake by grazers

, (1a)

dy

dt
= ê min

{
1,

p/x

θ

}
f (x)y︸ ︷︷ ︸

grazer growth limited by food quality and quantity

− y︸︷︷︸
grazer death and respiration loss

,

(1b)

dp

dt
= g(P )x︸ ︷︷ ︸

P uptake by producer

− p

x
f (x)y︸ ︷︷ ︸

P loss due to grazing

− ︸︷︷︸
P loss due to producer recycling

, (1c)

dP

dt
= −g(P )x︸ ︷︷ ︸

P uptake by producer

+ dp︸︷︷︸
P recycling from producer

+ θ y︸︷︷︸
P recycling from dead grazer

+
(p

x
− ê min

{
θ,

p

x

})
f (x)y.︸ ︷︷ ︸

P recycling from grazer feces

(1d)

The text below each term explains its biological meaning. r is the intrinsic growth rate of the
producer (day−1). d̂ is the specific loss rate of the grazer that include the rates of respiration
and death (day−1). d is the phosphorus loss rate representing P lost due to leave dropping, root

d̂

d̂

dp
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decomposition and other recycling processes. f (x) is the ingestion rate of the grazers, which will
be assumed to follow Holling type II functional response in our analysis and simulation work. In
general, f (x) is a bounded smooth function that satisfies the following assumptions:

f (0) = 0, f ′(x) > 0 and f ′′(x) ≤ 0, for x ≥ 0. (2)

g(P ) is the phosphorus uptake rate of the producer. This function has similar properties as f (x).
ê is the maximal production efficiency. The second law of thermodynamics requires that ê < 1.
K represents a constant carrying capacity related to light. q is the minimal cell quota (P : C) of
the producer. θ is the fixed cell quota of the grazer. θ � q in reality; hence, we assume that θ > q

in this paper.
In the free phosphorus equation, g(P )x is the P uptake by the producer, dp and θ d̂y are P

recycling from producer and consumer death,

(p

x
− ê min

{
θ,

p

x

})
f (x)y

describes the consumer’s P consumption from the producer minus the actual P retained due to
growth and maintenance needs, which gives the amount of P recycled from consumer droppings
and other losses.

T = p + P + θy is the total phosphorus of the system, composed of producer phosphorus, free
phosphorus and consumer phosphorus. By a simple calculation, we have dT /dt = 0. The total
phosphorus of System (1) is kept at the constant level of T (0) = p(0) + P(0) + θy(0). Thus,
P ≡ T − p − θy, which can be used to reduce System (1) by one dimension to

dx

dt
= rx

(
1 − x

min{K, p/q}
)

− f (x)y, (3a)

dy

dt
= ê min

{
1,

p/x

θ

}
f (x)y − y, (3b)

dp

dt
= g(T − p − θy)x − p

x
f (x)y − p. (3c)

The parameters in the P column of Table 1 will be needed for our subsequent study of System (3).
Their values in the V column will be used for numerical simulations to be present later.

Table 1. The parameters (P) of System (3) and their values (V) used for numerical simulations.

P Description V Unit

r Intrinsic growth rate of the resource 0.93 day−1

K Resource carrying capacity determined by light 0.25−2 (mg C)/1
c Maximal ingestion rate of the grazer 0.75 day−1

ĉ Maximal phosphorus uptake rate of the producer 0.2 (mg P)/(mg C)/day
a Half-saturation constant of the grazer 0.25 (mg C)/1
â Phosphorus half-saturation constant of the producer 0.008 (mg P)/1
ê Maximal conversion rate of the grazer 0.74
d̂ Loss rate of the grazer 0.22 day−1

d Phosphorus loss rate of the producer 0.05 day−1

θ Constant P:C of the grazer 0.04 (mg P)/(mg C)
q Minimal possible P:C of the producer 0.004 (mg P)/(mg C)
T Total phosphorus in the system 0.03 (mg P)/1

d̂

d
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3. Mathematical analysis

In order to have a basic mathematical understanding of Model (3), we would like to study the
dissipativity of the system and the stability of its boundary steady states. The following theorem
shows that the system is naturally dissipative, meaning that the realistic solutions will remain in
a biologically meaningful region.

THEOREM 3.1 Solutions with initial conditions in the set

� = {(x, y, p) : 0 < x < min{K, T/q}, 0 < y, 0 < p, p + θy < T }

remain there for all forward times.

Proof We consider a solution X(t) ≡ (x(t), y(t), p(t) of (3) with initial condition in �. Hence,
0 < x(0) < min{K, T/q}, 0 < y(0), 0 < p(0), p(0) + θy(0) < T . Assume that there is time
t1 > 0 such that X(t) touches or crosses the boundary of �̄ (closure of �) for the first time,
and then (x(t), y(t), p(t)) ∈ � for 0 ≤ t < t1. We will have several cases to consider.

Case 1 x(t1) = 0 but p(t1) �= 0. 0 ≤ p(t), p(t) + θy(t) ≤ T for 0 ≤ t ≤ t1 implies y(t) ≤ T/θ

for 0 ≤ t ≤ t1. Let p1 = min{p(t) : t ∈ [0, t1]} > 0. Then for 0 ≤ t ≤ t1, we have

dx

dt
= rx

(
1 − x

min{K, p/q}
)

− f (x)y

≥ rx

(
1 − min{K, T/q}

min{K, p1/q}
)

− f ′(0)(T /θ)x

=
[
r

(
1 − min{K, T/q}

min{K, p1/q}
)

− f ′(0)(T /θ)

]
x ≡ μx,

where μ is a constant. Then, x(t) ≥ x(0)eμt for 0 ≤ t ≤ t1, which implies that x(t1) ≥
x(0)eμt1 > 0, a contradiction.

Case 2 x(t1) = min{K, T/q}. 0 ≤ y(t), p(t) + θy(t) ≤ T for 0 ≤ t ≤ t1 implies p(t) ≤ T for
0 ≤ t ≤ t1. Then for 0 ≤ t ≤ t1, we have

dx

dt
= rx

(
1 − x

min{K, p/q}
)

− f (x)y ≤ rx

(
1 − x

min{K, T/q}
)

.

The standard comparison argument yields that x(t) < min{K, T/q} for all 0 ≤ t ≤ t1, a
contradiction.

Case 3 y(t1) = 0. Then for 0 ≤ t ≤ t1, we have

dy

dt
= ê min

{
1,

p/x

θ

}
f (x)y − d̂y ≥ −d̂y.

Hence, y(t) ≥ y(0)e−d̂t > 0 for 0 ≤ t ≤ t1, a contradiction.
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Case 4 p(t1) = 0. p(t) + θy(t) ≤ T for 0 ≤ t ≤ t1 implies T − p(t) − θy(t) ≥ 0 for
0 ≤ t ≤ t1. Thus, g(T − p(t) − θy(t)) ≥ 0 for 0 ≤ t ≤ t1. Since 0 ≤ p(t), p(t) + θy(t) ≤ T

for 0 ≤ t ≤ t1, then y(t) ≤ T/θ for 0 ≤ t ≤ t1. Thus, for 0 ≤ t < t1, we have

dp

dt
= g(T − p − θy)x − p

x
f (x)y − dp ≥ −p

x
f (x)y − dp ≥ [−f ′(0)(T /θ) − d]p ≡ νp,

where ν is a constant. Thus, p(t) ≥ p(0)eνt > 0 for 0 ≤ t ≤ t1, a contradiction.

Case 5 p(t1) + θy(t1) = T . Let z(t) = T − p(t) − θy(t), then z(t1) = 0 and z(t) > 0 for
0 ≤ t < t1. Then for 0 ≤ t ≤ t1, we have

dz

dt
= −dp

dt
− θ

dy

dt
≥ −g(z)x + dp + d̂θy

≥ −g′(0)z min{K, T/q} + min{d, d̂}(T − z)

= min{d, d̂}T − [g′(0) min{K, T/q} + min{d, d̂}]z ≡ μ̃ − ν̃z,

where μ̃ > 0 and ν̃ > 0 are constant. Thus, z(t) ≥ e−ν̃t z(0) > 0 for 0 ≤ t ≤ t1, a contradiction.
�

The stability analysis for general forms of f (x) and g(P ) is tedious. For simplicity, we assume
below that g(P ) = αP and f (x) = βx. In this special case, Model (3) takes the following explicit
form system becomes

dx

dt
= rx

(
1 − x

min{K, p/q}
)

− βxy ≡ xF(x, y, p), (4a)

dy

dt
= ê min

{
1,

p/x

θ

}
βxy − d̂y ≡ yG(x, y, p), (4b)

dp

dt
= α(T − p − θy)x − βpy − dp ≡ H(x, y, p). (4c)

The boundary equilibria include the total extinction equilibrium E0 = (0, 0, 0) and the grazer
extinction equilibrium

E1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
K, 0,

T K

K + d/α

)
, if K <

T

q
− d

α
;(

T

q
− d

α
, 0, q

(
T

q
− d

α

))
, if K >

T

q
− d

α
,

Figure 1. Figure illustration of Theorems 3.2–3.5 by choosing different d values. (a) The extinction steady state E0 is
asymptotically stable.(b) The grazer extinction steady state E1 is asymptotically stable. (c) The coexistence steady state
E∗ is asymptotically stable.
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if T/q − d/α > 0. Model (4) may also have a coexistence equilibrium E∗, which satisfies

r

(
1 − x

min{K, p/q}
)

= βy, (5a)

ê min

{
1,

p/x

θ

}
βx = d̂, (5b)

α(T − p − θy)x = pβy + dp. (5c)

For the extinction steady state E0, we have the following theorem for the general system (3).

THEOREM 3.2 The extinction steady-state E0 = (0, 0, 0) in System (3) (or (4)) is globally
asymptotically stable if d > mg(T ), where m = min

{
x(0)/p(0), 1 + [(d + f ′(0)T /θ)/r]/q}

.

Proof Let u = x/p, then

du

dt
= dx/dt

p
− u

dp/dt

p

≤ ru(1 − qu) + (d + f ′(0)y)u

≤ ru(1 + (d + f ′(0)y)/r − qu)

≤ ru(1 + (d + f ′(0)T /θ)/r − qu).

Hence, u ≤ min
{
x(0)/p(0), [1 + (d + f ′(0)T /θ)/r]/q} ≡ m. For the p equation, dp/dt ≤

g(T )x − dp ≤ g(T )mp − dp = (g(T )m − d)p. Since d > mg(T ) implies g(T )m − d < 0,
hence p → 0 as t → ∞.

Next, we show that x → 0 as t → ∞. This can be seen from the fact that dx/dt ≤ rx

(1 − (qx/p), which implies that lim supt→∞ x(t) ≤ p/q. Clearly, this also implies that y → 0
as t → ∞. �

The above theorem states that both the plant and the grazer go extinct when the nutrient loss rate
is high. Plant extinction cannot be obtained in most previous models including the LKE model,
except in pure ratio-dependent models [6]. Therefore, our model provides an alternative and
possibly less controversial deterministic mechanism to exhibit such total and realistic extinction
dynamics.

We will compute the Jacobian matrix through F , G, H and their partial derivatives. The partial
derivatives of these functions are

Fx = − r

min{K, p/q} , Fy = −β, Fp =
⎧⎨
⎩

0 if p > qK,

rqx

p2
if p < qK,

Gx =
{

êβ if p > θx,

0 if p < θx,
Gy = 0, Gp =

⎧⎨
⎩

0 if p > θx,

êβ

θ
if p < θx,

Hx = α(T − p − θy), Hy = −αθx − βp, Hp = −αx − βy − d.

The Jacobian matrix is

A =
⎛
⎝F + xFx xFy xFp

yGx G + yGy yGp

Hx Hy Hp

⎞
⎠ .

The trace of A, trA = F + xFx + G + yGy + Hp.
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The determinant of A, detA = (F + xFx)(G + yGy)Hp + xyFyGpHx + xyFpGxHy −
xFp(G + yGy)Hx − xyFyGxHp − (F + xFx)yGpHy = xHx(yFyGp − FpG − yFpGy) +
yHy(xFpGx − FGp − xFxGp) + Hp(FG + yFGy + xFxG + xyFxGy − xyFyGx).

Let Ajk be the determinant of the 2 × 2 matrix resulted from A by removing the j th row and
the kth column. Then, A11 = (G + yGy)Hp − yGpHy , A22 = (F + xFx)Hp − xFpHx , A33 =
(F + xFx)(G + yGy) − xyFyGx .

By Routh–Hurwitz criterion, all eigenvalues of A have strictly negative real parts if the following
conditions hold.

(i) trA < 0; (ii) detA < 0; (iii) detA − (trA)(
∑3

k=1 Akk) > 0.
The following theorem presents a sufficient condition for the local stability of E1 when K >

T/q − d/α > 0.

THEOREM 3.3 For the case of K > T/q − d/α > 0, E1 is locally asymptotically stable if
êqβ/θ((T /q) − (d/α)) < d̂ .

Proof Recall that E1 = (x̄, 0, p̄) where x̄ = (T /q) − (d/α), p̄ = q((T /q) − (d/α)). Clearly,
x̄ < K , p̄ < qK . Since θ > q, we have p̄ < θx̄. Observe that U = (êqβ/θ)x̄ − d̂ < 0,
V = (αT r/q) − rd > 0 andW = αx̄ + r + d > 0 by conditions of the theorem and the positivity
of parameters. In our case, the Jacobian matrix at E1 becomes

A =
⎛
⎝ −r −βx̄ r/q

0 U 0
α(T − p̄) −αθx̄ − βp̄ −αx̄ − d

⎞
⎠ .

The U , V and W formulae together with some straightforward calculations yield

trA = U − αx̄ − r − d < 0, detA = UV < 0,

and

detA − (trA)

(
3∑

k=1

Akk

)
= W(U 2 − UW + V ) > 0.

The theorem follows from an application of the Routh-Hurwitz criterion. �

The next theorem presents a sufficient condition for the local stability of E1 when
K < T/q − d/α > 0 and T < θ(K + d/α).

THEOREM 3.4 Assume that K < (T/q) − (d/α) and T/(K + d/α) < θ . Then, E1 is locally
asymptotically stable if (êβ/θ)(T K/K + (d/α)) < d̂.

Proof In this case, E1 = (x̄, 0, p̄) where x̄ = K, p̄ = T K/(K + (d/α)). We see that
p̄ > qK , p̄ < θx̄. Observe that U = (êβp̄/θ) − d̂ = (êβ/θ)(T K/K + (d/α)) − d̂ < 0 and
V = −αx̄ − d < 0. By straightforward calculations involving the Jacobian matrix,

A =
⎛
⎝ −r −βK 0

0 U 0
α(T − p̄) −αθx̄ − βp̄ −αx̄ − d

⎞
⎠ .

we have trA = U + V − r < 0, detA = −rUV < 0 and

detA − (trA)

(
3∑

k=1

Akk

)
= −(U + V )(UV − rU − rV ) − r2U − r2V > 0.

The theorem follows from an application of the Routh–Hurwitz criterion. �
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Table 2. Stability results of E1 in System (4).

Case Condition Stability

T

q
− d

α
≤ 0 Not exist

K >
T

q
− d

α
> 0

êqβ

θ

(
T

q
− d

α

)
< d̂ LAS

êqβ

θ

(
T

q
− d

α

)
> d̂ Unstable

T

θ
− d

α
< K <

T

q
− d

α

êβ

θ

T K

K + d/α
< d̂ LAS

êβ

θ

T K

K + d/α
> d̂ Unstable

K <
T

θ
− d

α
êβK < d̂ LAS (Locally asymptotically stable)

êβK > d̂ Unstable

Our last theorem presents a sufficient condition for the local stability of E1 when
K < T/q − d/α > 0 and T > θ(K + d/α).

THEOREM 3.5 Assume that K < (T/q) − (d/α) and (T /K + (d/α)) > θ . Then, E1 is locally
asymptotically stable if êβK < d̂ .

Proof We see that E1 = (x̄, 0, p̄) where x̄ = K, p̄ = T K/(K + d/α). Then, p̄ > qK , p̄ > θx̄.
Let U = êβx̄ − d̂ = êβK − d̂ < 0 and V = −αx̄ − d < 0. By straightforward calculations, we
see that the Jacobian matrix in this case is the same as that in the previous theorem with the new
definition of U . The rest of the proof is identical to that of the previous theorem. �

Observe that when (T /q) − (d/α) ≤ 0, E1 does not exist. E1 degenerates to E0 if (T /q) −
(d/α) = 0. Instability results of E1 can be easily obtained from the conditions lead to detA > 0.
In addition, θ > q is biologically reasonable. With this assumption, the condition ‘K < (T/q) −
(d/α) and (T /(K + (d/α)) < θ ’ is equivalent to ‘(T /θ) − (d/α) < K < (T/q) − (d/α)’, and
the condition ‘K < (T/q) − (d/α) and (T /K + (d/α)) > θ ’ is equivalent to ‘K < (T/θ) −
(d/α)’. We summarize these results on E1 in Table 2. All stability results in this section are
illustrated in Figure 1.

4. Numerical dynamics and its implications

The initial conditions in our simulation are chosen inside the biologically meaningful region �.
We let f (x) = cx/(a + x) and g(P ) = ĉP /(â + P) in our simulations.

Since the carrying capacity K can be linked to or regarded as the light intensity in lab and field
experiments, it is one of our natural bifurcation parameters. In Figure 2, We vary the carrying
capacity K in the bifurcation diagrams. Other parameter values are given in Table 1. In this
figure, we simulate Model (3) with faster nutrient process and compare the results to those of
LKE model. In Figure 2, as K increases, the stable positive steady-state loses its stability through
a Hopf bifurcation point and gives rise to a limit cycle. Further increasing K collapses the cyclic
behaviour through a homoclinic bifurcation and returns the dynamics to a stable steady-state
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Figure 2. Bifurcation diagrams for Model (3) with respect to K . (a) producer vs. K; (b) consumer vs. K .

behavior. The consumer goes extinct for extremely small K because of low food quantity, or for
extremely large K because of the low food quality (panel (b) in Figure 2). Solutions of Model
(3) are compared to that of the LKE model for various K values in Figure 3. For small or large
K (steady-state cases, panels (a) and (d) in Figure 3), our model and the LKE model have almost
identical solutions. For the intermediate K values (panels (b) and (c) in Figure 3), they are slightly
different quantitatively. However, when K is near the homoclinic bifurcation point (see Figure 4),
they are completely different. Near this point, the solution sensitivity with respect to K is very
high. Nevertheless, in general, we can state that (see the bifurcation diagrams (Figure 2)) the LKE
model is a very good approximation of the mechanistic Model (3).

Figure 3. Comparison of solutions of the mechanistic model and the LKE model with different carrying capacities.
(a) coexistence at a steady state; (b) coexistence with oscillations; (c) coexistence at a steady state with a higher
producer/grazer ratio; (d) extinction of the grazer.
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Figure 4. Comparison of Model (3) with the LKE model with the following parameter values: r = 0.93, c = 0.75,
ĉ = 0.2, a = 0.25, â = 0.008, e = 0.74, d = 0.22, d̂ = 0.05, θ = 0.04, q = 0.004, T = 0.03.

5. Discussion

We constructed and analyzed a stoichiometric predator-prey model that explicitly tracks the
quantity and the nutritional quality of the prey. We achieve this by mechanistically accounting for
the content of two essential elements in this simple food web, C and P. Carbon is considered to be
energy (quantity) equivalent, while the concentration of P (or P:C ratio) reflects nutritional quality
of the prey. This model builds upon the LKE model by expanding it from a two-dimensional system
to a four-dimensional one. The additional two equations track P in the prey and in the media that
supports the prey. The LKE model assumes that the prey is extremely efficient at uptaking nutrient
(P) from the media; hence, Assumption (A3), no P in the media. Interestingly, if we assume in
Model (4) the infinite uptake efficiency of prey (α → ∞), then our model converges naturally to
the LKE model. Here is the argument. Observe that the nutrient p in the producer and P in the
media possess a dynamics that is much faster than growth dynamics of producer and consumer. We
claim that Model (4) has almost the same dynamics as that of the LKE model. This can be seen by a
simple application of the quasi-steady-state argument on the nutrient equation (4c). This yields p as
a function of x and y, which is αx(T − θy)/(αx + βy + d). Thus, Equation (4) can be reduced to

dx

dt
= rx

(
1 − x

min{K, (αx(T − θy)/αx + βy + d)/q}
)

− βxy, (6a)

dy

dt
= ê min

{
1,

[αx(T − θy)/αx + βy + d]/x
θ

}
βxy − d̂y. (6b)

The plant phosphorus in the LKE model is T − θy, a function of y, following Assumption (A3).
The phosphorus outside the grazer, T − θy, is distributed between the plant and the media, and
the plant phosphorus has the fraction αx/(αx + βy + d). Therefore, the plant phosphorus should
be a function of both x and y. α is large in fast nutrient process, and αx/(αx + βy + d) ≈ 1 for
sufficiently large α; then, the plant phosphorus is almost T − θy for fast nutrient process. Hence,
the LKE model can be regarded as the limiting case of Model (4) when α → ∞.

However, even with finite nutrient uptake rates for the producer, our model behaves both qual-
itatively and quantitatively similar to the LKE model as bifurcation diagrams (2) and simulations
(3) show. The exception is the interval for K near the point where the predator limitation switches
from C to P (from food quantity to food quality), where there is a quantitative difference between
the two models. This raises the question whether the significant similarity between the two models
justifies the additional complexity of our model. We certainly think so for the following reasons.
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In applications, such as the control of eutrophication in lakes, it is the actual concentration of P in
the water that is of crucial importance, and our model explicitly tracks it. This mechanistical model
formulation also provides an additional significant benefit; our model can be easily expanded to
multiple producers and grazers while maintaining its structure. This later property is not shared
by the LKE model because Assumption (A3) does not leave a mechanistic way to distribute P
among multiple producers.
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