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Abstract
Understanding the dynamics of plant-pollinator interactions is crucial for maintain-
ing ecosystem stability and biodiversity. In this paper, we formulate a novel tripartite
plant-pollinator-parasitemodel that incorporates the influenceof parasites onmutualis-
tic relationships. Our model consists of the plant-pollinator subsystem, which exhibits
equilibriumdynamicswith up to four bistable states; the pollinator-parasite subsystem,
where stability is significantly affected by pollinator density and growth rate; and the
complete system combining all three species. We perform comprehensive mathemati-
cal and bifurcation analyses on both the subsystems and the full system.We havemany
interesting findings, including that (1) plant-pollinator-parasite interactions are depen-
dent on the properties of plants andpollinators (i.e., facultative or obligate interactions).
For example, systems with facultative pollinators are more likely to exhibit multista-
bility and periodic oscillations, thereby enhancing resilience, whereas scenarios with
obligate pollinators are more likely to lead to system collapse. (2) Critical parameters
such as parasite mortality and conversion rates can drive complex behaviors, including
supercritical and subcritical Hopf bifurcations, saddle-node bifurcations, chaos, and
heteroclinic orbits. Notably, we introduce three new concepts-the left bow, right bow,
and wave bow phenomena-to characterize variations in oscillation amplitude resulting
from parameter bifurcations. These important results provide theoretical guidance for
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ecological management strategies aimed at enhancing ecosystem resilience and stabil-
ity by considering the complex interactions among plants, pollinators, and parasites.

Keywords Plant-pollinator system · Parasitism · Oscillations · Homoclinic loop ·
Multistability

Mathematics Subject Classification 34D23 · 92B05

1 Introduction

The mutualistic relationship between plants and pollinators is fundamental to ecosys-
tem stability and biodiversity. Pollinators-including bees, butterflies, and bats-facilitate
plant reproduction by providing essential pollination services,while plants supply vital
resources such as nectar and pollen to sustain pollinator populations. Globally, approx-
imately 87.5% of flowering plants rely on animal-mediated pollination (Kumar and
Khan 2023;Wright et al. 2013). Among these pollinators, bees are particularly crucial,
responsible for pollinating 75% to 80% of the world’s major crop species, including
fruits, nuts, and certain vegetables (Alemberhe and Gebremeskel 2016; Johannsmeier
andMostert 2001). The economic value of these pollination services is immense, esti-
mated to range from $235 to $577 billion annually (Potts et al. 2016). Given the critical
importance of this mutualism in both ecological and agricultural contexts, substantial
research has focused on understanding the dynamics of plant-pollinator interactions
and the factors involved (Funamoto 2019; Heithaus 1974; Mitchell et al. 2009).

Dynamic models have become indispensable tools for studying plant-pollinator
mutualisms. These models offers a rigorous framework for quantifying species inter-
actions, predicting outcomes under various ecological scenarios, and exploring the
long-term stability of these systems in response to environmental changes. Early
mathematical models often involved simplified two-species systems, frequently using
variations of the Lotka-Volterra differential equation model to explore the basic rela-
tionship between pollinator abundance and plant reproductive success (Fishman and
Hadany 2010; Hale and Valdovinos 2021; Holland and DeAngelis 2010). As research
progressed, these models were expanded to incorporate additional complexities (Oña
and Lachmann 2011; Valdovinos and Marsland 2021; Fort and Mungan 2015; Wang
2019), such as pollinator specialization (Benadi et al. 2012; Revilla and Křivan 2018),
population structure (Encinas-Viso et al. 2014; Lampo et al. 2024; Yahaya et al. 2024),
and spatial distribution (Huang et al. 2017; Sánchez-Garduño andBreña-Medina 2011;
Wang et al. 2015). These enhancements have significantly improved themodels’ ability
to predict the complex behaviors observed in natural ecosystems, capturing phenom-
ena like multistability and periodic oscillations (Glaum and Kessler 2017; Hale et al.
2022; Lv et al. 2024; Revilla and Encinas-Viso 2015) and providing critical insights
into how plant-pollinator systems may respond to environmental pressures (Devi and
Mishra 2020; Feng et al. 2024).

Plant-pollinator interactions are subjected to multiple ecological pressures, includ-
ing climate change (Forrest 2015; Gérard et al. 2020; Settele et al. 2016; Zamora-
Gutierrez et al. 2021), herbivores (Gómez 2003; Lucas-Barbosa et al. 2011), and
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parasites (Dunn et al. 2008; Krishnan and Borges 2014). For instance, climate change
can lead to mismatches between plant flowering periods and pollinator activity, reduc-
ingpollination efficiency and altering the dynamic equilibriumof ecosystems (Hegland
et al. 2009). Herbivores indirectly affect pollinators by reducing plant resources,
diminishing the attractiveness of plants to pollinators (Strauss et al. 2002). Pollinators
themselves face threats from predators and parasites, which can significantly reduce
their numbers and limit pollination opportunities for plants (Dukas 2005). Addition-
ally, competition among pollinators and among plants influences the distribution of
resources and reproductive success (Irwin et al. 2010; Rojas-Nossa et al. 2016; Ash-
man and Arceo-Gómez 2013; Crone and Rapp 2014; Iwasa and Satake 2004; Satake
and Iwasa 2002).

Dynamicmodels have been extensively employed to study the impacts of these eco-
logical pressures on plant-pollinator systems (Benadi et al. 2013; Lampo et al. 2024;
Kawata and Takimoto 2023; Tachiki et al. 2010; Truitt et al. 2019). For example,
adaptive mutualistic Lotka-Volterra models have demonstrated how environmental
stress can trigger asynchronous species collapses in pollinator communities (Terpstra
et al. 2024). Hybrid dynamical models have assessed how climate-driven phenolog-
ical mismatches affect plant population dynamics, especially in short-lived species
(Fagan et al. 2014). Other studies have investigated conditions under which pollina-
tion mutualisms persist despite disruptive influences like nectar robbers (Wang 2013;
Wang et al. 2012; Wang and Wu 2013; Wang et al. 2012). Stable coexistence in
plant-pollinator-herbivore communities has been shown to require a balance between
the strengths of pollination and herbivory (Yacine and Loeuille 2022). Additional
analyses of plant-pollinator-herbivore systems have identified conditions for species
coexistence, extinction, and the emergence of limit cycles through bifurcation analysis
(Chen et al. 2020; Castellanos and Sánchez-Garduño 2019). Collectively, these stud-
ies provide critical insights into the response mechanisms of plant-pollinator systems
under ecological stress.

Despite these advances, the impacts of parasites-particularly pollinator parasites
such as Varroa mites-remain underexplored. Parasites are a significant ecologi-
cal pressure, exerting complex effects on plant-pollinator systems (Genersch 2010;
Guzmán-Novoa et al. 2010; Van Dooremalen et al. 2012). Varroa mites weaken pol-
linators by compromising their immune systems and transmitting deadly pathogens,
leading to sharp declines in pollinator populations and affecting pollination services
(Chen et al. 2021;Martin et al. 2012; Rosenkranz et al. 2010). Infestations have caused
a 30% to 50% decline in global honeybee populations, severely disrupting pollina-
tion networks essential for both crops and wild plants (Doeke et al. 2015; Goulson
et al. 2015). In the United States alone, losses of bee colonies due to Varroa mites
and associated viruses exceed 40% annually, posing a serious threat to agricultural
sustainability (Kulhanek et al. 2017).

Given the profound impact that parasites can have on pollinator populations and, by
extension, on plant-pollinator interactions, it is crucial to thoroughly understand the
dynamics of parasitismwithin these systems. Dynamicmodels have proven invaluable
for quantifying the long-term effects of parasite infestations on pollinator population
dynamics and identifying factors that could lead to ecosystem collapse (Britton and
JaneWhite 2021; Chen et al. 2023; DeGrandi-Hoffman and Curry 2004; Martin 1998;
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Ratti et al. 2017; Vetharaniam and Barlow 2006). Previous studies have shown that
Varroa mites can destabilize honeybee populations, leading to tipping points where
colonies collapse (Kang et al. 2016). Incorporating factors like time lags in brood
development and mite migration between patches has revealed complex outcomes,
such as destabilization or stabilization of colonies depending on specific conditions
(Messan et al. 2017, 2021). However, a significant gap remains in understanding
how these effects feedback into plant dynamics. To fully grasp the broader ecological
consequences of parasitism in plant-pollinator systems, further research integrating
both pollinator and plant dynamics is needed. Addressing this gap is the central focus
of this study.

This paper is organized as follows. In Sect. 2, we introduce a novel tripartite plant-
pollinator-parasite model that integrates the influence of parasites on mutualistic
relationships. Section3 offers a comprehensive analysis of the boundary subsystems,
examining dissipation, the existence and global stability of equilibria, and identifying
bistability. In Sect. 4, we explore the full plant-pollinator-parasite system, detailing the
mechanisms bywhich parasites impact plant-pollinator interactions. Section5 extends
the theoretical insights through numerical bifurcation analysis, investigating the effects
of critical biological parameters, such as parasitism rate and natural pollination rate,
on system dynamics. Finally, Sect. 6 concludes the paper with a summary and potential
avenues for future research.

2 Model derivation

In this study, we investigate the effects of parasitism on plant-pollinator interactions
by developing a mathematical model that captures the dynamics among three crit-
ical components: plants (P), pollinators (A), and parasites (M). Building upon the
two-dimensional plant-pollinator model proposed by Hale et al. (2022), we extend the
framework to include the influence of parasites, thereby providing a more comprehen-
sive understanding of these complex ecological relationships.

(1) Plant dynamics. Under ideal conditions, the plant population grows at an
intrinsic rate bP . Natural pollination mechanisms, such as self-pollination and wind
pollination, result in a proportion f of successful pollination events. The overall repro-
ductive success is further determined by the likelihood of seed formation g. As the
population density increases, intraspecific competition for limited resources induces
a natural decline in the plant population, modeled by a density-dependent factor sP ,
along with a baseline mortality rate dP . Pollinators enhance the pollination process by
providing an additional pollination rateΨ (SP ), which is directly linked to the benefits
SP that plants gain from these services. The dynamics of the plant population are
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therefore captured by the following differential equation:

dP

dt
= bP

︸︷︷︸

intrinsic growth rate

⎛

⎜

⎝ f
︸︷︷︸

natural pollination

+ Ψ (SP )
︸ ︷︷ ︸

pollination by pollinators

⎞

⎟

⎠ g
︸︷︷︸

reproductive success

P

− sP P
2

︸ ︷︷ ︸

density-dependent limitation

− dP P
︸︷︷︸

plant mortality

.

(2)Pollinator dynamics. Thepollinator populationgrows at a ratebA , but this growth
is constrained by factors such as nest size, represented by the density-dependent factor
sA, and is subject to a natural mortality rate dA. Pollinators benefit from consuming
plant rewards, which correspond to the total benefit that plants receive from polli-
nation services. These rewards are converted into new individuals through birth and
maturation with an efficiency ε. However, the introduction of parasites disrupts this
mutualistic interaction by increasing pollinator mortality, modeled as Φ(A, M). The
dynamics of the pollinator population are thus described by:

d A

dt
= bA A

︸︷︷︸

pollinator birth rate

+ εSP
︸︷︷︸

conversion of rewards to offspring

− sA A
2

︸ ︷︷ ︸

density-dependent limitation

− dA A
︸︷︷︸

pollinator mortality

− Φ(A, M)
︸ ︷︷ ︸

mortality from parasitism

.

(3) Parasite dynamics. Parasites exploit the energy and nutrients that pollinators
obtain from plants, converting these resources into new individuals with an efficiency
k. The parasite population also faces natural mortality at a rate dM . The dynamics of
the parasite population are given by:

dM

dt
= kΦ(A, M)

︸ ︷︷ ︸

parasite reproduction

− dMM
︸ ︷︷ ︸

parasite mortality

.

To accurately represent the interactions between these species, we define specific
functional responses:

– Plant benefits from pollination. Following Hale et al. (2022), we assume that the
benefits SP that plants gain from pollination services follow a Holling Type II
functional response:

SP (P, A) = aAP

1 + ahP
,

where a is the attack rate (the rate at which pollinators visit plants) and h is the
handling time (the time a pollinator spends on each plant). This formulation reflects
how the benefits saturate as plant density increases.
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– Proportion of pollination by pollinators. The proportion of pollination performed
by pollinators is positively correlated with the plant benefit rate, modeled as:

Ψ (SP ) = φSP
1 + SP

,

where φ represents the maximum proportion of pollination achievable by pollina-
tors when the benefit rate saturates.

– Parasitic interactions.FollowingKang et al. (2016),wemodel the parasitic interac-
tions between parasites and pollinators using a Holling Type I functional response:

Φ(A, M) = βAM,

where β is the parasitism rate.

Integrating these components, we arrive at the following set of three-dimensional
differential equations that capture the complex dynamics of the plant-pollinator-
parasite system:

dP

dt
= bP

︸︷︷︸

intrinsic growth rate

⎛

⎜

⎜

⎜

⎝

f
︸︷︷︸

natural pollination

+φ
aAP

1 + ahP + aAP
︸ ︷︷ ︸

pollination by pollinators

⎞

⎟

⎟

⎟

⎠

g
︸︷︷︸

reproductive success

P

− sP P
2

︸ ︷︷ ︸

density-dependent limitation

− dP P
︸︷︷︸

plant mortality

,

d A

dt
= bA A

︸︷︷︸

pollinator birth rate

+ ε
aAP

1 + ahP
︸ ︷︷ ︸

conversion of rewards to offspring

− sA A
2

︸ ︷︷ ︸

density-dependent limitation

− dA A
︸︷︷︸

pollinator mortality

− βAM
︸ ︷︷ ︸

mortality from parasitism

,

dM

dt
= kβAM

︸ ︷︷ ︸

parasite reproduction

− dMM
︸ ︷︷ ︸

parasite mortality

.

(1)
This system (1) follows the traditional host-parasite modeling framework, accounting
for non-lethal parasitism effects (Anderson 1978; Anderson andMay 1981; Kang et al.
2016). Notably, if the pollinator population A goes extinct, the parasite population M
will inevitably decline to extinction as well, highlighting the dependence of parasites
on their hosts.

Mutualistic relationships between plants and pollinators can vary from obligate to
facultative dependencies. To capture this variability, we define:

rP := bP f g − dP and rA := bA − dA.
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here rP and rA represent the net growth rates of plants and pollinators, respectively,
in the absence of mutualistic interactions. If ri < 0 for i = A, P , then species i is an
obligate mutualist, unable to persist without its partner. Conversely, if ri > 0, species
i is a facultative mutualist, capable of surviving independently.

Examples of mutualism types. A well-known obligate mutualism is observed
between the yucca plant (Yucca spp.) and the yucca moth (Tegeticula spp.), where
both species rely exclusively on each other for reproduction (Pellmyr and Huth
1994). In contrast, the fig tree (Ficus spp.) and fig wasp (Agaonidae family) exhibit
a facultative-obligate mutualism; while fig wasps are entirely dependent on fig trees
for reproduction, fig trees can also be pollinated by other agents (Jousselin et al.
2003). Similarly, the senita cactus (Pachycereus schottii) and the senita moth (Upiga
virescens) demonstrate a relationship where the cactus is an obligate mutualist, but
the moth is a facultative mutualist (Holland and Fleming 1999). Finally, the com-
mon milkweed (Asclepias syriaca) and its various generalist pollinators, such as bees
and butterflies, represent a facultative mutualism, with both the plant and pollinators
having multiple partners and not exclusively dependent on each other (Kephart 1983).

Considering these diverse mutualism types is essential for deriving general conclu-
sions; therefore, in this paper, we incorporate all four types of mutualistic relationships
into our model. By integrating these varied forms of mutualism, our primary objective
is to investigate how parasitism influences plant-pollinator dynamics across different
dependency scenarios, thereby enhancing our understanding of the mechanisms that
underpin ecosystem resilience and stability.

3 Analysis of the partial system

3.1 Dynamics without parasites

To understand the foundational interactions between plant and pollinator populations,
we begin by examining the system in the absence of parasites. Under this scenario,
system (1) simplifies to the following two-dimensional model:

dP

dt
=P

[

bP

(

f + φ
aAP

1 + ahP + aAP

)

g − sP P − dP

]

,

d A

dt
=A

(

bA + ε
aP

1 + ahP
− sA A − dA

)

.

(2)

Lemma 1 (Boundedness and invariance) For system (2) with initial conditions in the
compact set

C1 =
{

(P, A) ∈ R
2+ : 0 ≤ P ≤ bPφg + rP

sP
, 0 ≤ A ≤

ε
h + rA
sA

}

,

the solutions remain within C1 for all future times.
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Remark Since P(t) and A(t) represent the population densities of plants and polli-
nators, respectively, they must remain non-negative over time. Lemma 1 confirms the
positive invariance of system (2), ensuring that solution trajectories stay within the
biologically meaningful domain. For a detailed proof, refer to Appendix A.

Theorem 1 (Global dynamics) The solutions of system (2) converge towards locally
asymptotically stable equilibria. When there is a unique locally asymptotically sta-
ble equilibrium, it is globally asymptotically stable. The threshold conditions for the
existence and stability of these equilibria are detailed as follows:

(1) Extinction equilibrium: There exists an extinction equilibrium at E0 = (0, 0). It is
locally asymptotically stable if max{rP , rA} < 0; otherwise, if max{rP , rA} > 0,
E0 is unstable.

(2) Pollinator-only equilibrium: When rA > 0, a pollinator-only equilibrium E0A =
(0, rA

sA
) is present. E0A is locally asymptotically stable if rP < 0; otherwise, if

rP > 0, E0A is unstable.
(3) Plant-only equilibrium: When rP > 0, a plant-only equilibrium EP0 = ( rPsP

, 0)
exists. EP0 is locally asymptotically stable if rA < − εarP

sP+ahrP
; otherwise, if rA >

− εarP
sP+ahrP

, EP0 is unstable.
(4) Coexistence equilibrium: The system can exhibit a maximum of three coexistence

equilibria, as illustrated in Fig. 1. Specifically, if rP > 0 and rA > 0, the system
exhibits either one or three coexistence equilibria. If rP < 0 and rA > 0, the
system features either none or two coexistence equilibria. If rP > 0 andrA < 0, the
system can potentially possess zero, one, two, or up to three coexistence equilibria.
If rP < 0 and rA < 0, the system can host either zero, one, or at most two
coexistence equilibria. We denote the coexistence equilibria as E∗

i = (P∗
i , A∗

i ),

where i = 1, 2, 3, and they are ordered as P∗
1 < P∗

2 < P∗
3 whenever they are

present. The stability of these coexistence equilibria can be summarized as follows:
(1) if there is a unique coexistence equilibrium E∗

1 , it is locally asymptotically
stable; (2) if there are two coexistence equilibria E∗

i , i = 1, 2, E∗
1 is unstable,

while E∗
2 is locally asymptotically stable; (3) for the case of three coexistence

equilibria, E∗
1 and E∗

3 are locally asymptotically stable, while E∗
2 is unstable.

(4) Notably, when two equilibria merge, the dimensions of both the stable and
center-stable manifolds of the equilibrium are equal to 1.

Proof An equilibrium of the system (2) should satisfy

0 =P

[

bP

(

f + φ
aAP

1 + ahP + aAP

)

g − sP P − dP

]

:= ψ1(P, A),

0 =A

(

bA + ε
aP

1 + ahP
− sA A − dA

)

:= ψ2(P, A).

Simple calculation shows that the system (2) always has an extinction equilibrium
E0 = (0, 0). If rP := bP f g − dP > 0, the system (2) has a plant-only equilibrium
EP0 = ( rPsP

, 0), and if rA := bA − dA > 0, the system (2) has a pollinator-only
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Fig. 1 The number of
coexistence equilibria in the
subsystem (2) with varying bP
vs bA for fixed parameters
f = 0.5, φ = 0.5, g = 1, sP =
0.61, a = 2, h = 0.01, ε =
1, sA = 2, dA = 1.1, dP =
0.67. The black, blue, red and
yellow regions represent zero,
one, two and three coexistence
equilibria, respectively (color
figure online)

Fig. 2 Schematic of real positive roots for cubic polynomial ρ2(P) and the subsystem (2) with rP > 0

equilibrium E0A = (0, rA
sA

). Assume that E∗ = (P∗, A∗) is a coexistence equilibrium
of the system (2). Solving ψ2(P∗, A∗) = 0, we obtain

A∗ = 1

sA

(

rA + ε
aP∗

1 + ahP∗

)

. (3)

Substituting (3) into ψ1(P∗, A∗) = 0 gives

ρ1(P
∗) := P∗

sA(1 + ahP∗)2 + arA(1 + ahP∗)P∗ + εa2(P∗)2
· ρ2(P

∗) = 0,

where

ρ2(P) = − a2sP (ε + h(rA + hsA)) P3 + a[a(gφbP + rP )(ε + hrA)

+ hsA(ahrP − 2sP ) − rAsP ]P2

+ (agφbPrA + arArP + 2ahrPsA − sAsP ) P + sArP .
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It is evident, from the properties of cubic equations, that when rP > 0, the equation
ρ2(P) = 0 may exhibit either one or three positive real roots, as illustrated in Fig. 2a
and b. Conversely, in the case where rP < 0, the equation ρ2(P) = 0 may have
either zero or two positive real roots, as depicted in Fig. 3a and b. With respect to
the expression (3) for the component A∗, we can identify the existence of coexistence
equilibria into the following four scenarios:

(i) Case rP > 0 and rA > 0. The Eq. (3) clearly indicates that A∗ > 0. Therefore,
the system (2)may exhibit either one or three coexistence equilibria, as illustrated
in Fig. 2a and b.

(ii) Case rP > 0 and rA < 0. The system (2) can potentially have zero, one, two,
or at most three coexistence equilibria. To elaborate: when ρ2(P) = 0 has a
single positive real root P∗

1 , the system (2) lacks a coexistence equilibrium if
A(P∗

1 ) < 0 (Fig. 2c). Conversely, if A(P∗
1 ) > 0, the system (2) has a unique

coexistence equilibrium (Fig. 2d). When ρ2(P) = 0 has three positive real roots
P∗
1 < P∗

2 < P∗
3 , the system (2) does not have a coexistence equilibrium if

A(P∗
3 ) < 0 (Fig. 2e). However, if A(P∗

2 )A(P∗
3 ) < 0, the system (2) features a

unique coexistence equilibrium (Fig. 2f). In the event that A(P∗
1 )A(P∗

2 ) < 0, the
system (2) features two coexistence equilibria (Fig. 2g). Finally, if A(P∗

1 ) > 0,
the system (2) hosts three coexistence equilibria, as presented in Fig. 2h.

(iii) Case rP < 0 and rA > 0. In this scenario, the system (2) may either lack
a coexistence equilibrium or exhibit two coexistence equilibria, as depicted in
Fig. 3a and b.

(iv) Case rP < 0 and rA < 0. In this scenario, the system (2) could potentially
have zero, one or two coexistence equilibria. If ρ2(P) = 0 has no positive real
roots, the system (2) does not possess a coexistence equilibrium (Fig. 3c). If
the function ρ2(P) = 0 has two positive real roots P∗

1 < P∗
2 , the system (2)

lacks a coexistence equilibrium if A(P∗
2 ) < 0 (Fig. 3d). However, the system

(2) has a unique coexistence equilibrium if A(P∗
1 )A(P∗

2 ) < 0 (Fig. 3e). When
A(P∗

1 ) > 0, the system (2) features two coexistence equilibria, as illustrated in
Fig. 3f.

Next, we verify the stability of the boundary and coexistence equilibria.

(1) Stability of the extinction equilibrium E0. Since the Jacobian matrix of the system
(2) evaluated at E0 = (0, 0) is given by

J (E0) =
[

rP 0
0 rA

]

,

it follows that λ1 = rP and λ2 = rA. That is, the extinction equilibrium E0 is
locally asymptotically stable if max{rP , rA} < 0; while if max{rP , rA} > 0, E0
is unstable.

(2) Stability of the plant-only equilibrium EP0. Evaluating the Jacobianmatrix at EP0,
we obtain

J (EP0) =
[

−rP
bPφgar2P

sP (sP+ahrP )

0 rA + εarP
sP+ahrP

]

.
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Fig. 3 Schematic of real positive roots for cubic polynomial ρ2(P) and the subsystem (2) with rP < 0

The corresponding eigenvalues are given by

λ1 = −rP , λ2 = rA + εarP
sP + ahrP

.

Therefore, the plant-only equilibrium EP0 is locally asymptotically stable if rA <

− εarP
sP+ahrP

; while if rA > − εarP
sP+ahrP

, the plant-only equilibrium EP0 is unstable.
(3) Stability of the pollinator-only equilibrium E0A. The Jacobian matrix at E0A can

be shown as

J (E0A) =
[

rP 0
rA
sA

εa −rA

]

.

Therefore, we have λ1 = rP and λ2 = −rA. That is, the pollinator-only equi-
librium E0A is locally asymptotically stable if rP < 0; while it is unstable if
rP > 0.

(4) Stability of the coexistence equilibrium. Let E∗ = (P∗, A∗) be a potential
coexistence equilibrium. The Jacobian matrix of the system (2) evaluated at
E∗ = (P∗, A∗) is

J (E∗) =
[

bPφgaA∗P∗
(1+ahP∗+aA∗P∗)2 − sP P∗ bPφga (P∗)2(1+ahP∗)

(1+ahP∗+aA∗P∗)2
εaA∗

(1+ahP∗)2 −sA A∗

]

.

The corresponding characteristic equation is given by

λ2 −
[

bPφgaA∗P∗

(1 + ahP∗ + aA∗P∗)2
− sP P

∗ − sA A
∗
]

λ + det(J (E∗)) = 0,
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where

det(J (E∗)) = −
[

bPφgaA∗P∗

(1 + ahP∗ + aA∗P∗)2
− sP P

∗
]

sA A
∗

− bPφga(P∗)2(1 + ahP∗)
(1 + ahP∗ + aA∗P∗)2

εaA∗

(1 + ahP∗)2
.

Since E∗ = (P∗, A∗) is a coexistence equilibrium of the system (2), the implicit
function theorem combined with ψ2(P∗, A∗) = 0 implies that there is a continuous
differentiable function

A(P) = 1

sA

(

rA + ε
aP

1 + ahP

)

(4)

such that A(P∗) = 0 and

d A(P)

dP

∣

∣

∣

∣

P=P∗
= −

∂ψ2(P,A)
∂P

∂ψ2(P,A)
∂A

∣

∣

∣

∣

P=P∗
.

Substituting Eq. (4) into ψ1(P, A), we obtain that

ψ1(P, A(P)) = ρ1(P). (5)

Taking the derivative of Eq. (5) with respect to P , we get that

[

∂ψ1(P, A(P))

∂A

dA(P)

dP
+ ∂ψ1(P, A(P))

∂P

] ∣

∣

∣

∣

P=P∗
= dρ1(P)

dP

∣

∣

∣

∣

P=P∗
.

Therefore we have

dρ1(P)

dP

∣

∣

∣

∣

P=P∗

∂ψ2(P, A)

∂A

∣

∣

∣

∣

P=P∗
= − ∂ψ1(P, A(P))

∂A

∂ψ2(P, A)

∂P

∣

∣

∣

∣

P=P∗

+ ∂ψ1(P, A(P))

∂P

∣

∣

∣

∣

P=P∗

∂ψ2(P, A)

∂A

∣

∣

∣

∣

P=P∗

= det(J (E∗)).

It follows that

det(J (E∗)) =dρ1(P)

dP

∣

∣

∣

∣

P=P∗

∂ψ2(P, A)

∂A

∣

∣

∣

∣

P=P∗

= − sA A∗P∗

sA(1 + ahP∗)2 + arA(1 + ahP∗)P∗ + εa2(P∗)2
· ρ′

1(P
∗).

(6)

By the characteristic Eq. (6) we know that the eigenvalues satisfy

λ1(E
∗) + λ2(E

∗) = − bPφgaA∗P∗

(1 + ahP∗ + aA∗P∗)2
+ sP P

∗ + sA A
∗
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and

λ1(E
∗)λ2(E∗) = det(J (E∗))

= − sA A∗P∗

sA(1 + ahP∗)2 + arA(1 + ahP∗)P∗ + εa2(P∗)2
· ρ′

1(P
∗).

Now we will divide the analysis into two cases:

(i) rP > 0, and (i i) rP < 0.

Case rP > 0. Given the equation

bP

(

f + φ
aA∗P∗

1 + ahP∗ + aA∗P∗

)

g − sP P
∗ − dP = 0,

it can be inferred that

λ1(E
∗) + λ2(E

∗) = bPφgaA∗P∗

(1 + ahP∗ + aA∗P∗)2
− sP P

∗ − sA A
∗

<
bPφgaA∗P∗

1 + ahP∗ + aA∗P∗ − sP P
∗ − sA A

∗

= − rP − sA A
∗ < 0.

Therefore, the local stability of a coexistence equilibrium is entirely determined by the
slope of the cubic equation ρ2(P) at that equilibrium. Specifically: (i) If a unique coex-
istence equilibrium E∗

1 exists, then the product λ1(E∗
1 )λ2(E

∗
1 ) is positive, indicating

the local asymptotic stability of E∗
1 . (ii) In the presence of two coexistence equilibria,

namely E∗
1 and E∗

2 , we observe that λ1(E
∗
1 )λ2(E

∗
1 ) is negative, while λ1(E∗

2 )λ2(E
∗
2 )

is positive. This signifies that E∗
1 is unstable, while E

∗
2 is locally asymptotically stable.

Notably, when E∗
1 and E∗

2 coincide (i.e., E
∗
1 = E∗

2 ), we have λ1(E∗
1 )λ2(E

∗
1 ) = 0, and

both the stable and center-stable manifold dimensions are equal to 1. (iii) In the case
of three coexistence equilibria, denoted as E∗

i , i = 1, 2, 3, we find that λ1(E∗
i )λ2(E

∗
i )

is positive for i = 1, 3 and negative for λ1(E∗
2 )λ2(E

∗
2 ). Therefore, E

∗
1 and E∗

3 are
locally asymptotically stable, whereas E∗

2 is unstable. Particularly, when E∗
1 and E∗

2
merge (E∗

1 = E∗
2 ), we again have λ1(E∗

1 )λ2(E
∗
1 ) = 0, with both stable and center-

stable manifold dimensions equal to 1. Likewise, when E∗
2 and E∗

3 merge, we obtain
λ1(E∗

2 )λ2(E
∗
2 ) = 0, and the dimensions of stable and center-stable manifolds are both

equal to 1.
Case rP < 0. In the case where a unique coexistence equilibrium E∗

1 exists, we
can establish that λ1(E∗

1 ) + λ2(E∗
1 ) < 0. Suppose otherwise. If λ1(E∗

1 )λ2(E
∗
1 ) > 0,

it would imply that λ1(E∗
1 ) and λ2(E∗

1 ) are both greater than zero, which contradicts
the boundlessness of the system. Therefore, we conclude that λ1(E∗

1 ) + λ2(E∗
1 ) < 0.

In the case where the system has two coexistence equilibria E∗
1 and E∗

2 , we can
deduce the instability of E∗

1 from the fact that λ1(E∗
1 )λ2(E

∗
1 ) < 0. Using a similar

line of reasoning as in the case of a unique coexistence equilibrium, we can directly
ascertain that λ1(E∗

2 ) + λ2(E∗
2 ) < 0, signifying the local asymptotic stability of E∗

2 .
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Fig. 4 Pairwise phase diagrams demonstrate global stability of equilibrium states for the subsystem (2).
a Global stability of the coexistence equilibrium E∗

1 ; b Global stability of the extinction equilibrium E0;
c Global stability of the pollinator-only equilibrium E0A; d Global stability of the plant-only equilibrium
EP0. The corresponding parameter values are detailed in Table 1

Particularly, when E∗
1 = E∗

2 , we find that λ1(E∗
1 )λ2(E

∗
1 ) = 0, and the stable and

center-stable manifold dimensions are both equal to 1.
Based on the discussion in cases where rP > 0 and rP < 0, the stability of these

coexistence equilibria can be summarized as follows: (i) If there is a unique coexistence
equilibrium E∗

1 , it is locally asymptotically stable. (ii) In the case of two coexistence
equilibria, E∗

1 is unstable, while E∗
2 is locally asymptotically stable. (iii) When there

are three coexistence equilibria, E∗
1 and E∗

3 are locally asymptotically stable, while
E∗
2 is unstable. (iv) Notably, when two equilibria merge, the dimensions of both the

stable and center-stable manifolds of the equilibria are equal to 1.
Straightforward calculations reveal that

∂ψ1(P, A)

∂A
= bPφgaP2(1 + ahP)

(1 + ahP + aAP)2
> 0

and
∂ψ2(P, A)

∂P
= εaA

(1 + ahP)2
> 0.

Hence, the system (2) is cooperative. Given the dissipative property of the system, it
follows that (seeTheorem2.2 inRef. Smith 1995), for any initial values (P(0), A(0)) ∈
R
2+, the solution to the system (2) converges to an equilibrium. ��
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Fig. 5 Pairwise phase diagrams demonstrate bistability of equilibrium states for the subsystem (2). a Bista-
bility between the low-level coexistence equilibrium E∗

1 and the high-level coexistence equilibrium E∗
3 ; b

Bistability between the extinction equilibrium E0 and the high-level coexistence equilibrium E∗
2 ; c Bista-

bility between the pollinator equilibrium E0A and the high-level coexistence equilibrium E∗
2 ; d Bistability

between the plant equilibrium EP0 and the high-level coexistence equilibrium E∗
2 ; The corresponding

parameter values are detailed in Table 1

Table 1 Simulation parameters for the plant-pollinator subsystem (2), mainly sourced from Hale et al.
(2022)

Para Fig. 4a Fig. 4b Fig. 4c Fig. 4d Fig. 5a Fig. 5b Fig. 5c Fig. 5d Unit

f 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Unitless

φ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Unitless

g 1 1 1 1 1 1 1 1 Unitless

bA 1 0.2 1 0.2 1.2 1 1 1 t−1

bP 1 0.5 0.5 1.55 1.45 1 1 1 t−1

sP 0.15 0.05 0.05 0.05 0.61 0.05 0.05 0.15 P−2

a 0.8 0.8 0.8 0.8 0.2 0.8 0.6 0.7 P−1t−1

h 1 1 1 1 1 1 1 1 t

ε 1 2 2 2 1 2 1 2 Unitless

sA 0.15 0.15 0.15 0.15 2 0.15 0.15 0.11 A−2t−1

dA 0.7 0.5 0.5 1.8 1.1 1.5 0.7 2 t−1

dP 0.2 0.75 0.75 0.75 0.67 0.75 0.75 0.4 t−1
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Remark Theorem 1 illuminates the global dynamics of the plant-pollinator system (2),
providing theoretical validation for some of the numerical findings reported by Hale
et al. (2022). Several key insights emerge from this analysis:

(1) The plant-pollinator system (2) inherently exhibits equilibrium dynamics, meaning
that the population sizes of both plants and pollinators eventually stabilize over
time.

(2) In scenarios where a unique locally stable equilibrium exists, the system achieves
global asymptotic stability.Specifically:whenboth plants andpollinators are facul-
tative species, the systemmaintains coexistence and, if the coexistence equilibrium
is unique, it achieves global asymptotic stability (Fig. 4a). When no coexistence
equilibrium exists, the following global asymptotic stability conditions apply:

(i) Extinction equilibrium (E0): Globally asymptotically stable when both plants
and pollinators are obligate mutualists, unable to survive without each other
(Fig. 4b).

(ii) Pollinator-only equilibrium (E0A):Globally asymptotically stablewhen plants
are obligate mutualists but pollinators are facultative, allowing pollinators to
persist independently (Fig. 4c).

(iii) Plant-only equilibrium (EP0):Globally asymptotically stable when plants are
facultative and pollinators are obligate mutualists, enabling plants to survive
without pollinators (Fig. 4d).

(3) The systemcan exhibit four types of bistability, depending on themutualistic depen-
dencies of the species involved:

(i) Facultative plants and pollinators: Bistability may occur between a low-
level coexistence equilibrium E∗

1 and a high-level coexistence equilibrium
E∗
3 (Fig. 5a).

(ii) Obligate plants and pollinators: Bistability can be observed between the
extinction equilibrium E0 and a high-level coexistence equilibrium, indicat-
ing that the system may either collapse or thrive based on initial conditions
(Fig. 5b).

(iii) Facultative pollinators and obligate plants: Bistability may emerge between
the pollinator-only equilibrium E0A and a high-level coexistence equilibrium
E∗
2 , suggesting that pollinators can either exist alone or coexist with plants

under certain conditions (Fig. 5c).
(iv) Facultative plants and obligate pollinators:The systemmay exhibit bistability

between the plant-only equilibrium EP0 and a high-level coexistence equilib-
rium E∗

2 (Fig. 5d), or between a low-level coexistence equilibrium E∗
1 and

a high-level coexistence equilibrium E∗
3 . This indicates that plants can sur-

vive independently, or the system can transition between multiple coexistence
states, depending on initial populations and parameters.

These findings highlight the complex interplay between plant and pollinator popula-
tions and underscore the importance of mutualistic dependencies in determining the
system’s long-term behavior. The existence of multiple equilibria and types of bista-
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bility emphasizes that small changes in initial conditions or parameters can lead to
vastly different outcomes, ranging from species extinction to stable coexistence.

3.2 Dynamics without plants

To further understand the interactions within our tripartite system, we examine the
dynamics between pollinators and parasites in the absence of plants. This scenario
isolates the direct effects of parasitism on pollinator populationswithout themitigating
influence of plant resources. Such an analysis is crucial for identifying the conditions
under which pollinator populations can persist or collapse solely due to parasitic
pressures, providing insights into the resilience of pollinators when plant dynamics
are not a limiting factor. Under these conditions, model (1) reduces to the following
two-dimensional system:

d A

dt
=A (rA − sA A − βM) ,

dM

dt
=M (kβA − dM ) .

(7)

Lemma 2 (Boundedness and invariance) The solutions of system (7), with initial con-
ditions in the compact set

C2 =
{

(A, M) ∈ R
2+ : 0 ≤ A ≤ rA

sA
, 0 ≤ A + 1

k
M ≤ (rA + dM )2

4sAdM

}

,

remain there for all forward time.

Proof The proof proceeds similarly to that of Lemma 1 and ensures that the trajecto-
ries of system (7) remain non-negative and bounded within the biologically relevant
domain C2. For brevity, we omit the detailed steps here. ��
Theorem 2 (Global dynamics) The pollinator-parasite system described by (7)
exhibits an extinction equilibrium E0 = (0, 0), and potentially accommodates a
pollinator-only equilibrium EA0 = ( rAsA

, 0) as well as a coexistence equilibrium

E∗ = (A∗, M∗) =
(

dM
kβ

,
1

β

(

rA − sAdM
kβ

))

.

The global dynamics of these equilibria are determined by the following conditions:

(i) The extinction equilibrium E0 = (0, 0) is globally asymptotically stable if rA <

0; otherwise, if rA > 0, E0 = (0, 0) is unstable.
(ii) In the case where rA > 0, system (7) has a pollinator-only equilibrium EA0 =

( rAsA
, 0). Specifically, EA0 is globally asymptotically stable if rA < sAdM

βk , and it

is unstable if rA > sAdM
βk .

(iii) For rA > sAdM
βk , system (7) admits a unique coexistence equilibrium E∗ =

(A∗, M∗) that is globally asymptotically stable.
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Proof An equilibrium of system (7) is characterized by

0 =A (rA − sA A − βM) := ψ3(A, M),

0 =M (kβA − dM ) := ψ4(A, M).

Simple calculations reveal that system (7) always has an extinction equilibrium E0 =
(0, 0). If rA > 0, the system (7) features a pollinator-only equilibrium EA0 = ( rAsA

, 0);
while if rA > sAdM

βk , the system (7) exhibits a unique coexistence equilibrium E∗ =
(A∗, M∗).

In the following, we study the global stability of these equilibria.
(i) Global stability of the extinction equilibrium E0. By directly computing the

eigenvalues of the system (7) at E0 = (0, 0), we find that λ1 = rA and λ2 = −dM < 0.
Therefore, the extinction equilibrium E0 is locally asymptotically stable if rA < 0
and unstable if rA > 0. Since E0 is the unique equilibrium of the system (7) when
rA < 0, the Pioncare-Bendixson theorem (Hale 2009) implies that all solutions of the
system (7) converge to the extinction equilibrium E0, i.e., the extinction equilibrium
E0 is globally asymptotically stable if rA < 0.

(ii)Global stability of the parasite-free equilibrium EA0. Simple calculations reveal
that the system (7) has two eigenvalues, denoted as λ1 = −rA < 0 and λ2 = −dM +
kβrA
sA

at the parasite-free equilibrium EA0. Therefore, EA0 is locally asymptotically

stable if rA < sAdM
βk and unstable if rA > sAdM

βk . Since in the case rA < sAdM
βk the

extinction equilibrium E0 is unstable and the system (7) has no coexistence equilibria,
thus all solutions of the system (7) converge to the parasite-free equilibrium EA0, i.e.,
EA0 is globally asymptotically stable if rA < sAdM

βk .
(iii)Global stability of the coexistence equilibrium E∗. Define a Lyapunov function

V(A, M) =
∫ A

1

u − 1

u
du + 1

k

∫ M

1

u − 1

u
du.

By calculating the derivative of the function V(A, M), we obtain

dV
dt

∣

∣

∣

∣

E∗
=(A − A∗)(rA − sA A − βM) + 1

k
(M − M∗)(kβA − dM )

=(A − A∗)
[

rA − sA(A − A∗) − sA A
∗ − β(M − M∗) − βM∗]

+ 1

k
(M − M∗)

(

kβ(A − A∗) + kβA∗ − dM
)

= − sA(A − A∗)2.

Therefore, dV
dt < 0 strictly for ∀A, M ∈ R

2+ except the fixed point (A∗, M∗) where
dV
dt = 0. Thus, the coexistence equilibrium E∗ is globally asymptotically stable when-
ever it exists. ��

Remark Theorem 2 reveals that the pollinator-parasite subsystem exhibits straightfor-
ward equilibrium dynamics. Specifically:
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Fig. 6 One-parameter bifurcation for the system (2) with the following parameter values: dA = 0.2, k =
0.01, β = 0.005, dM = 0.1, sA = 0.0001, while varying r A = bA − dA within the range of (−0.2, 0.5).
Sink and saddle points are graphically represented by blue and green lines, respectively. The data for this
analysis is sourced from Kang et al. (2016) (color figure online)

(1) Extinction region: When pollinators are obligate mutualists, both pollinator and
parasite populations inevitably collapse to extinction (see Extinction Region,
Fig. 6). This outcome occurs because the pollinators cannot sustain themselves
without mutualistic interactions, leading to a lack of hosts for the parasites.

(2) Pollinator region: In cases where pollinators are facultative but possess a limited
net growth rate, the pollinator population canmaintain itself but cannot support the
parasite population, resulting in parasite extinction (see Pollinator Region, Fig. 6).
The insufficient net growth rate of pollinators limits their population density, mak-
ing it unfavorable for parasite persistence.

(3) Coexistence region: When the net growth rate of pollinators is sufficiently high,
both pollinators and parasites can coexist at stable population levels (see Coex-
istence Region, Fig. 6). The elevated net growth rate leads to higher pollinator
densities, which enhance parasite transmission rates and reduce the likelihood of
parasite extinction during the early stages of an outbreak (Graystock et al. 2016).

This analysis underscores the critical role of the pollinator’s net growth rate in deter-
mining the fate of both populations. Higher pollinator densities create favorable
conditions for parasite survival and proliferation by providing ample hosts for infec-
tion. Consequently, regulating the net growth rate or density of pollinators emerges as
a vital strategy for managing parasite prevalence within pollinator communities.

4 Analysis of the full system

Building upon the analyses of the subsystems (2) and (7), we now focus on the com-
prehensive plant-pollinator-parasite model (1). Our investigation reveals that the full
system can exhibit up to seven boundary equilibria. In the following, we provide a
concise summary of the existence and stability conditions for these equilibria.

Theorem 3 (Boundary dynamics)
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(1) Extinction equilibrium: An extinction equilibrium E000 = (0, 0, 0) always
exists. E000 is locally asymptotically stable if max{rP , rA} < 0; otherwise, if
max{rP , rA} > 0, E000 is unstable.

(2) Plant-only equilibrium: A plant-only equilibrium EP00 = ( rPsP
, 0, 0) exists when

rP > 0. If rA < − εarP
sP+ahrP

, EP00 is locally asymptotically stable; otherwise, if
rA > − εarP

sP+ahrP
, EP00 is unstable.

(3) Pollinator-only equilibrium: A pollinator-only equilibrium E0A0 = (0, rA
sA

, 0)

exists when rA > 0. If max{rP , rA − sAdM
βk } < 0, E0A0 is locally asymptotically

stable; otherwise, if max{rP , rA − sAdM
βk } > 0, E0A0 is unstable.

(4) Plant-pollinator equilibrium: The system can exhibit up to three boundary equi-
libria on the P-A plane. Specifically, if rP > 0 and rA > 0, the system exhibits
either one or three plant-pollinator equilibria. If rP < 0 and rA > 0, the system
features either zero or two plant-pollinator equilibria. If rP > 0 and rA < 0, the
system can have zero, one, two, or up to three plant-pollinator equilibria. If rP < 0
and rA < 0, the system can host either zero, one, or at most two plant-pollinator
equilibria.We denote the plant-pollinator equilibria as Ei

P A0 = (P̄i , Āi , 0), where
i = 1, 2, 3, and they are ordered such that P̄1 < P̄2 < P̄3 whenever they exist.
The stability of these plant-pollinator equilibria is as follows: (i) When Āi < dM

kβ ,

the plant-pollinator equilibria with odd labels (i.e., E1
PA0 and E3

PA0) are locally
asymptotically stable; while the plant-pollinator equilibrium with an even label
(i.e., E2

PA0) is unstable. (ii) When Āi > dM
kβ , the plant-pollinator equilibria are

unstable.
(5) Pollinator-parasite equilibrium: When rA > sAdM

βk , the system admits a unique

pollinator-parasite equilibrium E0AM = (0, Â, M̂). If rP < 0, E0AM is locally
asymptotically stable, while if rP > 0, E0AM is unstable.

Proof The existence of boundary equilibria for the system (1) is a direct result of
Theorems 1 and 2. Next, we study of the local stability associated with these boundary
equilibria.

(1) Stability of the extinction equilibrium E000 = (0, 0, 0). Since the Jacobian matrix
of the system (1) evaluated at E000 is given by

J (E000) =
⎡

⎣

rP 0 0
0 rA 0
0 0 −dM

⎤

⎦ ,

it follows that λ1 = rP , λ2 = rA and λ3 = −dM < 0. That is, the extinction
equilibrium E000 is locally asymptotically stable if max{rP , rA} < 0; otherwise,
if max{rP , rA} > 0, E000 is unstable.
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(2) Stability of the plant-only equilibrium EP00. Evaluating the Jacobian matrix at
EP00, we obtain

J (EP00) =
⎡

⎢

⎣

−rP
bPφgar2P

sP (sP+ahrP )
0

0 rA + εarP
sP+ahrP

0
0 0 −dM

⎤

⎥

⎦ ,

The corresponding eigenvalues are given by

λ1 = −rP < 0, λ2 = rA + εarP
sP + ahrP

, λ3 = −dM < 0.

Therefore, the plant-only equilibrium EP00 is locally asymptotically stable if rA <

− εarP
sP+ahrP

; while if rA > − εarP
sP+ahrP

, the plant-only equilibrium EP00 is unstable.
(3) Stability of the pollinator-only equilibrium E0A0. The Jacobian matrix at E0A0 can

be shown as

J (E0A0) =
⎡

⎣

rP 0 0
rA
sA

εa −rA −β rA
sA

0 0 −dM + kβ rA
sA

⎤

⎦ ,

λ1 = rP , λ2 = −rA < 0, λ3 = −dM + kβ
rA
sA

.

That is, the pollinator-only equilibrium E0A0 is locally asymptotically stable if
max{rP , rA − sAdM

βk } < 0; while it is unstable if max{rP , rA − sAdM
βk } > 0.

(4) Stability of the plant-pollinator equilibrium. Let Ei
P A0 = (P̄i , Āi , 0), i = 1, 2, 3

be the potential plant-pollinator equilibria with order P̄1 < P̄2 < P̄3. The Jacobian
matrix of the system (1) evaluated at Ei

P A0 is

J (Ei
P A0) =

⎡

⎢

⎢

⎣

−sP P̄i + bPφga Āi P̄i
(1+ah P̄i+a Āi P̄i )2

bPφga (P̄i )2(1+ah P̄i )
(1+ah P̄i+a Āi P̄i )2

0
εa Āi

(1+ah P̄i )2
−sA Āi −β Āi

0 0 −dM + kβ Āi

⎤

⎥

⎥

⎦

.

The corresponding characteristic equation is given by

(

λ + dM − kβ Āi
)

[

λ2 −
(

bPφga Āi P̄i
(1 + ah P̄i + a Āi P̄i )2

− sP P̄i − sA Āi

)

λ

+ det(JPA(Ei
P A0))

]

= 0,

where

det(J (Ei
P A0)) = −

[

bPφga Āi P̄i
(1 + ah P̄i + a Āi P̄i )2

− sP P̄i

]

sA Āi

− bPφga(P̄i )2(1 + ah P̄i )

(1 + ah P̄i + a Āi P̄i )2
εa Āi

(1 + ah P̄i )2
.
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We now consider the stability of Ei
P A0 = (P̄i , Āi , 0) in two cases: (i) Āi > dM

kβ

and (ii) Āi < dM
kβ . In case (i), the positivity of λ1 = −dM + kβ Āi > 0 implies that

the plant-pollinator equilibrium Ei
P A0 = (P̄i , Āi , 0) is always unstable. For case

(ii), the subsequent analysis aligns with the stability of the coexistence equilibrium
in the subsystem (2) (refer to Theorem 1 for proof), and therefore, it is omitted
here.

(5) Stability of the pollinator-parasite equilibrium E0AM = (0, Â, M̂). The Jacobian
matrix of the system (1) evaluated at E0AM = (0, Â, M̂) is

J (E0AM ) =
⎡

⎣

rP 0 0
εa Â −sA Â −β Â
0 kβ M̂ 0

⎤

⎦ .

The corresponding characteristic equation is given by

(λ − rP )
(

λ2 + sA Âλ + kβ2 ÂM̂
)

= 0.

It follows that λ1 = rP , λ2 + λ3 = −sA Â < 0 and λ2λ3 = kβ2 ÂM̂ > 0. Therefore,
the pollinator-parasite equilibrium E0AM = (0, Â, M̂) is locally asymptotically stable
if rP < 0; otherwise, if rP > 0, E0AM = (0, Â, M̂) is unstable. This completes the
proof of Theorem 3. ��
Remark Theorem 3 reveals that the boundary dynamics of the full plant-pollinator-
parasite system share both similarities with and differences from those of the plant-
pollinator and pollinator-parasite subsystems:

(1) Similarities:

(i) Local stability of the extinction equilibrium: When both plants and pollinators
are obligate mutualists, the extinction equilibrium is locally stable. This sta-
bility arises from their strong interdependence; the collapse of one population
leads to the collapse of the other, resulting in system-wide extinction if either
species declines below a critical threshold.

(ii) Local stability of the plant-only equilibrium:When plants are facultativemutu-
alists and the pollinator’s birth rate is significantly lower than its mortality rate,
the plant-only equilibrium is locally stable. In this scenario, plants can sustain
their populations through alternative mechanisms such as self-pollination or
interactions with other pollinator species, without relying exclusively on the
pollinators modeled.

(2) Differences:

(i) Influence of pollinator density on the plant-pollinator equilibrium: In the full
system, the stability of the plant-pollinator equilibrium is significantly affected
by pollinator density. Specifically, low pollinator densities can stabilize the
equilibrium, whereas high pollinator densities can destabilize it. Elevated pol-
linator densities provide abundant hosts and resources for parasites, facilitating
their growth and undermining the stability of the plant-pollinator interaction.
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(ii) Local stability of the pollinator-only equilibrium: The pollinator-only equi-
librium is locally stable when plants are obligate mutualists, pollinators are
facultative, and the pollinator’s net growth rate is not excessively high. Pollina-
tors can persist by utilizing alternative plant species for sustenance. However,
if the pollinator’s net growth rate is too high, it can lead to rapid increases
in pollinator density, creating favorable conditions for parasite survival and
thereby destabilizing the pollinator-only equilibrium.

(iii) Local stability of the pollinator-parasite equilibrium: Stability of the pollinator-
parasite equilibrium requires both a sufficiently high net growth rate of
pollinators andobligate plant-pollinator relationships.Ahighpollinator growth
rate leads to dense pollinator populations, fostering optimal conditions for
parasite survival due to increased resource availability. However, if plants are
facultative mutualists, their ability to persist without exclusive dependence on
pollinators can disrupt this equilibrium, as changes in plant populations affect
pollinator dynamics and, consequently, parasite persistence.

These observations highlight that while certain stability conditions from the sub-
systems carry over to the full system, the inclusion of parasites introduces new
dynamics-particularly related to pollinator density and mutualistic dependencies-that
can significantly alter the system’s stability landscape.

To investigate the coexistence dynamics of the system (1), let E∗ = (P∗, A∗, M∗)
represent any coexistence equilibrium. The Jacobian matrix evaluated at E∗ is given
by

J (E∗) =
⎡

⎢

⎣

−sP P∗ + bPφgaA∗P∗
(1+ahP∗+aA∗P∗)2 bPφga (P∗)2(1+ahP∗)

(1+ahP∗+aA∗P∗)2 0
εaA∗

(1+ahP∗)2 −sA A∗ −βA∗

0 kβM∗ 0

⎤

⎥

⎦ .

The corresponding characteristic equation is expressed as

λ3 + c2λ
2 + c1λ − det(J (E∗)) = 0,

where

c2 =sP P
∗ − bPφgaA∗P∗

(1 + ahP∗ + aA∗P∗)2
+ sA A

∗,

c1 = − εbPφga2(P∗)2A∗

(1 + ahP∗ + aA∗P∗)2(1 + ahP∗)

+ sA A
∗
[

sP P
∗ − bPφgaA∗P∗

(1 + ahP∗ + aA∗P∗)2

]

+ kβ2A∗M∗,

c0 = − det(J (E∗)) =
[

sP P
∗ − bPφgaA∗P∗

(1 + ahP∗ + aA∗P∗)2

]

kβ2A∗M∗.

Let R0 = min{c2, c1c2 − c0}, we can derive the following results regarding the
existence and local stability of coexistence equilibrium of the system (1).
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Fig. 7 The number of
coexistence equilibria in the
system (1) with varying bA and
bP for fixed parameters
f = 0.2, φ = 0.4, g =
0.88, sP = 0.2, a = 2, h =
0.02, ε = 1, sA = 2, dA =
1, dP = 0.8, k = 4.93, β =
0.02, dM = 0.11. The black,
blue and red regions represent
zero, one and two coexistence
equilibria, respectively (color
figure online)

Theorem 4 (Coexistence dynamics) The system can exhibit zero, one (E∗
2 =

(

P∗
2 , A∗, M∗

2

)

), or up to two coexistence equilibria

E∗
i = (

P∗
i , A∗, M∗

i

) =
(

P∗
i ,

dM
kβ

,
1

β

(

rA + ε
aP∗

i

1 + ahP∗
i

− sAdM
kβ

))

, i = 1, 2,

as depicted in Fig. 7, where

P∗
1 = 1

2asP (dM + βhk)
[agbP (dM ( f + φ) + β f hk) − adP (dM + βhk) − βksP

−
√

[agbP (dM ( f + φ) + β f hk) − adP (dM + βhk) − βksP ]2 + 4asP (dM + βhk) kβrP ],

P∗
2 = 1

2asP (dM + βhk)
[agbP (dM ( f + φ) + β f hk) − adP (dM + βhk) − βksP

+
√

[agbP (dM ( f + φ) + β f hk) − adP (dM + βhk) − βksP ]2 + 4asP (dM + βhk) kβrP ].

Specifically, if rP > 0 and rA > sAdM
kβ , the system admits a unique coexistence equi-

librium. If rP > 0 and rA < sAdM
kβ , the system exhibits either zero or one coexistence

equilibrium. If rP < 0 and rA > sAdM
kβ , the system features either zero or two coexis-

tence equilibria. If rP < 0 and rA < sAdM
kβ , the system can potentially possess zero,

one, or up to two coexistence equilibria. Assume that the coexistence equilibria are
ordered as P∗

1 < P∗
2 whenever they are present. The local stability of these potential

equilibria is outlined as follows:

(i) In the case of a unique coexistence equilibrium E∗
2 , it is locally asymptotically

stable ifR0 > 0, and unstable if R0 < 0.
(ii) In the case of two coexistence equilibria E∗

1 and E∗
2 , E

∗
1 is always unstable, and

the stability of E∗
2 depends on the sign of R0: E∗

2 is locally asymptotically stable
ifR0 > 0, and unstable ifR0 < 0.
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Proof Define

ψ5(P, A, M) =P

[

bP

(

f + φ
aAP

1 + ahP + aAP

)

g − sP P − dP

]

,

ψ6(P, A, M) =A

(

bA + ε
aP

1 + ahP
− sA A − dA − βM

)

,

ψ7(P, A, M) =M (kβA − dM ) .

An interior equilibrium, denoted as E∗ = (P∗, A∗, M∗), of the system (1) satisfies
the conditions ψi (P∗, A∗, M∗) = 0 for i = 5, 6, 7. Solving for ψ7(P∗, A∗, M∗) = 0
yields the relationship

A∗ = dM
kβ

. (8)

Substituting (8) into ψ5(P∗, A∗, M∗) = 0 and ψ6(P∗, A∗, M∗) = 0, we obtain

M∗ = 1

β

(

rA + ε
aP∗

1 + ahP∗ − sAdM
kβ

)

(9)

and

0 = P∗ × ρ4(P∗)
k(1 + ahP∗)β + adM P∗ := ρ3(P

∗),

where

ρ4(P) = −asP (dM + βhk) P2 + [agbP (dM ( f + φ) + β f hk)

−adP (dM + βhk) − βksP ]P + kβrP .

Considering the characteristics of quadratic equations, when rP > 0, the equation
ρ4(P) = 0 exhibits a unique positive real root, as illustrated in Fig. 8a. In cases where
rP < 0, the equation ρ4(P) = 0 may exhibit either zero or two positive real roots,
as depicted in Fig. 8d–e. These observations, coupled with the sign of M∗ in Eq. (9),
yield the following conclusion:

(i) Case rP > 0 and rA > sAdM
kβ . Equation (9) clearly indicates that M∗ > 0. In

this scenario, the system (1) exhibits a unique coexistence equilibrium E∗
2 =

(

P∗
2 , A∗, M∗

2

)

, as illustrated in Fig. 8a.

(ii) Case rP > 0 and rA < sAdM
kβ . The system (1) can potentially have zero or

one coexistence equilibrium. When ρ4(P) = 0 has a single positive real root
P∗
2 , the system (1) lacks a coexistence equilibrium if M(P∗

2 ) < 0 (Fig. 8b).
Conversely, if M(P∗

2 ) > 0, the system (1) has a unique coexistence equilibrium
E∗
2 = (

P∗
2 , A∗, M∗

2

)

, see Fig. 8c.

(iii) Case rP < 0 and rA > sAdM
kβ . In this scenario, the system (1) may either

lack a coexistence equilibrium or exhibit two coexistence equilibria E∗
1 =

(

P∗
1 , A∗, M∗

1

)

and E∗
2 = (

P∗
2 , A∗, M∗

2

)

, as depicted in Fig. 8d and e.

(iv) Case rP < 0 and rA < sAdM
kβ . The system (1) could potentially have zero, one or

two coexistence equilibria. If ρ4(P) = 0 has two positive real roots P∗
1 and P∗

2 ,
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Fig. 8 Schematic of real positive roots for cubic polynomial ρ4(P)

the system (1) lacks a coexistence equilibrium if M(P∗
2 ) < 0 (Fig. 8f). How-

ever, the system (1) has a unique coexistence equilibrium E∗
2 = (

P∗
2 , A∗, M∗

2

)

if M(P∗
1 )M(P∗

2 ) < 0 (Fig. 8g). When M(P∗
1 ) > 0, the system (1) features

two coexistence equilibria E∗
1 = (

P∗
1 , A∗, M∗

1

)

and E∗
2 = (

P∗
2 , A∗, M∗

2

)

, as
illustrated in Fig. 8h.

For any coexistence equilibrium E∗ = (P∗, A∗, M∗), we can derive the relation-
ship

λ1(E
∗)λ2(E∗)λ3(E∗) = det(J (E∗)) = kβ2A∗M∗ρ′

3(P
∗)

= kβ2A∗M∗P∗

k(1 + ahP∗)β + adM P∗ × ρ′
4(P

∗).

Therefore, we have the following two cases:

(i) In the case that the system (1) has a unique coexistence equilibrium E∗
2 =

(P∗
2 , A∗, M∗

2 ), we have ρ′
4(P

∗
2 ) < 0 and thus λ1(E∗

2 )λ2(E
∗
2 )λ3(E

∗
2 ) < 0.

If min{c2, c1c2 − c0} > 0, then the Routh-Hurwitz criterion shows that
max{Rλ1(E∗),Rλ2(E∗),Rλ3(E∗)} < 0, i.e., E∗

2 is locally asymptotically sta-
ble; otherwise, if min{c2, c1c2−c0} < 0, we can deduce from the Routh-Hurwitz
criterion that max{Rλ1(E∗),Rλ2(E∗),Rλ3(E∗)} > 0, i,e., E∗

2 is unstable.
(ii) In the case that the system (1) has two coexistence equilibria E∗

1 = (P∗
1 , A∗, M∗

1 )

and E∗
2 = (P∗

2 , A∗, M∗
2 ), since ρ′

4(P
∗
1 ) > 0, we obtain

max{Rλ1(E∗),Rλ2(E∗),Rλ3(E∗)} > 0 and the coexistence equilibrium E∗
1

is unstable. The stability of E∗
2 is the same as in case (i) and is not repeated here.

This completes the proof of Theorem 4. ��

Remark Theorem4precisely delineates the conditions for the existence and stability of
coexistence equilibria in the full plant-pollinator-parasite system, offering significant
biological insights:
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Fig. 9 Bifurcation diagram of the system (1) with varying β. a1 dA = 0.1, f = 0.16; a2 dA = 1.1, f =
0.16; a3 dA = 0.1, f = 0.228; a4 dA = 1.1, f = 0.228. Blue and green dotted lines indicate sink and
saddle, respectively. Hs

1, H
s
2 denote supercritical bifurcations, while Hc

1, H
c
2 and Hc

3 indicate subcritical
bifurcations. LP represents the limit point bifurcation. The equilibria E000 in cases (a1, a2, and a4),
EP00, E0A0, as well as E0AM in case a3, are always unstable and are not shown for clarity (the same
applies to subsequent figures) (color figure online)

(1) Plant and pollinator traits determine the number of coexistence equilibria:

(i) When the plant population is obligate-meaning it cannot survive without its
mutualistic partner, the system (1) can sustain up to two coexistence equilibria
(see red regions in Fig. 7). This multiplicity arises because the obligate nature
of the plant increases the system’s dependency on the pollinator, allowing for
multiple equilibrium states under varying conditions.

(ii) Conversely, if the plant population is facultative and can survive independently
of the pollinator, the system (1) is limited to at most one coexistence equilib-
rium. Specifically, when the plant is facultative and the pollinator’s net growth
rate is high, the system (1) exhibits a unique coexistence equilibrium (see blue
regions in Fig. 7). This scenario suggests that facultative plants, coupled with
robust pollinator populations, tend to stabilize the system in a single coexis-
tence state.

(2) Plant population density influences the stability of coexistence equilibria.

(i) In cases where the system (1) supports two coexistence equilibria, the stability
of these equilibria is partly determined by their associated plant population
densities.
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Fig. 10 Pairwise phase diagram of the system (1) with dA = 0.1 and f = 0.16

(ii) The coexistence equilibrium with a lower plant population density is always
unstable. This instability is due to insufficient plant resources to support both
pollinator and parasite populations effectively, making the system sensitive to
perturbations at low plant densities.

(iii) In contrast, the coexistence equilibrium with a higher plant population density
may be stable or become unstable through bifurcation mechanisms (see, for
instance, Fig. 9). A higher plant density provides more resources, potentially
stabilizing the interactions among plants, pollinators, and parasites. However,
changes in system parameters-such as increased parasitism rates or altered
growth rates-can lead to bifurcations that destabilize this equilibrium, resulting
in complex dynamics like oscillations or chaotic behavior.

5 Numerical simulations

Mathematical analysis of the boundary systems-specifically the plant-pollinator and
pollinator-parasite interactions-reveals that these subsystems exhibit only equilibrium
dynamics. However, when considering the full plant-pollinator-parasite system, a
rich variety of dynamic behaviors emerges, including bistability, tristability, super-
critical and subcritical Hopf bifurcations, limit point bifurcations, chaotic dynamics,
and heteroclinic orbits. To delve deeper into the mechanisms driving these complex
dynamics, we perform numerical bifurcation analyses by systematically varying the
biological parameters in system (1). Our baseline parameter values are set as follows:
bP = 3.25, bA = 1, ε = 1, a = 2, h = 0.01, sP = 0.61, dP = 0.74, sA = 2, g =
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Fig. 11 Time series of the system (1) with dA = 0.1 and f = 0.16: a Stable coexistence equilibrium; b
Stable pollinator-parasite equilibrium; c Stable periodic solution. Red, blue, and black lines represent P ,
A, and M , respectively (color figure online)

Fig. 12 Pairwise phase diagram
of the system (1) with dA = 1.1
and f = 0.16
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1, φ = 0.64, k = 1, dA = 0.1, f = 0.16, β = 1.2 and dM = 0.5. These values are
partially adapted from Hale et al. (2022) and partially chosen to illustrate a range of
possible dynamic behaviors. Any modifications to these parameters are specified in
the figure captions accompanying the simulations.

5.1 Impact of parasitism rate

We begin by examining how variations in the parasitism rate β influence the dynamics
of the systemunder differentmutualistic scenarios. Specifically,we consider four cases
based on the mutualistic dependencies of plants and pollinators: (i) plants obligate,
pollinators facultative; (ii) both plants and pollinators obligate; (iii) both plants and
pollinators facultative; and (iv) plants facultative, pollinators obligate.
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Fig. 13 Pairwise phase diagram of the system (1) with dA = 0.1 and f = 0.288

In the first scenario, where plants are obligate and pollinators are facultative,
increasing the parasitism rate induces five types of bistability, two supercritical Hopf
bifurcations, and one limit point bifurcation, potentially destabilizing the system at
intermediate parasitism levels (Fig. 9a1). At very low parasitism rates, the system
exhibits bistability between the pollinator-only equilibrium and the plant-pollinator
equilibrium (Fig. 10a). A slight increase in parasitism rate shifts the bistability to occur
between the pollinator-only equilibrium and the plant-pollinator-parasite coexistence
equilibrium (Fig. 10b). Further increases in the parasitism rate trigger a supercritical
Hopf bifurcation, leading to a nontrivial periodic solution that sequentially coexist
in bistable states with the pollinator-only equilibrium (Fig. 10c) and later with the
pollinator-parasite equilibrium (Fig. 10d). As the parasitism rate continues to rise, a
second supercritical Hopf bifurcation occurs, destabilizing the periodic solution and
leading to bistability between the pollinator-parasite equilibrium and the coexistence
equilibrium (Fig. 10e). At sufficiently high parasitism rates, the system undergoes a
limit point bifurcation, stabilizing into the pollinator-parasite equilibrium (Fig. 10f).

Increasing the parasitism rate reduces both the plant and pollinator components in
the coexistence equilibrium, while the parasite component initially increases and then
decreases (Fig. 11a). Simulations indicate that these outcomes occur consistently,
whether plants and pollinators are facultative or obligate. In the pollinator-parasite
equilibrium, the pollinator component decreases, and the parasite component first
increases before declining (Fig. 11b). Furthermore, as the parasitism rate increases,
the amplitude of the periodic solution initially grows, then diminishes, and finally
vanishes (Fig. 11c). This bifurcation phenomenon, known as the bubble phenomenon,
has been observed in studies of infectious disease dynamics (Liu et al. 2015) and social
insect behavior (Feng et al. 2021).
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Fig. 14 Bifurcation diagramof the system (1)with varyingβ and fixed parameters dA = 0.1 and f = 0.228.
The blue and green dotted lines indicate stable and unstable equilibria, respectively. The blue and green
solid dots represent stable and unstable equilibria, respectively. The blue vertical solid line and the black
solid line indicate the amplitude of the stable periodic solution, while the green vertical solid line and the
red solid line represent the amplitude of the unstable periodic solution. The stable and unstable periodic
solutions collide at the point Is (color figure online)

Fig. 15 Pairwise phase diagram of the system (1) with dA = 1.1 and f = 0.288

In the scenario where both plants and pollinators are obligate, increasing the para-
sitism rate induces two types of bistability, a subcritical Hopf bifurcation, and a limit
point bifurcation (Fig. 9a2). At low parasitism rates, the system exhibits bistability
between the extinction equilibrium and the plant-pollinator equilibrium (Fig. 12a).
As the parasitism rate increases to intermediate levels, the system transitions to bista-
bility between the extinction equilibrium and the coexistence equilibrium (Fig. 12b).
When the parasitism rate crosses the subcritical Hopf bifurcation point, the coexis-
tence equilibrium destabilizes, leaving the extinction equilibrium as the only stable
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Fig. 16 Bifurcation diagram of the system (1) with varying dM . a1 dA = 0.1, f = 0.16; a2 dA = 1.1, f =
0.16; a3 dA = 0.1, f = 0.228; a4 dA = 1.1, f = 0.228. The blue and green dotted lines indicate sink and
saddle, respectively. Hs

1, H
s
2 denote supercritical bifurcations, while H

c
1 indicates a subcritical bifurcation.

LP represents the limit point bifurcation (color figure online)

state. During this transition, the solution temporarily tracks an unstable periodic orbit
before converging to the extinction equilibrium (Fig. 12c). At higher parasitism rates,
the unstable periodic solution disappears, and the solution directly converges to the
extinction equilibrium (Fig. 12d).

In the scenario where both plants and pollinators are facultative, increasing the
parasitism rate induces both subcritical and supercritical Hopf bifurcations, with inter-
mediate parasitism levels leading to either bistability or oscillations (Fig. 9a3). At very
lowparasitism rates, the system exhibits stable coexistence between plants and pollina-
tors (Fig. 13a). As the parasitism rate rises, the system initiallymaintains a single stable
coexistence equilibrium (Fig. 13b), which then transitions to bistability between the
coexistence equilibrium and a nontrivial periodic solution (Fig. 13c). Further increases
in the parasitism rate lead to a subcritical Hopf bifurcation, destabilizing the coexis-
tence equilibrium, while the stable periodic solution remains until a supercritical Hopf
bifurcation occurs (Fig. 13d). After this, the system stabilizes into a single stable coex-
istence equilibrium (Fig. 13e). Unlike in the obligate plant and facultative pollinator
scenario, the amplitude of the periodic solution does not start increasing from zero.
To explore this behavior, phase diagram simulations are conducted. The results show
that as the parasitism rate crosses the subcritical bifurcation from the right, an unstable
periodic solution emerges with increasing amplitude (Fig. 14, green vertical solid line
and red solid line), while the amplitude of the stable periodic solution generated by
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the supercritical Hopf bifurcation decreases (Fig. 14, blue vertical solid line and black
solid line). At point Is, the unstable and stable periodic solutions collide and disappear.

In the scenario where plants are facultative and pollinators are obligate (Fig. 9a4),
increasing the parasitism rate leads to two types of bistability and three subcriti-
cal bifurcations. At very low parasitism rates, the system shows bistability between
the plant-only equilibrium and the plant-pollinator equilibrium (Fig. 15a). As the
parasitism rate increases, this transitions to bistability between the plant-only and
coexistence equilibria (Fig. 15b). The first subcritical Hopf bifurcation destabilizes
the coexistence equilibrium, leaving the plant-only equilibrium as the sole stable state
(Fig. 15c). Further increases in parasitism trigger a second subcriticalHopf bifurcation,
reintroducing bistability between the coexistence and plant-only equilibria (Fig. 15d).
A third subcritical Hopf bifurcation at even higher parasitism levels destabilizes the
coexistence equilibrium again, leaving the plant-only equilibrium as the only stable
state (Fig. 15e).

5.2 Impact of parasite mortality

When plants are obligatemutualists and pollinators are facultative, varying the parasite
mortality generates four distinct bistable states, two supercritical Hopf bifurcations,
and one limit point bifurcation (Fig. 16a1). At low parasite mortality, the system sta-
bilizes at a unique pollinator-parasite equilibrium (Fig. 17a). As the parasite mortality
rate increases slightly, a limit point bifurcation occurs, introducing bistability between
the pollinator-parasite equilibrium and a coexistence equilibrium involving all three
species (Fig. 17b). Further increases in parasite mortality trigger a supercritical Hopf
bifurcation, causing the coexistence equilibrium to lose stability andgive rise to a stable
periodic solution, which coexists in bistability with the pollinator-parasite equilibrium
(Fig. 17c).Asmortality continues to rise, the periodic solution vanishes, and the system
reverts to a single stable pollinator-parasite equilibrium (Fig. 17d). A second super-
critical Hopf bifurcation then creates bistability between the periodic solution and the
pollinator-parasite equilibrium (Fig. 17e). As the system passes through this bifurca-
tion, the periodic solution collapses, and bistability emerges between the coexistence
equilibrium and the pollinator-only state (Fig. 17f). At high parasite mortality, the
system shifts to bistability between the plant-pollinator and pollinator-only equilibria
(Fig. 17g).

As parasitemortality increases, pollinator density rises and parasite density declines
in the pollinator-parasite equilibrium (Fig. 18a). In the coexistence equilibrium, both
plant and pollinator densities increase, while parasite density peaks at intermediate
mortality rates (Fig. 18b). As the parasite mortality crosses the first Hopf bifurca-
tion from the left, the amplitude of the periodic solution increases gradually before
abruptly disappearing (Figs. 16a1 and 18c), a behavior we have named the left-bow
phenomenon. Similarly, when the parasite mortality crosses the second Hopf bifurca-
tion from the right, the amplitude of the periodic solution again gradually increases
before vanishing (Figs. 16a1 and 18d), which we have named the right-bow phe-
nomenon.
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Fig. 17 Pairwise phase diagram of the system (1) with dA = 0.1 and f = 0.16

In the scenario where both plants and pollinators are obligate (Fig. 16a2), very low
parasite mortality leads to the collapse of the entire system (Fig. 19a). As parasite
mortality increases to moderate levels, a limit point bifurcation occurs, followed by
a subcritical Hopf bifurcation, resulting in bistability between the coexistence equi-
librium and the extinction equilibrium (Fig. 19b). At higher parasite mortality rates,
the system transitions to bistability between the plant-pollinator equilibrium and the
extinction equilibrium (Fig. 19c). A similar dynamic is observed in the scenario where
plants are facultative and pollinators are obligate (Fig. 16a4). At low parasitemortality,
only the plant survives, while both pollinators and parasites collapse (Fig. 20a). As the
parasite mortality increases to moderate levels, a subcritical Hopf bifurcation arises,
leading to bistability between the coexistence equilibrium and the plant-only equi-
librium (Fig. 20b). At higher parasite mortality rates, the system exhibits bistability
between the plant-pollinator equilibrium and the plant-only equilibrium (Fig. 20c).

In the scenario where both plants and pollinators are facultative (Fig. 16a3), low
parasite mortality leads to a stable coexistence of plants, pollinators, and parasites at
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Fig. 18 Time series of the system (1) with dA = 0.1 and f = 0.16: a Stable pollinator-parasite equilibrium;
b Stable coexistence equilibrium; c–d Stable periodic solution. Red, blue, and black lines represent P , A,
and M , respectively (color figure online)

constant population levels (Fig. 21a). As parasite mortality increases moderately, the
system experiences a bubble phenomenon, characterized by two supercritical bifur-
cations. A periodic solution emerges between these bifurcations (Fig. 21b), with its
amplitude initially increasing from zero, then gradually decreasing, and eventually
disappearing. Further increases in parasite mortality restore the coexistence equilib-
rium as the sole stable state (Fig. 21c). When parasite mortality becomes sufficiently
high, the system stabilizes at the plant-pollinator equilibrium (Fig. 21d).

5.3 Impact of conversion rate

In the scenario where plants are obligate and pollinators are facultative (Fig. 22a1),
a low conversion rate results in bistability between the pollinator-parasite equilib-
rium and the coexistence equilibrium (Fig. 23a). At intermediate conversion rates, a
supercritical Hopf bifurcation induces the left-bow phenomenon, resulting in bistabil-
ity between the pollinator-parasite equilibrium and the periodic solution (Fig. 23b).
As the conversion rate continues to increase, the system deterministically converges
to the pollinator-parasite equilibrium (Fig. 23c). Notably, in this case, increasing the
conversion rate does not affect the levels of the plant and pollinator components in the
coexistence equilibrium, but it does raise the parasite component (Fig. 24a) and the
amplitude of the periodic solution (Figs. 24b and c). In contrast, if pollinators are obli-
gate (Fig. 22a2), the system deterministically converges to the extinction equilibrium,
regardless of changes in the conversion rate.
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Fig. 19 Pairwise phase diagram of the system (1) with dA = 1.1 and f = 0.16

In the scenario where both plants and pollinators are facultative (Fig. 22a3), a low
conversion rate leads to the stable coexistence of plants, pollinators, and parasites
(Figs. 25a and 26a). As the conversion rate increases, the system undergoes a super-
critical Hopf bifurcation, destabilizing the coexistence equilibrium and giving rise to
an oscillation. The bifurcation diagram reveals that the amplitude of the oscillation
is not monotonic, but instead exhibits a wave-like pattern, which we have termed the
wave-bow phenomenon. Phase portraits indicate that the wave-bow phenomenon is
driven by complex periodic solutions and chaotic behavior. As the conversion rate
crosses the supercritical Hopf bifurcation, the system sequentially transitions through
a single-peaked periodic solution (Figs. 25b and 26b), a four-peaked periodic solu-
tion (Figs. 25c and 26c), and an eight-peaked periodic solution (Figs. 25d and 26d),
eventually leading to chaos (Figs. 25e and 26e). With further increases in the con-
version rate, the system passes through a sixteen-peaked periodic solution (Figs. 25f
and 26f), an eight-peaked periodic solution (Figs. 25g and 26g), chaos (Figs. 25h and
26h), a four-peaked periodic solution (Figs. 25i and 26i), chaos (Figs. 25j and 26j),
and a two-peaked periodic solution (Figs. 25k and 26k), ultimately converging to a
single-peaked periodic solution (Figs. 25l and 26l).

In the scenario where plants are facultative and pollinators are obligate (Fig. 22a4),
a low conversion rate leads the system to converge to the plant-only equilibrium
(Fig. 27a). As the conversion rate increases, the system transitions to a bistable state
between the plant-only equilibrium and the plant-pollinator equilibrium (Fig. 27b).
With further increases in the conversion rate, the system becomes bistable between
the plant-only equilibrium and the coexistence equilibrium (Fig. 27c). When the
conversion rate becomes sufficiently large, the system undergoes a subcritical Hopf
bifurcation and deterministically converges to the plant-only equilibrium (Fig. 27d).

5.4 Impact of plant growth rate

In the scenario with facultative pollinators, a low plant growth rate leads to obligate
mutualism for the plants (Fig. 28a1, red region). At sufficiently low plant growth
rates, the system converges to the pollinator-parasite equilibrium (Fig. 29a). As the
plant growth rate increases, the system undergoes a limit point bifurcation, resulting in
bistability between the pollinator-parasite equilibrium and the coexistence equilibrium
(Fig. 29b). With a further increase in the plant growth rate, a supercritical Hopf bifur-
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Fig. 20 Pairwise phase diagram of the system (1) with dA = 1.1 and f = 0.228

cation occurs, destabilizing the coexistence equilibrium, leading to bistability between
the pollinator-parasite equilibrium and the non-trivial periodic solution (Fig. 29c). At
sufficiently high plant growth rates, the plants transition from obligate to facultative
mutualism, and the system reaches a state of coexistence between plants, pollinators,
and parasites in periodic oscillations (Fig. 28a1, green region; Fig. 29d). Additionally,
as the plant growth rate increases, the plant and parasite components in the coexis-
tence equilibrium rise, while the pollinator levels remain unchanged. Meanwhile, the
amplitude of the periodic solution gradually increases (Fig. 30b and c).

In the scenario where both the pollinators and plants are obligate (Fig. 28a2, red
region), the systemundergoes collapse at lowplant growth rates (Fig. 31a). As the plant
growth rate increases slightly, the plants shift to a facultative relationship (Fig. 28a2,
green region), and the system converges to the plant-only equilibrium (Fig. 31b).
With further increases in the plant growth rate, the system briefly tracks the plant-
only equilibrium and the high-density plant-pollinator equilibrium before stabilizing
at the low-density plant-pollinator equilibrium (Fig. 31c). When the plant growth rate
becomes sufficiently high, the systemgenerates a stable periodic solution characterized
by a heteroclinic orbit connecting the plant-only equilibrium and the plant-pollinator
equilibrium (Fig. 31d).

5.5 Impact of remaining parameters

In addition to the parameters previously discussed, we conduct bifurcation analyses
on the remaining parameters of the system. Our findings reveal that the impact of these
parameters on plant-pollinator-parasite interactions depends significantly on whether
the plants and pollinators are facultative or obligate mutualists. The detailed results
are summarized in Tables 2 and 3, and are briefly outlined below:

1. Variations in the pollination ratios provided by pollinators can lead to two types
of bistability and induce both a supercritical Hopf bifurcation and a limit point bifur-
cation. Higher ratios may result in system instability. In the scenario where plants
are obligate and pollinators are facultative (Fig. 32a1), low pollination ratios result
in coexistence between pollinators and parasites, while intermediate ratios produce
a limit point bifurcation, yielding bistability between the pollinator-parasite equilib-
rium and the coexistence equilibrium. When the pollination ratio is sufficiently high,
a supercritical Hopf bifurcation occurs, leading to bistability between the pollinator-
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Fig. 21 Pairwise phase diagram
of the system (1) with dA = 0.1
and f = 0.228
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parasite equilibrium and the nontrivial periodic solution. In the scenario where both
plants and pollinators are facultative (Fig. 32a3), low pollination ratios allow stable
coexistence of plants, pollinators, and parasites, whereas higher ratios lead to a super-
critical Hopf bifurcation, causing periodic coexistence. For obligate pollinators, if the
plants are also obligate, the system collapses (Fig. 32a2); however, if the plants are
facultative (Fig. 32a4), the system converges to the plant-only equilibrium.

2. Variations in plant density dependence can lead to six types of bistability, one
instance of tristability, and trigger a supercritical Hopf bifurcation, a subcritical Hopf
bifurcation, and a limit point bifurcation. In the scenario where plants are obligate and
pollinators are facultative (Fig. 33a1), low plant density dependence results in bista-
bility between the pollinator-parasite equilibrium and the coexistence equilibrium. As
plant density dependence increases, the system sequentially undergoes: (1) tristabil-
ity among the pollinator-parasite equilibrium, the coexistence equilibrium, and the
periodic solution; (2) bistability between the pollinator-parasite equilibrium and the
periodic solution; (3) bistability between the pollinator-parasite equilibrium and the
coexistence equilibrium. Sufficiently high plant density dependence causes the system
to converge to the pollinator-parasite equilibrium. When both plants and pollinators
are obligate (Fig. 33a2), low plant density dependence leads to bistability between
the extinction equilibrium and the coexistence equilibrium, while high plant density
dependence causes system collapse. In the scenario where both plants and pollinators
are facultative (Fig. 33a3), low plant density dependence allows stable coexistence of
plants, pollinators, and parasites at constant levels; intermediate values lead to bista-
bility between the coexistence equilibrium and the periodic solution, followed by the
periodic oscillation; high plant density dependence causes the system to converge to
the coexistence equilibrium. When plants are facultative and pollinators are obligate
(Fig. 33a4), low plant density dependence results in bistability between the plant-only
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Fig. 22 Bifurcation diagram of the system (1) with varying ε. a1 dA = 0.1, f = 0.16; a2 dA = 1.1, f =
0.16; a3 dA = 0.1, f = 0.228; a4 dA = 1.1, f = 0.228. The blue and green dotted lines indicate sink and
saddle, respectively.Hs

1 andH
c
1 denote supercritical and subcritical bifurcations, respectively.LP represents

the limit point bifurcation (color figure online)

Fig. 23 Pairwise phase diagram of the system (1) with dA = 0.1 and f = 0.16

equilibrium and the coexistence equilibrium, while high plant density dependence
leads to the survival of plants only, with extinction of pollinators and parasites.

3. Variations in pollinator density dependence can lead to seven types of bistability,
as well as a supercritical Hopf bifurcation and a subcritical Hopf bifurcation. In the
scenario where plants are obligate and pollinators are facultative (Fig. 34a1), low pol-
linator density dependence results in a stable pollinator-parasite equilibrium. As the
density dependence increases, the system sequentially exhibits bistability between the
pollinator-parasite equilibrium and the periodic solution, then between the pollinator-
only equilibrium and the periodic solution, and finally between the pollinator-only
equilibrium and the coexistence equilibrium. Sufficiently high density dependence
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Fig. 24 Time series of the system (1) with dA = 0.1 and f = 0.16: a Stable coexistence equilibrium;
b–c Stable periodic solution. Red, blue, and black lines represent P , A, and M , respectively (color figure
online)

Fig. 25 Pairwise phase diagram of the system (1) with dA = 0.1 and f = 0.228. In Fig. 25e, h, and j, the
maximum Lyapunov exponents are 0.01044, 0.01049, and 0.01017, respectively
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causes the system to converge to the pollinator-only equilibrium. When both plants
and pollinators are obligate (Fig. 34a2), the system collapses. In the case where both
plants and pollinators are facultative (Fig. 34a)), low pollinator density dependence
leads to the periodic oscillation; intermediate values result in a stable coexistence
equilibrium, followed by bistability between the coexistence equilibrium and the low-
density plant-pollinator equilibrium, and then between high-density and low-density
plant-pollinator equilibria. High density dependence causes the system to converge to
the low-density plant-pollinator equilibrium. In the scenario where plants are faculta-
tive and pollinators are obligate (Fig. 34a4), low pollinator density dependence results
in the stable plant-only equilibrium; intermediate values lead to bistability between the
coexistence equilibrium and the plant-only equilibrium, and between the high-density
plant-pollinator equilibrium and the plant-only equilibrium. High density dependence
ultimately leads to the stable plant-only equilibrium.

4. Variations in the per-plant attack rate on rewards can lead to five types of bista-
bility, one instance of tristability, and can induce a supercritical Hopf bifurcation,
a subcritical Hopf bifurcation, and a limit point bifurcation. In the scenario where
plants are obligate and pollinators are facultative (Fig. 35a1), a low attack rate sta-
bilizes the pollinator-parasite equilibrium. As the attack rate increases, the system
sequentially exhibits: (1) bistability between the pollinator-parasite equilibrium and
the coexistence equilibrium; (2) bistability between the pollinator-parasite equilibrium
and the periodic solution; (3) tristability among the pollinator-parasite equilibrium,
the coexistence equilibrium, and the periodic solution. A sufficiently high attack rate
leads to bistability between the coexistence equilibrium and the pollinator-parasite
equilibrium. In the scenario where both plants and pollinators are obligate (Fig. 35a2),
a low attack rate causes system collapse, while a high attack rate results in bistability
between the coexistence equilibrium and the extinction equilibrium.When both plants
and pollinators are facultative (Fig. 35a3), low and high attack rates cause the sys-
tem to converge to the coexistence equilibrium. Intermediate attack rates sequentially
lead to: (1) the periodic oscillation; (2) bistability between the periodic solution and
the coexistence equilibrium. In the scenario where plants are facultative and pollina-
tors are obligate (Fig. 35a4), a low attack rate stabilizes the plant-only equilibrium,
while a high attack rate leads to bistability between the plant-only equilibrium and the
coexistence equilibrium.

5. Variations in the handling time on rewards can lead to four types of bistabil-
ity, a supercritical Hopf bifurcation, a subcritical Hopf bifurcation, and a limit point
bifurcation. In the scenario where plants are obligate and pollinators are facultative
(Fig. 36a1), low handling times result in bistability between the pollinator-parasite
equilibrium and the periodic solution, while intermediate handling times lead to bista-
bility between the pollinator-parasite equilibrium and the coexistence equilibrium;
sufficiently large handling times stabilize the pollinator-parasite equilibrium. When
both plants and pollinators are obligate (Fig. 36a2), the system collapses. In the case
where both plants and pollinators are facultative (Fig. 36a3), low handling times lead
to the periodic oscillation, whereas high handling times cause the system to con-
verge to the coexistence equilibrium. For facultative plants with obligate pollinators
(Fig. 36a4), low handling times stabilize the plant-only equilibrium; intermediate han-
dling times sequentially lead to bistability between the plant-only equilibrium and the
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Fig. 26 Time series of the system (1) with dA = 0.1 and f = 0.228. The red shaded region highlights a
cycle (color figure online)

coexistence equilibrium, and coexistence between the high-density plant-pollinator
equilibrium and the plant-only equilibrium. High handling times ultimately stabilize
the plant-only equilibrium.

6. Variations in the parasite reproduction rate can lead to seven types of bistabil-
ity, three subcritical Hopf bifurcations, two supercritical bifurcations, and one limit
point bifurcation. In the scenario where plants are obligate and pollinators are facul-
tative (Fig. 37a1), low parasite reproduction rates result in the stable plant-pollinator
equilibrium. As the parasite reproduction rate increases, the system sequentially tran-
sitions through: (1) the stable coexistence equilibrium; (2) the periodic oscillation;
(3) bistability between the periodic solution and the pollinator-parasite equilibrium;
(4) bistability between the coexistence equilibrium and the pollinator-parasite equi-
librium. Sufficiently high parasite reproduction rates stabilize the pollinator-parasite
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Fig. 27 Pairwise phase diagram
of the system (1) with dA = 1.1
and f = 0.228

equilibrium. When both plants and pollinators are obligate (Fig. 37a2), low parasite
reproduction rates lead to bistability between the plant-pollinator equilibrium and the
extinction equilibrium, while intermediate rates result in bistability between the coex-
istence equilibrium and the extinction equilibrium; high parasite reproduction rates
cause the system to collapse. In the scenario where both plants and pollinators are fac-
ultative (Fig. 37a3), low parasite reproduction rates cause the system to converge to
the plant-pollinator equilibrium. Intermediate parasite reproduction rates sequentially
lead to: (1) the stable coexistence equilibrium; (2) bistability between the coexistence
equilibrium and the periodic solution; (3) the periodic oscillation. Sufficiently high
parasite reproduction rates result in stable coexistence of plants, pollinators, and para-
sites. When plants are facultative and pollinators are obligate (Fig. 37a4), low parasite
reproduction rates lead to bistability between the plant-pollinator equilibrium and the
plant-only equilibrium. Intermediate parasite reproduction rates sequentially lead to:
bistability between the coexistence equilibrium and the plant-only equilibrium; the sta-
ble plant-only equilibrium; and bistability between the coexistence equilibrium and
the plant-only equilibrium again. High parasite reproduction rates result in the stable
plant-only equilibrium.

7. Variations in the natural pollination ratio can lead to three types of bistability,
as well as one supercritical bifurcation and one limit point bifurcation. In the sce-
nario where pollinators are facultative (Fig. 38a1), low natural pollination ratios result
in the stable pollinator-parasite equilibrium. Intermediate values sequentially lead to
bistability between the coexistence equilibrium and the pollinator-parasite equilib-
rium, followed by bistability between the periodic solution and the pollinator-parasite
equilibrium. Sufficiently high natural pollination ratios cause plants, pollinators, and
parasites to persist in periodic oscillations. When pollinators are obligate (Fig. 38a2),
low natural pollination ratios lead to system collapse. Intermediate values result in the
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Fig. 28 Bifurcation diagram of the system (1) with varying bP . a1 dA = 0.1; a2 dA = 1.1. The blue
and green dotted lines indicate sink and saddle, respectively. Hs

1 denotes a supercritical bifurcation. LP
represents the limit point bifurcation. In the red region, rP < 0; in the green region, rP > 0 (color figure
online)

stable plant-only equilibrium, then the stable low-density plant-pollinator equilibrium,
and eventually bistability between the low-density plant-pollinator equilibrium and the
periodic solution. High natural pollination proportions lead to periodic oscillations.

8. Variations in the reproduction success rate can cause two types of bistability, one
supercritical bifurcation, and one limit point bifurcation. With facultative pollinators
(Fig. 39a1), low reproduction success rates stabilize the pollinator-parasite equilib-
rium. Intermediate rates lead to bistability between the coexistence equilibrium and the
pollinator-parasite equilibrium, followed by the stable coexistence equilibrium. High
reproduction success rates result in periodic oscillations among plants, pollinators,
and parasites. In the obligate pollinator scenario (Fig. 39a2), low reproduction success
rates cause system collapse. Intermediate rates sequentially stabilize the plant-only
equilibrium and the low-density plant-pollinator equilibrium, followed by bistability
between this equilibrium and the periodic solution. High reproduction success rates
lead to periodic oscillations.

9. Variations in the plant mortality rate can lead to three types of bistability, one
supercritical bifurcation, and one limit point bifurcation. For facultative pollinators
(Fig. 40a1), low plant mortality rates result in periodic oscillations. Intermediate rates
lead to bistability between the periodic solution and the pollinator-parasite equilibrium,
then to bistability between the coexistence equilibrium and the pollinator-parasite
equilibrium. High plant mortality rates cause plant extinction, with pollinators and
parasites surviving at stable densities. When pollinators are obligate (Fig. 40a2), low
plant mortality rates produce periodic oscillations. Intermediate rates stabilize the
plant-pollinator equilibrium and then the plant-only equilibrium. High mortality rates
lead to system collapse.

10.Variations in the pollinator birth rate can induce four types of bistability and one
supercritical bifurcation. In the facultative plant scenario (Fig. 41a1), low birth rates
stabilize the plant-only equilibrium. Intermediate rates sequentially stabilize the plant-
pollinator equilibrium, lead to bistability between this equilibrium and the periodic
solution, and then cause periodic oscillations. High birth rates result in constant-
level coexistence. With obligate pollinators (Fig. 41a2), low birth rates cause system
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Fig. 29 Pairwise phase diagram
of the system (1) with dA = 0.1
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collapse. Intermediate rates stabilize the pollinator-only equilibrium and then lead to
bistability between this equilibrium and the periodic solution, followed by bistability
between the periodic solution and the pollinator-parasite equilibrium. High birth rates
result in bistability between the coexistence equilibrium and the pollinator-parasite
equilibrium.

11. Variations in the pollinator mortality rate can lead to three types of bistabil-
ity. For facultative plants (Fig. 42a1), low mortality rates cause periodic oscillations.
Intermediate rates lead to bistability between the periodic solution and the plant-
pollinator equilibrium, eventually stabilizing the plant-pollinator equilibrium. High
mortality rates stabilize the plant-only equilibrium. In the obligate pollinator scenario
(Fig. 42a2), low mortality rates result in bistability between the periodic solution and
the pollinator-parasite equilibrium. Intermediate rates lead to bistability between the
periodic solution and the pollinator-only equilibrium, followed by stabilization of the
pollinator-only equilibrium. High mortality rates cause system collapse.

6 Conclusion

Themutualistic interactions between plants and pollinators are fundamental to ecosys-
tem stability and biodiversity. While extensive research has explored the dynamics of
plant-pollinator interactions and their ecological impacts, the role of parasites within
these systems remains underexplored. This study addresses this gap by constructing
and analyzing a tripartite plant-pollinator-parasite system, systematically revealing
how parasites can significantly alter the stability and dynamic behavior of plant-
pollinator interactions through complex feedback mechanisms. Our work extends the
modeling framework proposed by Hale et al. (2022), providing new perspectives for a
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Fig. 30 Time series of the system (1) with dA = 0.1. a Stable coexistence equilibrium; b–c Stable periodic
solution. Red, blue, and black lines represent P , A, and M , respectively (color figure online)

comprehensive understanding of the complexities inherent in plant-pollinator-parasite
interactions. Notably, we introduce three novel concepts-the left bow phenomenon,
right bow phenomenon, and wave bow phenomenon-to characterize the amplitude
variations of oscillations induced by parameter bifurcations, thereby complementing
the existing bubble phenomenon. These concepts are broadly applicable for charac-
terizing parameter-induced bifurcations in ecological models.

The theoretical analysis encompasses the global dynamics of the plant-pollinator
subsystem and the pollinator-parasite subsystem, as well as the local dynamics of the
complete plant-pollinator-parasite system. The plant-pollinator subsystem exhibits
only equilibrium dynamics, indicating the absence of cycles or chaos. Specifically,
when there is a unique local equilibrium, it is globally asymptotically stable. Addi-
tionally, this subsystem may display four types of bistability, depending on whether
plants and pollinators are obligate or facultative mutualists. This finding not only cor-
roborates the numerical results of Hale et al. (2022) but also elucidates how plant
and pollinator populations can remain stable or exhibit multistability under different
ecological conditions. Similarly, the pollinator-parasite subsystem demonstrates equi-
librium dynamics. Our results indicate that when pollinators are facultative and their
intrinsic growth rates are limited, parasites become extinct due to unfavorable host
conditions. Conversely, when the intrinsic growth rates of pollinators are sufficiently
high, pollinators and parasites can coexist. This outcome underscores the critical role
of pollinator population density in maintaining parasite dynamics and reflects the
significant impact of pollinator growth rates on system stability.

In the complete plant-pollinator-parasite system, a detailed analysis of bound-
ary dynamics reveals both similarities and differences compared to the subsystems.
Similarities include the local stability conditions for plant-only and extinction equi-
libria. Differences emerge in the influence of pollinator density on the stability of
the plant-pollinator equilibrium and the stability conditions for pollinator-only and
pollinator-parasite equilibria. Furthermore, the existence and stability conditions of
coexistence equilibria are elucidated, significantly influenced by the characteristics of
plants and pollinators-such as whether plants are specialists and the intrinsic growth
rates of pollinators. By integrating boundary dynamics analysis with coexistence equi-
librium analysis, we demonstrate that parasites can induce multistability and complex
dynamic behaviors throughout the system via intricate feedback mechanisms.
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Fig. 31 Pairwise phase diagram
of the system (1) with dA = 1.1

Through bifurcation analyses, we reveal the complex dynamic behaviors of the
plant-pollinator-parasite system under various biological scenarios. When pollinators
are facultative, the system exhibits richer dynamical phenomena, including multiple
bistable and tristable states, supercritical and subcritical Hopf bifurcations, saddle-
node bifurcations, chaos, and complex periodic solutions. These dynamics indicate
greater system resilience and the ability to maintain various stable states or periodic
oscillationswithin specific parameter ranges. In contrast,whenpollinators are obligate,
the system is more prone to collapse. Notably, we introduce and define three novel
dynamic phenomena: the left bow phenomenon, right bow phenomenon, and wave
bow phenomenon. These concepts describe variations in oscillation amplitudes result-
ing from parameter bifurcations, complementing the existing bubble phenomenon.
Specifically:

– Left Bow Phenomenon: Variations in parasite mortality rates induce a gradual
increase in the amplitude of oscillations before an abrupt disappearance as the
parameter crosses a bifurcation point from the left.

– Right Bow Phenomenon: Similar to the left bow, but the amplitude gradually
increases as the parameter crosses the bifurcation point from the right.

– Wave Bow Phenomenon:Alterations in the conversion rate between parasite states
trigger fluctuations in oscillation amplitudes, transitioning from unimodal to mul-
timodal periodic solutions, followed by chaotic states, and reverting to multimodal
and single-peaked periodic solutions. Thismechanismhighlights the system’s high
sensitivity to changes in the conversion rate.

Additionally, variations in plant birth rates lead to the formation of heteroclinic orbits,
facilitating transitions between different equilibrium states and demonstrating com-
plex orbital connections within the system. Comprehensive bifurcation analyses of all
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key biological parameters-including pollination ratios, pollinator mortality rates, and
density dependence coefficients-reveal that these parameters influence the system’s
dynamic behavior through various bifurcation mechanisms. The interactions among
these parameters determine whether the system remains stable, exhibits periodic oscil-
lations, or transitions into chaotic regimes. Collectively, these findings provide a robust
theoretical framework for understanding the intricate dynamics of plant-pollinator-
parasite systems. They emphasize the necessity of considering multiple interacting
parameters and nonlinear phenomena in ecological management strategies to enhance
ecosystem stability and resilience.

However, this study identifies several limitations that warrant further exploration:

– Limited Interaction Scope: The model focuses solely on the basic interactions
between plants, pollinators, and parasites, neglecting other key interactions such as
competition andpredation. For instance, competition amongplant species or preda-
tory behavior among pollinators could significantly influence system dynamics
(Tilman 1982). Future research should incorporate a broader range of interactions
to better capture the complexity of real ecological systems (Hastings 2013).

– Parameter Uncertainty: Some parameters are based on assumptions or literature
values, introducing uncertainty when applying them to real ecosystems where
parameters may vary significantly. Empirical research is needed to obtain more
accurate estimates and improve model predictions.

– Spatial Homogeneity Assumption: The study uses a non-spatial model, overlook-
ing the role of spatial heterogeneity and migration. Including spatial factors-such
as migration rates or spatial distribution models-could provide valuable insights
into the effects of spatial structure on multistability and oscillations (Cantrell and
Cosner 2004).

– Environmental Factors: Environmental variables like climate change and habitat
fragmentation are not fully considered. Future studies should integrate these factors
to assess their overall impact on the dynamics of plant-pollinator-parasite systems,
offering a more comprehensive understanding of external environmental pressures
on ecosystem stability.

In conclusion, this study significantly enhances our understanding of how parasites
influence plant-pollinator interactions, unveiling complex dynamics that have critical
implications for ecosystem management and conservation. By advancing our under-
standing of these intricate relationships, we lay the groundwork for future research
that can inform strategies to preserve biodiversity and ecosystem functionality in the
face of environmental change.

7 Appendix

A Proof of Lemma 1

Proof Considering the system (2), we observe that P ′∣∣
P=0 = 0, A′∣∣

A=0 = 0. By
invoking Theorem A.4 in Ref. (Thieme 2018), we conclude that the system (2) is pos-
itively invariant within the region (P(t), A(t)) ∈ R

2+. By simplifying the differential
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inequalities, we derive the subsequent results:

dP

dt
=P

[

bP

(

f + φ
aAP

1 + ahP + aAP

)

g − sP P − dP

]

≤P [bPg ( f + φ) − sP P − dP ]

=P [bPg ( f + φ) − dP ]

(

1 − P
bPg( f+φ)−dP

sP

)

,

which implies

lim sup
t→+∞

P(t) ≤ bPg( f + φ) − dP
sP

.

Similarly, we obtain

lim sup
t→+∞

A(t) ≤ bA + ε
h − dA
sA

.

This concludes the proof of Lemma 1. ��

B Supplementary bifurcation diagrams

See Figs. 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42.
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Fig. 32 Bifurcation diagram of the system (1) with varying φ. a1 dA = 0.1, f = 0.16; a2 dA = 1.1, f =
0.16; a3 dA = 0.1, f = 0.228; a4 dA = 1.1, f = 0.228. The blue and green dotted lines indicate sink and
saddle, respectively. Hs

1 denotes a supercritical bifurcation, while LP represents the limit point bifurcation
(color figure online)
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Fig. 33 Bifurcation diagram of the system (1) with varying sP . a1 dA = 0.1, f = 0.16; a2 Case dA =
1.1, f = 0.16; a3 dA = 0.1, f = 0.228; a4 dA = 1.1, f = 0.228. The blue and green dotted lines indicate
sink and saddle, respectively.Hs

1 andH
c
1 denote supercritical and subcritical bifurcations, respectively. LP

represents the limit point bifurcation (color figure online)

Fig. 34 Bifurcation diagram of the system (1) with varying sA . a1 dA = 0.1, f = 0.16; a2 dA = 1.1, f =
0.16; a3 dA = 0.1, f = 0.228; a4 dA = 1.1, f = 0.228. The blue and green dotted lines indicate sink and
saddle, respectively.Hs

1 andH
c
1 denote supercritical and subcritical bifurcations, respectively.LP represents

the limit point bifurcation (color figure online)
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Fig. 35 Bifurcation diagram of the system (1) with varying a. a1 dA = 0.1, f = 0.16; a2 dA = 1.1, f =
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sink and saddle, respectively.Hs

1 andH
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Fig. 36 Bifurcation diagram of the system (1) with varying h. a1 dA = 0.1, f = 0.16; a2 dA = 1.1, f =
0.16; a3 dA = 0.1, f = 0.228; a4 dA = 1.1, f = 0.228. The blue and green dotted lines indicate sink and
saddle, respectively.Hs

1 andH
c
1 denote supercritical and subcritical bifurcations, respectively.LP represents

the limit point bifurcation (color figure online)
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Fig. 37 Bifurcation diagram of the system (1) with varying k. a1 dA = 0.1, f = 0.16; a2 dA = 1.1, f =
0.16; a3 dA = 0.1, f = 0.228; a4 dA = 1.1, f = 0.228. Hs

1 and Hc
1 denote supercritical and subcritical

bifurcations, respectively. LP represents the limit point bifurcation
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Fig. 38 Bifurcation diagram of the system (1) with varying f . a1 dA = 0.1; a2 dA = 1.1. The blue
and green dotted lines indicate sink and saddle, respectively. Hs

1 denotes a supercritical bifurcation. LP
represents the limit point bifurcation. In the red region, rP < 0; in the green region, rP > 0 (color figure
online)
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Fig. 39 Bifurcation diagram of the system (1) with varying g. a1 dA = 0.1; a2 dA = 1.1. The blue
and green dotted lines indicate sink and saddle, respectively. Hs

1 denotes a supercritical bifurcation. LP
represents the limit point bifurcation. In the red region, rP < 0; in the green region, rP > 0 (color figure
online)

Fig. 40 Bifurcation diagram of the system (1) with varying dP . a1 dA = 0.1; a2 dA = 1.1. The blue
and green dotted lines indicate sink and saddle, respectively. Hs

1 denotes a supercritical bifurcation. LP
represents the limit point bifurcation. In the red region, rP < 0; in the green region, rP > 0 (color figure
online)
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Fig. 41 Bifurcation diagram of the system (1) with varying bA . a1 f = 0.228; a2 f = 0.16. The blue and
green dotted lines indicate sink and saddle, respectively. Hs

1 denotes a supercritical bifurcation. In the red
region, rA < 0; in the green region, rA > 0 (color figure online)
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Fig. 42 Bifurcation diagram of the system (1) with varying dA . a1 f = 0.228; a2 f = 0.16. The blue and
green dotted lines indicate sink and saddle, respectively. In the red region, rA < 0; in the green region,
rA > 0 (color figure online)
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