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ABSTRACT. For an HTLV-I infection model, Li and Shu
has shown in [6] that delayed CTL response can lead to com-
plex bifurcations, and in particular, coexistence of multiple sta-
ble periodic solutions. In this paper, we extend results of Li
and Shu in [6] and investigate the case when there exist three
sequences of Hopf bifurcation points. Through numerical sim-
ulations, we show that two of the sequences lead to bounded
global Hopf bifurcation branches as observed in [6], and a third
sequence gives rise to unbounded Hopf branches that can pro-
duce secondary period-doubling bifurcations. Our results show
that multiple stable periodic solutions can co-exist in certain
parameter regions.

1 Introduction Mathematical models for Human T-cell leukemia
virus type I (HTLV-I) have been widely studied [1, 4, 8]. The viruses
preferentially infect CD4+ T cells, causing a strong HTLV-I specific
immune response from CD8+ cytotoxic T cells (CTLs). On the one
hand, CTL protectively regulates the proviral load and protect the body
from HTLV-I infection, and on the other, cytotoxic effects of CTL are
believed to ultimately lead to clinical diseases such as HAM/TSP [1].
Many recent studies have focused on dynamics of such mathematical
models [6, 7, 9, 11]. To formulate a basic model, let x be the number
of uninfected CD4+ target T cells, y the number of infected CD4+ target
T cells, and z the number of HTLV-1 specific CTLs. Then an HTLV-1
infection model is described by

x′(t) = λ − d1x(t) − βx(t)y(t),

y′(t) = βx(t)y(t) − d2y(t) − γy(t)z(t),(1)

z′(t) = µy(t − τ)z(t − τ) − d3z(t).
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Parameter λ is the recruitment rate of healthy CD4+ T cells from bone
marrow. Parameter β is the transmission rate via cell-to-cell contact.
Infected CD4+ cells are eliminated by CTLs at rate γ. Strength of CTL
response to HTLV-1 infection at time t is assumed to be µy(t−τ)z(t−τ),
which depends on the number of CTLs and infected target cells τ time
ago. The delay τ describes the period of a chain of events such as
antigenic activation, selection, and proliferation of CTLs.

FIGURE 1: Transfer diagram of a model for CTL response to HTLV-I
infection.

It is known that time delays can destabilize a positive steady state
and lead to stable oscillations via Hopf bifurcation [7, 9]. In Li and
Shu’s recent paper [6], it is shown that the time delay can lead to stabil-
ity switches in model (1) at the positive steady state. They investigated
the case when two sequences of Hopf bifurcation points exist and show
that global Hopf branches are bounded and connect a pair of points for
the two sequences. They have further shown that co-existence of multi-
ple attracting limit cycles can be created when multiple Hopf branches
overlap.

In the present paper, we continue the investigation started in [6] and
further study the situation when three sequences of Hopf bifurcation
points exist. Using numerical tools, we show that two of the sequences
create bounded global Hopf branches as observed in [6], and a third
sequence lead to a family of unbounded global Hopf branches. Along
an unbounded Hopf branch, we show that secondary period-doubling
bifurcations can occur. Furthermore, we confirm that co-existence of
multiple attracting limit cycles is also possible in this case. Our work
further establishes stability switch as a mechanism for co-existence of
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multiple stable periodic solutions in delayed systems that was discovered
in [6].

In the next section, we provide preliminary analysis of local stability
and Hopf bifurcation analysis. We investigate situations when three
sequences of Hopf bifurcation points exist and the associated stability
switches. In Section 3, we shown numerical evidence for global Hopf
branches and co-existence of multiple stable periodic solutions.

2 Preliminaries Let C+ = C([−τ, 0], R+). For initial conditions in
R+×C+×C+, it is shown in [7] that all solutions of model (1) are nonneg-
ative and eventually bounded in R+×C+×C+. There are three possible
steady states: the infection free steady state P0 = (λ/d1, 0, 0), the car-

rier steady state P1 = (d2

β
, d1(R0−1)

β
, 0), and the HAM/TSP steady state

P2 = (x∗, y∗, z∗), where

x∗ =
d2R1

β
, y∗ =

d3

µ
, z∗ =

d1d2µ + βd2d3

(d1µ + βd3)γ
(R1 − 1),(2)

and

λβ

d1d2
=: R0 > R1 :=

λβµ

d1d2µ + βd2d3
.(3)

Threshold parameters R0 and R1 completely determine the existence
and global stability of P0 and P1 [6, 7]. In this paper, we focus on the
HAM/TSP steady state P2, which exists only when R1 > 1. In the rest
of the paper, we assume R1 > 1. In this case, P2 exists and P0 and P1

are unstable [6].
The characteristic equation associated with the linearization of the

system (1) at P2 is in the form

D(ξ) := P (ξ) + Q(ξ) e−ξτ

:= ξ3 + a2ξ
2 + a1ξ + a0 + (b2ξ

2 + b1ξ + b0) e−ξτ = 0,

(4)

where

(5) a2 = d3 + βy∗ + d1, a1 = d3(βy∗ + d1) + β2x∗y∗, a0 = β2x∗y∗d3,

(6)
b2 = −d3, b1 = γd3z

∗ − d3(βy∗ + d1),

b0 = γd3z
∗(βy∗ + d1) − β2x∗y∗d3.
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We note that polynomials P (ξ) and Q(ξ) are independent of τ .
It is shown in [6] that the HAM/TSP steady state P2 is locally asymp-

totically stable when τ = 0. For τ > 0, to explore bifurcations at a
steady state, we analyze the movement of characteristic roots on the
complex plane as the time delay τ increases. For the real parts of a pair
of complex characteristic roots to change sign at some τ , the characteris-
tic roots need to cross the imaginary axis at τ . Assuming that character-
istic equation (4) has a pair of purely imaginary roots ξ = ±iω (ω > 0),
it can be verified that ω is a positive root of the following polynomial:

F (ω) : = |P (iω)|2 − |Q(iω)|2

= ω6 + (a2
2 − b2

2 − 2a1)ω
4

+ (a2
1 − 2a0a1 − b2

1 + 2b0b2)ω
2 + (a2

0 − b2
0),

(7)

where ai and bi are given in (5) and (6). Let G(u) = F (
√

u). Then G(u)
is a cubic polynomial, and iω (ω > 0) is a root of F (ω) if and only if
u = ω2 is a positive root of G(u). For each ω > 0, the following equation
of bifurcation value τ is obtained from (4)

eiωτ = −Q(iω)

P (iω)
.(8)

There exists a sequence of solutions of (8)

τn =
1

ω
Arg

{

− Q(iω)

P (iω)

}

+
2nπ

ω
, n ∈ N.(9)

Here, the range for Arg is chosen as [ 0, 2π).

It is shown in [2] that the following relation holds.

(10) sgn

{

d Re ξ

dτ

∣

∣

∣

∣

ξ=iω,τ=τn

}

= sgn{G′(ω2)}.

This relation allows a direct visualization of “stability switches” by ob-
serving the slope of tangent lines of graph of G(u) at its positive roots.
The cubic polynomial G(u) can have one, two or three positive roots. Li
and Shu [6] investigated the situation when G(u) has exactly two pos-

itive roots ω2
1 and ω2

2 (ω1 > ω2). In this case, two sequences {τ (1)
n }∞n=0

and {τ (2)
n }∞n=0 of τ values are obtained from (9), with respect to ω1 and
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ω2, respectively. When τ increases through τ
(1)
n , there is a pair of char-

acteristic roots crossing the imaginary axis at ±iω1 to the right since

G′(ω2
1) > 0 as shown in Figure 2. When τ increases through τ

(2)
n , there

is a pair of characteristic roots cross the imaginary axis at ±iω2 to the

left since G′(ω2
2) < 0. In this way, when τ increases through τ

(1)
0 < τ

(2)
0 ,

the HAP/TSP steady state P2 will first loses its stability at τ
(1)
0 , remains

unstable for τ
(1)
0 < τ < τ

(2)
0 , and regains its stability at τ

(2)
0 and remains

stable for τ > τ
(2)
0 and close to τ

(2)
0 . This phenomenon is typically called

a stability switch [2].

0 Ω2
2 Ω1

2
u

GHuL

FIGURE 2: Graph of G(u) with two positive roots.

As one can see that, as τ continues to increase, many pairs of charac-
teristic roots switches sides of the imaginary axis when τ passes through

τ
(1)
n and τ

(2)
n . Not all these switches will cause stability changes in P2,

especially for switches at larger values of n. The significance of these
switches of characteristic roots was first established in Li and Shu [6].

They show that a Hopf bifurcation will occur at each τ
(1)
n and termi-

nate at a corresponding τ
(2)
n , creating a global Hopf branch that connect

these two bifurcation points, and the global Hopf branch is bounded, see
Figure 3. It is further shown in [6] that the order of the two sequences

{τ (1)
n }∞n=0 and {τ (2)

n }∞n=0 will cross over at a finite n value, creating
an overlap of two global Hopf branches. If within the overlap the two
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branches are both stable, then two stable periodic solutions coexist for
the same set of parameter values.
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FIGURE 3: Bifurcation diagram showing stability switch at P2 and the
global Hopf branches, with parameters given as follows: λ = 160, β =
0.002, γ = 0.2, µ = 0.2, d1 = 0.16, d2 = 1.85, d3 = 0.5 as used in [6].

Two questions remain. First, what are the configurations of global
Hopf branches when G(u) has three positive roots and hence three τ
sequences? Second, is co-existence of multiple stable periodic solutions
still possible when G(u) has three positive roots? These are the main
questions we are aim to answer in the present paper.

3 Main results We employ numerical packages DDE23 and
DDEBIFTOOL of Matlab [3] to carry out our investigation. We choose
the following set of parameter values:

(11)
λ = 60, β = 0.17, γ = 0.2, µ = 0.15,

d1 = 0.85, d2 = 1.85, d3 = 0.35.
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Then G(u) has three positive solutions (Figure 4)

ω2
1 = 3.4011 > ω2

2 = 1.2046 > ω2
3 = 0.3311.

From (9), we obtain three sequences of solutions

τ (1) = {0.532192, 3.93919, 7.34619, 10.7532, 14.1602, · · ·},

τ (2) = {1.86833, 7.59318, 13.318, 19.0429, 24.7677, · · ·}, and

τ (3) = {4.18349, 15.103, 26.0226, 36.9421, 47.8617, · · ·},

with respect to ω1, ω2, and ω3, respectively.
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FIGURE 4: Graph of G(u) with three positive roots.

3.1 Global Hopf branches Using the DDEBIFTOOL package, we
computed Hopf branches at bifurcation values of τ in each of the se-
quences and globally extend the local branches. As shown in Figure 5,
we have discovered that a family of bounded global Hopf branches con-

necting a pair of bifurcation points at τ
(1)
n and τ

(2)
n . A second family

of Hopf branches originate from bifurcation points at τ
(3)
n in the third
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FIGURE 5: Bifurcation diagram showing stability switch at P2 and the
global Hopf branches, with parameters given in (11). Solid lines indicate
stable branches, and dashed lines indicate unstable branches.

sequence, and these branches appear to be unbounded in all of our com-
putations.

The behaviour of the global Hopf branches originates from the third

sequence τ
(3)
n may be reminiscent of that of the global Hopf branches

when G(u) has a single positive root and there is a single sequence
of bifurcation values for τ . Such phenomenon was investigated in a
delayed Nicholson blowflies equation in [10], and the authors rigorously
established that all global Hopf branches are unbounded.

3.2 Co-existence of multiple stable periodic solutions In Figure
5, a solid line indicates stable part of a Hopf branch and a dashed line

unstable. We see that the second bifurcation value τ
(1)
1 in the first

sequence precedes and first value τ
(3)
0 of the third sequence, so the order

of the two sequences crosses over, producing an overlap of two Hopf
branches. We also observe that two solid portions from the branches
overlap. This indicates that there exists an open interval of τ values

between τ
(1)
1 and τ

(3)
0 for which there are two stable periodic solutions.

We use DDE23 package of Matlab to numerically solve system (1) for
the set of parameter values in (11) and for τ values around 5, which is
in the overlapping region. In Figure 6, we show two periodic solutions,
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for the same set of parameter values and same value of delay τ , cor-
responding to different initial conditions. Nearby solutions have been
observed to converge to these solutions so that they are stable. We have
also numerically computed the Floquet multipliers for each of the peri-
odic solutions and, except for the multiplier 1, all of the multipliers stay
inside the unit circle, indicating that both periodic solutions are stable.

It is apparent from Figure 6 that the two periodic solutions are dif-
ferent in their periods and amplitudes.
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FIGURE 6: Two stable periodic solutions for the same set of parameters
and same delay τ = 5.
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3.3 Secondary bifurcations In Figure 5, along the unbounded Hopf

branch at the bifurcation value τ
(3)
0 , when τ is sufficiently large, the solid

line changes to dashed line at τ = τs, indicating a change in stability
of the periodic solutions, and that a secondary bifurcation may have
occurred from the periodic solution at τs. Analysis on the periodic orbit
around the secondary bifurcation value τs reveals that a Floquet mul-
tiplier crosses the unit circle from interior to exterior at −1, indicating
that a period-doubling bifurcation will occur.

DDEBIFURTOOL package is used to further investigate the sec-
ondary bifurcations along this branch near τs, and we discover that a
period-doubling cascade occurs. In Figure 7, we show simulation results
using DDE23 of for periodic solutions for τ = 12, 15, 23, and 100, whose
periods show the doubling effect.

It is known that a period-doubling cascade may eventually lead to
chaos. We explored this possibility using power spectrum of Fourier
transforms of solutions along this branch. However, we did not detect
a wide band of spectrum typical of chaotic solutions. From a projected
orbit and a power spectrum shown in Figure 8, the period doubling may
lead to a quasi-periodic solution. This needs to be further investigated
in future studies.

4 Summary and discussion In this study, we continue the in-
vestigation started in Li and Shu [6] examining Hopf bifurcations in a
mathematical model of immune response to retroviral infections with
time delay when the delay τ is varied. Our results verify the discovery
in [6] that when two sequences of Hopf bifurcation values exist, the phe-
nomenon of stability switch occurs. Furthermore, a family of bounded
global Hopf branches exist and an overlap of these branches may lead
to coexistence of multiple stable periodic solutions.

Our results extended those in [6] and characterize the global Hopf
branches when there are three sequences of Hopf bifurcation values. In
this case, we show that, for the first time, in addition to the family
of bounded global Hopf branches, a family of unbounded global Hopf
branch exists. We also show that period-doubling secondary bifurcations
may occur along this unbounded branch.

Our analysis and results reveal that stability along the global Hopf
branches may change and lead to different types of secondary bifurca-
tions and creation of more complex and interesting solutions. Further
studies are needed to explore possible secondary bifurcations along the
global Hopf branches.
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We would like to point out that though our study was carried out for
a particular mathematical model, behaviours of this nature should be
universal and may exist in other systems with time delays.
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FIGURE 7: Four periodic solutions for τ = 12, τ = 15, τ = 23, τ = 100
showing the period-doubling effect.
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