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Separable differential equations

A separable differential equation is one that has the form

y ′(x) = f (x)g(y).

That is, y ′(x) equals the product of a function of x alone and a function of
y alone.

Alternatively, let N(y) = 1
g(y) , M(x) = −f (x). Then we can write

y ′ = −M(x)/N(y), or
N(y)y ′(x) = −M(x).

Integrating both sides, we have
∫
N(y) dy

dx dx = −
∫
M(x)dx .

The substitution rule yields∫
N(y)dy = −

∫
M(x)dx ⇔

∫
N(y)dy +

∫
M(x)dx = 0
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Separable differential equations continued

Less formally, simply “move all x stuff to one side, all y stuff to the other, and
then integrate”.

Example: Solve the IVP

dy

dx
=

x2

1 + y2
, y(1) = 0.

Solution:

We rewrite the differential equation as (1 + y2)dy = x2dx .

Integrate:
∫

(1 + y2)dy =
∫
x2dx .

Result: y + 1
3y

3 = 1
3x

3 + C for an arbitrary constant C .

Initial condition: y(1) = 0 =⇒ 0 = 1
3 + C =⇒ C = − 1

3 .

The particular solution of this initial value problem is therefore

y +
1

3
y3 =

1

3

(
x3 − 1

)
.

This is a solution in implicit form.
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Implicit form

A function y(x) is in implicit form if it is written as F (x , y) = 0 for some
function F of two variables.

If we can solve this to write y = f (x), the solution is then in explicit form.

It is common for a solution of a differential equation to be found in implicit
form.

You can leave a solution in implicit form whenever it is

impossible or
inconvenient

to express it in explicit form.

You can still apply initial conditions to solutions in implicit form.
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DEs of more than one type

A differential equation can be of more than one type. For example, the DE

dv

dt
= g − b

m
v

that we solved in the last lecture is first-order linear, but it is also separable.

It can be written in separable form as dv
mg
b −v

= b
mdt

Integrating, we get − ln
∣∣mg

b − v
∣∣ = bt

m + C

Multiply by −1 and exponentiate:
∣∣mg

b − v
∣∣ = e−Ce−bt/m.

Remove absolute value signs: mg
b − v = ±e−Ce−bt/m.

Define new constant A = ±e−C to get mg
b − v = Ae−bt/m, or

v(t) =
mg

b
− Ae−bt/m.

Compare to solution found previously in the last lecture.
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New DEs from old

Some differential equations that are not linear or separable can be reduced to one
of those forms.

First-order homogeneous equations y ′ = f (y/x).

Can be transformed to separable type.

Bernoulli equations y ′ + p(x)y = g(x)yn.

Can be transformed to first-order linear type.
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First-order homogeneous equations

First-order homogeneous equations can be written in the form

y ′ = f (y/x)

for some function f .

Substitute v(x) = y(x)
x .

Then y = xv , so y ′ = v + xv ′.

DE becomes v + xv ′ = f (v) =⇒ xv ′ = f (v)− v .

Separable: dv
f (v)−v = dx

x .
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Example

Find the general solution of dy
dx = x2+3y2

2xy .
Solution:

Rewrite as dy
dx = x

2y + 3y
2x = 1

2y/x + 3y
2x .

Let v = y/x . Then y = xv so y ′ = v + xv ′.

The DE becomes v + xv ′ = 1
2v + 3

2v =⇒ xv ′ = 1
2v + 1

2v = 1+v2

2v .

Separate the vs and xs: 2vdv
1+v2 = dx

x .

Integrate: ln(1 + v2) = ln |x |+ C .

Exponentiate: 1 + v2 = eC |x | = Ax where A = ±eC = const.

Simplify: v2 = Ax − 1

Recall that y = xv so y = ±x
√
Ax − 1.

MATH 334 (University of Alberta) Separable differential equations 8 / 10



Bernoulli equations

The equation
y ′ + p(x)y = g(x)yn , n 6= 0, 1

is called a Bernoulli equation.

If n = 1, equation is y ′ + (p − g)y = 0. This is both linear and separable.

If n = 0, equation is y ′ + py = g , which is linear.

If n 6= 0, 1:

Multiply equation by (1− n)y−n to get

(1− n)y−ny ′ + (1− n)py1−n = (1− n)g .

Use substitution v = y1−n.
Then v ′ = (1− n)y−ny ′ and the DE becomes

v ′ − (n − 1)p(x)v = −(n − 1)g(x)

This is a linear DE. Solve it for v .
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Bernoulli example

Find the general solution of y ′ + 2
t y = −t5y3, t > 0.

Solution:

Here n = 3. Multiplying by (1− n)y−n = −2y−3 if y 6= 0, we get

−2y−3y ′ − 4

t
y−2 = 2t5

.

Let v = y1−n = y−2. Then v ′ = −2y−3y ′ and the DE becomes

v ′ − 4

t
v = 2t5.

Linear, with integrating factor µ = e
∫
pdt = e

∫
− 4

t dt = e−4 ln t = t−4.

Solution v = 1
t−4

∫
t−4 · 2t5dt = t4

∫
2tdt = t6 + Ct4.

v = y−2 so y = ±v−1/2 = ±
(
t6 + Ct4

)−1/2
= ± 1

t2
√
t2+C

or y = 0.
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