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Abstract
Cholera remains a significant public health threat in many parts of the world, with
differing levels of compliance to intervention strategies and undocumented cases con-
tributing to reservoir contamination with Vibrio cholerae at varying rates alongside
reported cases. To address this, we incorporate an inapparent cholera-infected com-
partment into the iSIR model and equip it with parameters depicting vaccination and
compliance levels for water and food sanitation, handwashing, and safe fecal dis-
posal. Our model shows that the bacteria shedding from the inapparent infection can
significantly affect the spread of cholera. Also, we identify that lowering the bacte-
ria ingestion rate among the susceptible and controlling the bacteria shedding from
reported infected are two key components for obtaining a disease-free state in the long
run. The model fitting to cholera outbreaks in Haiti, Kenya, Malawi, and Zimbabwe
implies that at least 88.5% of cases are inapparent, with the first reporting appearing up
to 11 weeks after the start of the outbreak. Additionally, we find that the combination
of water and food sanitation and handwashing is the most effective intervention strat-
egy for reducing the cholera outbreak peak if compliance with these measures remains
at moderate or high levels. However, with low compliance, safe fecal disposal of the
reported infected individuals combined with vaccination coverage of the susceptible
population is suggested to obtain the lowest outbreak peak.

Keywords Hidden Cholera Burden · Interventions

1 Introduction

Cholera, an intestinal sickness caused by the Vibrio cholerae bacteria, primarily arises
from polluted water and food sources (Centers for Disease Control and Prevention
2024b; Nelson et al. 2009). The contagion can rapidly spread in communities where
access to safe drinking water, proper sanitation, and adequate hygiene are lacking,
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especially in areas with limited medical resources (Taylor et al. 2015). The risk of
illness after exposure to a bacteria-contaminated reservoir depends on the pathogen
density within the reservoir and the individual’s immune response. Although the pre-
cise threshold of bacterial infection remains uncertain, it is generally estimated at least
103 to 106 Vibrio cholerae bacteria must be ingested to cause an infection (Colwell
et al. 1996; Joh et al. 2009; Levine et al. 1981). Once a sufficiently large quantity of
bacteria enters the human body, V. cholerae passes through the mucus layer of the gut
and begins to spread in the epithelium (Mandal et al. 2011). The bacteria then produce
a cholera toxin (CT), which causes the infected individual to discharge dispropor-
tionately high levels of fluids and electrolytes in the form of diarrhea (Mandal et al.
2011). As the illness progresses, the significant fluid loss experienced by the infected
individual can cause severe dehydration, kidney failure, and, in extreme cases, death
(Centers for Disease Control and Prevention 2024b; Mandal et al. 2011). Fortunately,
even in severe cases of the disease, a rapid treatment response can reduce mortality to
as little as 1% (Mandal et al. 2011), and individuals who survive a cholera infection
enjoy a strong and long-term immunity to the illness for a period of at least 3 years
(Harris 2018).

Vibrio cholerae is primarily a human pathogen (Harris 2018), though it also per-
sists in aquatic environments as a part of its natural life-cycle (Conner et al. 2016).
The infection has an incubation period of approximately 18 hours to 5 days, but pro-
gresses rapidly thereafter, with severe cases bringing about the death of the patient
in as little as 6-12 hours after the onset of symptoms (Mandal et al. 2011). Luckily,
cholera is usually not so severe, with approximately 90% of cases being moderate
or even mild and thereby being indistinguishable from other instances of aggravated
diarrhea (Centers for Disease Control and Prevention 2024b; Mandal et al. 2011).
Additionally, estimates suggest that 60-90% of cholera cases are asymptomatic, as
reported by Fung (2014) (Fung 2014), with Chao et al. estimating this figure at
around 80% (Chao et al. 2011). Moreover, King et al. (2008) also noted a wide
range of estimates for asymptomatic cases, from 75% to 99%, and provided evi-
dence supporting a high proportion of asymptomatic cholera cases (King et al. 2008).
Furthermore, Fung (2014) points out that only symptomatic cases are usually detected
in surveillance data (Fung 2014), although evidence suggests that even symptomatic
cholera cases are subject to underreporting (Ali et al. 2015; Bertuzzo et al. 2011;
Hegde et al. 2024; Mwaba et al. 2020). Consequently, Fung (2014) emphasizes the
importance of considering these underreported and asymptomatic cases in modeling
efforts to capture cholera transmission dynamics accurately (Fung 2014). Few mod-
eling efforts have considered these explicitly (Lee et al. 2020; Kirpich et al. 2015).
Meanwhile, both asymptomatic and symptomatic individuals shed Vibrio cholerae
at varying rates, thereby fueling the spread of the disease. For instance, previous
models have taken asymptomatic cases to have only one-tenth or one-hundredth of
the bacterial shedding of symptomatic cases (Chao et al. 2011; Miller Neilan et al.
2004).

While treating infected individuals using oral rehydration solutions (ORS) or intra-
venous fluids is relatively straightforward, the hurdle arises from the limitations of
healthcare systems in many developing countries. These systems often fall short of
providing essential health services, including adequate treatment, access to a clean
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water supply, and proper hygiene facilities, especially in the face of a sudden and rapid
surge of cholera outbreaks (Longini et al. 2007; Mukandavire et al. 2011; Zuckerman
et al. 2007). Although the first cholera pandemic emerged out of the Ganges Delta in
India in 1817, in recent times, the majority of cholera cases, about 60%, persist in the
sub-SaharanAfrican region each year (Ali et al. 2015;Mwaba et al. 2020). The cholera
epidemic in South Africa from 2000-2001 resulted in the tragic loss of 265 lives and
a total of 117,147 infections (Hemson et al. 2006). Recent severe outbreaks in several
developing countries have underscored the persistence of cholera around the world,
including Yemen in 2016-2018 (over 1 million suspected cases), Haiti in 2010-2012
(545,000 reported cases), Zimbabwe in 2008-2009 (almost 100,000 reported cases),
and Zambia in 2017-2018 (5905 suspected cases) (Sinyange et al. 2018; Tappero and
Tauxe 2011; Yang and Wang 2019).

Given its historical prevalence, cholera continues to exert a significant global toll,
marked by seven recorded pandemics throughout human history (Deen 2020). The
ongoing high burden of cholera is primarily attributed to the widespread absence
of basic safe drinking water and sanitation in numerous regions worldwide (Deen
2020; World Health Organization 2023). A staggering estimate in 2017 indicates
that over 2 billion people globally consume water from potentially fecally con-
taminated sources and 2.3 billion lack essential sanitation facilities, exposing them
to cholera and other waterborne infections (Global Task Force on Cholera Con-
trol (GTFCC) 2017). In October 2017, the Global Task Force on Cholera Control
(GTFCC) initiated a comprehensive global strategy aimed at a 90% reduction in
cholera-related deaths and the complete elimination of cholera in 20 out of the 47
countries currently grappling with the disease by the year 2030 (Global Task Force
on Cholera Control (GTFCC) 2017). Enhancing Water, Sanitation, and Hygiene
(WASH) infrastructure is the primary non-pharmaceutical strategy for effective
cholera control (Taylor et al. 2015). However, public compliance with these pre-
vention measures can be the deciding factor for success. For example, despite
increased awareness efforts, cholera remains a public health problem in Kenya;
while 63.8% of respondents recognized the importance of treating drinking water,
only 51.3% practiced water treatment (Orimbo et al. 2020). A study in Lebanon
revealed that approximately 71.43% of respondents were careless with regards to
cholera, despite possessing good knowledge and knowing the correct practices (Akel
et al. 2023). Therefore, identifying high-priority interventions and determining the
necessary level of public compliance to achieve a disease-curtailed outcome is cru-
cial.

Dating back to the 18th century with Bernoulli (Bernoulli 1766), mathemati-
cal modeling for infectious diseases has become indispensable in epidemiological
research (Daley and Gani 1999). These models serve as powerful tools for under-
standing infection, predicting epidemic progression, comparing interventions, and
offering guidelines for outbreak management (Hethcote 2000). Substantial progress
has already beenmade inmodelling the complex transmission of cholera. In this study,
we extend the iSIR model, originally developed by Joh et al. in 2009 (Joh et al. 2009)
to account for indirect transmission and notable for including the minimum infectious
dose required for infection, by adding an inapparent infected compartment (I u) to
create an i S I u I r R model. This new compartment I u accounts for both unreported

123



   80 Page 4 of 30 M. A. Ovi et al.

asymptomatic and underreported symptomatic cholera cases and I r represents the
reported infected population. Our model also incorporates people’s compliance with
various preventive measures, including safe food and drinking water, handwashing,
safe fecal disposal, and vaccination. Our objectives are to explore how the inappar-
ent compartment affects disease spread, to detect the percentage of reported cases,
to assess how different levels of public adherence to the prevention measures influ-
ence disease dynamics, and to identify the most effective pairs of non-pharmaceutical
interventions for minimizing disease spread. To address these objectives, we perform
both qualitative and quantitative analyses of the model and its interventions. Also,
the model is validated by fitting it to cholera surveillance data from multiple coun-
tries (Africa Centres for Disease Control and Prevention 2024; Pan American Health
Organization 2024; Rinaldo et al. 2012).

2 Model Formulation and Analyses

To accurately capture the dynamics of cholera, it is essential to incorporate the con-
sumption of contaminated water and food from sources (reservoirs) such as rivers,
dams, wells, ponds, etc. as a primary driver of indirect transmission (Centers for
Disease Control and Prevention 2024a, b; Nelson et al. 2009). The presence of an
immunological threshold (Joh et al. 2009) makes it reasonable to consider a minimum
infectious dose (MID) of Vibrio cholerae to be infected (Murphy et al. 2007). Addi-
tionally, the model should account for the proportion of unreported asymptomatic and
under-reported symptomatic cases, as highlighted in the introduction, alongside the
reported symptomatic cases. Given these considerations, we propose an extension of
the iSIRmodel (Joh et al. 2009) to the i S I u I r R (S as Susceptible class, I u as Inappar-
ent class including both unreported asymptomatic and under-reported symptomatic
infected cases, I r as Reported Symptomatic Infected class, R as Recovered class,
and B as Vibrio Cholerae density in the reservoir) model. This extension is expected
to give an advantage in reducing the possibility of cholera outbreak overestimation
by measuring the ratio between reported cholera cases and unobserved infections,
highlighting the role of these unmeasured infections in the spread of cholera. It also
includes people’s compliance levels with different intervention strategies to reduce
cholera’s spread. We take cs and ch to denote the proportion of compliance with
water and food sanitation and handwashing among susceptible individuals respec-
tively. In addition, c fu refers to the proportion of compliance with safe fecal disposal
by inapparent infected individuals, while c fr applies to reported symptomatic infected
individuals. The intended interactions among the compartments are illustrated in the
schematic diagram (Fig. 1) and framed through the set of differential equations in
(1).
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Fig. 1 Schematic diagram of compliance incorporated i S I u I r R model with pathogen density, where the
white arrow represents indirect transmission

dS

dt
= μN − (1 − cs)(1 − ch)α(B)S − vS − μS,

d I u

dt
= (1 − σ)(1 − cs)(1 − ch)α(B)S − φ I u − μI u,

d I r

dt
= σ(1 − cs)(1 − ch)α(B)S − ρ I r − μI r ,

dR

dt
= vS + φ I u + ρ I r − μR,

dB

dt
= r1B

(
1 − B

K

)
+ (

1 − c fu

)
ηu I

u + (
1 − c fr

)
ηr I

r .

(1)

Here, μ is the average birth and mortality rate based on national life expectancy; v

represents the rate of vaccination among the susceptible population; φ and ρ are the
recovery rates for I u and I r ; and ηu and ηr are the respective shedding rates for I u

and I r . The details of these variables and parameters and their units and ranges are
displayed in Table 1 in the Appendix D. It is evident from the system that the total at-
risk population N participating in the model dynamics is conserved, so R = N − S −
I u − I r . Hence, S, I u , I r , and B are the targeted compartments for further analyses.
Note that the already compliant people to the selected control measures neither get
infected (cs = ch = 1) nor contribute to bacterial transmission (c fu = c fr = 1),
so they don’t participate in the disease dynamics considered in our model. Finally,
the transmissibility α(B) of Cholera in Eq. (1) is defined as an increasing function
of Vibrio cholerae density B based on the concept of the minimum infectious dose
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(MID), the threshold pathogen density required for infection (c), as described by Joh
et al. (2009) (Joh et al. 2009). Mathematically it appears as follows:

α(B) =
{
0 if B < c,
βe(B−c)

(B−c)+H if B ≥ c.
(2)

with H being half saturation bacteria density and βe denotes the ingestion rate of
vibrio cholera from the contaminated environment.

Proposition 1 The set � = {S, I u, I r , R, B ≥ 0 : S + I u + I r + R =
N , and B < Bmax} defines a forwardly invariant region of the system (1), where

Bmax = Kr1+K
√
r21+4(1−c f )

r1ηN
K

2r1
with c f = min{c fu , c fr } and η = max{ηu, ηr }.

Please see Appendix A for the proof.
Now, we will use the following quantities to create a non-dimensionalized version

of the system (1) and conduct further analyses.
S1 = S

N ; I
u
1 = I u

N ; I r1 = I r
N ; B1 = B

K ; τ = μt ; β = βe
μ
; c1 = c

K ; ps = v+μ
μ

;

pu = φ+μ
μ

; pr = ρ+μ
μ

; qu = ηu N
μK ; qr = ηr N

μK ; r̃1 = r1
μ
, λ = H

K .

Hence, the non-dimensionalized version is given in (3).

dS1
dτ

= 1 − (1 − cS)(1 − ch)α1(B)S1 − ps S1,

d I u1
dτ

= (1 − σ)(1 − cS)(1 − ch)α1(B)S1 − pu I
u
1 ,

d I r1
dτ

= σ(1 − cS)(1 − ch)α1(B)S1 − pr I
r
1 ,

dB1

dτ
= r̃1B1 (1 − B1) + (

1 − c fu

)
qu I

u
1 + (

1 − c fr

)
qr I

r
1 ,

(3)

where

α1(B1) =
{
0 if B1 < c1,
β(B1−c1)

(B1−c1)+λ
if B1 ≥ c1.

This non-dimensionalized model 3 is used to conduct further analyses. Without any
intervention measures i.e. cs = 0; ch = 0; v = 0; c fu = 0; c fr = 0, if the minimum
infectious dose (c) is less than the carrying capacity of vibrio cholera (K ) in a particular
region, the disease persists in the long run, making it endemic. On the other hand, if
the minimum infectious dose (c) exceeds the carrying capacity, cholera may either
vanish from the region or become endemic; however, a sufficiently small pathogen
enhancement ratio (ζ - a term introduced by Joh et al. (2009)) ensures that a disease-
free environment is achieved eventually. Where the pathogen enhancement ratio is
expressed as follows,

ζ =
[
(1 − σ)qu

r̃1 pu
+ σqr

r̃1 pr

]
× β

β + 1
, (4)
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Fig. 2 The contribution of inapparent infected I u1 in spreading cholera. When the shedding contribution of
I u1 is added to the contribution of I r1 , (a) shows a significant rise in the total infection and (b) highlights
the surge of Vibrio cholera density responsible for this increased infection. Parameters value used are
cs = 0.0, ch = 0.0, v = 0.0, c fu = 0.0 (with)/1.0 (without), β = 100, c1 = 2, ps = 1, pu =
10, pr = 5, qu = 45, qr = 450 (Color figure online)

in original terms, it looks like the following,

ζ =
[
(1 − σ)ηu

φ + μ
+ σηr

ρ + μ

]
× μN

r1K
× βe

βe + μ
. (5)

Please see the Appendix B in support of these results.

2.1 Inapparent Infection Contribution and Global Sensitivity Analysis

As outlined in the Introduction, there is a significant difference between the shedding
rate of asymptomatic and symptomatic patients. The inapparent infected group consists
of both unreported asymptomatic individuals and symptomatic patients missing from
cholera data. Consequently, the shedding rate corresponding to this group may vary
across different outbreaks. Fig. 2 illustrates the substantial role inapparent infections
can play in increasing Vibrio cholerae density in the reservoir. Although reported
cases contribute to bacterial growth, this alone is insufficient to raise the density
above the minimum infectious dose, as reflected in the blue curve where no significant
rise in infections is observed. In contrast, the black curve demonstrates how declining
infections escalated into a large outbreak, driven by a sharp increase in bacterial density
attributed to the shedding from inapparent infected individuals. In this figure we have
assumed that the inapparent infected shed ten times less than the reported infected
people, following Miller Neilan et al. (2004). However, it is important to note that
the shedding contribution from inapparent has to be large enough to create significant
cholera spread (see Fig. 14 in Appendix B as an example). This difference in shedding
rate between the two groups is estimated while fitting our model to different country’s
data.
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Fig. 3 The global sensitivity analyses to identify key parameters driving the pathogen enhancement ratio
ζ positively. The plot compares the Sobol First-order indices (S1), Total-order indices (ST), and Pearson
correlation coefficients for multiple parameters, indicating their significance and effect size on ζ (Color
figure online)

Since the fluctuation of ζ plays a crucial role in determining whether the situa-
tion is disease-infused or disease-free, it is important to understand the role of the
involved parameters on the output variance of ζ . We use Sobol sensitivity analysis as
a method for global sensitivity analysis of ζ . This method calculates the First-order
indices (S1), which indicate the contribution to the output variance individually, and
the Total-order indices (ST) which measure the total effect of each input parameter,
including interactions with other parameters. Additionally, the Pearson correlation
coefficient is calculated to understand how each input parameter affects the output ζ ,
whether positively or negatively. This helps us gauge the strength and direction of the
relationships between inputs and outputs. We generate the Fig. 3 using the eq. (5) and
the input ranges obtained from Table 1 in the Appendix D.

With high Sobol indices and strongly negative correlations, it is clear that r and K
are the most influential parameters (see Fig. 3 ). Other negatively correlated param-
eters φ and μ have minimal effects, while the recovery rate of symptomatic infected
individuals ρ has a moderate impact. Among the positively impacting parameters,
ηu, ηr , σ , and βe, the ingestion rate of Vibrio cholerae from the environment (βe) and
the shedding rate of symptomatic infected individuals (ηr ) have notable impacts on
the output variance of ζ . Our concern is to reduce the positive impact of ηu, ηr , and
βe through intervention strategies, while all other parameters are fixed based on the
infected region. The interventions-mediated pathogen enhancement ratio, which we
call the controlled pathogen enhancement ratio (ζc), in its original terms is:

ζc =
[

(1 − σ)(1 − c fu )ηu
φ + μ

+ σ(1 − c fr )ηr
ρ + μ

]
× μN

r1K
× (1 − cs)(1 − ch)βe

(1 − cs)(1 − ch)βe + v + μ
.

(6)
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The impacts of shedding rate-related terms are influenced by compliance with safe
fecal disposal, while bacteria ingestion rate-related terms are controlled by compliance
with water and food sanitation, handwashing, and vaccination.

2.2 Intervention Analyses

Cholera predominantly affects underdeveloped and developing countries, where it is
not feasible to implement all the recommended interventions due to the requirement of
substantial resources and financial investments. Therefore, our objective is to identify
a pair of interventions that authorities can prioritize to reduce the surge in cholera
transmission peak. Moreover, it is important to achieve a sufficient reduction in the
pathogen enhancement ratio ζ to approach a cholera-free state in the long run. To
achieve this, first, we assess the level of population compliance needed to reduce the
pathogen enhancement ratio when these interventions are implemented in pairs. This
analysis is conducted in two parts: the first part explores scenarios without vaccination,
and the second part examines the impact of including vaccination as an intervention.
The reduction process involves targeting a specific pair of interventions at varying
compliance levels while keeping other interventions fixed at either low or high com-
pliance levels. By doing so, we can observe the required compliance levels for the
targeted interventions to reduce ζc effectively.

In panel (a) of Fig. 4, we examine how varying the compliance with safe fecal dis-
posal by inapparent infected (c fu ) and reported infected (c fr ) affects ζc while holding
other intervention compliance levels constant. The results from the first row suggest
that maintaining a high level of compliance in reported individuals (c fr ) is essential
to reduce ζc significantly, regardless of the compliance level in inapparent individuals
(c fu ). However, increasing c fu linearly reduces the burden on c fr . The magnitude of
this reduction depends on the difference in the shedding rate between the inapparent
and reported groups. One important observation is that, with the introduction of vacci-
nation, achieving a high level of compliance with safe fecal disposal among reported
individuals (c fr ) leads to a greater reduction in the critical threshold ζc compared to
the scenario without vaccination.

In panel (b), we considered the variation in water and food sanitation compliance
(cs) and handwashing compliance (ch) controlling βe. Both compliance levels need
to be very high to reduce ζc in the absence of vaccination. However, the pressure on
these two factors is greatly alleviated when vaccination is introduced.

In panel (c), we focused on varying cs and c fr . Without vaccination, high c fr is
favored for effectively reducing ζc. As with the previous scenarios, the introduction
of vaccination improves the situation, allowing both cs and c fr to be around medium
levels to achieve a reduced ζc.

The analyses reveal that high compliance with safe fecal disposal among reported
infected individuals has the greatest impact on reducing the pathogen enhancement
ratio when considered alongside other interventions, without vaccination. This step
implicitly controls the ingestion quantity ofVibrio cholerae by reducing the addition of
bacteria to the reservoirs. Meanwhile, strict compliance with water and food sanitation
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Fig. 4 The dynamics of controlled pathogen enhancement ratio ζc . To achieve a significant reduction in ζc
without vaccination: (a) In c fu vs c fr graph: c fr must remain high while increasing c fu linearly reduces the
pressure on c fr , (b) In cs vs ch graph: Both parameters require to be very high and they directly reduce the
individual level of infection, (c) In cs vs c fr graph: c fr needs to be high, though very high cs can alleviate
the pressure on c fr in reducing ζc . With vaccination, the parameter pairs interact more cooperatively to
further reduce ζc (Color figure online)

and handwashing are necessary for susceptible individuals to reduce the pathogen
enhancement ratio. Thesemeasures directly affect the ingestion rate ofVibrio cholerae
from the reservoir, thereby reducing cholera transmission. However, the introduction
of vaccination eases the reliance on these interventions, allowing for more flexibility
in compliance levels while still achieving significant reductions in ζc.

To determine the most effective pair of interventions in reducing the peak of the
cholera-infected population, we generate a figure that highlights the set creating the
least average peak size of the reported infected population when a certain (MID,
Level of Compliance) coordinate is chosen. The peak size refers to the maximum
number of reported infections during the outbreak over a time period. Since the set
that results in the smallest peak size varies based on the relationship between MID
and the initial bacteria population, for each fixed pair of (MID, Compliance Level),
the set that produces the lowest average peak size is determined by calculating the
average peak size for each set over a range of initial bacteria population values. The
lowest average providing set’s corresponding color is then plotted as a tiny square
in the MID vs Level of Compliance graph. The abruptness noticed in the plotting is
attributed to this square shape. Note that each set is defined by selecting a specific
pair of interventions (mentioned on the right side of each bar corresponding to the
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Fig. 5 Selecting intervention pairs with the most reduced peak size of the reported infected population.
Here, the compliance level for intervention strategies other than the selected pair is set at 0.05 ( For example,
with chosen compliance level of 70%, Set 1- where the selected pair for varied compliance is c fr and c fu
-contains the values c fu = 0.7, c fr = 0.7 while cs = 0.05, ch = 0.05 ) and vaccination is adjusted to
cover 15% of the susceptible population in 30 weeks if included (Color figure online)

set), for which compliance levels are varied, while the other interventions in that
set are fixed at a very low compliance level of 0.05 (5%). This setup facilitates the
identification of the most impactful combination of strategies in reducing the peak
size under various situations. From the analysis illustrated in Fig. 5, combining water
and food sanitation with handwashing proves to be the most effective pair at reducing
reported cholera infections. Compared to other intervention pairs, this combination
consistently reduces the peak size of reported casesmost if the compliance level for the
selected interventions is set at 32% or higher. However, for compliance levels lower
than that the combination of safe fecal disposal of the reported infected population and
high vaccination dominates in reducing the peak size. Here we define compliance level
32% or higher as moderate and high compliance, and below that as low compliance
(following the percentage in Jobse et al. (2015)). A similar trend is observed for
inapparent cholera cases too (see Fig. 15 in Appendix C). Overall, a reduction in the
peak size is expected to provide a window for authorities to improve medical and other
interventions.

3 Application: Cholera Transmission in Multiple Countries

To verify the validity of the model to real-world cholera outbreaks, we compiled the
cholera case count data for several countries (Haiti, Kenya, Malawi, and Zimbabwe
Africa Centres for Disease Control and Prevention (2024); PanAmericanHealthOrga-
nization (2024); Rinaldo et al. (2012)) and used them to fit to the model. In particular,
the case count data for the V. cholerae outbreak in Haiti from 2010 to 2011 was
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adapted from Rinaldo et al. (2012) Rinaldo et al. (2012), while a more recent outbreak
in Haiti (from October 2022 to March 2023) was adapted from the Pan American
Health Organization (PAHO) (Pan American Health Organization 2024). Meanwhile,
the case count data for Kenya, Malawi and Zimbabwe was compiled from January
2023 toMay 2024 from theweekly surveillance reports provided by theAfrica Centres
for Disease Control and Prevention (Africa CDC) (Africa Centres for Disease Control
and Prevention 2024). Since our model clearly distinguishes between inapparent and
reported cholera cases, we fit the solution curve for reported cholera infections to the
cholera outbreak data from each country, using parameter values based on the ranges
provided in Table 1 of the Appendix D.

To obtain an optimal model fit, we used least-squares fitting techniques using the
Cholera outbreak model in (1), and took cs = 0, ch = 0, c fu = 0, c fr = 0 and ν = 0
since we assume a negligible level of control measures being implemented in the
isolated and impoverished communitiesmost vulnerable to cholera (Amisu et al. 2024;
Azevedo 2017; Kumar et al. 2022; Ngwa et al. 2017; Tappero and Tauxe 2011). We
also take the recovery rate for inapparent cases to be based on the asymptomatic
and symptomatic ranges mentioned in Table 1, ensuring that it equals or exceeds the
recovery rate chosen for reported cases as established in the datafitting byMillerNeilan
et al. (2004)). We further take the mortality parameter μ = 1

Life expectancy∗52.1 for each
country, with the life expectancy data given by theWorld Health Organization (WHO)
(World Health Organization Data 2024). Furthermore, since several of the outbreaks
studied did not begin reporting their case counts until an outbreak was well underway
(as evidenced by large initial case counts), the fits were also tested with a ‘burn-in’
period as needed, which was also estimated using least-squares fitting. This may be
of use in estimating the beginning time of the outbreak.

To initialize the compartment values of the model fits, we took the total population
N to denote all individuals who fail to comply with control measures (consistent with
our assumption cs = 0, ch = 0, c fu = 0, c fr = 0) and who have no pre-existing
immunity to cholera, given the model assumption that individuals with pre-existing
immunity or who implement appropriate preventive measures are not susceptible to
the cholera outbreak; since this population size N is influenced by multiple unknown
environmental, demographic, cultural, and economic factors and hence cannot feasibly
be estimated, we took an assumed N -value of approximately 10.5 − 13.5 times the
cumulative recorded case count for each outbreak. Assuming that individuals who
have recovered from previous cholera infection enjoy strong and long-term immunity
(Harris 2018) and hence will not contribute to any further cholera outbreaks, we
disregard any pre-existing members of the recovered compartment R(t) and hence
take the initial size to be R(0) = 0. Meanwhile, the initial value for the reported
infected compartment I r (t) was taken to be I r (0) = I0 (the first reported weekly
case count) for outbreaks with no burn-in time, and I r (0) = 1 for outbreaks with a
burn-in time and unknown initial case count. On the other hand, the initial size of the
unreported compartment I u(t) is taken to be I u(0) = (1−σ)I r (0)

σ
, where the value of

the (constant) reporting rateσ is estimated using least squares fitting of theweekly case
data from each outbreak. By extension, the initial value of the susceptible compartment
is taken to be S(0) = N − I r (0) − I u(0). Finally, the initial value of the Bacteria
compartment B(0) is taken to be slightly greater than the minimum infectious dose
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(MID), in order for indirect transmission to commence in the population. It should
be noted that including an original recovered compartment R(0) = R′ in the overall
population (yielding N ′ = N + R′) will not impact the model fits and overall trends,
as this initial recovered compartment does not interact with the outbreak (given their
pre-existing immunity). Furthermore, our simulations indicate that the model trends
are resilient to changes in the initialization of the reported compartment I r (t), since
bacterial levels, instead of initial case counts, are predominantly responsible for the
early spread of the disease in the susceptible population.

To verify the quality of the model fits to each of the outbreaks, we also fitted two
other curves, given in Eqs. 7 and 8, to the weekly case data, and compared the resulting
coefficients of determination R2 for each of these curves to our model fits; it should be
noted that Eqs. 7 and 8 below were selected since they replicate the case count trends
relatively well, for some constants a, b, c, d, e, f , and g.

f (t) = c

a
√
2π

∗ e
− 1

2

(
t−b
a

)2
(7)

g(t) = c

d(t − g)4 + e(t − g) + f
(8)

Fitting the data for the 2010-2011 Cholera outbreak in Haiti (Rinaldo et al. 2012)
yielded the weekly and cumulative case plots in Fig. 6, respectively. The fit yielded a
mean reporting rate estimate of σ ≈ 0.0921 with standard deviation of approximately
0.00129, while the shedding ratio was estimated to be approximately 20.241 with
standard deviation of 0.353 and the burn-in time was estimated to be 9 weeks. The
weekly case plot in Fig. 6 yielded a corresponding coefficient of determination of
R2

weekly ≈ 0.7786, while fitting Eqs. 7 and 8 yielded R2
f ≈ 0.7174 and R2

g ≈ 0.7636,
respectively. Meanwhile, fitting the data for the 2022-2023 Cholera outbreak in Haiti
(Pan American Health Organization 2024) yielded the weekly and cumulative case
plots in Fig. 7, respectively, with an estimated reporting rate of σ ≈ 0.1077 with
standard deviation of approximately 0.000722, as well as a mean shedding ratio of
approximately 45.375 with standard deviation 0.1768. The weekly case plot in Fig. 7
yielded a corresponding coefficient of determination of R2

weekly ≈ 0.8756, while

fitting Eqs. 7 and 8 yielded R2
f ≈ 0.5444 and R2

g ≈ 0.8548, respectively.
Thirdly, fitting the model to the weekly recorded cases from the Kenya outbreak

(Africa Centres for Disease Control and Prevention 2024) yielded a mean reporting
rate estimate of σ ≈ 0.1147 with standard deviation of approximately 0.001677,
while the mean shedding ratio is approximately 48.50 with standard deviation of
approximately 0.3536 and the estimated burn-in time is 11weeks. However, the Kenya
outbreak contained several weeks of missing case data which negatively impacted the
cumulative model fit; to overcome this, we estimated the missing weekly case counts
using linear interpolation, and included the weekly and estimated cumulative case
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Fig. 6 Weekly and cumulative model plots for the 2010-2011 Cholera outbreak in Haiti (R2
weekly ≈

0.7786 and R2
cumul ≈ 0.9988, respectively), with estimated reporting ratio σ ≈ 0.0921 and reported

cases’ shedding rate of approximately 20.241 times greater than inapparent cases. The inapparent infection
recovery rate per day is φ ≈ 0.143 and the corresponding inapparent shedding rate is ηu ≈ 0.444 (Color
figure online)

Fig. 7 Weekly and cumulative model plots for the 2022-2023 Cholera outbreak in Haiti (R2
weekly ≈

0.8756 and R2
cumul ≈ 0.9989, respectively), with estimated reporting ratio σ ≈ 0.1077 and reported

cases’ shedding rate of approximately 45.375 times greater than inapparent cases. The inapparent infection
recovery rate per day is φ ≈ 0.214 and the corresponding inapparent shedding rate is ηu ≈ 0.264 (Color
figure online)

plots in Fig. 16 in Appendix E, with the estimatedmissing data distinctly labeled in the
cumulative plot. The weekly case plot in Fig. 16 yielded a corresponding coefficient of
determination of R2

weekly ≈ 0.49210, while fitting Eqs. 7 and 8 yielded R2
f ≈ 0.49206

and R2
g ≈ 0.48465, respectively.

Fourthly, fitting the model to the weekly recorded case data from the Malawi out-
break (Africa Centres for Disease Control and Prevention 2024) yielded the weekly
and cumulative case plots in Fig. 8, respectively. The fit yielded a mean reporting
rate estimate of σ ≈ 0.0836 with standard deviation of approximately 0.00096, while
the mean shedding ratio was approximately 10.501 with standard deviation approx-
imately 0.3509 and the estimated burn-in time was 9 weeks. The weekly case plot
in Fig. 8 yielded a corresponding coefficient of determination of R2

weekly ≈ 0.9614,

while fitting Eqs. 7 and 8 yielded R2
f ≈ 0.9585 and R2

g ≈ 0.9594, respectively.
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Fig. 8 Weekly and cumulative model plots for the Cholera outbreak in Malawi (R2
weekly ≈ 0.9614 and

R2
cumul ≈ 0.9996, respectively), with estimated reporting ratio σ ≈ 0.0836 and reported cases’ shedding

rate of approximately 10.501 times greater than inapparent cases. The inapparent infection recovery rate
per day is φ ≈ 0.143 and the corresponding inapparent shedding rate is ηu ≈ 0.667 (Color figure online)

Finally, fitting the model to the weekly recorded case data from the Zimbabwe out-
break (Africa Centres for Disease Control and Prevention 2024) using least-squares
fitting yielded the weekly and cumulative case plots in Fig. 9, respectively. In this
case, the estimated reporting rate was σ ≈ 0.09425 with standard deviation of
approximately 0.001576, while the mean shedding ratio was approximately 24.75
with standard deviation approximately 0.0707. The weekly case plot in Fig. 9 yielded
a corresponding coefficient of determination of R2

weekly ≈ 0.8364, while fitting Eqs. 7

and 8 yielded R2
f ≈ 0.8374 and R2

g ≈ 0.8217, respectively. In all, the fitting results
and estimated parameters in Figs. 6, 7, 8, 9, and 16 are consistent with the approx-
imate severity rate and shedding rates outlined by Centers for Disease Control and
Prevention (2024b); Chao et al. (2011); Miller Neilan et al. (2004), and the corre-
sponding coefficients of determination R2

weekly indicate that our model fits are (almost
exclusively) superior to fitting the data using Eqs. 7 and 8. The graphical fits of the
Cholera Model (1) and Eqs. 7 and 8, as well as their corresponding coefficients of
determination R2, are given in Appendix F.

We also record and compare the final cumulative number of reported and total
(reported plus inapparent) cases estimated by the model fits for Haiti (Pan Ameri-
can Health Organization 2024; Rinaldo et al. 2012), Kenya, Malawi, and Zimbabwe
(Africa Centres for Disease Control and Prevention 2024). It should be noted that,
in cases of missing reporting data at the beginning of (or during) the outbreak, the
estimated number of reported cases may exceed the recorded number. In particular,
the model fit for the 2010-2011 outbreak in Haiti estimated a cumulative number of
approximately 299, 946 recorded and 3, 260, 285 total cases.Meanwhile, themodel fit
for the 2022-2023 outbreak in Haiti estimated a cumulative number of approximately
34, 029 recorded and 241, 396 total cases. The lowest estimated case counts came
from the model fit for Kenya, which estimated a cumulative number of approximately
12, 100 recorded and 100, 573 total cases. Furthermore, the model fit for Malawi esti-
mated a cumulative number of approximately 53, 956 recorded and 467, 351 total
cases. Finally, the model fit for Zimbabwe estimated a cumulative number of approx-

123



   80 Page 16 of 30 M. A. Ovi et al.

Fig. 9 Weekly and cumulative model plots for the Cholera outbreak in Zimbabwe (R2
weekly ≈ 0.8364 and

R2
cumul ≈ 0.9950, respectively), with estimated reporting ratio σ ≈ 0.09425 and reported cases’ shedding

rate of approximately 24.75 times greater than inapparent cases. The inapparent infection recovery rate per
day is φ ≈ 0.143 and the corresponding inapparent shedding rate is ηu ≈ 0.182 (Color figure online)

Fig. 10 Estimated cumulative case counts. Haiti (2010-2011): 299,946 recorded and 3,260,285 total. Haiti
(2022-2023): 34,029 recorded and 241,396 total. Kenya: 12,100 recorded and 100,573 total. Malawi:
53,956 recorded and 467,351 total. Zimbabwe: 30,120 recorded and 320,429 total (Color figure online)

imately 30, 120 recorded and 320, 429 total cases. The cumulative case counts for
Haiti (2010-2011 and 2022-2023), Kenya, Malawi, and Zimbabwe are summarized in
the bar chart in Fig. 10.

3.1 Testing Control Measures

Now that we have obtained a least-squares model fit to the reported data for the 2010-
2011 and 2022-2023 Cholera outbreaks in Haiti (Rinaldo et al. 2012; Pan American
Health Organization 2024) as well as for Kenya, Malawi, and Zimbabwe Africa Cen-
tres for Disease Control and Prevention (2024), it is instructive to estimate how the
implementation of various control measures would influence the spread of cholera in
those outbreaks. In situations of limited resources where not all control measures can
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be effectively implemented simultaneously, this analysis could help evaluate which
control measures should be prioritized.

The effectiveness of several control measures are studied in these outbreaks, includ-
ing proper water/food sanitation, handwashing, safe fecal disposal, and vaccination. In
particular, we analyze several combinations of these control measures: (1) water/food
sanitation and handwashing; (2) water/food sanitation and safe fecal disposal for
reported cases; (3) safe fecal disposal for reported cases and vaccination; and (4)
safe fecal disposal for both reported and inapparent cases.

To gauge the effectiveness of these control measures, we elected to take a com-
pliance level of 70% with regards to the selected combination of non-pharmaceutical
control measures, and a baseline of 5% compliance for remaining measures. Mean-
while, assuming that a vaccination campaign would achieve 15% vaccination in the
susceptible population over an outbreak period of approximately 30 weeks, we take
the vaccination rate per week to be ν = 0.15

30 = 0.005 (or 0.5%).
Plotting the four control measure combinations and base case model fits for the

2010-2011 and the 2022-2023 Cholera outbreaks in Haiti (Rinaldo et al. 2012; Pan
American Health Organization 2024) as well as the Malawi and Zimbabwe outbreaks
(Africa Centres forDiseaseControl and Prevention 2024) yields Fig. 11, while plotting
the effects of these control measures for the Kenya outbreak are given in Fig. 16 in
Appendix E. As may be observed in the outbreaks depicted in Figs. 11 and 16, the
most effective combination of control measures (in terms of reducing and delaying the
peak of the outbreak as well as reducing cumulative case counts) is safe water/food
sanitation and handwashing. On the other hand, the control measures of safe fecal
disposal and vaccination proved to be least effective in reducing the spread of cholera
in these outbreaks. These results match the conclusions of Wang &Wang (2015), who
point out the relative ineffectiveness of vaccination in high bacterial growth scenarios
and the importance of infrastructure development and water sanitation as a primary
means of limiting cholera (Wang and Wang 2015).

Overall, the results of Fig. 11 clearly support prioritizing the non-pharmaceutical
control measures of safe water/food sanitation and handwashing as the most effective
means of slowing down and reducing the spread of cholera outbreaks.

4 Discussion

Despite cholera posing a significant threat to public health, many regions continue to
neglect the necessary preventionmeasures (Akel et al. 2023;Orimbo et al. 2020).Unre-
ported asymptomatic, underreported symptomatic, and reported symptomatic cholera
cases in these regions further contaminate reservoirs with varying levels of Vibrio
cholerae bacteria. In this study, we proposed an extension to Joh et al.’s (2009) basic
iSIR model (Joh et al. 2009) to include inapparent infection, vaccination, and compli-
ance levels for multiple non-pharmaceutical intervention strategies against cholera. In
particular, compliance with non-pharmaceutical intervention strategies such as water
and food sanitation and handwashing aimed to reduce the ingestion rates of Vibrio
cholerae, thereby limiting transmission, while safe fecal disposal reduced the level of
contamination of environmental reservoirs by bacteria shed from infected individuals.
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Fig. 11 Testing the effectiveness of pairs of control measures on reducing cholera spread for Haiti, Malawi
andZimbabweoutbreaks, taking 70%compliance and0.5%vaccination rate perweek.Water/food sanitation
and handwashing are themost effective pair of controlmeasures in bothweekly case fits (left) and cumulative
case trajectories (right). Here, r and u in the legends represent reported and inapparent, respectively (Color
figure online)
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Additionally, vaccination enhanced the protection of susceptible individuals against
cholera, reduced the size of the Susceptible compartment, and consequently lowered
the impact of the ingestion rate on the pathogen enhancement ratio. It should be noted
that we maintained Joh et al.’s (2009) (Joh et al. 2009) emphasis on the incorporation
of a minimum infectious dose required for the spread of infection in our i S I u I r R
model. Numerical simulations of the model showed that when sufficient shedding
contribution from inapparent infected individuals is added to that of reported infected
people, the Vibrio cholerae density surged, and consequently it amplified the spread of
the disease significantly. The equilibria and stability analyses (shown in Appendix B)
of the model entailed that the preferable approach is to achieve a sufficiently small
pathogen enhancement ratio to obtain a disease-free situation in the long run. The
global sensitivity analysis of the pathogen enhancement ratio highlights the need to
reduce the ingestion rate of Vibrio cholerae from the reservoir by the susceptible
individuals and to increase safe fecal disposal by infected individuals to reduce the
enhancement ratio.

Now, considering the need to limit the financial burden on developing countries of
implementing all considered cholera intervention strategies, we further investigated
which pair of interventions would prove most effective at reducing cholera infection
curve peak sizes. In this case, compliance with water and food sanitation and hand-
washing was found to be the most effective combination in significantly reducing the
peak size of infection; this is because these intervention strategies directly limit the
spread of infection on an individual level, provided that the people’s compliance to
these selected intervention strategies are at a moderate or high level (≥ 32%). Other-
wise, if people have a low tendency to follow the interventions, then the combination
of targeting safe fecal disposal among the reported infected population and conduct-
ing a high vaccination campaign for the susceptible population can most effectively
reduce the peak size.

To verify the validity of the model to real-world epidemics, we fitted the model to
the cholera outbreak data recorded from three African countries (Kenya,Malawi, Zim-
babwe) (Africa Centres for Disease Control and Prevention 2024) and one Caribbean
country (Haiti) (Pan American Health Organization 2024; Rinaldo et al. 2012), yield-
ing Figs. 6, 7, 8, 9, 11, and 16. Our model fitting results indicate that up to 91.6% of
infections are unreported or inapparent, while the shedding rate ratio between reported
and inapparent infected individuals ranges from approximately 10.50 to 48.50. In sit-
uations where case data was only available after the outbreak was well underway,
the model fit estimated a burn-in time of as much as 11 weeks from the start of the
outbreak until the commencement of reporting. Analyzing the effect of moderate to
high compliance rates for the selected pairs of interventions while maintaining only
5% compliance for other measures, our fitting analysis identified that water/food san-
itation and handwashing were unequivocally the most effective control measures in
reducing the spread of cholera. This finding aligns with observations by Andrews
and Basu (2011), who reported that the use of clean water had the strongest impact
on reducing cases and mortality during the cholera outbreak in Haiti (Andrews and
Basu 2011). The overall effectiveness of non-pharmaceutical interventions in con-
trolling cholera spread is further supported by the Centres for Disease Control and
Prevention, which note that the near-eradication of cholera in the United States was
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achieved through the implementation of modern water and sewage sanitation systems
(Centers for Disease Control and Prevention 2024a), not mass vaccination or other
pharmaceutical interventions. In conclusion, our observations and results indicate that
implementing water/food sanitation and handwashing is the most effective combina-
tion of intervention strategies and should be prioritized in cases of moderate or high
compliance (≥ 32%) to most effectively limit the spread of cholera outbreaks.

One potential limitation of our work might be treating the asymptomatic and under-
reported symptomatic people in a single compartment to facilitate the tractability of
inapparent infections, intervention-focused analysis, and explicit reported data fitting,
despite their differences in recovery and shedding rates. Several directions of further
development of this model could be made, particularly in the setting of the minimum
infectious dose. These include introducing a separate compartment for vaccinated
individuals with waning immunity and adding a protected compartment for those who
are wealthy and educated (susceptible but with a lower risk of exposure) (Ng’ Ombe
et al. 2022; Dowling et al. 2013). In the current model, compliance is treated as a
fixed parameter; however, it could be allowed to vary according to an evolutionary
game theory approach, reflecting individual decisions based on payoffs. This would
better capture the adaptive nature of human behavior, where people choose interven-
tions based on perceived benefits (Alexander 2023). Also, adding a time delay for
implementing the strategies and considering randomness in the data sets can be other
directions of extension.

Appendix A: Proof of Forward Invarince

From the first equation of the system 1, Ṡ(S = 0) = μN > 0. Hence S(t) > 0 for
t > 0.

Now combining the fact that α(B) ≥ 0, v ≥ 0 and S(t) > 0 we get, İ u(I u = 0) ≥
0, İ r (I r = 0) ≥ 0 and Ṙ(R = 0) ≥ 0. Thus, I u(t) ≥ 0, I r (t) ≥ 0 and R(t) ≥ 0 for
t > 0.

From the equationofVibrio choleradensity,wehave Ḃ(B = 0) = (
1 − c fu

)
ηu I u+(

1 − c fr

)
ηr I r . ≥ 0. So B(t) ≥ 0 with t > 0. Since S + I u + I r + R = N , with

c f = min{c fu , c fr } and η = max{ηu, ηr } the fifth equation of system 1 gives,

Ḃ < r1B

(
1 − B

K

)
+ (1 − c f )ηN = F(B).

Now from the roots of F(B) = 0, we can define Bmax as follows,

Bmax =
Kr1 + K

√
r21 + 4(1 − c f )

r1ηN
K

2r1

such that if B(0) ∈ [0, Bmax) then B(t) ∈ [0, Bmax) for t ≥ 0.
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Appendix B: Equilibria and Stability Details

We use the non-dimensionalized model 3 to determine the equilibria and consider
whether the transmissibility, α1(B1), is zero or non-zero. Also, the following results
are derived without any intervention strategies i.e. cs = 0; ch = 0; v = 0; c fu =
0; c fr = 0.

When transmissibility is zero, disease-free equilibria are expected. The exis-
tence and number of equilibrium points depend on the rescaled minimum infectious
dose (MID) value c1. If c1 < 1, meaning the MID does not exceed the bac-
terial carrying capacity in the environment, there is only one equilibrium point,
E1 = (S1, I u1 , I r1 , B1) = (1, 0, 0, 0), which is a saddle point (see Fig. 13). Its stability
property is identified from the Eigenvalues of the corresponding Jacobian, where

J (E1) =

⎛
⎜⎜⎝

−ps 0 0 0
0 −pu 0 0
0 0 −pr 0
0 qu qr r1

⎞
⎟⎟⎠,

and the existence of the positive eigenvalue r1 makes the equilibrium E1 saddle, while
other three −ps,−pu,−pr are clearly negative. Conversely, if c1 > 1, meaning the
MID exceeds the bacterial carrying capacity, there is an additional stable equilibrium
point, E2 = (S2, I u2 , I r2 , B1) = (1, 0, 0, 1) (see Fig. 13 (b) & 13(c)). All eigenvalues
of the corresponding Jacobian at E2 are negative, where

J (E2) =

⎛
⎜⎜⎝

−ps 0 0 0
0 −pu 0 0
0 0 −pr 0
0 qu qr −r1

⎞
⎟⎟⎠,

With the non-zero transmissibility i.e. α1(B1) = β(B1−c1)
(B1−c1)+λ

, under the con-
dition B∗

1 > c1, the equilibria appear to be of the form (S∗
1 , A

∗
1, I

∗
1 , B∗

1 ) =(
1

α1(B∗
1 )+1 ,

(1−σ)pr
σ pu

× r̃1B∗
1 (B∗

1−1)

qu
(1−σ)pr

σ pu
+qr

,
r̃1B∗

1 (B∗
1−1)

qu
(1−σ)pr

σ pu
+qr

, B∗
1

)
where B∗

1 is obtained as roots

of the the following equation:

B∗
1 (B∗

1 − 1)

[
B∗
1 −

(
c1 − λ

β + 1

)]
= ζ(B∗

1 − c1) (9)

with

ζ =
[
(1 − σ)qu

r̃1 pu
+ σqr

r̃1 pr

]
× β

β + 1
, (10)
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Fig. 12 Absence of Saddle-Node bifurcation for sufficiently small ζ with bifurcation parameter c1. (a) The
shift in the number of non-trivial equilibrium pathogen densities with B∗

1 > c1 for various ζ , using Eq. (9).
(b) Showcase of stable states in a bifurcation diagram for β = 100 and λ = 1 (Color figure online)

and in original terms, it looks like the following:

ζ =
[
(1 − σ)ηu

φ + μ
+ σηr

ρ + μ

]
× μN

r1K
× βe

βe + μ
. (11)

Which yields Eq. 5. The equilibrium points in this case are found by analyzing the
roots of the Eq. (9). While every other parameter is fixed, the relationship between c1
and ζ is significant in determining the number of equilibrium points. With c1 < 1,
there is always a root B∗

1 > c1 of the Eq. (Fig. 12(a)) for any value of ζ corresponding
to a stable equilibrium E∗

1 = (S∗
1 , I

u∗
1 , I r∗1 , B∗

1 ) (Fig. 13(a)).
If c1 > 1, the number of equilibriumpoints changeswith the value of ζ (Fig. 12). For

a sufficiently small ζ value, there is no equilibrium with B∗
1 > c1 and the equilibrium

E2 = (1, 0, 0, 1) becomes stable (see Fig. 13 (c)). However, as the value of ζ increases,
two additional equilibria, E∗

3 = (S∗
3 , I

u∗
3 , I r∗3 , B∗

3 ) and E∗
4 = (S∗

4 , I
u∗
4 , I r∗4 , B∗

4 ) are
created via saddle node bifurcation (Fig. 12). In this case, the equilibrium E∗

4 is stable
with I u∗

4 > I u∗
3 , while E∗

3 a saddle point (Fig. 13(b)). Note that we couldn’t prove the
stability of non-trivial equilibrium E∗

1 , E
∗
3 , and E∗

4 analytically, but the stability result
is concluded based on the numerical results shown in Fig. 12 and 13.

We summarize the result in the following proposition.

Proposition 2 (Equilibria)

(i) For c1 < 1, two equilibria exist: E1 = (1, 0, 0, 0) is saddle, while E∗
1 =

(S∗
1 , I

u∗
1 , I r∗1 , B∗

1 ) is stable with I u∗
1 , I r∗1 > 0. This implies that cholera becomes

endemic in this scenario.
(ii) For c1 > 1, there always exist two equilibria: E1 = (1, 0, 0, 0) which is a saddle

point and E2 = (1, 0, 0, 1), which is stable. For sufficiently large values of ζ , up
to additional two equilibria can exist: E∗

3 = (S∗
3 , I

u∗
3 , I r∗3 , B∗

3 ), a saddle point
and E∗

4 = (S∗
4 , I

u∗
4 , I r∗4 , B∗

4 ) a stable point, where I u∗
4 > I u∗

3 . However, no
additional equilibria exist for small enough ζ values, and the disease-free state
E2 = (1, 0, 0, 1) becomes stable for almost every initial condition.
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Fig. 13 Schematic diagram of phase-portraits projected into I u1 − I r1 − B1 space. (a) Corresponding to the
region I in Fig. 12(b): the disease persists asymptotically where c1 = 0.8 < 1, ζ = 2.23 (b) corresponding
to region II: the situation is bistable i.e. most trajectories approach either disease-free (with bacteria at
carrying capacity) or endemic situation where c1 = 1.5, ζ = 2.23 (c) corresponding to region III: the
infected cases approaches zero though bacteria survive at carrying capacity where c1 = 2.5, ζ = 2.23
(Color figure online)

From the above analyses, it is evident that the rise and fall of ζ play a crucial role in
determining whether the situation is disease-infused or disease-free. According to Joh
et al. (2009) (Joh et al. 2009), ζ is referred to as the pathogen enhancement ratio.

Appendix C

See Figs. 14 and 15.

Fig. 14 Alargeoutbreak requiring sufficient shedding from inapparent infected.Here, (a) shows a significant
rise in the total infection and (b) highlights the surge of Vibrio cholera density responsible for this increased
infection. Parameters value used are cs = 0.0, ch = 0.0, v = 0.0, c fr = 0.0 β = 100, c1 = 2, ps =
1, pu = 10, pr = 5, qu = 0/18.75/19.57, qr = 450 (Color figure online)
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Fig. 15 Selecting intervention pairs with the most reduced peak size of the inapparent infected population.
Here, the compliance level for intervention strategies other than the selected pair is set at 0.05 ( For example,
with chosen compliance level of 70%, Set 1- where the selected pair for varied compliance is c fr and c fu
-contains the values c fu = 0.7, c fr = 0.7 while cs = 0.05, ch = 0.05 ) and vaccination is adjusted to
cover 15% of the susceptible population in 30 weeks if included (Color figure online)

Appendix D

See Table 1.
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Appendix E

Fitting the model to the weekly recorded cases from the Kenya outbreak (Africa
Centres for Disease Control and Prevention 2024) yielded Fig. 16. The fits yielded
a mean reporting rate estimate of σ ≈ 0.1147 with standard deviation of approxi-
mately 0.001677, while the mean shedding ratio is approximately 48.50 with standard
deviation of approximately 0.3536 and an estimated burn-in time of 11 weeks; fur-
thermore, the corresponding coefficient of variation is R2 = 0.49210. The missing
weekly case counts in the Kenya data were estimated using linear interpolation and
used to estimate the cumulative case plots in the right-hand graphs of Fig. 16. The
simulations also show that the control measure combination of food/water sanitation
and handwashing is most effective in reducing and delaying the outbreak peak and
limiting the cumulative case count.

Fig. 16 Weekly and cumulative model plots for the Cholera outbreak in Kenya (R2
weekly ≈ 0.49210 and

R2
cumul ≈ 0.99316, respectively), with estimated reporting ratio σ ≈ 0.1147 and reported cases’ shedding

rate of approximately 48.50 times greater than inapparent cases. The inapparent infection recovery rate per
day is φ ≈ 0.143 and the corresponding inapparent shedding rate is ηu ≈ 0.0206. The missing weekly data
was estimated using linear interpolation and included in the estimated cumulative curve to the right (Color
figure online)

123



Estimating Hidden Cholera Burden and Intervention Effectiveness Page 27 of 30    80 

Appendix F

To verify the goodness of fit of our model to the weekly case data for Haiti, Kenya,
Malawi, and Zimbabwe (Africa Centres for Disease Control and Prevention 2024; Pan
American Health Organization 2024; Rinaldo et al. 2012), we also fitted the data using
Eqs. 7 and 8. The model fits for the Cholera model (1) and Eqs. 7 and 8, as well as
their corresponding coefficients of determination R2, are given in Fig. 17.

Fig. 17 Plotting theWeekly case data for Haiti, Kenya, Malawi, and Zimbabwe (Africa Centres for Disease
Control and Prevention 2024; Pan American Health Organization 2024; Rinaldo et al. 2012) versus the fits
obtained using the Cholera outbreak model in (1) as well as Eqs. 7 and 8. The cholera model fits yield
(almost exclusively) greater coefficients of variation R2 compared to Eqs. 7 and 8 (Color figure online)

123



   80 Page 28 of 30 M. A. Ovi et al.

Acknowledgements Hao Wang acknowledges the support from a Canada Research Chair and the Natural
Sciences and Engineering Research Council of Canada (Individual Discovery Grant RGPIN-2020-03911
and Discovery Accelerator Supplement Award RGPAS-2020-00090). ChatGPT and QuillBot were used to
polish writing.

Data Availability All data used in this paper were obtained from published papers or public sources.

References

Africa Centres for Disease Control and Prevention. Surveillance Archives. Retrieved May 21, 2024, from
https://africacdc.org/pillar/surveillance/

Marwan Akel, Fouad Sakr, Chadia Haddad, Aline Hajj, Hala Sacre, Zeenny RonyM, Jihan Safwan, Pascale
Salameh (2023) Knowledge, attitude, and practices of the general population toward the old-new
outbreak of cholera in a developing country. Tropical Medicine and Infectious Disease 8(4):236

Alexander J McKenzie (2023) Evolutionary game theory. Cambridge University Press
Mohammad Ali, Nelson Allyson R, Lena Lopez Anna, Sack David A (2015) Updated global burden of

cholera in endemic countries. PLoS neglected tropical diseases 9(6):e0003832
Amisu BO, Okesanya OJ, Adigun OA, Manirambona E, Ukoaka BM, Lawal OA, Idris NB, Olaleke NO,

Okon II, Ogaya JB, Prisno DEL (2024) 3rd . Cholera resurgence in africa: assessing progress, chal-
lenges, and public health response towards the 2030 global elimination target. Le infezioni in medicina,
32(2):148–156. https://doi.org/10.53854/liim-3202-4

Andrews JR, Basu S (2011) Transmission dynamics and control of cholera in haiti: an epidemic model.
Lancet 377(9773):1248–55. https://doi.org/10.1016/S0140-6736(11)60273-0

Azevedo Mario J (2017) The State of Health System(s) in Africa: Challenges and Opportunities, pages
1–73. Springer International Publishing

Bai Ning, Song Chenwei, Rui Xu (2021) Mathematical analysis and application of a cholera transmis-
sion model with waning vaccine-induced immunity. Nonlinear Analysis: Real World Applications
58:103232

Bernoulli Daniel (1766) A new analysis of the mortality caused by smallpox.Mem. Math. Phys. Acad. Roy.
Sci. Paris,

Bertuzzo Enrico, Mari Lorenzo, Righetto L, Gatto Marino, Casagrandi Renato, Blokesch M, Rodriguez-
Iturbe I, Rinaldo Andrea (2011) Prediction of the spatial evolution and effects of control measures for
the unfolding haiti cholera outbreak. Geophysical Research Letters, 38(6)

Centers for Disease Control and Prevention (2024) About Cholera in the United States. https://www.cdc.
gov/cholera/about/about-cholera-in-the-united-states.html Accessed August 4

Centers for Disease Control and Prevention (2024) Signs and symptoms of cholera. https://www.cdc.gov/
cholera/signs-symptoms/index.html Accessed August 4

Chao Dennis L, Elizabeth Halloran M, Longini Ira M, Jr (2011) Vaccination strategies for epidemic cholera
in haiti with implications for the developing world. PNAS, 108(17):7081–85. https://doi.org/10.1073/
pnas.1102149108

Che Eric, Numfor Eric, Lenhart Suzanne, Yakubu Abdul-Aziz (2021) Mathematical modeling of the
influence of cultural practices on cholera infections in cameroon. Mathematical Biosciences and Engi-
neering 18(6):8374–8391

Colwell RR, Brayton P, Herrington D, Tall B, Huq A, Levine MM (1996) Viable but non-culturable vibrio
cholerae o1 revert to a cultivable state in the human intestine. World Journal of Microbiology and
biotechnology 12:28–31

Colwell RR, Tamplin ML, Brayton PR, Gauzens AL, Tall BD, Herrington D, Levine MM, Hall S, Huq A,
Sack DA (1990) Advances in research on cholera and related diarrhoea. 7th

Conner Jenna G, Teschler Jennifer K, Jones Christopher J, Yildiz Fitnat H (2016) Staying alive: Vibrio
cholerae’s cycle of environmental survival, transmission, and dissemination. Virulence mechanisms
of bacterial pathogens, pages 593–633

Daley Daryl J, Gani Joseph Mark (1999) Epidemic modelling: an introduction. Number 15. Cambridge
University Press

Dangbé Ezekiel, Irépran Damakoa, Perasso Antoine, Békollé David (2018) Mathematical modelling and
numerical simulations of the influence of hygiene and seasons on the spread of cholera. Mathematical
biosciences 296:60–70

123

https://africacdc.org/pillar/surveillance/
https://doi.org/10.53854/liim-3202-4
https://doi.org/10.1016/S0140-6736(11)60273-0
https://www.cdc.gov/cholera/about/about-cholera-in-the-united-states.html
https://www.cdc.gov/cholera/about/about-cholera-in-the-united-states.html
https://www.cdc.gov/cholera/signs-symptoms/index.html
https://www.cdc.gov/cholera/signs-symptoms/index.html
https://doi.org/10.1073/pnas.1102149108
https://doi.org/10.1073/pnas.1102149108


Estimating Hidden Cholera Burden and Intervention Effectiveness Page 29 of 30    80 

Deen Jacqueline (2020)Martin AMengel, and JohnDClemens. Epidemiology of cholera. Vaccine 38:A31–
A40. https://doi.org/10.1016/j.vaccine.2019.07.078

Finkelstein Richard A (1996) Cholera, vibrio cholerae o1 and o139, and other pathogenic vibrios.Medical
Microbiology. 4th edition

Fung I C-H (2014) Cholera transmission dynamic models for public health practitioners. Emerging Themes
in Epidemiology, 11(1). https://doi.org/10.1186/1742-7622-11-1

Global Task Force on Cholera Control (GTFCC) (2017) Ending cholera: A global roadmap to
2030. https://www.gtfcc.org/wp-content/uploads/2019/10/gtfcc-ending-cholera-a-global-roadmap-
to-2030.pdf. Accessed: 2024-08-28

Harris Jason B (2018) Cholera: Immunity and prospects in vaccine development. The Journal of Infectious
Diseases, 218(suppl3):141–146. https://doi.org/10.1093/infdis/jiy414

Hartley DavidM,Morris Jr J Glenn, Smith David L (2006) Hyperinfectivity: a critical element in the ability
of v. cholerae to cause epidemics? PLoS medicine, 3(1):e7

Hegde Sonia T, Khan Ashraful Islam, Perez-Saez Javier, Khan Ishtiakul Islam, Hulse Juan Dent, Islam Md
Taufiqul, Khan Zahid Hasan, Ahmed Shakeel, Bertuna Taner, Rashid Mamunur et al (2024) Clinical
surveillance systems obscure the true cholera infection burden in an endemic region. Nature medicine
30(3):888–895

Hemson David, Dube Bongi, Mbele Thami, Nnadozie Remigius, Ngcobo Dumisani (2006) Still paying the
price: revisiting the cholera epidemic of 2000-2001 in South Africa. Municipal Services Projects

Hethcote Herbert W (2000) The mathematics of infectious diseases. SIAM review 42(4):599–653
Jensen Mark A, Faruque Shah M, Mekalanos John J, Levin Bruce R (2006) Modeling the role of bac-

teriophage in the control of cholera outbreaks. Proceedings of the National Academy of Sciences
103(12):4652–4657

Inken Jobse, Liao Y, Bartram M, Delantonio K, Uter W, Stehle P, Sieber CC, Volkert D (2015) Compliance
of nursing home residents with a nutrient-and energy-dense oral nutritional supplement determines
effects on nutritional status. The journal of nutrition, health & aging 19:356–364

Joh Richard I, Wang Hao, Weiss Howard, Weitz Joshua S (2009) Dynamics of indirectly transmitted infec-
tious diseases with immunological threshold. Bulletin of mathematical biology 71:845–62. https://
doi.org/10.1007/s11538-008-9384-4

King Aaron A, Ionides Edward L, Pascual Mercedes, Bouma Menno J (2008) Inapparent infections and
cholera dynamics. Nature 454:877–880. https://doi.org/10.1038/nature07084

Kirpich Alexander,Weppelmann Thomas A, Yang Yang, Ali Afsar, Morris Jr J Glenn, Longini IraM (2015)
Cholera transmission in ouest department of haiti: dynamic modeling and the future of the epidemic.
PLoS neglected tropical diseases, 9(10):e0004153

Jude D Kong, William Davis, and Hao Wang (2014) Dynamics of a cholera transmission model with
immunological threshold and natural phage control in reservoir. Bulletin of mathematical biology,
76(8):2025–2051

Kumar A, Barve U, Gopalkrishna V, Tandale BV, Katendra S, Joshi MS, Salve D, Viswanathan R (2022)
Outbreak of cholera in a remote village in western India. The Indian journal of medical research
156(3):442–448. https://doi.org/10.4103/ijmr.IJMR_2440_20

Lee Elizabeth C, Chao Dennis L, Lemaitre Joseph C, Matrajt Laura, Pasetto Damiano, Perez-Saez Javier,
Finger Flavio, Rinaldo Andrea, Sugimoto Jonathan D, Elizabeth Halloran M et al (2020) Achieving
coordinated national immunity and cholera elimination in haiti through vaccination: amodelling study.
The Lancet Global Health 8(8):e1081–e1089

MMLevine, REBlack,MLClements, DRNalin, LCisneros, andRAFinkelstein (1981)Volunteer studies in
development of vaccines against cholera and enterotoxigenic escherichia coli: a review. Acute enteric
infections in children. New prospects for treatment and prevention, pages 443–459

Longini Jr IraM, NizamAzhar, Ali Mohammad, YunusMohammad, Shenvi Neeta, Clemens John D (2007)
Controlling endemic cholera with oral vaccines. PLoS medicine, 4(11):e336

Mandal Shyamapada, Mandal Manisha Deb, Pal Nishith Kumar (2011) Cholera: a great global con-
cern. Asian Pacific Journal of Tropical Medicine, 4(7):573–580https://doi.org/10.1016/S1995-
7645(11)60149-1

Neilan Rachael Miller, Schaefer Elsa, Gaff Holly, Fister Katherine, Lenhart Suzanne (2010) Modeling
optimal intervention strategies for cholera. Bulletin of Mathematical Biology 72:2004–18. https://doi.
org/10.1007/s11538-010-9521-8

Mukandavire Z, TripathiA,ChiyakaC,MusukaG,Nyabadza F,MwambiHG (2011)Modelling and analysis
of the intrinsic dynamics of cholera. Differential Equations and Dynamical Systems 19:253–265

123

https://doi.org/10.1016/j.vaccine.2019.07.078
https://doi.org/10.1186/1742-7622-11-1
https://www.gtfcc.org/wp-content/uploads/2019/10/gtfcc-ending-cholera-a-global-roadmap-to-2030.pdf
https://www.gtfcc.org/wp-content/uploads/2019/10/gtfcc-ending-cholera-a-global-roadmap-to-2030.pdf
https://doi.org/10.1093/infdis/jiy414
https://doi.org/10.1007/s11538-008-9384-4
https://doi.org/10.1007/s11538-008-9384-4
https://doi.org/10.1038/nature07084
https://doi.org/10.4103/ijmr.IJMR_2440_20
https://doi.org/10.1016/S1995-7645(11)60149-1
https://doi.org/10.1016/S1995-7645(11)60149-1
https://doi.org/10.1007/s11538-010-9521-8
https://doi.org/10.1007/s11538-010-9521-8


   80 Page 30 of 30 M. A. Ovi et al.

Murphy Kenneth M, Travers Paul, Walport Mark (2007) Janeway’s Immunobiology. Garland Science, 7th
edition

JohnMwaba, Amanda KDebes, Patrick Shea, VictorMukonka, Orbrie Chewe, Caroline Chisenga, Michelo
Simuyandi, Geoffrey Kwenda, David Sack, Roma Chilengi, et al. Identification of cholera hotspots
in zambia: A spatiotemporal analysis of cholera data from 2008 to 2017. PLoS neglected tropical
diseases, 14(4):e0008227, 2020

Nelson Eric J, Harris Jason B, Morris Jr J Glenn, Calderwood Stephen B, Camilli Andrew (2009)
Cholera transmission: the host, pathogen and bacteriophage dynamic. Nature Reviews Microbiology,
7(10):693–702

NgwaMC, Young A, Liang S, Blackburn J, Mouhaman A,Morris JG, Jr. Cultural influences behind cholera
transmission in the Far North Region, Republic of Cameroon: a field experience and implications for
operational level planning of interventions. The Pan African medical journal, 28:311, 2017. https://
doi.org/10.11604/pamj.2017.28.311.13860

Ng’ Ombe Harriet, Simuyandi Michelo, Mwaba John, et al. (2022) Immunogenicity and waning immunity
from the oral cholera vaccine (shanchol™) in adults residing in lukanga swamps of zambia. Plos one,
17(1):e0262239,

Orimbo Erick Otieno, Oyugi Elvis, Dulacha Diba, Obonyo Mark, Hussein Abubakar, Githuku Jane, Owiny
Maurice, Gura Zeinab (2020) Knowledge, attitude and practices on cholera in an arid county, kenya,
2018: A mixed-methods approach. PloS one, 15(2):e0229437,

Pan American Health Organization. Cholera outbreak in Hispaniola 2023 - Situation Report 15.
Retrieved May 16, 2024, from https://www.paho.org/en/documents/cholera-outbreak-hispaniola-
2023-situation-report-15

Rinaldo A, Bertuzzo E, Mari L, Righetto L, Blokesch M, Gatto M, Casagrandi R, Murray M, Vesenbeckh
SM, Rodriguez-Iturbe I (2012) Reassessment of the 2010–2011 haiti cholera outbreak and rainfall-
driven multiseason projections. Proceedings of the National Academy of Sciences of the United States
of America 109(17):6602–6607. https://doi.org/10.1073/pnas.1203333109

Root ElisabethDowling, Rodd Joshua,YunusMohammad, EmchMichael (2013) The role of socioeconomic
status in longitudinal trends of cholera in matlab, bangladesh, 1993–2007. PLoS neglected tropical
diseases, 7(1):e199

Sinyange Nyambe, Cholera epidemic-lusaka, zambia, (2018) MMWR. Morbidity and Mortality Weekly
Report 67:2018 october 2017-may

Tappero Jordan, Tauxe Robert (2011) Lessons Learned during Public Health Response to Cholera Epidemic
in Haiti and the Dominican Republic. Emerging Infectious Diseases 17(11). https://doi.org/10.3201/
eid1711.110827

Taylor Dawn L, Kahawita Tanya M, Cairncross Sandy, Ensink Jeroen HJ (2015) The impact of water,
sanitation and hygiene interventions to control cholera: a systematic review.PLoS one, 10(8):e0135676

Jin Wang (2022) Mathematical models for cholera dynamics-a review. Microorganisms 10(12):2358
WangXueying,Wang Jin (2015)Analysis of cholera epidemicswith bacterial growth and spatial movement.

Journal of Biological Dynamics 9(sup1):233–261
World Health Organization. Cholera. https://www.who.int/news-room/fact-sheets/detail/cholera, 2023.

Accessed: 2024-08-27
World Health Organization Data. Life expectancy at birth (years). Retrieved July 22, 2024, from https://

data.who.int/indicators/i/A21CFC2/90E2E48
Yang Chayu,Wang Jin (2019) A cholera transmission model incorporating the impact of medical resources.

Mathematical Biosciences and Engineering 16(5):5226–5246
Zuckerman Jane N, Rombo Lars, Fisch Alain (2007) The true burden and risk of cholera: implications for

prevention and control. The Lancet infectious diseases 7(8):521–530

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.11604/pamj.2017.28.311.13860
https://doi.org/10.11604/pamj.2017.28.311.13860
https://www.paho.org/en/documents/cholera-outbreak-hispaniola-2023-situation-report-15
https://www.paho.org/en/documents/cholera-outbreak-hispaniola-2023-situation-report-15
https://doi.org/10.1073/pnas.1203333109
https://doi.org/10.3201/eid1711.110827
https://doi.org/10.3201/eid1711.110827
https://www.who.int/news-room/fact-sheets/detail/cholera
https://data.who.int/indicators/i/A21CFC2/90E2E48
https://data.who.int/indicators/i/A21CFC2/90E2E48

	Estimating Hidden Cholera Burden and Intervention Effectiveness
	Abstract
	1 Introduction
	2 Model Formulation and Analyses
	2.1 Inapparent Infection Contribution and Global Sensitivity Analysis
	2.2 Intervention Analyses

	3 Application: Cholera Transmission in Multiple Countries
	3.1 Testing Control Measures

	4 Discussion
	Appendix A: Proof of Forward Invarince
	Appendix B: Equilibria and Stability Details
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Acknowledgements
	References


