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Abstract
The two main components of the planktonic ecosystem are phytoplankton and zoo-
plankton. Fungal parasites can infect zooplankton and spread between them. In this
paper, we construct a dynamic model to describe the spread of fungal parasites among
zooplankton. Basic reproduction number for fungal parasite transmission among zoo-
plankton are rigorously derived. The dynamics of this system are analyzed including
dissipativity and equilibria. We further explore the effects of ecological factors on
population dynamics and the relationship between fungal parasite transmission and
phytoplankton blooms. Interestingly, our theoretical and numerical results indicate
that a low-light or oligotrophic aquatic environment is helpful in mitigating the trans-
mission of fungal parasites. We also show that fungal parasites on zooplankton can
increase phytoplankton biomass and induce blooms.
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1 Introduction

Planktonic ecosystems have two primary components: phytoplankton and zooplank-
ton (Hall et al. 2009). Phytoplankton form the foundation of the planktonic ecosystem.
Their growth requires two essential resources: light and nutrients (Zhao et al. 2020;
Peace 2015; Huisman et al. 2006; Klausmeier and Litchman 2001; Wang et al. 2007;
Zhang et al. 2023). Light entering the water column is absorbed by the water and other
substances, and its intensity decreases exponentially as the depth increases (Peace
2015; Huisman and Weissing 1994; Pang et al. 2019; Peng and Zhao 2016). Nutrients
primarily originate from sediment, which is transported to the aquatic habitat through
water exchange and turbulence (Klausmeier and Litchman 2001; Yu et al. 2019). Phy-
toplankton use light energy to transform carbon dioxide and water into organic matter
while releasing oxygen (Davies and Wang 2021). Simultaneously, they ingest various
nutrients from the surrounding environment to sustain their growth and reproduction.
These processes are pivotal for the natural energy conversion, element cycling, and
maintenance of the atmospheric carbon-oxygen balance (Zhao et al. 2020). Zooplank-
ton is a significant part of planktonic ecosystems. They graze on phytoplankton and
transfer energy and nutrients to higher trophic levels (Chen et al. 2022;Müller-Navarra
et al. 2000). As a result, zooplankton can regulate the abundance of phytoplankton
and impact the health and stability of the aquatic ecosystem.

Fungal parasites are important heterotrophic microbial eukaryotes that exist in
aquatic environments in the form of free-living spores (Shocket et al. 2018; Civitello
et al. 2013; Cáceres et al. 2014; Chen et al. 2024). As parasites, free-living fungal
spores attack aquatic organisms and influence the structure of the food web (Kagami
et al. 2007). Some fungal parasites exhibit parasitic relationshipswith zooplankton. For
example, the fungal parasiteMetschnikowia bicuspidata parasitizesDaphnia dentifera
(Shocket et al. 2018; Strauss et al. 2015; Cáceres et al. 2014; Civitello et al. 2013).
Therefore, fungal parasites can directly affect the structure and dynamics of planktonic
ecosystems.

In this study, we consider fungal parasites infecting zooplankton. The parasitic pro-
cess of fungi can be divided into the following stages. In the first stage, fungal parasites
move freely in water as spores. These spores are distributed in the phytoplankton habi-
tat (Civitello et al. 2013; Hall et al. 2007). Zooplankton can accidentally ingest fungal
spores when feeding on phytoplankton. The second stage is that fungal spores repli-
cate and reproduce in the zooplankton gut and eventually fill the entire body cavity.
In the final stage, when infected zooplankton die, the fungal spores in their bodies are
released into thewater (Shocket et al. 2018). The process indicates that fungal parasites
cause zooplankton death and reduce their biomass.Many researchers havemodeled the
spread of fungal parasites among zooplankton (Cáceres et al. 2014; Strauss et al. 2015;
Shocket et al. 2018; Hall et al. 2007, 2009). Hall et al. (Hall et al. (2007)) investigated
the connection between foraging ecology and disease transmission in a zooplankton-
fungal system. Cáceres et al. (Cáceres et al. (2014)) explored the impact of dilution
effect on the fungal parasite transmission in focal hosts. Shocket et al. (Shocket et al.
(2018)) discussed the impact of climatic warming on infectious diseases and proposed
a mechanistic framework to predict different temperature-disease outcomes. Strauss
et al. (Strauss et al. (2015)) explored the dilution effect among competitors using an
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eco-epidemiological model, considering factors such as species densities, assembly
order, and competence.These models mentioned above do not consider that the growth
of phytoplankton requires light and nutrients. Experimental studies have revealed that
light intensity and nutrients have significant impacts on phytoplankton (Huisman et al.
2006; Klausmeier and Litchman 2001).

Motivated by the above discussion and excellentwork,we propose a dynamicmodel
to describe fungal parasite transmission among zooplankton. This model contains
phytoplankton, zooplankton, and fungal parasites. An important feature of our model
compared to previous models is the consideration of light and nutrients. One principal
objective of the present paper is to show the effects of light and nutrients on the spread
of fungal diseases. We will rigorously derive the basic reproduction number for fungal
parasite transmission by analyzing dynamics of the model.

Phytoplankton blooms are seriously harmful to aquatic ecosystems. The toxins
produced by phytoplankton can accumulate in aquatic food webs, causing disease and
even death in aquatic organisms and humans. Additionally, frequent phytoplankton
blooms can deplete the oxygen in the water, leading to the death of aquatic organisms
and ultimately causing an imbalance and collapse of the entire aquatic ecosystem.
Another objective of this study is to explore the relationship between fungal parasite
transmission and phytoplankton blooms.

The structure of this paper is as follows. In sect. 2, we establish a dynamic model
to describe the interactions among phytoplankton, zooplankton and fungal parasites
in a well-mixed water column. In sect. 3, we analyze dynamic properties of the model
including dissipativity and equilibria, and establish the basic reproduction number
of fungal parasite transmission among zooplankton. By using numerical bifurcation
diagrams and time series diagrams, we explore the effects of ecological factors on
population dynamics and the relationship between fungal parasite transmission and
phytoplankton blooms in sect. 4. The final section summarizes the main conclusions
and presents some future works.

2 Model Formulation

We develop a dynamic model to describe the interactions among phytoplankton,
zooplankton and fungal parasites in a well-mixed water column. The growth of phy-
toplankton depends on light and nutrients. Fungal parasites move freely in water as
spores. Zooplankton consume phytoplankton and accidentally ingest fungal spores.
Let x denote the depth of the water column, where x = 0 and x = xl correspond to the
water surface and bottom, respectively. The model contains five nonlinear ordinary
differential equations that describe the rate of change for phytoplankton (P), suscep-
tible zooplankton (S), infected zooplankton (I ), fungal parasites (F) and dissolved
nutrients (N ). Their interaction relationships are shown in Fig. 1. All the variables and
parameters of the model and their biological significance are presented in Table 1.

According to the research work in Strauss et al. (2015); Cáceres et al. (2014);
Shocket et al. (2018), we have the following assumptions:

(A1) The parasites are horizontally transmitted.
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Fig. 1 Phytoplankton-zooplankton-fungal parasites interactions in a well-mixed water column

(A2) Fungal spores only release from dead infected zooplankton.

Phytoplankton growth is limited by several abiotic factors.We assume that it primarily
relies on the availability of light intensity (L(x, P)) and nutrient concentration (N ).
The light intensity L(x, P) at a depth x , following the Lambert-Beer law (Huisman
and Weissing 1994), is given by

L(x, P) = L0 exp (−l0x − l Px) , x ∈ (0, xl).

For light-limited phytoplankton growth, we use theMonod function (Wang et al. 2007;
Klausmeier and Litchman 2001), denoted as

f (P) = 1

xl

∫ xl

0

L(x, P)

h + L(x, P)
dx,

here h is the half saturation constant. As for the expression of nutrient, we also use
the Monod function (Wang et al. 2007; Klausmeier and Litchman 2001)

g(N ) = N

γ + N
,

where γ is the half saturation constant. The growth rate of phytoplankton is represented
by rg(N ) f (P)P . The reduction of phytoplankton is due to natural mortality and
respiration (dp P), and predation by zooplankton (π1(P)(S + I )).

Zooplankton is divided into two classes: susceptible zooplankton (S) and infected
zooplankton (I ). By Assumption (A1), the increase of susceptible zooplankton comes
from the reproduction of susceptible and infected zooplankton (Cáceres et al. 2014;
Shocket et al. 2018). But the fertility rate of infected zooplankton decreases with
the proportion ρ ∈ [0, 1). Moreover, susceptible and infected zooplankton consume
phytoplankton with a conversion rate e. The reduction of susceptible zooplankton has
two parts. One is natural mortality and respiration (dz S), and the other is infected by
fungal parasites (βπ2(F)S). The changes in infected zooplankton biomass include the
infection βπ2(F)S, natural mortality and respiration dz I , and lytic death δ I .
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136 Page 6 of 24 Y. Yan et al.

Previous studies have shown that the number of fungal spores released after the
death of infected zooplankton depends on phytoplankton (Hall et al. 2009). It is
assumed to be δσ (P)I . Fungal spores are removed by zooplanktonwithπ2(F)(S+ I ).
The changes of dissolved nutrients N depend on the consumption of phytoplankton
cprg(N ) f (P)P and the exchange of nutrients (D/xl)(N0 − N ) at the bottom of the
water column.

Based on the above assumptions and formulations, we construct the following
phytoplankton-zooplankton-fungal parasite model

dP

dt
= rg(N ) f (P)P − dp P − π1(P)(S + I ),

dS

dt
= eπ1(P)(S + ρ I ) − dz S − βπ2(F)S,

d I

dt
= βπ2(F)S − dz I − δ I ,

dF

dt
= δσ (P)I − d f F − π2(F)(S + I ),

dN

dt
= D

xl
(N0 − N ) − cprg(N ) f (P)P.

(1)

According to Strauss et al. (2015), Cáceres et al. (2014), and Shocket et al. (2018), we
assume that the functions

π1(P) = aP, π2(F) = aF, σ (P) = qP

θ + P
.

Considering the biological implications of this model, we will explore the solutions
of (1) with initial values

P(0) ≥ 0, S(0) ≥ 0, I (0) ≥ 0, F(0) ≥ 0, N (0) ≥ 0. (2)

3 Model Dynamics

In this section, we investigate the dynamical properties of model (1) containing dissi-
pation, as well as the existence and stability of equilibria. By standard mathematical
arguments, model (1) has a unique nonnegative global solution for any initial values
satisfying (2). Let

	 :=
{
(P, S, I , F, N ) ∈ R

5+
∣∣ P ≥ 0, S ≥ 0, I ≥ 0, F ≥ 0, N ≥ 0

}
.

and B = erg(N0) f (0)A/min{dp, dz}, where A satisfies the condition rg(N0) f (A) =
dp.

We first show that system (1) is dissipative. The proof can be found in Appendix
A.

123



Fungal Parasite Transmission... Page 7 of 24 136

Theorem 3.1 The set


 :=
{
(P,S,I ,F,N )∈	

∣∣∣∣ N ≤N0,(eP+S+ I )≤ erg(N0) f (0)A

min{dp, dz} , F≤ δσ (A)B

d f

}

is a globally attracting region, which means that system (1) is dissipative.

In order to study the spread of fungal parasites in zooplankton, we investigate the
dynamics of system (1). Model (1) has four possible equilibria:

(1)Nutrient-only equilibrium E0 = (0, 0, 0, 0, N0);
(2)Phytoplankton-nutrient equilibrium E1 = (P1, 0, 0, 0, N1), where P1 and N1 are

the solution of

rg(N ) f (P) − dp = 0,

D

xl
(N0 − N ) − cprg(N ) f (P)P = 0; (3)

(3)Disease-free equilibrium E2 = (P2, S2, 0, 0, N2), where P2, S2, N2 are solved by

rg(N ) f (P)P − dp P − π1(P)S = 0, (4)

eπ1(P) − dz = 0, (5)

D

xl
(N0 − N ) − cprg(N ) f (P)P = 0; (6)

(4)Endemic equilibrium E3 = (P3, S3, I3, F3, N3), where P3, S3, I3, F3, and N3 are
determined by solving

rg(N ) f (P)P − dp P − π1(P)(S + I ) = 0,

eπ1(P)(S + I ) − dz S − βπ2(F)S = 0,

βπ2(F)S − dz I − δ I = 0,

σ (P)δ I − d f F − π2(F)(S + I ) = 0,

D

xl
(N0 − N ) − cprg(N ) f (P)P = 0.

To facilitate the following analysis, we define the critical values as

d∗
p = rg(N0) f (0), d∗

z = eaP1, d̄p = rg(N2) f (P2). (7)

For the equilibria E0, E1, E2 and E3, we have the following theoretical results. The
proof can be found in Appendix B.1, Appendix B.2, Appendix B.3, and Appendix
B.4.

Theorem 3.2 E0 always exists and it is globally asymptotically stable if dp > d∗
p,

while E0 is unstable if dp < d∗
p.
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Theorem 3.3 E1 exists uniquely if and only if dp < d∗
p, and it is locally asymptotically

stable if dz > d∗
z .

According to the approach of the next-generation matrix in Van den Driessche and
Watmough (2002), we define the second-order vectors corresponding to equations I
and F as

G =
(

βπ2(F)S
0

)
,

V =
(

dz I + δ I
−δσ (P)I + d f F + π2(F)(S + I )

)
.

At the disease-free equilibrium E2 = (P2, S2, 0, 0, N2), the Jacobian matrices of
G and V are

G =
(
0 βaS2
0 0

)
, V =

(
dz + δ 0

−δσ (P2) d f + aS2

)
.

Therefore, the next generation matrix is

GV−1 =
⎛
⎝

βaS2δσ (P2)

(d f + aS2)(dz + δ)

aS2
d f + aS2

0 0

⎞
⎠ .

The basic reproduction number R0 is calculated as the spectral radius of the next
generation matrix GV−1. It is expressed as

R0 = βaS2δσ (P2)

(d f + aS2)(dz + δ)
. (8)

From (5), we obtain P2 = dz/ea, and then σ(P2) = qdz
dz+θea . As a result, the expression

of (8) can be further simplified to

R0 = βaS2δqdz
(d f + aS2)(dz + δ)(dz + eaθ)

. (9)

The index R0 measures the transmission capacity of fungal parasites. R0 < 1 means
that fungal parasites go extinct. R0 = 1 is a critical value that determines whether
fungal parasites can invade an aquatic ecosystem.

Remark 3.4 1. Note that R0 < 1 if βq < 1, which implies that if the infectivity is
low or the spore yield is minimal, the fungal parasites may not spread.

2. There are nonlocal terms in (4) and (6), which make it difficult for us to obtain the
specific expression of S2 and theoretically obtain the evolution trends of R0 with
respect to the parameters. However, from the structure of equations (4), (6) and (9),
we find that R0 is related to fungal infection-related parameters (β, q, δ), resource-
related factors (L0, l0, l, N0, D, cp), and other factors (xl , a, e, r , dp, dz, d f ).
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Fig. 2 Dependence of R0 on some model parameters. Here L0 = 300, N0 = 120 and the remaining
parameter values are derived from Table 1

3. Figure2 reveals that high β, q, δ, L0, N0, D and r are conducive to fungal disease
transmission, while high l0, xl , dp and d f prevent fungal parasites invasion. The
dependence of R0 on l, e, dz is complicated. Both high and low l, e, dz may be
detrimental to the survival of fungi.

Theorem 3.5 E2 exists if and only if dp < d̄p. Moreover, if R0 < 1, then E2 is locally
asymptotically stable, otherwise E2 is unstable.

We next prove the existence of E3 with d f as the bifurcation parameter. Define

d∗
f = aS2

(
βδσ(P2)

δ + dz
− 1

)
.

We will show that E3 bifurcates from E2 at d f = d∗
f using bifurcation theory in

Crandall and Rabinowitz (1971); Shi and Wang (2009).

Theorem 3.6 If R0 > 1 holds, then (1) has at least one endemic equilibrium E3 for
0 < d f < d∗

f .

Figure3 shows the extinction-survival spectrum of phytoplankton, zooplankton,
and fungal spores in the (dp, dz)-plane. In 
0, the solutions of (1) converge to E0,
which implies the extinction of all three species (see Fig. 4a). This indicates that if phy-
toplankton is extinct, zooplankton and fungal parasites will not survive. Phytoplankton
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Fig. 3 Parameter regions of dp
versus dz for the survival and
extinction of phytoplankton,
zooplankton and fungal parasite.
Three species go extinct in 
0,
phytoplankton survive while
zooplankton and fungal parasite
are extinct in 
1, susceptible
zooplankton successfully invade
aquatic habitats, while fungal
parasite cannot survive in 
2,
fungal parasite transmission
among zooplankton as equilibria
or periodic solutions form in 
3.
The remaining parameters are
from Table 1

Fig. 4 Time series of attractor regions. a
0 region: dp = 0.3, ds = 0.3; b
1 region: dp = 0.15, ds = 0.2;
c 
2 region: dp = 0.1, ds = 0.2; d 
3 region: dp = 0.03, ds = 0.06. The remaining parameters are from
Table 1

survive in 
1 and the solutions of model (1) converge to E1 if (dp, dz) ∈ 
1 (see
Fig. 4b). Within 
2, phytoplankton and susceptible zooplankton appear together and
the solutions of (1) converge to E2 when (dp, dz) ∈ 
2 (see Fig. 4c). Phytoplankton,
zooplankton, and fungal parasites can coexist in 
3, and the solutions of (1) converge
to E3 or positive periodic solutions if (dp, dz) ∈ 
3 (see Fig. 4d).
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Fig. 5 Parameter regions of L0 versus N0 describe the survival and extinction of phytoplankton, zooplankton
and fungal parasites

Due to the occurrence of a Hopf bifurcation, positive equilibrium E3 loses its sta-
bility there, and a positive periodic solution emerges. This means that fungal parasites
spread between zooplankton in the form of periodic oscillation. The positive periodic
solution is a very important dynamic behavior. However, because the model is a high-
dimensional ordinary differential equation system, it is difficult to give a theoretical
proof of the occurrence of Hopf bifurcation and the existence of positive periodic
solutions.

4 Effect of Ecological Factors

Ecological factors have an important influence on biological communities. In this
section, we will carry out some numerical simulations to explore how the system (1)
responds to the ecological factors.Wemainly focus on the effects of light and nutrients
on fungal parasite transmission and explore the relationship between fungal parasite
transmission and phytoplankton blooms through bifurcation diagrams and time series
diagrams.

We consider the roles of light and nutrients in fungal parasite transmission. Surface
light intensity L0 and nutrient input concentration N0 are important parameters related
to light and nutrients, respectively. Thus, we use these two parameters as factors to
study fungal parasite transmission. Figure5 shows the combined effect of L0 and N0
on the survival and extinction of all species. One can observe that all species become
extinction under low L0 and N0. With the increase of L0 and N0, phytoplankton
invades aquatic ecosystems. When L0 and N0 cross from the blue line to the next
area, susceptible zooplankton invade and coexist with phytoplankton in an aquatic
environment. Once L0 and N0 exceed the red line, the fungal parasites begin to spread
among zooplankton as a stable equilibria form or as a periodic solution form (see
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Fig. 6 The phase portraits of system (1). a The system has a stable endemic equilibrium for L0 = 150
and N0 = 80. b The system exhibits periodic oscillations for L0 = 300 and N0 = 120. The remaining
parameter values are shown in Table 1

Fig. 7 Influence of the sediment input nutrient concentration N0 and water surface light intensity L0

Fig. 6). These results indicate that fungal parasites are difficult to spread in a low-light
or oligotrophic aquatic ecosystem.

To better understand the effects of light and nutrients on the spread of fungal para-
sites, we now consider bifurcation diagrams for all populations with respect to L0 or
N0. Figure7a shows that very low light intensity causes the extinction of all species.
As L0 increases, the infection of fungal parasites gradually prevails in aquatic ecosys-
tems. During this progress, there are two stability switches from a stable equilibrium
to periodic oscillation and then back to a stable equilibrium. When L0 is beyond a
certain extent, population biomass is almost unchanged, which indicates that high L0
has little effect on the spread of fungal parasites. Figure7b demonstrates that fungal
parasites cannot spread among zooplankton when N0 is low.With a further increase of
N0, fungal parasites spread among zooplankton with a stable equilibrium and a stable
periodic solution. These findings also indicate that the changes in light and nutrients
cause the transmission of fungal parasites.

Light intensity varies with the seasons (see Fig. 8). It is well worthwhile to compare
the effects of seasonal and constant light intensity on the spread of fungal parasites. The
bifurcationdiagrams inFigs. 9a–d and 10a–d show the changes in populationdynamics
with parameters β and q, and also compare the impact of constant light intensity
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Fig. 8 Seasonal fluctuations in light intensity L0(t) = 200 × [1.0 − 0.5 cos(2π t/365)], t=365 days. The
horizontal axis represents the number of days and corresponds to specific dates in the four seasons. Days
79 to 171 represent spring, with June 22nd being the corresponding date for day 79. The period from 171
to 263 days represents summer, with September 23rd being the corresponding date for day 171. Days 263
to 354 represent autumn, with December 22nd being the corresponding date for day 263. Finally, days 354
to 79 represent winter, with March 21st of the following year being the corresponding date for day 79
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Fig. 9 Influence of the transmission coefficient β under constant or seasonal light intensity
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Fig. 10 Influence of maximal spore yield q under constant or seasonal light intensity

and seasonal light intensity on population dynamics. Comparing these bifurcation
diagrams, one can see that the dynamics of the seasonal light intensitymodel are similar
to those of the constant light intensity model. The difference is that under constant
light intensity, the solution of the system converges to a positive stable equilibrium or
a positive periodic solution as the parameter β changes. The seasonal light intensity is
the cosine disturbance added to the constant light intensity. In this case, the biomass of
all populations is always in an oscillatory state. This shows that seasonal light intensity
brings greater uncertainty to the population.

We now explore the effects of fungal parasite transmission on phytoplankton
biomass by comparing systems with and without fungal parasites. Compare Fig. 11a
with b, it can be seen that the presence of fungal parasites reduces zooplankton biomass
(the combined amount of susceptible and infected zooplankton) and increases the
phytoplankton biomass. This study confirms that fungal parasites are beneficial to the
increase of phytoplankton biomass.

5 Discussion

The fungal parasite is an important component of aquatic communities. They parasitize
on zooplankton for their survival and reproduction (Hall et al. 2009; Shocket et al.
2018; Strauss et al. 2015; Cáceres et al. 2014; Civitello et al. 2013). They replicate and
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Fig. 11 Time series diagrams for phytoplankton biomass. (a) Time series diagram with fungal parasite
transmission (d f = 0.04). (b) Time series plot without fungal parasite transmission (d f = 0.13). Here
L0 = 500, N0 = 110, dp = 0.06, a = 0.003, β = 0.1, q = 25

reproduce inside zooplankton, and finally release fungal spores after the zooplankton
dies. The host zooplankton feed on phytoplankton. The release of fungal spores also
depends on phytoplankton biomass. Few mathematical models have been formulated
to explore the mechanisms of fungal parasite transmission among zooplankton and
investigate the relationship between fungal parasite transmission and phytoplankton
blooms.

A dynamical model (1) was proposed to describe the spread of fungal parasites
among zooplankton in a planktonic ecosystem. Compared with the existing models
in Cácere et al. (2014), Shocket et al. (2018), and Strauss et al. (2015), there are three
novel points in model (1). The first is to incorporate the fact that phytoplankton growth
requires both light and nutrients. The second is to provide the basic reproduction
number for fungal parasite transmission through rigorous theoretical analysis. The
third is to take into account the influence of variable light intensity L0 and nutrient
input concentration N0, and how changes in light intensity affect the model. The
findings demonstrate that light and nutrients have significant effects on the spread of
fungal parasites and phytoplankton biomass.

We rigorously obtained the basic reproductive number, R0, for the spread of the
fungal parasites from the model (1). According to Theorems 3.2-3.6, if dp > d∗

p, all
populations go extinct; if dp < d∗

p and dz > d∗
z , the invasion of phytoplankton will be

successful, while zooplankton and fungal parasites go extinct; if dp < d̄p and R0 < 1,
both phytoplankton and zooplankton successfully invade, while fungal parasites go
extinct; if R0 > 1 and 0 < d f < d∗

f , the fungal parasites spread among zooplankton.
Based on theoretical and numerical analysis of model (1), we investigated the effect of
ecological factors on fungal parasite transmission and explored the interaction between
fungal parasite transmission and phytoplankton blooms. From Fig.2, we can observe
that an increase in the parameters β, q, L0, N0 and δ promotes the spread of fungal
parasites. Conversely, an increase in the parameters xl and l0 inhibits the spread of
fungal parasites. From bifurcation diagrams Figs. 5 and 7, one can see that fungal
epidemics are difficult to spread in low-light or oligotrophic aquatic environments.
Based on bifurcation diagrams ofβ and q, we find that the dynamics ofmodel (1) under
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constant light intensity are similar to those under seasonal light intensity (Fig. 9a–d
and Fig. 10 a–d). These results indicate that the spread of fungal parasites increases
phytoplankton production and induces blooms (Fig. 11).

Compared to the existing research, our model considers the effects of light and
nutrients on the spread of fungal parasites. This consideration makes the system more
complex. It is difficult for us to analyze the complete dynamics of the model (1).
We currently cannot resolve the global dynamic properties of (1), such as the global
asymptotic stability of E1 and E2 and the uniqueness and stability of E3. This is an
interesting problem that we will consider next. Our work assumes that the nutrient-
to-carbon ratio in phytoplankton cells is constant, but in reality, this ratio is variable
(Wang et al. 2007; Loladze et al. 2000). Therefore, it is necessary to incorporate
stoichiometry into the model. In this work, we only consider the fungiMetschnikowia
bicuspidata that only parasitizes zooplankton. However, fungal parasites can also
infect phytoplankton, such as Chytridiomycota. It is of great interest to explore the
spread of these fungal parasites among phytoplankton.

Appendix A Proof of Theorem 3.1

It follows from model (1) that

dN

dt
≤ D

xl
(N0 − N ),

and then

lim sup
t→∞

N (t) ≤ N0. (10)

It follows from the P equations in (1) that

dP

dt
≤ (

rg(N0) f (P) − dp
)
P

for sufficiently large t . This means that

lim sup
t→∞

P(t) ≤ A,

where A satisfies

rg(N0) f (A) = dp.

From the first, second and third equations of (1), one can verify that

d(eP + S + I )

dt
= erg(N ) f (P)P − dpeP − dz(S + I ) − δ I − (1 − ρ)π1(P)I

≤ erg(N0) f (0)A − min{dp, dz}(eP + S + I )
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for sufficiently large t . According to the comparison theorem, we obtain

lim sup
t→∞

(eP + S + I )(t) ≤ erg(N0) f (0)A

min{dp, dz} .

From the fourth equation of (1), one has

dF

dt
≤ δσ (A)B − d f F

for sufficiently large t , and then

lim sup
t→∞

F(t) ≤ σ(A)δB

d f
.

This means that the set 
 is a globally attracting region and system (1) is dissipative.

Appendix B Proofs of Existence and Stability Results

Appendix B.1 Proof of Theorem 3.2

It is obvious that E0 ≡ (0, 0, 0, 0, N0) always exists and is unique. The Jacobian
matrix evaluated at E0 is

J (E0) =

⎛
⎜⎜⎜⎜⎜⎝

rg(N0) f (0) − dp 0 0 0 0
0 −dz 0 0 0
0 0 −dz − δ 0 0
0 0 0 −dp 0

−cprg(N0) f (0) 0 0 0 −D

xl

⎞
⎟⎟⎟⎟⎟⎠

,

which has five eigenvalues: λ1 = −dz < 0, λ2 = −dz − δ < 0, λ3 = −dp < 0, λ4 =
−D/xl < 0, λ5 = rg(N0) f (0) − dp. Note that rg(N0) f (0) − dp < 0 if dp > d∗

p,
thus, all the eigenvalues of J (E0) have negative real parts. This suggests that E0 is
locally asymptotically stable if dp > d∗

p. Conversely, if dp < d∗
p, then E0 is unstable.

Next, we show that E0 is globally asymptotically stable. From (10) and the first
equation of (1), one has

dP

dt
≤ (rg(N0) f (0) − dp)P

for sufficiently large t , then

lim sup
t→∞

P(t) = 0,
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if dp > d∗
p holds. From the theory of asymptotical autonomous systems (Mischaikow

et al. 1995), the second and fourth equations in (1) reduce to

dS

dt
= −dz S − βaFS,

dF

dt
= −d f F − aF(S + I ),

(11)

which imply that

lim sup
t→∞

S(t) = 0 and lim sup
t→∞

F(t) = 0.

Following similar arguments as above, we obtain

lim sup
t→∞

I (t) = 0.

It follows from the theory of asymptotical autonomous systems (see (Mischaikow et al.
1995)) that (1) reduces to

dN

dt
= D

xl
(N0 − N ).

This implies that

lim
t→∞ N (t) = N0,

and E0 is globally attractive. Then E0 is globally asymptotically stable.

Appendix B.2 Proof of Theorem 3.3

Using a proof similar to Theorem 3.3 in Chen et al. (2022), it follows that E1 exists
and is unique, if dp < d∗

p.
Next, we show that E1 is locally asymptotically stable. The Jacobian matrix at E1

is

J (E1) =

⎛
⎜⎜⎜⎜⎝

a11 a12 a13 0 a15
0 a22 a23 0 0
0 0 a33 0 0
0 0 a43 a44 0
a51 0 0 0 a55

⎞
⎟⎟⎟⎟⎠ ,

where

a11 = rg(N1) f
′(P1)P1, a12 = −aP1, a13 = −aP1, a15 = rg′(N1) f (P1)P1,
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a22 = eaP1 − dz, a23 = eaP1, a33 = −dz − δ, a43 = δ
qP1

h1 + P1
,

a44 = −d f , a51 = −cprg(N1) f (P1) − cprg(N1) f
′(P1)P1,

a55 = −D

xl
− cprg

′(N1) f (P1)P1.

J (E1) has eigenvalues λ1 = −dz − δ < 0, λ2 = −d f < 0, λ3 = eaP1 − dz :=
d∗
z − dz , and the other two eigenvalues satisfy |λI − M | = 0, where

M =
(
a11 a15
a51 a55

)
.

Given that the function f monotonically decreases with respect to P , and that g
monotonically increases with respect to N , a straightforward computation yields

DetM = −rg(N1) f
′(P1)P1D/xl + cpr

2 f 2(P1)g
′(N )g(N1)P1 > 0,

TrM = rg(N1) f
′(P1)P1 − D/xl − cprg

′(N1) f (P1)P1 < 0.
(12)

Thus E1 is locally asymptotically stable provided that dz > d∗
z . If dz < d∗

z , then at
least one eigenvalue is positive and hence E1 is unstable.

Appendix B.3 Proof of Theorem 3.5

We first prove the existence of disease-free equilibrium of (1). From (5), we get
P2 = dz

ea > 0. Substituting P2 into (6) yields

N2 =
√

(cpr f (P2)P2xl + D(γ − N0))2 + 4γ D2N0 − (cpr f (P2)P2xl + D(γ − N0))

2D
> 0.

By substituting the expressions for N2 and P2 into equation (4), we obtain

S2 = rg(N2) f (P2) − dp
a

.

Note that S2 > 0 if dp < d̄p. This indicates that E2 exists when dp < d̄p.
We then show that E2 is locally asymptotically stable. The Jacobian matrix at E2

is

J (E2) =

⎛
⎜⎜⎜⎜⎝

a11 a12 a13 0 a15
a21 0 a23 a24 0
0 0 a33 a34 0
0 0 a43 a44 0
a51 0 0 0 a55

⎞
⎟⎟⎟⎟⎠ ,
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where

a11 = rg(N2) f
′(P2)P2 − aS2, a12 = −aP2, a13 = −aP2, a15 = rg′(N2) f (P2)P2,

a21 = eaS2, a23 = eaP2, a24 = −βaS2,

a33 = −dz − δ, a34 = βaS2, a43 = δσ (P2), a44 = −d f − aS2,

a51 = −cprg(N2) f (P2) − cprg(N2) f
′(P2)P2, a55 = −D/xl − cprg

′(N2) f (P2)P2.

From the expression of J (E2), it is clear that J (E2) can be divided into two parts

J1(E2) :=
⎛
⎝a11 a12 a15
a21 0 0
a51 0 a55

⎞
⎠ , and J2(E2) :=

(
a33 a34
a43 a44

)
.

The characteristic equation of J1(E2) is

λ3 + C1λ
2 + C2λ + C3 = 0,

where

C1 = −rg(N2) f
′(P2)P2 + aS2 + D/xl + cprg

′(N2) f (P2)P2,

C2 = ea2P2S2 + cpr
2 f 2(P2)g(N2)g

′(N2)P2
+ (rg(N2) f

′(P2)P2 − aS2)(−D/xl) + acpr f (P2)g
′(N2)P2S2,

C3 = ea2P2S2(D/xl + cprg
′(N2) f (P2)P2).

Based on the monotonicity of the functions f and g, we have C1,C2,C3 > 0 and
C1C2 − C3 > 0. Thus, three eigenvalues of J1(E2) have negative real parts. Further-
more, it’s clear that Tr(J2(E2)) = a33+a44 < 0 andDet(J2(E2)) = a33a44−a34a43 >

0, if R0 < 1. Hence, the two eigenvalues of J2(E2) have negative real parts. E2 is
locally asymptotically stable if R0 < 1.

Appendix B.4 Proof of Theorem 3.6

The proof is divided into two parts, local bifurcation and global bifurcation.
(i) Local bifurcation. Define a mapping W : R+ × R

5 → R
5 by

W (d f , P, S, I , F, N ) =

⎛
⎜⎜⎜⎜⎜⎝

rg(N ) f (P)P − dp P − π1(P)(S + I )
eπ1(P)(S + I ) − dz S − βπ2(F)S

βπ2(F)S − dz I − δ I
δσ (P)I − d f F − π2(F)(S + I )
D

xl
(N0 − N ) − cprg(N ) f (P)P

⎞
⎟⎟⎟⎟⎟⎠

.
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Obviously,W (d f , P2, S2, 0, 0, N2) = 0.LetH := W(P,S,I ,F,N )(d∗
f , P2, S2, 0, 0, N2).

We have

H [ξ1, ξ2, ξ3, ξ4, ξ5] =

⎛
⎜⎜⎜⎜⎝

h1(ξ1, ξ3, ξ5)
h2(ξ1, ξ3, ξ4)
h3(ξ3, ξ4)
h4(ξ3, ξ4)
h5(ξ1, ξ5)

⎞
⎟⎟⎟⎟⎠ ,

for any (ξ1, ξ2, ξ3, ξ4, ξ5) ∈ R
5+, where

h1 = (rg(N2) f
′(P2)P2 − aS2)ξ1 − aP2ξ2 − aP2ξ3 + rg′(N2) f (P2)P2ξ5,

h2 = eaS2ξ1 + eπ(P2)ξ3 − βaS2ξ4,

h3 = −(dz + δ)ξ3 + βaS2ξ4,

h4 = σ(P2)δξ3 − (d∗
f + βaS2)ξ4,

h5 = −(cprg(N2) f (P2) + cprg(N2) f
′(P2)P2)ξ1 − (

D

xl
+ cprg

′(N2) f (P2)P2)ξ5.

For (ξ1, ξ2, ξ3, ξ4, ξ5) ∈ ker H , one can obtain

hi = 0, i = 1, 2, 3, 4, 5. (13)

From d∗
f = aS2

(
βσ(P2)δ

δ+dz
− 1

)
, we have h3 = h4 and

ξ3 = − aS2
δσ (P2)

(
β

(
1 + δσ (P2)

dz + δ

)
− 1

)
ξ4.

Let ξ4 = 1, then it is clear that (13) has a unique solution (ξ̂1, ξ̂2, ξ̂3, 1, ξ̂5). Then
dim ker H = 1, ker H = span(ξ̂1, ξ̂2, ξ̂3, 1, ξ̂5). Hence

range H = {(σ1, σ2, σ3, σ4, σ5) ∈ R
5 : σ3 = σ4},

then codim range F = 1. A direct calculation gives

Hd f (P,S,I ,F,N )(d
∗
f , P2, S2, 0, 0, N2)(ξ̂1, ξ̂2, ξ̂3, 1, ξ̂5) = (0, 0, 0,−1, 0) /∈ rangeP.

Based on the Crandall-Rabinowitz bifurcation theorem ( (Crandall and Rabinowitz
1971), Theorem 1.7 ), all positive solutions of (1) near (d∗

f , P2, S2, 0, 0, N2) are on a
smooth curve

 = {(d f (s), P3(s), S3(s), I3(s), F3(s), N3(s)) : 0 < s < ε},
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for some ε > 0 with the form

P3(s) = P2 + sξ̂1 + o(s), S3(s) = S2 + sξ̂2 + o(s), I3(s) = s + o(s),

F3(s) = s + o(s), N3(s) = N2 + sξ̂5 + o(s).
(14)

(ii) Global bifurcation. Let ϒ be the set of all positive coexistence equilibria of (1).
It follows from Theorem 3.3 and Remark 3.4 in Shi and Wang (2009), there exists a
connected component ϒ+ of ϒ such that it includes , and its closure contains the
bifurcation point (d∗

f , P2, S2, 0, 0, N2). Moreover, ϒ+ has one of the following three
cases:

(1) it is not compact in R
+ × R

5,
(2) it meets another bifurcation point (d̃ f , P2, S2, 0, 0, N2) with d̃ f 
= d∗

f ,

(3) it contains (d f , P2+ P̂3, S2+ Ŝ3, Î3, F̂3, N2+ N̂3)with 0 
= (P̂3, Ŝ3, Î3, F̂3, N̂3) ∈
X, where X is a closed complement of ker H = span{η̂1, η̂2, η̂3, 1, η̂5} in R5+.
If the case (3) occurs, then Î3 = F̂3 = 0, which is a contradiction to Î3, F̂3 >

0 since it is a positive steady state. If (2) holds and d̃ f is another bifurcation
value from . Hence, there exists a positive coexistence steady state sequence
{(dnf , Pn

3 , Sn3 , I n3 , Fn
3 , Nn

3 )} satisfying

{(dnf , Pn
3 , Sn3 , I n3 , Fn

3 , Nn
3 )} → {(d∗

f , P
n
2 , Sn2 , 0, 0, Nn

2 )}
as n → ∞. From the third and fourth equations in (1), we have

βaFn
3 S

n
3 − dz I

n
3 − δ I n3 = 0,

σ (Pn
3 )δ I n3 − dnf F

n
3 − βaFn

3 (Sn3 + I n3 ) = 0.
(15)

From the first equation of (15), we obtain

I n3 = βaFn
3 S

n
3

dz + δ
.

Substituting this into the second equation of (15), we have

δσ (Pn
3 )

βaSn3
dz + δ

− dnf − a(Sn3 + βaFn
3 S

n
3

dz + δ
) = 0.

Hence

δσ (P2)
βaS2
dz + δ

− d̃ f − aS2 = 0,

when n → ∞, which means that d̃ f = d∗
f . The above discussion indicates that (1)

must hold. Then ϒ+ is not compact in R6. It follows from Theorem 3.1 that

N ≤ N0, (eP + S + I ) ≤ erg(N0) f (0)A

min{dp, dz} , F ≤ σ(A)δB1

d f
,
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for all d f ∈ (0, d∗
f ). This indicates that the projection of ϒ+ onto d f -axis contains

(0, d∗
f ). The proof is complete.
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