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Nonpharmaceutical interventions (NPIs), particularly contact tracing isolation and
household quarantine, play a vital role in effectively bringing the Coronavirus Disease 2019
(COVID-19) under control in China. The pairwise model, has an inherent advantage in
characterizing those two NPIs than the classical well-mixed models. Therefore, in this
paper, we devised a pairwise epidemic model with NPIs to analyze COVID-19 outbreak in
China by using confirmed cases during February 3rde22nd, 2020. By explicitly incorpo-
rating contact tracing isolation and family clusters caused by household quarantine, our
model provided a good fit to the trajectory of COVID-19 infections. We calculated the
reproduction number R ¼ 1.345 (95% CI: 1.230 � 1.460) for Hubei province and R ¼ 1.217
(95% CI: 1.207 � 1.227) for China (except Hubei). We also estimated the peak time of in-
fections, the epidemic duration and the final size, which are basically consistent with real
observation. We indicated by simulation that the traced high-risk contacts from incubated
to susceptible decrease under NPIs, regardless of infected cases. The sensitivity analysis
showed that reducing the exposure of the susceptible and increasing the clustering co-
efficient bolster COVID-19 control. With the enforcement of household quarantine, the
reproduction number R and the epidemic prevalence declined effectively. Furthermore, we
obtained the resumption time of work and production in China (except Hubei) on 10th
March and in Hubei at the end of April 2020, respectively, which is broadly in line with the
actual time. Our results may provide some potential lessons from China on the control of
COVID-19 for other parts of the world.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications
Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativeco

mmons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was
firstly reported in Wuhan, a crowded city in central China’s Hubei province (Li et al., 2020). Its symptoms mainly include
cough, fever and difficult breath, similar to SARS (severe acute respiratory syndrome conronarirus) and MERS (middle east
respiratory syndrome coronarirus) (Wu et al., 2020). These symptoms from mild to severe respiratory infections lasts about
2e14 days. The disease could be transmitted by direct transmission, such as touching or shaking hands, and indirect
transmission such as coughing, sneezing and contacting with virus-contaminated substances (Wu et al., 2020). As of 7th
December 2020, it has spread to more than 212 countries, causing more than 66 million confirmed cases and 1.5 million
deaths worldwide (World Health Organization (WHO)) Especially, the second wave of COVID-19 is recently breaking out in
Europe and America, which causes more new infections and deaths (World Health Organization (WHO)). Although COVID-19
was serious at the outset in China, it has been effectively brought under control. Nonpharmaceutical interventions (NPIs),
particularly contact tracing isolation and household quarantine, made a great contribution to controlling the disease. In order
to provide some potential lessons from the experience of containing COVID-19 for other parts of world, in this paper, we
analyze the transmission course of COVID-19 in China.

In general, NPIs, such as isolation and quarantine, are the most effective intervention measures for a newly infectious
disease since without available vaccines and cure medicine. Intervention of contact tracing isolation and household quar-
antine play a role of great importance in curbing COVID-19 in China. On January 23rd, 2020, with surge of the confirmed cases,
Chinese government took an extreme control strategy of lockdowning Wuhan city, prohibiting all the transportation in and
out of Wuhan, and advised all the Chinese citizens from leaving their homes unless they need to go outdoors for daily ne-
cessities (household quarantine) (Health Commission of Hubei Province). For the suspected and infected cases, they were
traced, and once anyone was confirmed, he or she and individuals who have contacted with themwould be isolated (contact
tracing isolation).

In network terminology, those intervention measures change the topological structure of the social-contact network
consisting of nodes and links (Luo & Jin, 2020), in which the nodes mimic individuals and links stand for social contacts
between individuals among the population. Under household quarantine in China, every person almost stayed at homewhich
substantially reduces their contacts with outside, making the contact structure present strong clustering effects. According to
Chinese Statistic Yearbook (Chinese Statistic Yearboo, 2019), there are ten household types in the household structure and the
contact structure in the scenario of household quarantine (every individual only contacts with its family members) exhibit a
unimodal degree distribution (see Fig. 1(a)), where the node degree is the number of contacts an individual has. On the other
hand, contact tracing isolation mainly traces the individuals having contacted with individuals at incubation state. Upon the
incubated individuals being confirmed, all individuals having contacted with them are isolated. In particular, the traced high-
risk contacts from individuals at incubation and asymptomatic state to the susceptible are the key ones leading to the increase
in infection.

As COVID-19 has aroused a great concernworldwide, there has been a sharp rise in the number of mathematical models to
study its dynamics. In terms of the well-mixed models, Tang et al. assessed the transmission risk of COVID-19 spread at the
early stage of epidemic by including the intervention measures (Tang et al., 2020a, 2020b). Yang et al. combined compart-
mental models with artificial intelligence (AI) approaches to predict the epidemics trend of COVID-19 in China (Yang et al.,
2020). Some researchers analyzed the effects and effectiveness of quarantine and isolation on COVID-19 outbreak in
Guangdong province China (Hu et al., 2020) and in China (Hou et al., 2020; Tang et al., 2020c). The role and effectiveness of
social distance in containing COVID-19 was also discussed in some papers (Anderson et al., 2020; Leung, Wu, Liu, & Leung,
2020). In addition, in terms of network-based models, Xue et al. used a degree-based network model to study the trans-
mission of COVID-19 in Wuhan, Toronto and Italy (Xue et al., 2020). Anyway, in the well-mixed models, it is assumed that the
number of contacts are constant or man-made time-varying (Roda, Varughese, Han, & Li, 2020; Tang et al., 2020a), ignoring
the real time-varying contact pattern between individuals. Although the degree-based network model considers the degree
distributiondone of network topological characteristics, it is difficult for this model to characterize the clustering effects and
high-risk contacts or depict two crucial intervention measures of household quarantine and contact tracing isolation. It is
however remarkable that the pairwise modeldone of the network-based modelsdcould simultaneously including the
evolution of individuals and contacts (Keeling, 1999), has a huge advantage of characterizing those two interventions taken in
China over the well-mixed models (Li, 2018) and other network-based models, such as the degree-based models (Pastor-
Satorras & Vespignani, 2001).

In this paper, we proposed a pairwise model, able to explicitly considering contact tracing isolation and household
quarantine, to analyze the impact of NPIs on COVID-19 spread in China. As Fig. 2(A) indicated in (Ali et al., 2020), intervention
measures on COVID-19 at the early stage in China changed with time until January 31, 2020. To fit a stable dynamic process for
an ordinary differential equation, we chose the real data after January 31, 2020. We based on data of COVID-19 infections
collected from National Health Commission of China (NHCC) (The National Health Commission of P. R. China) to identify the
parameters of the proposed model and calculated the epidemic quantities: the reproduction number, peak time, epidemic
size and epidemic duration (Luo & Jin, 2020). These quantities determine the potential and severity of an outbreak and are in
favor of evaluation of control measures. Note that these quantities are based on the same control strategies at that time before
the effects of imported cases begin to be dominant (the times of the first confirmed imported case outside and in Hubei
province are March 18th andMarch 31st, respectively (The National Health Commission of P. R. China)). It is indicated that the
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Fig. 1. (a)Degree distributions for China and Hubei province. (b) Real data of cumulative confirmed cases in China (red) and Hubei province (green).
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Fig. 2. Comparison between reported data and revised data of cumulative confirmed cases of COVID-19 in Hubei province.
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traced high-risk contacts from incubated to susceptible decrease under NPIs, regardless of infected cases. The sensitivity
analysis also showed that the enforcement of household quarantine measures decrease the reproduction number and
epidemic prevalence. We also gave the resumption time of production via our model, which accords with the real time.
Additionally, since Hubei province is the epicenter of COVID-19 outbreak and has suffered the most severe damage by the
epidemic with lack of medical resources to quarantine exposed and suspect cases. As Fig. 1(b) shown, the reported cases of
COVID-19 infections in Hubei province account for about 95% of the infections across China. In comparison, other regions
outside Hubei possess sufficient medical resources and have a relativelyminor burden of infected individuals due to imported
cases from Hubei. Therefore, the two regions would be addressed separately in the following.
2. Materials and methods

2.1. Data collection and description

As Fig. 2(A) indicated in (Ali et al., 2020), intervention measures on COVID-19 changed with time until January 31, 2020 in
China. In order to estimate relatively accurate parameters in an ordinary differential equation, we collected all the daily
reported data on COVID-19 infections during the period between February 3rde22nd, 2020 from NHCC, where all the lab-
oratory confirmed cases, suspected cases, death-caused by COVID-19, cured cases and close contacts of population with
confirmed infections are defined (The National Health Commission of P. R. China; The platform of 2019-nCov, 2019).

Since the diagnosed approaches changed on 12th Februarydabout 12000 clinically diagnosed cases are counted in the
cumulative confirmed cases reported on that day in Hubei province (Official news on the chan, 2020)dthere exists a singular
point for cumulative confirmed cases on February 12th, 2020 (see Fig. 1(a)). In order to obtain relatively reliable data, we
allocated the sudden increment on 12th February to each day in the preceding week in proportion to the original daily in-
crements of confirmed cases in these days (see Fig. 2 for the revised data).

The clustering coefficient (denoted by 4) of a network is defined as the ratio of the number of triangles to the number of
triples in the network (Keeling, Rand, & Morris, 1997; Rand, 1999). In China, under the household quarantine measure for
COVID-19 outbreak, citizens are suggested staying at their homes and could only be allowed to go outdoors for essential
purposes such as buying necessary supplies and medicines. In this case, the underlying network structure is highly clustered
as the individuals within each family are closely connected whereas there are relatively sparse connections among families.
As a result, the stricter the household quarantine measure, the smaller the number of inter-family connections, and hence the
larger the clustering coefficient of the network. That is, the clustering coefficient can be used to characterize the isolation
intensity of household quarantine measure for COVID-19 outbreak. The more intensive the household quarantine measure,
the larger the clustering coefficient. According to the family distribution in the China Statistic Yearbook (Chinese Statistic
Yearboo, 2019), we obtained that if every family is completely isolated, then 4 ¼ 0.5; whereas if only one family member
is allowed to go out for living necessities, then 4¼ 0.42 (see A for details), which is closest to the case of household quarantine
in China at that time. Therefore, in this paper we used the value of 4 ¼ 0.42 to represent the clustering coefficient of the
network during the period of COVID-19 outbreak in China.
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Table 1
Model variables and their definitions.

variable Definition

[S] The number of unquarantined susceptible individuals
[S0] The number of quarantined susceptible individuals (i.e.,the number of susceptible

individuals who have been contacted with confirmed individuals)
[E] The number of unquarantined incubation individuals
[E0] The number of quarantined incubation individuals (i.e.,the number of incubation

individuals who have been contacted with confirmed individuals)
[A] The number of unquarantined asymptomatic individuals
[A0] The number of quarantined asymptomatic individuals
[I] The number of confirmed individuals
[R] The number of recovered individuals
[SS] Twice the number of links between nodes with S state and S state
[SE] The number of links between nodes with S state and E state
[SA] The number of links between nodes with S state and A state
[EE] Twice the number of links between nodes with E state and E state
[EA] The number of links between nodes with E state and A state
[AA] Twice the number of links between nodes with A state and A state
[SSE] The number of triples with the joint structure S � S � E
[SSA] The number of triples with the joint structure S � S � A
[ASE] The number of triples with the joint structure A � S � E
[ESA] The number of triples with the joint structure E � S � A and [ASE] ¼ [ESA]
[ESE] Twice the number of triples with the joint structure E � S � E
[ASA] Twice the number of triples with the joint structure A � S � A
[EEE] Twice the number of triples with joint structures E � E � E
[SEE] The number of triples with the joint structure S � E � E
[EEA] The number of triples with the joint structure E � E � A
[AAE] The number of triples with the joint structure A � A � E
[SAE] The number of triples with the joint structure S � A � E
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2.2. Pairwise epidemic model for COVID-19 infections

The main purpose of this article is to investigate how the novel coronavirus spreads across China after the Chinese
government on January 23rd, 2020 made the level-1 public health emergency response to fight against the COVID-19
epidemic by a series of all-out efforts, such as sealing off the Wuhan city, restricting travels, contact tracing, household
isolation, and putting thosewho had close contacts with infected ones in quarantine formedical observation. Themeasures of
household isolation, contact tracing and targeted quarantine often result in relatively intensive family clusters and contact
reduction between susceptible individuals and confirmed cases of the disease. Traditional compartment epidemic models
typically fail to account for the cluster structure and contact changes among individuals in the population. In this situation,
one of the alternatives can be a pairwise epidemic model, where the whole population is considered as a contact network
with each node representing an individual of the population and each edge (or link) standing for a contact between a pair of
individuals (see Table 1).

Here we proposed a pairwise network epidemic model to incorporate the effects of family clusters and quarantine-caused
contact cutting on the disease transmission. As demonstrated in Fig. 3, we classified all of the individuals (nodes) into eight
different states: unquarantined susceptible (S), quarantined susceptible (S0), unquarantined incubation (E), quarantined in-
cubation (E0), unquarantined asymptomatic (A), quarantined asymptomatic (A0), confirmed infected (I) and removed (R).
Here, the removed compartment contains disease-induced death and recovered. We assumed that individuals in either state
of E, A and I are infectious; however, since infected individuals will be immediately put in quarantine once they are confirmed,
the individuals in state I are not allowed to transmit the disease. The transitions between different states are as follows. Each S
individual turns into the E state when it is infected at the transmission rate b1 through a contact with an E individual, while at
rate b2 by an A individual. After a incubation period of 1/q days, every E individual jumps into either the A class with
probability 1 � p or the I class with probability p. The individuals in states I and A run into the R class at the rate g1 and g2,
Fig. 3. The flow diagram of pairwise model for COVID-19 epidemic.
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respectively. Meanwhile, the individuals in states S, E and Awill be isolated and turn into the S0, E0 and A0 states, respectively,
once any one of their neighbors is confirmed to have been infected. Each individual of state S0 or A0 will be released from
quarantine and enter into the S or R state, respectively, after an observation period of 1/g3 days. Whereas each individual in
state E0 will be released from quarantine after an observation period of 1/g3 days, entering into either the A class with
probability 1 � p or the I class with probability p. It is worth noting that the close contacts among individuals of different
states are denoted by the pairwise variables in square brackets as shown in Fig. 3. Parameters used in the model have been
summarized in Table 2.

Using the notations defined in Table 1, the pairwise model for COVID-19 epidemic can be described as follows. Firstly, the
time evolution of the number of individuals in different classes is given by the following equations.

d½S�ðtÞ
dt

¼ g3½S0� � b1½SE� � b2½SA� � pq½SE�; (1)

d½E�ðtÞ

dt

¼ b1½SE� þ b2½SA� � q½E� � pq½EE�; (2)

d½I�ðtÞ

dt

¼ pq½E� þ pg3½E0� � g1½I�; (3)

d½A�ðtÞ

dt

¼ ð1� pÞq½E� þ ð1�pÞg3½E0� � g2½A� � pq½EA�; (4)

d½R�ðtÞ

dt

¼ g1½I� þ g2½A� þ g3½A0�; (5)

d½S0�ðtÞ

dt

¼ pq½SE� � g3½S0�; (6)

d½E0�ðtÞ

dt

¼ pq½EE� � g3½E0�; (7)

d½A0�ðtÞ

dt

¼ pq½EA� � g3½A0�: (8)
Since the time evolution of the number of individuals in each class given by Eqs. (1)e(8) have included the numbers of
different types of links, in order to close Eqs. (1)e(8) we also presented in Eqs. 9e14 the time evolution of the number of links
of each type.

d½SS�
dt

¼ �2b1½SSE� � 2b2½SSA� � 2pq½SSE�; (9)
Table 2
Definition of parameters and their values (unit time: day).

Parameter Definition China (except
Hubei)

95% CI Hubei 95% CI Data source

b1 transmission rate by E individuals 0.197 [0.194,
0.201]

0.207 [0.205,
0.209]

MCMC

b2 transmission rate by A individuals 0.111 [0.109,
0.113]

0.201 [0.198,
0.204]

MCMC

p probability of showing symptoms 0.688 [0.686,
0.701]

0.667 [0.664,
0.670]

MCMC

1/q incubation period for E individuals 5 e 6 e Tang et al. (2020b)
g1 The transferred rate of individuals from I to R 1/10 e 1/10 e [21, 22]
g2 The transferred rate of individuals from A to R 1/12 e 1/12 e [21, 22]
1/g3 quarantine period for S, E and A individuals 14 e 14 e Tang et al. (2020b)
N total population 1.33621e9 e 5.9170e7 e Chinese Statistic Yearboo

(2019)
4 clustering coefficient 0.42 e 0.42 e Chinese Statistic Yearboo

(2019)
n average node degree 3.1 e 3.04 e Chinese Statistic Yearboo

(2019)
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d½SE�
dt

¼ b1½SSE� þ b2½SSA� � b1½SE� � q½SE�

�b1½ESE� � b2½ASE� � pq½SEE� � pq½ESE�;
(10)

d½SA�
dt

¼ ð1� pÞq½SE� � g2½SA� � b2½SA� � b1½ESA�

�b2½ASA� � pq½ESA� � pq½SAE�;
(11)

d½EE�
dt

¼ 2b1½SE� þ 2b1½ESE� þ 2b2½ASE� � 2q½EE� � 2pq½EEE�; (12)

d½EA�
dt

¼ ð1� pÞq½EE� þ b2½SA� þ b1½ESA� þ b2½ASA�
�q½EA� � g2½EA� � pq½EEA� � pq½EAE�;

(13)

d½AA�
dt

¼ 2ð1� pÞq½EA� � 2g2½AA� � 2pq½AAE�: (14)

For detailed explanation of the biological meaning of Eqs. 1e14, the readers are referred to B. The appearance of the numbers
of triples of different types suggests one to close the model by utilizing the moment closure approximation formula by
Keeling et al. (House & Keeling, 2011; Keeling et al., 1997) as follows:

½XYZ� ¼ n� 1
n

½XY �½YZ�
½Y �

�
1� 4þ 4

N
n

½XZ�
½X�½Z�

�
; X; Y ; Z2fS; E;Ag; (15)

where n is the average degree, 4 is the clustering coefficient, and N is the number of nodes in the underlying network.

2.3. The reproduction number

The reproduction number R, which is defined as an average numbers of secondary cases that one case produces during the
course of its infectious period, determines the increase growth rate of an emerging infectious disease. Sometime it can be
used to judgewhether or not one disease breaks out. Adopting the method proposed by Yang and Xu (Yang& Xu, 2019) or the
next generation matrix method (Van den Driessche & Watmough, 2002), the expression R takes the form of

R ¼ ð1�4Þðn�1Þ
�

b1
b1 þ q

þ ð1� pÞqb2
ðb1 þ qÞðb2 þ g2Þ

�
¼ R½SE� þ R½SA�; (16)

where
R½SE� ¼ ð1�4Þðn�1Þ b1
b1 þ q

; (17)

and
R½SA� ¼ ð1�4Þðn�1Þ ð1� pÞqb2
ðb1 þ qÞðb2 þ g2Þ

: (18)
Since the pairwise epidemic model (1-14) is a network model, we mainly concerned the variants of the infected links. The
biological meanings of R can be regards as a sum of two quantities. R[SE] is the number of secondary infected links that one
exposed link will generate in an entirely susceptible link (1 � 4)(n � 1) during its lifespan 1

b1þq as exposed. Note that, ð1�pÞq
b1þq

denotes a probability that one exposed link survives the expose link and progresses into the infected link. Hence, R[SA] is the
number of secondary infected links that one infected link will produce in an totally susceptible links during its lifespan 1

b2þg2
.

2.4. MCMC estimation

Here, we briefly introduced the adaptive Metropolis-Hastings (M-H) algorithm of Markov Chain Monte Carlo (MCMC)
simulations (Gamerman & Lopes, 2006), by which we estimated parameters and fit data to our model (1-14).

Since we used the reported cumulative confirmed cases z(T) for data fitting, we denoted according to Eq. (3) the expec-
tation of the cumulative confirmed individuals by
649
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z
̄ ðTÞ ¼

XT
t¼1

ðpq½E�ðtÞ þ pg3½E0�ðtÞÞ; T ¼ 1;2;…; 10; (19)
and its variation with a small perturbation by

zðTÞ ¼ z
̄ ðTÞ þ d; T ¼ 1; 2;…;10; (20)

where zð1Þ ¼ z
̄ ð1Þ, T ¼ 1, 2, …, 10 corresponds to the days during the period February 3rde10th, 2020, and d is supposed to
follow the normal distribution N(0, e2) with e¼ 1000. Given the parameter vectorQ, the maximum likelihood function for the
revised data Z ¼ fzðTÞg10T¼0 is

LðZjQÞ ¼ P12
T¼1

1ffiffiffiffiffiffi
2p

p
e
exp

 
� ½zðTÞ � z

̄ ðTÞ�2
e2

!
(21)
Then, the joint posterior distribution of the parameters is given by P(Q|Z) f L(Z|Q)P(Q). Under the assumption of non-
information prior distribution (Gamerman & Lopes, 2006), the joint posterior distribution of the parameters satisfies P(Q|
Z) f L(Z|Q). Furthermore, at each iteration step the new parameter vector Q

̄
is updated through a randomwalk process and

will be accepted with probability

min
�
1;

PðQ
̄
jZÞ

PðQjZÞ
�

(22)
2.5. Parameters and initial conditions

The population size of China (except Hubei) and Hubei province is, respectively, about 1, 336, 210, 000 and 59, 170, 000
(Chinese Statistic Yearboo, 2019), so we set [S](t0) to be 1, 336, 210, 000 and 59, 170, 000 for China (except Hubei) and Hubei
province, respectively. Here, t0 stands for the starting date February 3rd, 2020, when the number of the cumulative confirmed
cases in Hubei and China (except Hubei) is 13, 522 and 6, 028, respectively, and the number of the cumulative recovered cases
in Hubei and China (except Hubei) is 810 and 169, respectively. Thus, we set [I](t0) to 12, 712 (¼ 13, 552e810) and 5, 837 (¼ 6,
028e169) for Hubei and China (except Hubei), respectively. Similarly, we determined the initial values of [S0], [E0] and [A0]
according to the reported data of suspected cases (identified by contact tracing) who are quarantined for medical observation.
The quarantined individuals are isolated for 14 days, so we set g3 ¼ 1/14. According to literature (Tang et al., 2020b), g2 is
about 1/12, and the incubation period is about 6 days. However, as the test technique and supply of medical resources
improve, especially outside Hubei province, we set the incubation period 1/q to 5 days for China (except Hubei) and 6 days for
Hubei. Moreover, based on the surveillance data we calculated the average of hospitalization period for confirmed cases to be
about 10 days. Thus we set g1 ¼ 1/10. The average node degree n in the network is the average number of contacts an in-
dividual has in the population. According to the degree distribution (Fig. 1(a)) obtained from the data published on the
Chinese Statistic Yearbook (Chinese Statistic Yearboo, 2019), we got n ¼ 3.1 for China (except Hubei) and n ¼ 3.04 for Hubei.
We determined the initial numbers of EE-links, EA-links and AA-links based on the following approximation formula,

½XY � ¼ n� ½X� � ½Y �
N
; X; Y2fS; E; I;A;Rg; (23)

where [X] or [Y] represents the number of nodes in state X or Y and [XY] represents the number of XY-links. Note that we have
set the initial numbers of EE-links, EA-links and AA-links to 1 since formula (23) gives a real number less than 1.

All the parameters and initial values are summarized in Tables 2 and 3.

3. Results

3.1. Fitting results

Based on the analysis of the diagnosed cases of COVID-19 infection reported in (Health Commission of Hubei Province), we
adopted theMCMCmethod (Gamerman& Lopes, 2006) for 10000 iterations with a burn-in of 6000 iterations to fit the model
(1-14) and estimated the parameters and the initial conditions of variables (see Tables 2 and 3). The Metropolis-Hasting (MH)
algorithm is used to adapt and readjust the MCMC procedure. To assess the goodness-of-fit for the validation data, we used
the first half of the data (for dates from February 3rd to 12th in 2020) as training data and the second half (for dates from
February 13th to 22nd in 2020) as validation data. The result presented in Fig. 4 shows a good fitting between the model
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Table 3
Initial values used in the model.

Parameter Definition China (except
Hubei)

95% CI Hubei 95% CI Data source

[S](t0) initial number (#) of S
individuals

N e N e Chinese Statistic Yearboo
(2019)

[E](t0) initial # of E individuals 6366 [6,126, 6546] 28,636 [27,992, 29,280] MCMC
[I](t0) initial # of I individuals 5837 e 12,712 e [21, 22]
[A](t0) initial # of A individuals 1178 [1,098, 1258] 8138 [7,980, 8296] MCMC
[S0](t0) initial # of S0 individuals 103,077 e 57,731 e [21, 22]
[E0](t0) initial # of E0 individuals 726 e 407 e [21, 22]
[A0](t0) initial # of A0 individuals 726 e 407 e [21, 22]
[SE](t0) initial # of SE-links 2446 [2,396, 2501] 24,814 [24,188, 25,439] MCMC
[SA](t0) initial # of SA-links 2105 [1,986, 2224] 27,467 [26,743, 28,191] MCMC
[SS](t0) initial # of SS-links 1,476,689,583 [1,437,605,190,

1,515,773,970]
37,709,952 [35,087,662,

40,332,242]
MCMC

[EE](t0) initial # of EE-links 1 e 1 e (23)
[EA](t0) initial # of EA-links 1 e 1 e (23)
[AA](t0) initial # of AA-links 1 e 1 e (23)
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solution and real data, well suggesting the epidemic trend in China under the intervention of household quarantine
containment strategies. According to the estimated parameter values and initial conditions as given in Tables 2 and 3, we
obtained the mean value of the reproduction number R ¼ 1.345 with 95% CI of [1.230, 1.460] for the Hubei province and
R ¼ 1.217 with 95% CI of [1.207, 1.227] for the regions outside Hubei province. Note that they are actually the effective
reproduction number. Since the calculation of the basic reproduction number is based on the initial conditions at the start of
epidemic, the reproduction number we calculated took the February 3rd as a starting point, which represents the scenario on
February 3rd when the strict control measures have been implemented. It may be one of the reasons that they were smaller
than those published in some literature (Shao & Shan, 2020; Shen, Peng, Xiao, & Zhang, 2020; Tang et al., 2020b; You et al.,
2020), as those values of estimated parameters in the model heavily depend on the choice of the initial surveillance data. The
other reason may be that most of existing results ignore clustering effects induced by home quarantine as well as dynamical
correlations between susceptible individuals and infectious individuals. Moreover, we readjusted the above processes and got
good fitting results in the top four provinces in China: Guangdong, Henan, Hunan, and Jiangxi, respectively (see Fig.11 in C). In
what follows, we mainly employed our model with estimated parameters to study the epidemic behavior of COVID-19 in-
fections in China (except Hubei) and in Hubei.
3.2. The estimation of epidemiological quantities

Note that as Section 1 stressed, the epidemiological quantities estimated in this paper are based on the control strategies at
that time before the effects of imported cases begin to be dominant (the times of the first reported confirmed imported case
outside and in Hubei province are March 18th and March 31st, respectively (The National Health Commission of P. R. China)).
If not, they will change accordingly as long as the disease control measures are modified. Applying the estimated parameter
values, we obtained that the outbreak of COVID-19 in China (except Hubei province) peaks on February 7th, 2020 (95% CI
between February 3rd and February 11th) (Fig. 5(a)), whereas the peak time of COVID-19 infections in Hubei province is on
February 13th, 2020 (95% CI between February 9th and February 17th) (Fig. 5(b)). The actual peak times are on February 10th,
2020 and on February 17th, 2020 in those two zeros, respectively (The National Health Commission of P. R. China; The
platform of 2019-nCov, 2019). The estimated errors are less then 5 days. The outbreaks of COVID-19 are estimated to last
until March 22nd, 2020 (95% CI between March 17th and March 27th) in China (except Hubei province) and until April 7th,
2020 (95% CI between March 30th and April 15th) in Hubei province before the effects of imported cases begin to be
dominant. The corresponding epidemic sizes at that time are estimated as 13,359, with 95% CI of [12, 678, 14, 752] in China
(except Hubei) and 70,160with 95% CI of [69, 351, 71, 755] in Hubei province. The real epidemic sizes in two regions are 13,293
and 64,142, respectively, and the relative errors of the epidemic sizes are 0.005 and 0.094, less then 1%. The primary reason for
the COVID-19 epidemic ending late with a larger epidemic size in Hubei province is that the ongoing exposure of human
population to COVID-19 contagion in Hubei province is relatively higher than other regions in China. Moreover, limited re-
sources of medical and health cares in Hubei province, especially in Wuhan, the epicenter of the epidemic, have significantly
increased the risk of COVID-19 propagation. It could be easily seen that the crucial epidemiological quantities given by our
model have good agreements with the real data.

In addition, Fig. 6 shows the evolution of the high-risk contacts from infectious to susceptible [SE](t) þ [SA](t) over time
under NPIs in China except Hubei province and Hubei province since February 2nd, 2020. It could be seen that those high-risk
contacts decrease under NPIs, although infections still increase from February 2nd, 2020 to the peak time (see Fig. 5). In fact,
the crucial factors determining the prevalent results of infectious diseases, are high-risk contacts from infectious to sus-
ceptible rather than the number of infectious individuals. Fig. 6 verified the effectiveness of NPIs implemented in China.
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Fig. 4. The fitting results of our model to real data of COVID-19 infections in China exclusive of Hubei province (a) and that in Hubei province (b). The grey area marks the 95% CI of MCMC estimations. The red points are
training data for parameter fitting, while the black points are real data for validation.
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Fig. 5. The time series of the number I(t) of confirmed individuals in China except Hubei province (a) and Hubei province (b). The red vertical lines in the plots mark the peak time for the COVID-19 spread of which the
trajectory is plotted in blue curves.
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Fig. 6. The time series of [SE](t) þ [SA](t) in China except Hubei province (a) and Hubei province (b).
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3.3. The sensitive analysis

In the face of an emerging disease, the Chinese government has taken many efficacious strategies to control the disease
transmission, such as traffic restrictions, isolations, home quarantine, increasingmedical resource and propaganda education,
etc. To examine and evaluate the potential efficacy of these strategies, we did the sensitivity analysis for two vital model
parameters q and 4, which reflect the intensity of detection and isolation, respectively.

Fig. 7 and Tables 4 and 5 show that shortening the incubated period 1/q from 7 days to 3 days decreases the epidemic size
and advances the epidemic duration by about one week. In addition, the peak arrival time also advances. As the advance time
is little, we did the partial rank correlation analysis of the peak arrival time on the incubation period.We choose 1000 samples
from 7 days to 3 days of the incubation period 1/q with other parameters following the normal distribution in Table 2. It is
found that the difference of the advance time is not significant in China (except for Hubei province) but significant in Hubei
province with PRCCs ¼ 0.993 and p ¼ 0.0234. It means that shortening the incubation period actually advances the peak
arrival time in Hubei province. Overall, increasing the detection rates as an increase of q help timely trace and isolate in-
dividuals having close contacts with confirmed cases, which is in favor of mitigating COVID-19 transmission.

As Section 2.1 introduced, the intensity of isolation under the household quarantine measure is characterized by the
clustering coefficient 4. Tables 4 and 5 show that, with the increase of 4 or the intensity of isolation in China, the epidemic size
decrease, the peak time advances and the epidemic duration is shortened. It is worth mentioning that when the intensity of
isolation increases, the exposure proportion of susceptible individuals to COVID-19 decreases. It means that both clustering
coefficients 4 and the exposure proportion of susceptible individuals may affect the spread of COVID-19. Fig. 8 presents the
contour figure of the epidemic size with respect to 4 and the exposure proportion of susceptibles. We could see that with the
decrease of 4 from 0.5 to 0.1 or the increase of the susceptible exposure proportion from 0.35 to 0.55, the epidemic sizes
increase accordingly. In next section, we will further discuss their effects on COVID-19 combined with control measures.
4. Discussion

COVID-19 was rife in China. The Chinese government has taken many extreme strategies after January 23rd, 2020, which
resulting in strong correlation between incubated individuals, asymptomatic individuals, confirmed cases and susceptible
people. Moveover, Chinese government set up a series of tracking system in order to follow the trail of each confirmed case
and found close contacts of population. Once they found these close contacts of ones, they would be quarantined somewhere
(at home or a central isolation). In consideration of the above features, we built a COVID-19 infection model by pairwise
approach which couples with the Chinese family network structures and clustering effects, and considered the instant cut-off
of close contacts with confirmed cases.

During the prevalence of COVID-19 in China, what people concern was when they could return to work. As shown in
Section 2.1, the clustering coefficient, as one of the network characteristic quantities, reflects the gathering degree of in-
dividuals and plays a key role in the modelling process. In our study, as described above, 4 ¼ 0.42 represents the gathering
degree in the current household quarantine measure. Once returning towork, people interconnects closely and the clustering
coefficient decreases (see A). Meanwhile, Fig. 8 indicates isolation measure may change 4 and the exposure proportion of
susceptible individuals. Fig. 9 provides the different results with relaxing isolation measure at different times based on our
network model. We have seen from Fig. 9(a) that in terms of the total population ([S](0) ¼ N) in China except Hubei province,
when increasing 4 from 0.42 to 0.5 or decreasing 4 from 0.42 to 0.1 on the February 7th, the epidemic size and the epidemic
duration have small changes. On the contrary, in the terms of partial population ([S](0) ¼ 0.5N), when decreasing 4 from 0.42
to 0.1 on February 7th, the epidemic size increases from 13,399 to 18,445 and the epidemic duration delays from 53 days to 79
days, and when the same change of 4 appears on March 1st, the epidemic size and epidemic duration changes slightly (see
Fig. 9 (b)). It suggests that for areas outside Hubei, it would be better to maintain the current control measures and not to
resume work and production until March 10thdafter two incubation periods. The suggested time is consistent with the
notification time for resumption of work and production, March 6th, when National Health Commission of China announced
(The National Health Commission of P. R. China Chan& Yuen, 2020). Similarly, in Hubei province, when increasing 4 from 0.42
to 0.5 or decreasing 4 from 0.42 to 0.1 on the February 13th in terms of total population (see Fig. 9 (c)), the epidemic size and
the epidemic duration have trivial change, whereas when taking the same changes in terms of partial population (Fig. 9 (d)),
the epidemic size increases from 70,160 to 82,668 and the epidemic duration delays from 72 to 82 days. As the severity of
COVID-19 in Hubei province, it may be plausible to resume work, production and other gathering activities in Hubei province
until the end of April when the epidemic was basically brought to an end. It also corresponds to the notification time for
resumption of work and production, April 24th, when Health Commission of Hubei Province announced (The National Health
Commission of P. R. China).

The q, one of our model parameters, could reflect the strength of testing efforts and timeless of contact tracing isolation
(Ali et al., 2020). Fig. 10(a) indicates that when intensifying the medical detection (q from 1/7 to 1/3) on February 7th, 2020 in
China (except Hubei), the epidemic size decreased from 13,506 to 13,242 and the epidemic duration advances about one
week. However, when taking the same detection change on 1st March and, the effects are small. Likewise, similar impacts
happen in Hubei province. It means that the earlier the medical detection is promoted, the more timely close tracing isolation
would be, the earlier COVID-19 would end and the smaller the epidemic size would be.
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Fig. 7. The numbers of confirmed infected individuals change with different incubation periods 1/q for: (a) China (except Hubei); (b) Hubei province. The red vertical lines in the plots mark the peak time for the COVID-19
spread of which the trajectory is plotted in blue curves.
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Table 4
Epidemic quantities for China except Hubei. The epidemic duration is counted starting from February 3rd, 2020.

Parameters Peak time Epidemic size Epidemic duration

q ¼ 1/3 2020.02.06 13,019 50 days
q ¼ 1/5 2020.02.07 13,399 53 days
q ¼ 1/7 2020.02.08 13,547 56 days
4 ¼ 0.1 2020.02.07 13,864 55 days
4 ¼ 0.3 2020.02.07 13,557 53 days
4 ¼ 0.5 2020.02.07 13,301 52 days

Table 5
Epidemic quantities for Hubei province. The epidemic duration is counted starting from February 3rd, 2020.

Parameters Peak time Epidemic size Epidemic duration

q ¼ 1/3 2020.02.10 66,178 69 days
q ¼ 1/5 2020.02.12 69,059 73 days
q ¼ 1/7 2020.02.13 71,079 77 days
4 ¼ 0.1 2020.02.14 71,498 77 days
4 ¼ 0.3 2020.02.13 70,759 76 days
4 ¼ 0.5 2020.02.13 69,755 75 days
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As is known, a social-contact network consists of individuals and contacts between individuals in the population
(Newman, 2010). When an infectious disease spreads in the social-contact network, the contact structure plays an vital role.
In the well-mixed models, it is assumed that the contact structure is homogeneous, not able to describe the impact of
heterogenous contacts between individuals on the spread of infectious diseases (Hou et al., 2020; Hu et al., 2020; Tang et al.,
2020a, 2020b, 2020c; Yang et al., 2020). In contrast, the pairwise models take nodes with different status and contacts be-
tween nodes as the variables, considering evolution of individuals and relationships between individualsdespecially clus-
teringdwith time (Keeling, 1999). Obviously, the pairwise model could explicitly characterize the close contacts between
individuals and household quarantine by family clusters, and analyze their effects on COVID-19 spread. Therefore, it may be a
relatively reasonable model to study COVID-19 in China. Even so, the theoretical analysis on this type of models is relatively
difficult with coupling contact structure and epidemic dynamics.

Research has demonstrated that face mask could effectively decrease infected risk of COVID-19 as coarse respiratory
droplets is one of the primary transmission routes of SARS-CoV-2 (Eikenberry et al., 2020). In other words, face mask could
greatly reduce the transmission rate of COVID-19. In fact, they combined with other NPI have made a big contribution to
containing COVID-19 in China and other countries (Chan & Yuen, 2020; Wang, Ng, & Brook, 2020). In our pairwise model, the
edge variables describe the contact relationships between individuals with different state, and the effect of facemask could be
characterized by the transmission rate. Given no available data of validity of face mask, research on their effects was not our
concern, but could be a focus in the future work.
5. Conclusion

An emerging outbreak of COVID-19 has been effectively brought in control under NPIs in China, but still wreaks havoc in
the world. Facing to the sudden epidemics, the Chinese government instantly has set up a series of extreme control measures
including the closure of city, traffic restrictions, close tracing, holiday extensions and even household (family) quarantine
since January 23rd, 2020.With the change of these policies, especially the closure of city and close contact tracing followed by
household quarantine, the clustering phenomena occasionally exhibited in form of family clusters and hence the transmission
patterns of COVID-19 infections had radically altered. Considering such signatures, we proposed a pairwise epidemic model
on a network with relevant population structure to analyze the effects of NPIs on the dynamics of COVID-19 propagation in
China. Coupling surveillance data started on February 3rdwith our proposedmodel, the effective reproduction numbers were
evaluated as 1.345 (95% CI [1.230, 1.460]) for Hubei province and 1.217 (95% CI [1.207, 1.227]) for China except Hubei. Obvi-
ously, theywere smaller than those published in some literature (Shao& Shan, 2020; Shen et al., 2020; Tang et al., 2020b; You
et al., 2020), as the control measures were implemented. It also gave further evidence that nonpharmaceutical interventions
in Chinawas effective and efficient. Interestingly, our model successfully mimics the time surveillance data from February 3rd
to February 12th and the solution of model in China (see Fig. 4). Based our model, the estimated peak arrival time and cu-
mulative confirmed cases are close to the real data of February 12th and the real number of cases of 72, 436. Sensitive analysis
also indicated that household quarantine (characterized by 4) and timeless of close contact tracing isolation (characterized by
q) make a great contribution to control of COVID-19 in China. Moreover, our results could be extended to do analysis for
Guangdong, Hunan, Henan, and Jiangxi, as seen in Fig. 11. The COVID-19 infections in China has been effectively control under
continuous timely and effective public health policies and containment measures. Our study has both significant theoretic
and practical values for providing potential suggests to control COVID-19 for the other parts of world.
657



Fig. 8. Contour plots of the epidemic size with regard to the clustering coefficient 4 and the initial exposure proportion of susceptibles [S](t0)/N in the whole population for (a) China except Hubei province and (b) Hubei
province.
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Fig. 9. Effects of the intensity of household quarantine measures (characterized by clustering coefficient 4) on COVID-19 spread in China except Hubei (top row: (a), (b)) and Hubei province (bottom row: (c), (d)) for
different exposure proportions of susceptibles in the whole population: [S](t0)/N ¼ 1 (right column: (a), (c)), [S](t0)/N ¼ 0.5 (left column: (b), (d)). The red vertical lines in the plots mark different timings of adjusting
quarantine measures.
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Fig. 10. The effects of different strength of detecting efforts on COVID-19 spread in (a) China except Hubei and (b) Hubei province. The red vertical lines in the plots mark different timings of adjusting quarantine
measures.
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Appendix A. Calculation of clustering coefficient

Since the closure of Wuhan city, Chinese villages and communities have basically been sealed off. Every family member
basically stays at home every day. The ideal case is that every family is completely isolated. In this case, every family is a
complete graph. According to the Chinese Statistic Yearbook (Chinese Statistic Yearboo, 2019), the number of family members
varies from 1 person to 10 persons. The clustering coefficient 4 of a network is defined as the ratio of the number of triangles
to the number of triples in the network. This parameter can usually quantify the possibility that two friends of a person turn
out to be friends of each other (Keeling et al., 1997; Rand, 1999). Therefore, in this special case of complete family quarantine,
the clustering coefficient is maximal, which satisfies

4 ¼ 3
P10

k¼3C
3
kFkP10

k¼3A
3
kFk

¼
P10

k¼3

�
k
3

�
Fk

2
P10

k¼3

�
k
3

�
Fk

¼ 0:5; (A.1)

where Fk is the number of families each with k family members, C represents combination and A represents permutation.
When one family member goes out for living necessities, we let the number of links for every family increase by one. It is

closest to the case of current household quarantine in China, and thus we consider this case in our paper. Ignoring the few
addition of triangles, the clustering coefficient in this case is

4 ¼ 3
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3
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¼ 0:42: (A.2)
It follows from Eqs. (A.1) and (A.2) that the addition of inter-household connections (i.e., contacts between different
families) leads to the decrease of the clustering coefficient in the entire population. The more inter-household connections,
the smaller the clustering coefficient. In the special case when the household quarantine measure is revoked, the resumption
of work and production will substantially increase individuals’ outdoor connections, giving rise to a relatively smaller clus-
tering coefficient than the value of 4 ¼ 0.42 in the case of household quarantine. Consider that every individual adds 7
outdoor contacts after they resume the work, then on average the total coefficient will be about 4 ¼ 0.1. In this paper, we
adopted the case of 4 ¼ 0.1 to study the effects of resumption of work and production.

Appendix B. Elaborations of the pairwise epidemic model (1-14)

This subsection elaborates on the dynamical equations of pairwise epidemic model (1-14) presented in the Methods
section 2.2. On the right hand side (rhs) of Eq. (1), the first term describes the addition of S individuals as the S0 individuals are
released from quarantine and return to the S state, the second and third terms denote the reduction of S individuals due to
infection through contacts with E and A individuals, respectively. The fourth term corresponds to the reduction of S in-
dividuals as they are quarantined after being traced to have close contacts with confirmed cases of the disease. On the rhs of
Eq. (2), the first and second terms represent the addition of E individuals due to infections caused by infected neighbors in
states E and A, respectively. The third term depicts the outflow of E individuals after a lapse of latency period. The fourth term
stands for the reduction of E individuals as they are quarantined by contact tracing. On the rhs of Eq. (3), the first and second
terms stand for the inflow of I individuals from the E and E0 states, respectively. The third term denotes the recovery of
confirmed cases. On the rhs of Eq. (4), the first and second terms correspond to the inflow of A individuals from the E and E0
individuals, respectively. The third term is the recovery of A individuals and the fourth term describes the reduction of A
individuals due to quarantine by contact tracing. On the rhs of Eq. (5), the first, second and third terms represent the gains of R
individuals due to recovery of I, A and A0 individuals, respectively. On the rhs of Eq. (6), the first term depicts the quarantine of
S individuals as a result of contact tracing and the second term describes the event that the S0 individuals turn back to the S
state after being released from quarantine. On the rhs of Eq. (7), the first term represents the quarantine of E individuals by
contact tracing and the second term denotes the outflow of E0 individuals after a quarantine period. On the rhs of Eq. (8), the
first term stands for the inflow of A0 resulting from quarantine of A individuals by contact tracing and the second term ex-
presses the recovery of A0 individuals.

On the rhs of Eq. (9), the first and second terms refer to the loss of SS-links due to infection through SSE-type triples and
SSA-type triples, respectively. The third term considers the decrease of SS-links for the simple reason that one S individual is
isolated from contact tracing. On the rhs of Eq. (10), the first and second terms describe the increase of SE-links as a result of
infection through SSE-type triples and SSA-type triples, respectively. The third and fourth terms correspond to the reduction
of SE-links as a result of direct infection and expiration of incubation period, respectively. The fifth and sixth terms depict the
loss of SE-links because of infection through ESE-type and ASE-type triples, respectively. The seventh and eighth terms are
attributed to quarantine of the S and E individuals, respectively, by contact tracing. On the rhs of Eq. (11), the first termdenotes
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the creation of SA-links because of the expiration of incubation period of the E individuals on SE-links. The second and third
terms stand for the outflowof SA-links as a result of recovery and infection, respectively. The fourth and fifth terms refer to the
loss of SA-links because of infection through ESA-type and ASA-type triples, respectively. The sixth and seventh terms
represent the loss of SA-links as a result of quarantine of the S and A individuals, respectively, by contact tracing. On the rhs of
Eq. (12), the first, second and third terms represent the addition of EE-links due to infection through the SE-links, ESE-type
triples and ASE-type triples, respectively. The fourth and fifth terms account for the outflow of EE-links resulting from
quarantine of one E individual on EE-links and EEE-type triples, respectively. On the rhs of Eq. (13), the first term considers the
addition of EA-links because one of the E individuals on EE-links jump into the A class after the incubation period. The second,
third and fourth terms describe the increase of EA-links because of infection through SA-links, ESA-type triples and ASA-type
triples, respectively. The fifth and sixth term depict the loss of EA-links as a result of expiration of incubation period of E
individuals and recovery of A individuals, respectively. The seventh and eighth terms refer to the outflow of EA-links due to
quarantine of the E individuals and A individuals, respectively, by contact tracing. On the rhs of Eq. (14), the first term rep-
resents the creation of AA-links because the E individuals on the links jumps into the A class after the incubation period. The
second term describes the loss of AA-links as one of the A individuals on the AA-link recovers. The third term considers the
loss of AA-links due to quarantine of one of the A individuals by contact tracing.

Fig. B.11. Fitting results of our model to real data of COVID-19 infections in other four hard-hit provinces: (a) Guangdong, (b) Henan, (c) Hunan, (d) Jiangxi. The
red points are training data for parameter fitting, while the black points are real data for validation.

Appendix C. Fitting results in other four hard-hit provinces

To further calibrate the ability of our model in prediction of the epidemic behavior, we also present in Figure B11 the fitting
results of COVID-19 spread in other four hard-hit provinces, namely Guangdong, Henan, Hunan and Jiangxi provinces. Indeed,
the model has a good fit to the trajectory of the coronavirus prevalence in these regions.
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