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Abstract. It has been well established in the literature that the predator-
induced fear has indirect impact on prey but can have comparable effects on

prey population as direct killing, and that the crowding effect or self-limitation

of population plays pivotal roles in determining the dynamics and interactions
among populations. In this paper, we first propose and investigate a deter-

ministic prey-predator model incorporating simultaneously fear effect in prey

and crowding effect in predators. The model has rich dynamics, including
one up to three positive equilibria, complex bifurcations (saddle-node, Hopf

and Bogdanov-Takens bifurcations), and two types of bistability (between two

interior equilibria or between an interior equilibrium and an interior limit cy-
cle). Thus the model is easily affected by external environmental fluctuations.

When environmental noises are involved, some new dynamics can be observed

for the developed stochastic model. Especially, for the scenarios when the de-
terministic model exhibits bistability, we can observe noise-induced frequent

transitions between two different interior attractors (two interior equilibria or
an interior equilibrium and an interior limit cycle). The tipping points of noise

intensities for the occurrence of such transitions are estimated by constructing

the confidence ellipse/band for the equilibrium/limit cycle. These indicate that
the predators and prey can coexist in two different modes and switch randomly

between them.

1. Introduction. To understand species’ interactions and their impacts on the
persistence and biodiversity of an ecosystem is a central question in ecology [3, 36].
There are many types of interactions between species such as predation, competi-
tion, mutualism and so on, among which predation is one of the most important
ecological processes. Through predation animals capture prey and obtain energy
to support their survival and reproduction. On the other hand, prey faces the
risk of predation at any time and thus has various anti-predator behaviors such as
habitat change, increased vigilance, reduced foraging, increased group defense [6].
This predation risk effect (also called fear effect) is common and can be as strong
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as or sometimes greater than direct killing as recent empirical studies have shown
[4, 13, 16, 18, 32].

In most situations, the fear effect is inevitable, but it is usually ignored in clas-
sical predater-prey models [31, 35]. If the predator-induced fear on prey is ignored
in an intimidating environment, there will be a large deviation in the prediction
of population ecology [12, 33]. Recently, many studies qualitatively explored the
indirect impact of predation on populations and then evaluated the real impact of
predation induced fear effect [5, 7, 11, 14, 19, 21, 25, 26, 27, 28, 34]. Wang et al.
formulated a mathematical model by introducing a fear function to describe the
decrease of the birth rate of prey caused by indirect predation [26]. This modeling
approach provides a good framework for further understanding the effects of fear
on populations. For example, Wang et al. further considered the benefits of anti-
predation behaviors and digestion delay. They found that if the predation function
is described by Holling-II functional response function, moderate fear and large di-
gestion delay can induce the occurrence of periodic oscillations [28]. Considering
the fact that the predation risk can also increase the death rate of prey, Das et al.
investigated a predator-prey model with this risk effect as well as the intraspecific
competition in predators, indicating that a higher degree of fear or intraspecific
competition is conducive to species coexistence [7]. In another paper [14], Pal et
al. developed a Leslie-Gower type model with fear effect and cooperative predation,
indicating that the fear can exclude the existence of periodic oscillations such that
the predator-prey system eventually approaches a steady state, and moreover the
system with only fear effect is more robust than that with only hunting coopera-
tion. In [9], Hossain et al. investigated an intraguild predation model with fear
effect, revealing that fear can stabilize the model by period-halving bifurcation. All
these studies demonstrate that fear does play a significant role in assessing the total
impact of predation on populations.

As indicated in [8], to achieve the plausible model behaviour, suitable mortality
terms should be considered for different populations. It has now been well estab-
lished in the literature that the linear mortality is enough for top predators, however,
for some predators, especially for intermediate predators (for example, piscivores),
the quadratic mortality is a reasonable choice [8, 20] because the crowding effect
(or self-limitation) of intermediate predators dominates their natural mortality [24].
Intermediate predators play pivotal roles in the transition of elements and energy
in an ecosystem. However, as far as we know, few efforts have been devoted to the
investigation of a fearful predator-prey model with self-limitation in predators. This
paper aims to explore this issue by considering the following prey-predator model:

du

dt
=

ru

1 + kv
− du− au2 − puv

1 + cu
,

dv

dt
= −mv2 +

quv

1 + cu
,

(1)

where r and d stand respectively for the prey growth rate and the natural death
rate in the absence of fear and predators. The parameter a is the prey density-
dependent mortality rate measuring the prey intra-specific competition, andm is the
crowding effect parameter for predators. The function 1

1+kv describes the fear cost of
predation, where k denotes the fear level. The predation is described by a Holling-II
type functional response function, where p and q are respectively the predation rate
and growth rate of predators, and 1

c is the half saturation constant. Our analysis
shows that the fear caused by predators and the self-limitation in predators can
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make the model exhibit rich dynamics such as complex bifurcations and bistability
phenomena, and just because of these the model is sensitive to and easily affected by
external environmental fluctuations which always exist in the real world. Especially,
for the scenarios when the deterministic model exhibits bistability, we numerically
estimate the tipping points of noise intensities for the occurrence of such switching
by constructing the confidence ellipse (confidence band) for the equilibrium (the
limit cycle).

The organization of this paper is as follows. The existence and stability of the
equilibria of model (1) are discussed in the next section. The detailed analysis of
possible bifurcations for model (1), including saddle-node bifurcation, Hopf bifurca-
tion and Bogdanov-Takens bifurcation are performed in Section 3. In order to verify
and illustrate the mathematical results, in Section 4, we present the one-parameter
and two-parameter bifurcation diagrams and phase plane diagrams of model (1)
to display the influence of the predator-induced fear and predators’ crowding effect
parameter on the population dynamics. To further illustrate how the environmental
noises affect the dynamics of the model, especially in the scenario that the model
exhibits bistability, we proceed to study in Section 5 the possible noise-induced tran-
sitions between different stochastic attractors and numerically estimate the critical
values of noise intensity for the occurrence of such transition with the aids of the
technique of stochastic sensitivity functions. Finally, we provide some concluding
remarks in Section 6.

2. Existence and stability of equilibria. By the biological meanings of prey and
the predators, we only pay our attention to model (1) in R2

+ = {(u, v)|u ≥ 0, v ≥ 0}.
The positivity and boundedness of solutions of model (1) are guaranteed by the
following theorem.

Theorem 2.1. For any given nonnegative initial value (u(0), v(0)) ∈ R2
+, the so-

lution (u(t), v(t)) of model (1) is positive and uniformly ultimately bounded for all
t ≥ 0.

Proof. Notice that u = 0 and v = 0 are both solutions of model (1). The positivity of
the solution follows directly from the existence and uniqueness theorem of solutions
for ordinary differential equations (ODE). Denote w = qu+ pv, then we have

dw

dt
=

rqu

1 + kv
− dqu− aqu2 − pmv2

≤ −d(qu+ pv) + dpv + rqu− aqu2 − pmv2

≤ −dw +
r2q

4a
+
d2p

4m
,

(2)

which implies that lim supt→∞ w(t) ≤ r2q
4ad + dp

4m . In addition, from the first equation

of (1), we can easily obtain that lim supt→∞ u(t) ≤ r−d
a . Thus any solution of model

(1) with nonnegative values will tend to or stay forever in the region

Ω =

{
(u, v)

∣∣0 ≤ u ≤ r − d
a

, 0 ≤ qu+ pv ≤ r2q

4ad
+

d2p

4md

}
. (3)

The proof is thus completed.

We now study the existence and stability of equilibria of model (1). From Theo-
rem 1 in [23], one can know that when r ≤ d, there only exists a trivial equilibrium
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E0(0, 0) and it is globally asymptotically stable; when r > d, E0(0, 0) becomes un-
stable and a semi-trivial equilibrium E1( r−da , 0) emerges, which is always a saddle
point. For the positive equilibrium, it has been shown in [23] that model (1) has at
least one if r > d. Here, we will further show model (1) has at most three positive
equilibria.

Any positive equilibrium E∗(u∗, v∗) of model (1), if it exists, must satisfy v∗ =
qu∗

m(1+cu∗) , where u∗ is a positive root of h(u) := f(u)− g(u) = 0, where

f(u) =
rm(1 + cu)

m+ (cm+ kq)u
, g(u) = d+ au+

pqu

m(1 + cu)2
. (4)

The equation h(u) = 0 can be rewritten as

F (u) := `4u
4 + `3u

3 + `2u
2 + `1u+ `0 = 0, (5)

where
`4 = ac2m(mc+ kq) > 0,

`3 = cm(cd+ 2a)(mc+ kq) + c2m2(a− cr),
`2 = (am+ 2cdm+ pq)(mc+ kq) + cm2(cd+ 2a)− 3c2rm2,

`1 = dm(mc+ kq) +m(am+ 2cdm+ pq)− 3crm2,

`0 = (d− r)m2 < 0.

(6)

Therefore, it suffices to discuss the existence and number of the positive roots of
F (u) = 0. The details are provided in Appendix A. Define F1(u) = F ′(u) and
F2(u) = F ′′(u), that is,

F1(u) = 4`4u
3 + 3`3u

2 + 2`2u+ `1, F2(u) = 12`4u
2 + 6`3u+ 2`2.

The following theorem is about the existence of equilibria of model (1).

Theorem 2.2. Model (1) always has a trivial equilibrium E0(0, 0), which is unique
provided r ≤ d. When r > d, model (1) also possesses a semi-trivial equilibrium
E1( r−da , 0), and at least one positive equilibrium and at most three positive equilibria.
More specifically,

(1) if `23 ≤ 8
3`2`4, model (1) has a unique positive equilibrium E∗(u∗, v∗).

(2) if `23 >
8
3`2`4 and

(2a) `2 < 0 or `2 = 0, `3 < 0, then when `1 ≤ 0, model (1) has a unique
positive equilibrium E∗(u∗, v∗); while
(2a-1) when `1 > 0 and F1(β2) > 0, model (1) has a unique positive

equilibrium E∗(u∗, v∗).
(2a-2) when `1 > 0 and F1(β2) = 0, if further F (β2) = 0, then model (1)

has a positive equilibrium (β2,
qβ2

m(1+cβ2)
) with multiplicity 3; otherwise

model (1) has a unique positive equilibrium E∗(u∗, v∗).
(2a-3) when `1 > 0 and F1(β2) < 0, if F (γ1) > 0 and F (γ2) < 0, model

(1) has three positive equilibria E∗1 (u∗1, v
∗
1), E∗2 (u∗2, v

∗
2) and E∗3 (u∗3, v

∗
3)

with u∗1 < u∗2 < u∗3; if F (γ1) = 0, E∗1 (u∗1, v
∗
1) and E∗2 (u∗2, v

∗
2) coin-

cide into an equilibrium E∗1,2(u∗1,2, v
∗
1,2), and then the model has two

positive equilibria E∗1,2(u∗1,2, v
∗
1,2) and E∗3 (u∗3, v

∗
3) with u∗1,2 < u∗3; if

F (γ1) < 0, E∗1,2(u∗1,2, v
∗
1,2) disappears and the model has a unique pos-

itive equilibrium E∗3 (u∗3, v
∗
3); if F (γ2) = 0, E∗2 (u∗2, v

∗
2) and E∗3 (u∗3, v

∗
3)

coincide into an equilibrium E∗2,3(u∗2,3, v
∗
2,3), and then the model has

two positive equilibria E∗1 (u∗1, v
∗
1) and E∗2,3(u∗2,3, v

∗
2,3) with u∗1 < u∗2,3;
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if F (γ2) > 0, E∗2,3(u∗2,3, v
∗
2,3) disappears and the model has a unique

positive equilibrium E∗1 (u∗1, v
∗
1).

(2b) `2 ≥ 0, `3 ≥ 0, then model (1) has a unique positive equilibrium E∗(u∗, v∗).
(2c) `2 > 0, `3 < 0, then

(2c-1) when `1 < 0, F1(β1) ≤ 0 or F1(β2) ≥ 0, then F (u) = 0 has a
unique positive equilibrium E∗(u∗, v∗).

(2c-2) when `1 < 0, F1(β1) > 0 and F1(β2) < 0, if F (γ2) > 0 and
F (γ3) < 0, then model (1) has three positive equilibria E∗1 (u∗1, v

∗
1),

E∗2 (u∗2, v
∗
2) and E∗3 (u∗3, v

∗
3) with u∗1 < u∗2 < u∗3; if F (γ2) = 0, E∗1 (u∗1, v

∗
1)

and E∗2 (u∗2, v
∗
2) coincide into an equilibrium E∗1,2(u∗1,2, v

∗
1,2), and then

model has two positive equilibria E∗1,2(u∗1,2, v
∗
1,2) and E∗3 (u∗3, v

∗
3) with

u∗1,2 < u∗3; if F (γ2) < 0, E∗1,2(u∗1,2, v
∗
1,2) disappears and the model has

a unique positive equilibrium E∗3 (u∗3, v
∗
3); if F (γ3) = 0, E∗2 (u∗2, v

∗
2) and

E∗3 (u∗3, v
∗
3) coincide into an equilibrium E∗2,3(u∗2,3, v

∗
2,3) and then the

model has two positive equilibria E∗1 (u∗1, v
∗
1) and E∗2,3(u∗2,3, v

∗
2,3) with

u∗1 < u∗2,3; if F (γ3) > 0, E∗2,3(u∗2,3, v
∗
2,3) disappears and the model has

a unique positive equilibrium E∗1 (u∗1, v
∗
1).

(2c-3) when `1 ≥ 0, F1(β2) > 0, then model (1) has a unique positive
equilibrium E∗(u∗, v∗).

(2c-4) when `1 ≥ 0, F1(β2) = 0, if further F (β2) = 0, then model (1)

has a positive equilibrium (β2,
qβ2

m(1+cβ2)
) with multiplicity 3; otherwise

model (1) has a unique positive equilibrium E∗(u∗, v∗).
(2c-5) when `1 ≥ 0, F1(β2) < 0, if F (γ1) > 0 and F (γ2) < 0, then model

(1) has three positive equilibria E∗1 (u∗1, v
∗
1), E∗2 (u∗2, v

∗
2) and E∗3 (u∗3, v

∗
3)

with u∗1 < u∗2 < u∗3; if F (γ1) = 0, E∗1 (u∗1, v
∗
1) and E∗2 (u∗2, v

∗
2) coin-

cide into an equilibrium E∗1,2(u∗1,2, v
∗
1,2), and then the model has two

positive equilibria E∗1,2(u∗1,2, v
∗
1,2) and E∗3 (u∗3, v

∗
3) with u∗1,2 < u∗3; if

F (γ1) < 0, E∗1,2(u∗1,2, v
∗
1,2) disappears and the model has a unique pos-

itive equilibrium E∗3 (u∗3, v
∗
3); if F (γ2) = 0, E∗2 (u∗2, v

∗
2) and E∗3 (u∗3, v

∗
3)

coincide into an equilibrium E∗2,3(u∗2,3, v
∗
2,3) and then the model has

two positive equilibria E∗1 (u∗1, v
∗
1) and E∗2,3(u∗2,3, v

∗
2,3) with u∗1 < u∗2,3;

if F (γ2) > 0, E∗2,3(u∗2,3, v
∗
2,3) disappears and the model has a unique

positive equilibrium E∗1 (u∗1, v
∗
1).

Here βi (i = 1, 2) are the roots of F2(u) = 0; γi (i = 1, 2, 3) are the roots of
F1(u) = 0.

The Jacobi matrix of model (1) at any positive equilibrium E∗(u∗, v∗) has the
form

J(E∗) =

(
r

1+kv∗ − d− 2au∗ − pv∗

(1+cu∗)2 −
(

kru∗

(1+kv∗)2 + pu∗

1+cu∗

)
qv∗

(1+cu∗)2
qu∗

1+cu∗ − 2mv∗

)
:=

(
J11 J12
J21 J22

)
.

(7)

Then the corresponding characteristic equation is

λ2 − ϕ(u∗)λ+ ψ(u∗) = 0, (8)

where

ϕ(u∗) = −au∗ +
qu∗

1 + cu∗

( cpu∗

m(1 + cu∗)2
− 1
)
, (9)

ψ(u∗) = − qu∗2

1 + cu∗
h′(u∗). (10)
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It then follows from the stability theory that E∗(u∗, v∗) is stable if h′(u∗) < 0 and
ϕ(u∗) < 0 and unstable if h′(u∗) > 0 or ϕ(u∗) > 0.

To summarize, we obtain the following stability result of model (1).

Theorem 2.3. For the equilibria of model (1), we have

(1) E0(0, 0) is globally attractive for r ≤ d and unstable for r > d.
(2) E1( r−da , 0) is always a saddle provided it exists (i.e., r > d).
(3) Any positive equilibrium E∗(u∗, v∗) of model (1), when exists, is stable pro-

vided h′(u∗) < 0 and ϕ(u∗) < 0, and unstable provided h′(u∗) > 0 or ϕ(u∗) >
0.

3. Bifurcation analysis. From Theorem 2.3, we know that a degenerate positive
equilibrium E∗(u∗, v∗) emerges if u∗ further satisfies F1(u∗) = 0, i.e., h′(u∗) = 0. In
this case, the characteristic equation (8) has one or two zero roots and then model
(1) may undergo some complicated bifurcations such as saddle-node bifurcation,
Hopf bifurcation, and Bogdanov-Takens bifurcation.

3.1. Saddle-node bifurcation.

Theorem 3.1. Suppose that r > d and E∗(u∗, v∗) is a positive equilibrium of
model (1). If `23 >

8
3`2`4, F1(u∗) = 0, F2(u∗) 6= 0 and ϕ(u∗) 6= 0, then model (1)

undergoes a saddle-node bifurcation at E∗(u∗, v∗).

Proof. If F1(u∗) = 0, then h′(u∗) = 0 and we can directly obtain that ψ(u∗) = 0. In
this situation, the roots of characteristic equation (8) at the equilibrium E∗(u∗, v∗)

are 0 and −au∗ + qu∗

1+cu∗

(
cpu∗

m(1+cu∗)2 − 1
)

. To derive the normal form of model (1),

we firstly transform E∗(u∗, v∗) into the origin by the linear translation ũ = u− u∗
and ṽ = v − v∗, then model (1) becomes

dũ

dt
= a10ũ+ a01ṽ +

∑
2≤i+j≤3

aij ũ
iṽj +O(|ũ, ṽ|4),

dṽ

dt
= b10ũ+ b01ṽ +

∑
2≤i+j≤3

bij ũ
iṽj +O(|ũ, ṽ|4),

(11)

where

a10 = −au∗ +
cpqu∗2

m(1 + cu∗)3
, a01 = − krm2u∗(1 + cu∗)2

(m+ (mc+ kq)u∗)2
− pu∗

1 + cu∗
,

a11 =
−krm2(1 + cu∗)2

(m+ (mc+ kq)u∗)2
− p

(1 + cu∗)2
, a20 = −a+

cpqu∗

m(1 + cu∗)4
,

a02 =
k2rm3u∗(1 + cu∗)3

(m+ (mc+ kq)u∗)3
, a21 =

cp

(1 + cu∗)3
, a12 =

k2rm3(1 + cu∗)3

(m+ (mc+ kq)u∗)3
,

a30 =
−c2pqu∗

m(1 + cu∗)5
, a03 =

−k3rm4u∗(1 + cu∗)4

(m+ (mc+ kq)u∗)4
, b11 =

q

(1 + cu∗)2
,

b20 =
−cq2u∗

m(1 + cu∗)4
, b10 =

q2u∗

m(1 + cu∗)3
, b01 = − qu∗

1 + cu∗
,

b02 = −m, b21 =
−cq

(1 + cu∗)3
, b30 =

c2q2u∗

m(1 + cu∗)5
, b12 = b03 = 0.
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By making the linear transformation

ũ = −
(

qu∗

1 + cu∗
− 2mv∗

)
U +

(
r

1 + kv∗
− d− 2au∗ − pv∗

(1 + cu∗)2

)
V

and

ṽ =
qv∗

(1 + cu∗)2
(U + V ),

we obtain

dU

dt
= − (l1U

2 + l2UV + l3V
2) +O(|U, V |3)

b10(a10 + b01)
,

dV

dt
= (a10 + b01)V +O(|U, V |2),

(12)

where

l1 =
q4u∗4

m(1 + cu∗)5

(
2cpq(2− cu∗)
m(1 + cu∗)4

+
2krmq(cm+ kq)

(m+ (cm+ kq)u∗)3

)
=

q4u∗4

m(1 + cu∗)5
h′′(u∗).

Since F2(u∗) 6= 0 and ϕ(u∗) 6= 0, we have h′′(u∗) 6= 0 and then l1 6= 0. According
to the center manifold theory, we know that for small U , there is a one dimension
center manifold for system (12) on which the dynamics of E∗(u∗, v∗) is governed by

dU

dt
= − l1

b10(a10 + b01)
U2 +O(|U |3). (13)

Since l1 6= 0, model (1) undergoes a saddle-node bifurcation at E∗(u∗, v∗).

3.2. Hopf bifurcation. Model (1) undergoes a Hopf bifurcation at E∗(u∗, v∗) if
characteristic equation (8) has a pair of purely imaginary roots λ = ±iω, i.e., when

ϕ(u∗) = a− q

1 + cu∗

(
cpu∗

m(1 + cu∗)2
− 1

)
= 0. (14)

Choosing the fear level k as the bifurcation parameter, we can determine the critical
value k = k∗ from (14). In what follows, we determine the type of Hopf bifurcation
at k = k∗. Similar to the analysis of saddle-node bifurcation, we shift E∗(u∗, v∗) to
the origin by the linear translation ũ = u− u∗ and ṽ = v − v∗ and make the linear
transformation

U1 = − 1

a01
ũ, V1 =

1

ω

(
a10
a01

ũ+ ṽ

)
, (15)

then model (1) becomes

dU1

dt
= −ωV1 +

∑
2≤i+j≤3

AijU
i
1V

j
1 +O(|U1, V1|4),

dV1
dt

= ωU1 +
∑

2≤i+j≤3

BijU
i
1V

j
1 +O(|U1, V1|4),

(16)
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where

A20 = −a01a20 + a10a11 −
a210a02
a01

, A11 = a11ω −
2a10a02ω

a01
, A02 = −a02ω

2

a01
,

A30 = a201a30 − a10a01a21 + a210a12 −
a310a03
a01

, A03 = −a03ω
3

a01
,

A12 = a12ω
2 − 3a10a03ω

2

a01
, A21 = −a01a21ω −

3a210a03ω

a01
+ 2a10a12ω,

B20 =
a10a01a20

ω
+
a201b20
ω
− a210a11

ω
− a10a01b11

ω
+
a310a02
a01ω

+
a210b02
ω

,

B11 = −a10a11 − a01b11 +
2a210a02
a01

+ 2a10b02, B02 =
a10a02ω

a01
+ b02ω,

B30 = −a10a
2
01a30
ω

− a301b30
ω

+
a210a01a21

ω
+
a10a

2
01b21
ω

− a310a12
ω

+
a410a03
a01ω

,

B21 = a10a01a21 + a201b21 − 2a210a12 +
3a310a03
a01

,

B12 = −a10a12ω +
3a210a03ω

a01
, B03 =

a10a03ω
2

a01
.

According to [17], the Lyapunov coefficient is

Λ =
1

16
(A30 +A12 +B21 +B03) +

1

16ω

(
A11(A20 +A02)−B11(B20 +B02)

−A20B20 +A02B02

)
.

(17)

Therefore, we have the following result.

Theorem 3.2. Suppose that r > d and E∗(u∗, v∗) is a positive equilibrium of model
(1). If (14) and h′(u∗) < 0 hold, then when k passes across k∗, model (1) undergoes
a subcritical (supercritical) Hopf bifurcation at E∗(u∗, v∗) if Λ > 0 (Λ < 0).

3.3. Bogdanov-Takens bifurcation. It is easy to know that characteristic equa-
tion (8) has two zero roots when u∗ satisfies

krm2

(m+ (mc+ kq)u∗)2
=

m

1 + cu∗
− p

(1 + cu∗)3
. (18)

In this situation, model (1) has a nilpotent singularity. By making the following
affine transformation:

U2 = ũ, V2 = a10ũ+ a01ṽ,

then system (11) becomes

dU2

dt
= V2 + Â20U

2
2 + Â11U2V2 + Â02V

2
2 +O(|U2, V2|3),

dV2
dt

= B̂20U
2
2 + B̂11U2V2 + B̂02V

2
2 +O(|U2, V2|3),

(19)

where

Â20 = a20 −
a11a10
a01

+
a02a

2
10

a201
, Â11 =

a11
a01
− 2a02a10

a201
, A02 =

a02
a201

,

B̂20 = a01b20 − a10b11 +
b02a

2
10

a01
+ a10Â20,

B̂11 = b11 −
2a10b02
a01

+ a10Â11, B̂02 =
b02
a01

+ a10Â02.

(20)



COMPLEX DYNAMICS IN A PREY-PREDATOR MODEL 9

By further performing a near-identity transformation as follows,

U2 = U3 +
1

2
(Â11 + B̂02)U2

3 + Â02U3V3,

V2 = V3 − Â20U
2
3 + B̂02U3V3,

(21)

we can obtain
dU3

dt
= V3 +O(|U3, V3|3),

dV3
dt

= B20U
2
3 +B11U3V3 +O(|U3, V3|3),

(22)

where B20 = B̂20 and B11 = B̂11 + 2Â20. Now we introduce the transformation

U4 = U3,

V4 = V3 +O(|U3, V3|3),
(23)

Then we obtain the the normal form

dU4

dt
= V4,

dV4
dt

= B20U
2
4 +B11U4V4 +O(|U4, V4|3),

(24)

It is difficult to determine the signs of B20 and B11. We will solve this by computing
a201B20 and a01B11. Here,

a201B20 = a301b20 − a201a10b11 + a01b02a
2
10 + a201a10a20 − a01a210a11 + a02a

3
10

=
( krm2u∗(1 + cu∗)2

(m+ (mc+ kq)u∗)2
+

pu∗

1 + cu∗

)3 cq2u∗

m(1 + cu∗)4
−
( krm2u∗(1 + cu∗)2

(m+ (mc+ kq)u∗)2

+
pu∗

1 + cu∗

)2(
− au∗ +

cpqu∗2

m(1 + cu∗)3

) q

(1 + cu∗)2
+m

( pu∗

1 + cu∗
+

krm2u∗(1 + cu∗)2

(m+ (mc+ kq)u∗)2

)(
− au∗ +

cpqu∗2

m(1 + cu∗)3

)2
+
( krm2u∗(1 + cu∗)2

(m+ (mc+ kq)u∗)2

+
pu∗

1 + cu∗

)2(
− au∗ +

cpqu∗2

m(1 + cu∗)3

)(
− a+

cpqu∗

m(1 + cu∗)4

)
+
( pu∗

1 + cu∗

krm2u∗(1 + cu∗)2

(m+ (mc+ kq)u∗)2

)(
− au∗ +

cpqu∗2

m(1 + cu∗)3

)2( −krm2(1 + cu∗)2

(m+ (mc+ kq)u∗)2

− p

(1 + cu∗)2

)
+

k2rm3u∗(1 + cu∗)3

(m+ (mc+ kq)u∗)3

(
− au∗ +

cpqu∗2

m(1 + cu∗)3

)3
=
m2cq2u∗4

1 + cu∗
+
mcpq2u∗4(1− cu∗)

(1 + cu∗)3
+

k2rm3q3u∗4

(m+ (mc+ kq)u∗)3

=
1

2
m2qu∗4(1 + cu∗)

(
2mrkq(cm+ kq)

(m+ (mc+ kq)u∗)3
+

2cpq(2− cu∗)
m(1 + cu∗)4

)
=

1

2
m2qu∗4(1 + cu∗)h′′(u∗)

(25)

and

a01B11 =
−2mcqu∗2

1 + cu∗
+

2cpqu∗2(2cu∗ − 1)

(1 + cu∗)3
= −2mu∗(1 + cu∗)ϕ′(u∗). (26)

Since a01 < 0, a201B20 has the same sign as B20, while a01B11 has the opposite sign
as B11. If F2(u∗) 6= 0, then h′′(u∗) 6= 0 for the positive equilibrium E∗(u∗, v∗).
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It then follows that B20 6= 0. Further when ϕ′(u∗) 6= 0, system (22) becomes the
following normal form:

dU5

dτ
= V5

dV5
dτ

= sgn(h′′(u∗))U2
5 + sgn(ϕ′(u∗))U5V5 +O(|U5, V5|3),

(27)

by making the following transformation

U4 =
∣∣∣B20

B
2

11

∣∣∣U5, V4 =
∣∣∣B2

20

B
3

11

∣∣∣V5, t =
∣∣∣B11

B20

∣∣∣τ. (28)

Therefore, according to Theorem 4.5 in [22], we know that E∗(u∗, v∗) is a Bogdanov-
Takens point of codimension 2.

As a summary, we have the following theorem.

Theorem 3.3. Suppose that r > d and E∗(u∗, v∗) is a positive equilibrium of
model (1). If (18) is satisfied, ϕ′(u∗) 6= 0, and F2(u∗) 6= 0, then E∗(u∗, v∗) is a
Bogdanov-Takens point of codimension 2.

Notice that if F2(u∗) = 0, then model (1) may undergo bifurcations with codi-
mension higher than 2. Here we do not discuss further for this case. In what follows,
we consider the bifurcation of the degenerate equilibrium E∗(u∗, v∗) when the pa-
rameters k and m vary in a small neighborhood of (kBT ,mBT ), where (kBT ,mBT )
is determined by Theorem 3.3. To this end, we consider the following system

du

dt
=

ru

1 + (kBT + ε1)v
− du− au2 − puv

1 + cu
,

dv

dt
= −(mBT + ε2)v2 +

quv

1 + cu
.

(29)

Firstly, we transform E∗(u∗, v∗) into the origin and thus obtain the following system

du

dt
= ã00(ε) +

∑
1≤i+j≤2

ãij(ε)u
ivj +O(|u, v|3),

dv

dt
= b̃00(ε) +

∑
1≤i+j≤2

b̃ij(ε)u
ivj +O(|u, v|3).

(30)

where ε = (ε1, ε2) and

ã00(ε) =
ru∗

1 + (kBT + ε1)v∗
− ru∗

1 + kv∗
,

ã10(ε) =
r

1 + (kBT + ε1)v∗
− d− 2aBTu

∗ − pv∗

(1 + cu∗)2
,

ã01(ε) = −
(

(kBT + ε1)ru∗

(1 + (kBT + ε1)v∗)2
+

pu∗

1 + cu∗

)
, ã20(ε) = −aBT +

cpv∗

(1 + cu∗)3
,

ã11(ε) = −
(

r(kBT + ε1)

(1 + (kBT + ε1)v∗)2
+

p

(1 + cu∗)2

)
, ã02(ε) =

(kBT + ε1)2ru∗

(1 + (kBT + ε1)v∗)3
;

b̃00(ε) = −ε2v∗2, b̃10(ε) =
qv∗

(1 + cu∗)2
, b̃01(ε) = −2(mBT + ε2)v∗ +

qu∗

1 + cu∗
,

b̃20(ε) = − cqv∗

(1 + cu∗)3
, b̃11(ε) =

q

(1 + cu∗)2
, b̃02(ε) = −(mBT + ε2).
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Making the following transformation

u1 = u,

v1 = ã00(ε) +
∑

1≤i+j≤2

ãij(ε)u
ivj +O(|u, v|3), (31)

system (30) becomes

du1
dt

= v1,

dv1
dt

= α̃00(ε) +
∑

1≤i+j≤2

α̃ij(ε)u
i
1v
j
1 +O(|u1, v1|3),

(32)

where the coefficients α̃ij (0 ≤ i+ j ≤ 2) are provided in Appendix B.
Then by making the time scale transformation dt = (1 − α̃02(ε)u1)dξ, system

(32) becomes

du1
dξ

=(1− α̃02(ε)u1)v1,

dv1
dξ

=(1− α̃02(ε)u1)
(
α̃00(ε) +

∑
1≤i+j≤2

α̃ij(ε)u
i
1v
j
1 +O(|u1, v1|3)

)
.

(33)

Let u2 = u1, v2 = (1− α̃02(ε)u1)v1, we obtain that

du2
dξ

= v2,

dv2
dξ

= β̃00(ε) +
∑

1≤i+j≤2

β̃ij(ε)u
i
2v
j
2 +O(|u2, v2|3),

(34)

where
β̃00(ε) = α̃00(ε), β̃10(ε) = α̃10(ε)− 2α̃00(ε)α̃02(ε),

β̃01(ε) = α̃01(ε), β̃11(ε) = α̃11(ε)− α̃01(ε)α̃02(ε),

β̃20(ε) = α̃20(ε)− 2α̃02(ε)α̃10(ε) + α̃2
02(ε)α̃00(ε).

We further assume that u3 = u2 + β̃10(ε)

2β̃20(ε)
, v3 = v2, then

du3
dξ

= v3,

dv3
dξ

= γ̃00(ε) + γ̃10(ε)u3 + γ̃01(ε)v3 + γ̃20(ε)u23 + γ̃11(ε)u3v3 +O(|u3, v3|3),

(35)

where

γ̃00(ε) = β̃00(ε)− β̃2
00(ε)

4β̃20(ε)
, γ̃01(ε) = β̃01(ε)− β̃11(ε)β̃10(ε)

2β̃20(ε)
,

γ̃20(ε) = β̃20(ε), γ̃11(ε) = β̃11(ε).

Now let u4 =
γ̃2
11(ε)
γ̃20(ε)

u3, v4 =
γ̃3
11(ε)

γ̃2
20(ε)

v3 and ξ′ =
γ̃2
20(ε)
γ̃11(ε)

ξ, we obtain

du4
dξ′

= v4,

dv4
dξ′

= η̃1(ε) + η̃2(ε)v4 + u24 + u4v4 +O(|u4, v4|3),

(36)
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where

η̃1(ε) =
γ̃00(ε)γ̃411(ε)

γ̃320(ε)
, η̃2(ε) =

γ̃01(ε)γ̃11(ε)

γ̃20(ε)
. (37)

Therefore, according to the results in [17], we have the following bifurcation curves
if the Jacobi matrix

∂(η̃1, η̃2)

∂(ε1, ε2)
6= 0, (38)

• The saddle-node bifurcation curve: SN = {(η̃1, η̃2)|η̃1 = 0, η̃2 6= 0};
• The Hopf bifurcation curve: H = {(η̃1, η̃2)|η̃2 =

√
−η̃1, η̃1 < 0};

• The homoclinic-loop bifurcation curve: HL = {(η̃1, η̃2)|η2 = 5
7

√
−η̃1+o(η̃1), η̃1 <

0}.

4. Bifurcation diagrams. Notice that when r ≤ d, the trivial equilibrium E0(0, 0)
is globally attractive, meaning that both the prey and predators will go to extinction
eventually. This is an undesired situation. So, in this section, we always assume
that r > d. It then follows from Theorem 2.3 that the half-trivial equilibrium
E1( r−da , 0) is always an unstable saddle, and the stability of each positive equilib-
rium E∗(u∗, v∗) is closely related to the bifurcations that model (1) undergoes.

Notice also that in the absence of the predators, r−da is the environmental capacity
of prey, which characters the amount of resources the environment could provide
for the prey species. It is well known that environmental resources are fundamental
to maintaining the sustainability of ecosystems. Generally, for a particular prey
species, we can consider its natural birth rate (r) and death rate (d), and therefore
its inherent growth rate (r − d) to be constant. Therefore, the density-dependent
coefficient (a), which characters the intra-specific competition of prey species, should
be a key factor affecting the dynamics of the model. Here we mainly focus our
attention on how the fear effect in prey and crowding effect in predators affect the
dynamics of model (1) under different levels of environmental resources (determined
by different values of a). For this purpose, in this section, we always fix in model
(1) the parameters

r = 1.8, d = 0.01, p = 0.7, c = 0.5, q = 0.66 (39)

and vary k and m to numerically illustrate the dynamics that model (1) may have
under different values of a.

To obtain a comprehensive understanding of the dynamics of model (1), we first
observe the combined effect of predators’ crowding and predator-induced fear on
the dynamics of model (1) under different intensities of prey competition. The two-
parameter bifurcation diagrams of model (1) drawn on the (k,m)-plane for different
values of a are shown in Figure 1, from which we can see that the bifurcation
diagrams can be very different for different values of a.

• When a = 0.058 (see Figure 1 (a)), only the saddle-node bifurcations occur in
model (1). In this situation, there are two different cases:
? When (k,m) is seated in the green region, model (1) has three positive

equilibria, the upper one and the lower one are stable and the middle one
is an unstable saddle, see the region II in Figure 2 (a).

? When (k,m) is seated in the white region, model (1) has a unique positive
equilibrium which is a global attractor, see the region I in Figure 2 (a) or
Figure 3 (a) and (h).



COMPLEX DYNAMICS IN A PREY-PREDATOR MODEL 13

0 0.02 0.04 0.06 0.08 0.1 0.12

k

0.1

0.12

0.14

0.16

0.18

0.2

0.22

m
CP

BT

(a) a = 0.058

0.02               0.04                0.06               0.08                0.1                  0.12           0.14 

k

0.1

0.12

0.14

0.16

0.18

0.2

0.22

m

BTBT

BT

CP

0

(b) a = 0.055

0.12 0.14 0.16

k

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

m

BT

CP

0.04 0.06 0.08 0.10.020

0.016 0.018 0.02 0.022 0.024

0.148

0.149

0.15

0.151

BT

(c) a = 0.048

0             0.05           0.1            0.15          0.2            0.25            0.3            0.35           0.4        0.45 

k

0.05

0.1

0.15

0.2

0.25

0.3

0.35

m

BT

CP

(d) a = 0.03

Figure 1. (Color online) Two-parameter bifurcation diagrams of
system (1) on the (k,m)-plane for different competition intensities
of prey: (a) a = 0.058, (b) a = 0.055, (c) a = 0.048 and (d)
a = 0.03. The other parameters take the values as in (39). The
label ‘BT’ denotes the Bogdanov-Takens bifurcation point and ‘CP’
the cusp point. The curves of saddle-node bifurcation (red), Hopf
bifurcation (green) and homoclinic-loop bifurcation (blue) separate
the (k,m)-plane into distinct regions. In the white regions, model
(1) has a unique positive equilibrium which is globally stable, see
the region I in Figure 2; In the green regions, model (1) has three
positive equilibria: two stable and one unstable (saddle), see the
region II in Figure 2; In the pink regions, model (1) has three
equilibria and exhibits bistability between a positive equilibrium
and a limit cycle (with an unstable positive equilibrium in it), see
the region III in Figure 2; In the brown regions, model (1) has
three positive equilibria and only the upper one is stable, see the
region IV in Figure 2; In the yellow regions, model (1) has a unique
positive equilibrium, which is surrounded by a stable limit cycle,
see Figure 3 (g).

• When a = 0.055 (see Fig. 1 (b)), the (k,m)-plane is divided into four regions
by the saddle-node bifurcation and Hopf bifurcation curves. Except for the
two cases occurred in Figure 1 (a), model (1) can exhibit two other different
dynamics:
? When (k,m) is seated in the pink region, model (1) possesses three pos-

itive equilibria and a stable limit cycle. In this case, model (1) shows
bistability between a stable positive equilibrium and a stable limit cycle,
see the region III in Figure 2 (b).
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? When (k,m) is seated in the yellow region, model (1) has a positive
equilibrium which is surrounded by a stable limit cycle. In this case,
the limit cycle is the unique attractor for model (1), see Figure 3 (g).

• When a = 0.048 (see Figure 1 (c)), the (k,m)-plane is divided into five parts by
the saddle-node bifurcation, Hopf bifurcation, and homoclinic-loop bifurcation
curves. In this case, a kind of new dynamics emerges due to homoclinic-loop
bifurcation: model (1) has three positive equilibria, but only one of them is
stable, see the region IV in Figure 2 (c) or Figure 3 (c).

• When a = 0.03 (see Figure 1 (d)), no other new bifurcations occur compared
to that when a = 0.048. However, even if we take the same values for k and
m in Figures 1 (c) and (d), model (1) may show distinct dynamics. This
observation indicates that it is necessary to show the bifurcation diagram for
the convenience of further discussion though they seem similar.

These results indicate that both fear effect in prey and crowding effect in preda-
tors play a significant role in the dynamics of model (1). For a more specific un-
derstanding of the respective effects of these two factors, one can fix one parameter
and vary another one. Here, let us discuss the impact of fear effect as an example
by fixing m = 0.15. The related results are shown in Figure 2:

• For strong prey competition (see Figure 2 (a), where a = 0.058), model (1)
undergoes two saddle-node bifurcations at k = 0.015051 and k = 0.033728,
between which a bistable region is established. As shown the region II in
Figure 2 (a), model (1) shows a kind of bistability between two stable positive
equilibria.

• As the prey competition intensity declines, say a = 0.055, we can see from
Figure 2 (b) that model (1) undergoes two saddle-node bifurcations at k =

0.016001 and k = 0.036801. In addition, at k = K
(1)
H = 0.019201 and k =

K
(2)
H = 0.030579, the lyapunov coefficients are Λ = −0.0011391 and Λ =
−0.00052573, respectively, and therefore two supercritical Hopf bifurcations

occur respectively at k = K
(1)
H and k = K

(2)
H on the lower branch of bifurcation

diagram, and model (1) exists a stable limit cycle when K
(1)
H < k < K

(2)
H .

Therefore there may exist two types of bistability: either between two stable
positive equilibria (i.e., the region II in Figure 2 (b)) or between a stable
positive equilibrium and a stable limit cycle (i.e., the region III in Figure 2
(b)).

• As a is further reduced to a = 0.048, we can see from Figure 2 (c) that

model (1) undergoes two saddle-node bifurcations respectively at k = k
(1)
SN =

0.018447 and k = k
(2)
SN = 0.046184. In addition, model (1) undergoes two

supercritical Hopf bifurcations respectively at k = K
(1)
H = 0.018694 and

k = K
(2)
H = 0.044595 on the lower branch of bifurcation diagram (the Lya-

punov coefficients are Λ = −0.0034041 and Λ = −0.0003092667, respectively).
Specifically,

(a) when k
(1)
SN < k < K

(1)
H , the corresponding smallest positive equilibrium

is linearly stable; when k > K
(1)
H , it becomes unstable and a bifurcating

stable limit cycle emerges, which will disappears at the Homoclinic loop
at k = 0.019362.
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Figure 2. (Color online) Bifurcation diagram of model (1) with
respect to the fear level k. The other parameters except a are
taken as r = 1.8, d = 0.01, p = 0.7, c = 0.5, m = 0.15, q = 0.66.
The red/black curves denote the stable/unstable equilibria respec-
tively. The green dotted curves denote the stable limit cycles. The
black dashed lines are located at bifurcation points to seperate the
distinct regions: (I) model (1) has a unique positive equilibrium,
which is stable; (II) model (1) shows a type of bistability between
which two stable positive equilibria; (III) model (1) shows a type of
bistability between which a stable positive equilibrium and a stable
interior limit cycle; (IV) model (1) has three positive equilibria and
the upper one is stable.

(b) when k > K
(2)
H , the corresponding smallest positive equilibrium is linearly

stable, when k < K
(2)
H , it becomes unstable and a bifurcating stable limit

cycle emerges, which will disappears at a Homoclinic loop at k = 0.021601.
In this scenario, model (1) can exhibit two types of bistability: between

two stable positive equilibria (i.e., the region II in Figure 2 (c)) or between
a stable positive equilibrium and a stable limit cycle (i.e., the region III in
Figure 2 (c)). Each bistability phenomenon occurs for different intervals of
the fear level k.

• Finally, for weak prey competition, say a = 0.03, we can see from Figure 2 (d)

that model (1) undergoes two saddle-node bifurcations at k = k
(1)
SN = 0.025001

and k = k
(2)
SN = 0.081998 and a supercritical Hopf bifurcations at k = kH =
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0.075105 on the lower branch of bifurcation diagram (the Lyapunov coefficient
is Λ = 0.000060194). When k > kH , the corresponding smallest positive
equilibrium is stable; When k < kH , it loses its stability and a stable limit
cycle emerges, which disappears at the Homoclinic loop at k = 0.04540736.
In this situation, model (1) also has similar types of bistability as the above
two situations (see the regions II and III in Figure 2 (d)).

For the influence of the predators’ crowding effect, one can observe a similar
phenomenon to Figure 2 and we will not repeat it here. In particular, we shall point
out that how the predators’ crowding effect affect the model dynamics for different
intensities of prey competition if the indirect effects of predation are ignored (see
the vertical axis in Figure 1). For strong prey competition, we can see from Figures
1 (a) and (b) that there exists two critical values m1, m2 (assume m1 < m2) of
the predators’ crowding effect parameter such that model (1) shows a bistability
between two stable positive equilibria if m1 < m < m2 and monostable phenomenon
if m < m1 or m > m2. For weak prey competition (see Figure 1 (c)), model (1) only
shows the monostable phenomenon. These results imply that weak prey competition
is easier to maintain the robustness of the model in the absence of fear effect.

Finally, we present an example to illustrate the impact of the fear level on the
dynamics of model (1) for fixed a and m from the view of phase plane analysis.

An example. By taking a = 0.048 and m = 0.137, we can observe from Figure 3
that model can show distinct dynamics for different fear levels.

(1) When the fear is very weak (see Figure 3 (a) where k = 0.004), model (1) has
a unique positive equilibrium E∗, which is a global attractor.

(2) As k is increased to k = 0.004696115100001 (see Figure 3 (b)), a positive
equilibrium E∗1,2 of multiplicity 2 emerges and thus model (1) has two positive
equilibria E∗1,2 and E∗3 .

(3) As k increases, say k = 0.04 (see Figure 3 (c)), E∗1,2 splits into two positive
equilibria E∗1 and E∗2 , and then model (1) has three positive equilibria E∗1 , E∗2
and E∗3 , between which only the upper one E∗3 is stable.

(4) If we further increase k to k = 0.04293 (see Figure 3 (d)), model (1) has three
positive equilibria E∗1 , E∗2 and E∗3 (where u∗1 < u∗2 < u∗3), between which E∗3
is stable, the middle saddle point E∗2 is connected by a homoclinic loop, which
encloses the lower equilibrium E∗1 .

(5) As k continues to increase, say k = 0.058 (see Figure 3 (e)), model (1) still has
three positive equilibria E∗1 , E∗2 and E∗3 , and a stable limit cycle enclosing E∗1 .

(6) In particular, when k = 0.06503401 (see Figure 3 (f)), E∗2 and E∗3 coincide into
a positive equilibrium E∗2,3 of multiplicity 2. In this case, model (1) has two
positive equilibria E∗1 , E∗2,3, and a stable limit cycle enclosing E∗1 .

(7) If k is further increased, say k = 0.075 (see Figure 3 (g)), E∗2,3 disappears and
thus model (1) only has a unique positive equilibrium E∗1 denoted as E∗, which
is unstable and enclosed by a stable limit cycle. In this situation, the limit cycle
is the unique attractor.

(8) Finally, as k increases such that the point (k, 0.137) across the Hopf bifurcation
curve, model (1) has only one positive equilibrium E∗, which is also the unique
attractor (see Figure 3 (h)).

The above discussions indicate that model (1) shows complex dynamics and even
two types of bistability either between two stable positive equilibria or between a
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Figure 3. (Color online) Phase plane diagrams of model (1) with
m = 0.137. The other parameters except k are the same as that in
Figure 1 (c).
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stable positive equilibrium and a stable limit cycle. These phenomena mean that the
model has weak robustness and is highly vulnerable to environmental fluctuations.

5. Noise-induced transitions. To see how the environmental perturbations will
affect the dynamics of model (1), it is necessary to discuss in the framework of
stochastic differential equation model. Following the method in [10], we include the
randomness into model (1), which yields the following stochastic model:

du =
( ru

1 + kv
− du− au2 − puv

1 + cu

)
dt+ σ1udB1,

dv =
(
−mv2 +

quv

1 + cu

)
dt+ σ2vdB2,

(40)

where Bi(t) (i = 1, 2) are two standard one-dimensional independent Brownian
motions and σi (i = 1, 2) are the noise intensities. For stochastic model (40), the
existence and uniqueness of global positive solution can be directly obtained from
Theorem 2.1 in [29].

In this section, we aim to study how environmental noises affect the dynamics
of stochastic model (40), especially for the phenomena of noise-induced transitions
between two different attractors in the scenarios when deterministic model (1) pos-
sesses bistability. For the convenience of discussion, we assume that σ1 = σ2 = σ.

5.1. Bistability between two positive equilibria. We first consider the sce-
nario when determined model (1) possesses the bistability between two stable pos-
itive equilibria. For this purpose, we take in model (1) m = 0.15, a = 0.058, k =
0.0337, and other parameters take the same values as listed in (39). Then model (1)
has a trivial equilibrium E0(0, 0), a semi-trivial equilibrium E1(30.8621, 0), and three
coexistence equilibria E∗1 (1.4692, 3.7268), E∗2 (8.8890, 7.1837) and E∗

3 (9.4121, 7.2578).

It is easy to check that E0 is unstable, E1 and E∗2 are two saddles, and both E∗1
and E∗3 are locally asymptotically stable. The corresponding phase plane diagram
is shown in Figure 4, where the red-dotted curve (separatrix)1 stands for the two
stable manifolds of E∗2 which separates the first positive quadrant into two parts:
the attraction basins of E∗1 and E∗3 . If the initial value is within the separatrix,
then the solution of model (1) will converge to E∗1 , otherwise it converges to E∗3 .

When environmental noise is considered, the solution trajectory will change. In
general, as the noise intensity increases, the solution starting from an initial point
near a stable equilibrium, say E∗1 (or E∗2 ), it will leave E∗1 (or E∗2 ) and expand
outward gradually. Once the stochastic trajectory crosses the separatrix and enters
the attraction basin of E∗2 (or E∗1 ), we can observe the noise induced transitions
between the two attractors. To estimate the critical noise intensity values for the
occurrence of noise induced transitions, we construct some confidence ellipses by
the techniques of stochastic sensitivity functions. One can refer to [1, 2, 30, 31] for
more details in this direction. Some necessary steps to obtain the confidence ellipse
equation are shown in Appendix C. For the same parameters as in Figure 4, we can
obtain the confidence ellipse equation of E∗1

0.001082(u− 1.4692)2 − 0.001473(u− 1.4692)(v − 3.7268)

+0.0008848(v − 3.7268)2 = −2σ2 ln(1− P ),
(41)

1The separatrix are approximately obtained by using the interactive tool pplane 8 on Matlab
for studying planar autonomous systems.
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Figure 4. (Color online) Phase plane diagram of model (1) with
d = 0.01, p = 0.7, k = 0.0337, c = 0.5, q = 0.66, r = 1.8, a = 0.058,
m = 0.15. The red-dotted curve stands for the separatrix of two
attraction basins.

and that of E∗3

0.0006906(u− 9.4121)2 − 0.008455(u− 9.4121)(v − 7.2578)

+0.03302(v − 7.2578)2 = −2σ2 ln(1− P ).
(42)

In Figure 5, we take P = 0.95, which means that if the initial point is near E∗1 ,
then the stochastic state of stochastic model (40) is distributed inside the ellipse
with probability P (see Figure 5 (a)). In addition, we show the confidence ellipses of
E∗1 with σ = 0.007, 0.0106, 0.0125 in Figure 5 (b), from which we can see that the
ellipse expands outward as σ increases. When σ = σ1 = 0.0106, the ellipse is tangent
to the separatrix of two attraction basins. σ1 is called the critical noise intensity
for the noise-induced transition’s onset. If σ > σ1 (see the large ellipse in Figure 5
(b)), the ellipse crosses the separatrix, the noise induced transition from E∗1 to E∗3
occurs. By the same way we can find another critical noise value σ = σ2 = 0.0041
for the occurrence of transition from E∗3 to E∗1 . Obviously, σ1 > σ2.

We now consider two confidence ellipses together to explore the transition phe-
nomenon induced by environmental fluctuations (see Figure 6):

• If the noise is weak, e.g., σ = 0.004 < σ2, two confidence ellipses of E∗1 and E∗3
are strictly separated by the separatrix of two attraction basins (see the first
picture of Figure 6 (a)). The solutions of stochastic model (40) with the initial
values near E∗1 and E∗3 fluctuate respectively around them (see the second and
third pictures of Figure 6 (a)). In this case, the stochastic probability density
(SPD) of populations has a single peak (see the fourth pictures of Figure 6
(a)).

• As the noise intensity increases, the confidence ellipses expand outward grad-
ually. When σ2 < σ < σ1, say σ = 0.01, the confidence ellipse of E∗3 crosses
the separatrix into the attraction basin of E∗1 (see the first picture of Figure 6
(b)), then the solution starting from the vicinity of E∗3 may eventually switch
to fluctuate around E∗1 with a high probability (the second picture of Figure
6 (b)). The corresponding stochastic trajectories and SPD are shown in the
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Figure 5. (Color online) (a) Random state (black-dotted) of sto-
chastic model and confidence ellipse (blue-solid) of E∗1 for σ =
0.0065 and P = 0.95. (b) Separatrix of two attraction basins (red-
dotted), and confidence ellipses (blue-solid) for σ = 0.007 (small),
σ = 0.0106 (middle), σ = 0.0125 (large). The parameters are
taken as d = 0.01, p = 0.7, k = 0.0337, c = 0.5, q = 0.66, r = 1.8,
a = 0.058, m = 0.15.

third and fourth pictures of Figure 6 (b), where the SPD has two peaks. If
σ continues to increase such that σ > σ1, a symmetric case will occur, where
the solutions starting from the vicinity of E∗1 eventually switch to fluctuate
near the equilibrium E∗3 with a high probability. Here we do not display the
related figures.

• If the noise intensity is large enough, say σ = 0.05, such that the two confi-
dence ellipses of E∗1 and E∗3 coincide partially (see the first picture of Figure 6
(c)), and in this case noise induced frequent transitions appear. One can see
the second picture of Figure 6 (c) for the corresponding time series diagram,
the third picture of Figure 6 (c) for the stochastic trajectory diagram, and the
fourth picture of Figure 6 (c) for the SPD.

5.2. Between a positive equilibrium and a limit cycle. We then consider the
scenario when determined model (1) possesses the bistability between a positive
equilibrium and a stable limit cycle. To this end, we take m = 0.137, a = 0.03, k =
0.065, and other parameters take the same values as listed in (39). The information
of equilibria of model (1) is as follows: E0(0, 0) and E∗1 (0.9330, 3.0649) are unstable,
E∗2 (15.4354, 8.5298) is a saddle, E∗3 (16.2191, 8.5774) is locally asymptotically stable,
and there exists a stable limit cycle enclosing E∗1 . The corresponding phase plane
diagram is shown in Figure 7, where the red-dotted curve (separatrix) stands for
the stable manifold of E∗2 which separates the first positive quadrant into two parts:
the attraction basins of E∗1 and limit cycle (denoted by the purple curve). If the
initial value is within the separatrix, then the solution of model (1) will converge
to the limit cycle, otherwise it converges to E∗3 .
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Figure 6. (Color online) Confidence domains, time series dia-
grams, phase plane diagrams, and stochastic probability density
of stochastic model (40) for different noise intensity. The parame-
ters are taken as d = 0.01, p = 0.7, k = 0.0337, c = 0.5, q = 0.66,
r = 1.8, a = 0.058, m = 0.15.

For the equilibrium E∗3 , we can obtain its confidence ellipse equation by using
the method in Appendix C,

0.0001488(u− 16.2191)2 − 0.003079(u− 16.2191)(v − 8.5774)

+0.02868917462(v − 8.5774)2 = −2σ2 ln(1− P ).
(43)

By using (43), analzing as above we can estimate the critical noise intensity is
σ = σ1 = 0.0031, at which the confidence ellipse is tangent to the separatrix of two
attraction basins.
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Figure 7. (Color online) Phase plane diagram of model (1) with
d = 0.01, p = 0.7, k = 0.065, c = 0.5, q = 0.66, r = 1.8, a = 0.03,
m = 0.137. The red-dotted curve stands for the separatrix of two
attraction basins; the purple curve stands for the stable limit cycle.

For the limit cycle, for convenience, we denote it as T (u(t), v(t)), t ∈ [0, T ], where
T is the period. By using (44) in Appendix C, the boundaries of confidence bands
of limit cycle T can be determined. We show the confidence bands for P = 0.95 in
Figure 8, where the pink curve stands for the limit cycle of the determined model
(1), the green and blue curves stand for the boundaries of its confidence bands. It
is easy to see that the confidence bands are seated on different sides of the limit
cycle. In addition, the stochastic states are concentrated in the region enclosed
by the confidence bands with a high probability (see Figure 8 (a)). As the noise
intensity σ increases, the boundaries of the confidence bands also expand outward
(see Figure 8 (b)). Therefore, we conclude that there exists a critical noise intensity
such that the corresponding boundary is tangent to the separatrix of two attraction
basins. Here the critical noise intensity is estimated as σ = σ2 = 0.061. If the noise
intensity is larger than σ2, then the stochastic states of model (40) is much likely to
enter the attraction basin of E∗3 , and thus the solution eventually converges to E∗3 .

We now consider the confidence band of limit cycle T and confidence ellipse of
equilibrium E∗3 together to show some interesting transition phenomenon induced by
environmental fluctuations. Four distinct phenomena can be observed for different
noise intensities:

• For weak noise, say σ = 0.003 < σ1, the confidence band of T and the
confidence ellipse of E∗3 are located on both sides of the boundary between
the two attractive domains, respectively (see Figure 9 (a)). The solutions
of stochastic model (40) with the initial values near E∗3 and T of model (1)
fluctuate respectively around them (see the left or middle panel of Figure 10
(a)). In this case, the SPD of populations has a single peak (see the right
panel of Figure 10 (a)).

• As the noise intensity increases, the confidence band and confidence ellipse
expands outward gradually, then the confidence region of E∗3 may cross the
separatrix into the attraction basin of the limit cycle T (see Figure 9 (b) where
σ1 < σ = 0.05 < σ2), and the solutions starting from the vicinity of E∗3 may
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Figure 8. (Color online) Stochastic states and confidence bands
of limit cycle for stochastic model (40) with d = 0.01, p = 0.7,
k = 0.065, c = 0.5, q = 0.66, r = 1.8, a = 0.03, m = 0.137.
(a) Separatrix of two attraction basins (red-dotted), stochastic
states (blue) around determined cycle (pink), and confidence bands
(green) for σ = 0.02. (b) Confidence bands for different noise in-
tensity σ = 0.01 (blue) and σ = 0.02 (green).

eventually switch to fluctuate along T with a high probability (the left panel
of Figure 10 (b)). In this case, the SPD of populations has two peaks. The
corresponding stochastic trajectories and SPD are shown in the middle and
right panels of Figure 10 (b).

• If the noise intensity continues to increase, say σ = 0.07 > σ2, the confidence
band of T may cross the separatrix into the attraction basin of E∗3 (see Figure
9 (c)), and the solutions starting from the vicinity of T may eventually switch
to fluctuate near the equilibrium E∗3 with a high probability (the left panel
of Figure 10 (c)). The corresponding stochastic trajectories and SPD in this
situation are shown in the middle and right panel of Figure 10 (c).

• Finally, if the noise intensity is large enough, for example σ = 0.09, we can see
that the confidence band of T and the confidence ellipse of E∗3 are intersected
(see Figure 9 (d)), and in this case frequent transitions may appear. One can
see the left panel of Figure 10 (d) for the corresponding time series, the middle
panel of Figure 10 (d) for stochastic trajectory diagrams, and the right panel
of Figure 10 (d) for the SPD.

6. Discussion. The interaction between predator and prey is a complex process
in ecosystems, which can be influenced by many external environmental factors
such as climatic variations, and internal factors such as births, deaths, aggregation
behavior and habitat complexity. Assuming that prey and predator populations are
at two different adjacent trophic levels in the same food chain of an ecosystem, in
this paper, we consider a predator-prey model with fear effect in prey and crowding
effect or self-limitation in predators.

For the scenario without considering external environmental perturbations, we
first investigate the dynamics of the determined model (1). Our bifurcation results
show that model (1) has at least one and at most three positive equilibria, and the
number of positive equilibria is determined by the saddle-node bifurcation curves.
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Figure 9. (Color online) Confidence domains of stochastic model
for different noise intensities. The parameters are taken as d = 0.01,
p = 0.7, k = 0.065, c = 0.5, q = 0.66, r = 1.8, a = 0.03, m = 0.137.

In the regions enclosed by the saddle-node bifurcation curves, model (1) has three
positive equilibria, while outside this region, model (1) has a unique positive equi-
librium. Under the situation where other bifurcations cannot occur, this region is a
bistable region, in which two stable positive equilibria coexist (see the green region
in Figure 1 (a)). If Hopf bifurcation further occurs, a stable (unstable) limit cycle
will emerge. In this case, the stability of the positive equilibrium will change. In
a range of the suitable parameters, there exists a bistability that a stable positive
equilibrium and a stable limit cycle coexist (see the pink region in Figure 1 (b)).
Moreover, as shown in Theorem 3.3, a Bogdanov-Takens bifurcation may occur and
thus a homoclinic loop bifurcation curve may emerge. In this situation, a homo-
clinic loop will emerge (see Figure 3 (d) for the representative phase plane diagram).
As the parameter further changes, the homoclinic loop will break and the related
equilibrium will not regain its stability. Therefore, there is a situation will occur
where model (1) has three positive equilibria, but only one of them is stable (see
the brown region in Figures 1 (c) and (d)). These complex bifurcations and bista-
bility phenomena suggest that the model dynamics is easily affected by external
environmental fluctuations. We then study the developed stochastic model (40)
and particular attention is devoted to the noise-induced transitions when model (1)
shows bistability. By using the method of stochastic sensitive analysis, we numeri-
cally estimate the tipping points for the occurrence of transitions.

Among these above results, we observe two kinds of possible critical mechanisms:
bifurcation-induced and noise-induced tipping. One bifurcation-induced tipping can
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Figure 10. (Color online) Time series diagrams, phase plane dia-
grams, and stochastic probability density of stochastic model (40)
for different noise intensities. The other parameters are the same
as that in Figure 9.

be observed in Figure 2, where we show the relationship between the prey density
and the fear level. The tipping values of fear level can be determined by saddle-node
bifurcation points. It can be seen if the fear is smaller than the lower tipping value,
the prey population is distributed in a relatively ideal state (i.e., high density);
while if the fear is larger than the upper tipping value, the prey population may
undergo a abrupt decrease and then is distributed in a relatively ’undesired’ state
(i.e., low density). The noise-induced tipping mechanism can be observed in Figures
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6 and 10 from which we can see that a large noise intensity can induce the prey
to switch from a high-level density to a low-level density fluctuation with a high
probability, or even frequently switch between these two different modes. Therefore,
the occurrence of some tipping points may drive the population into a less than ideal
state, thus posing great difficulties in protecting ecosystem stability.

Intermediate predators are in the middle of the food chain, therefore they are
inevitably affected by the fear from top predators. To understand the cascading
effect of fear in food chains, some researchers considered the food chain systems
in which the intermediate predators are assumed to be conformed to the linear
death rate [9, 15]. They found that all types of fear can respectively stabilize the
system by period-halving bifurcation. However, if there exist two types of fears,
some complex phenomena emerge. For example, if the fears of intermediate preda-
tors and basal prey are considered simultaneously, the populations have periodic
oscillations when these two fears are small; otherwise, they are stabilized at an
equilibrium. These results are important for understanding the fear effect in food
chain systems, prompting us to wonder whether more complex dynamics emerge in
food chain systems with quadratic mortality in intermediate predators, and whether
more interesting transition phenomena will occur in the fluctuating environment.
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Appendix.

Appendix A. The existence of roots of (5). We discuss the positive roots of
(5) by considering three cases: `23 <

8
3`2`4, `23 = 8

3`2`4 and `23 >
8
3`2`4.

(1) When `23 <
8
3`2`4, F2(u) = 0 has no positive roots and F2(u) > 0 in (0,∞)

because of F2(0) = 2`2 > 0. This implies that F1(u) is strictly increasing. Then

(1a) if `1 ≥ 0, we have F1(u) > 0 in (0,∞), which indicates that F (u) is an
increasing function. It then follows from `0 < 0 that F (u) = 0 has a unique
positive root u = u∗.

(1b) if `1 < 0, then F1(u) = 0 has a unique positive root u = ū, F1(u) < 0 for
0 < u < ū and F1(u) > 0 for u > ū. We can directly know that F (u) is
decreasing in (0, ū) and increasing in (ū,∞). It then follows from `0 < 0 that
thus F (u) = 0 has a unique positive root u = u∗ > ū.

(2) When `23 = 8
3`2`4, if `3 ≥ 0, then F2(u) = 0 has no positive roots. Arguing as

above the situation (1), one can obtain that F (u) = 0 has a unique positive root; if
`3 < 0, then F2(u) = 0 has a positive root with multiplicity 2 and F2(u) ≥ 0, which
means that F1(u) is an increasing function. Following the same argument as the
above situations (1a) and (1b), one can obtain that F (u) = 0 has a unique positive
root u = u∗.

(3) When `23 >
8
3`2`4, then F2(u) = 0 has two roots u = β1, β2, where

β1 =
−3`3 −

√
9`23 − 24`2`4

12`4
, β2 =

−3`3 +
√

9`23 − 24`2`4
12`4

.

Then
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(3a) If `2 < 0 or `2 = 0 and `3 < 0, then F2(u) = 0 has a unique positive root
u = β2. It then follows that F1(u) is decreasing in (0, β2) and increasing in
(β2,∞). Then, when `1 ≤ 0, one knows that F (u) = 0 has a unique positive
root u = u∗; when `1 > 0, there are two cases need to be discussed.
(3a-1) If F1(β2) > 0, then F (u) is an increasing function and F (u) = 0 has a

unique positive root u = u∗.
(3a-2) If F1(β2) = 0, further when F (β2) = 0, then u = β2 is a positive root

with multiplicity 3 of F (u) = 0; when F (β2) 6= 0, F (u) = 0 has a unique
positive root u = u∗.

(3a-3) If F1(β2) < 0, then F1(u) = 0 has two different roots and we denote
them as u = γ1, γ2 with γ1 < γ2. This implies that F (u) is increasing in
(0, γ1) ∪ (γ2,∞) and decreasing in (γ1, γ2). Therefore, when F (γ1) > 0
and F (γ2) < 0, F (u) = 0 has three different positive roots u = u∗1, u∗2
and u∗3 with u∗1 < u∗2 < u∗3; when F (γ1) = 0, u∗1 and u∗2 coincide into a
positive root u = u∗1,2 = γ1, and F (u) = 0 has two positive roots u = u∗1,2,
u∗3 with u∗1,2 < u∗3; when F (γ1) < 0, u∗1,2 disappears and F (u) = 0 has a
unique positive root u = u∗3; when F (γ2) = 0, u∗2 and u∗3 coincide into a
positive root u = u∗2,3 = γ2, and F (u) = 0 has two positive roots u = u∗1,
u∗2,3 with u∗1 < u∗2,3; when F (γ2) > 0, u∗2,3 disappears, and F (u) = 0 has
a unique positive root u = u∗1.

(3b) If `2 ≥ 0, `3 ≥ 0, then F2(u) = 0 has no positive roots and F2(u) > 0 in (0,∞)
because of F2(0) = 2`2 ≥ 0. Therefore, arguing as (1), one can obtain that
F (u) = 0 has a unique positive root u = u∗.

(3c) If `2 > 0, `3 < 0, then F2(u) = 0 has two different positive roots β1 and β2,
and F1(u) is increasing in (0, β1) ∪ (β2,∞) and decreasing in (β1, β2). Then,
(3c-1) when `1 < 0, if F1(β1) ≤ 0 or F1(β2) ≥ 0, then F (u) = 0 has a unique

positive root u = u∗; if F1(β1) > 0 and F1(β2) < 0, then F1(u) = 0 has
three different positive roots and we denote them as u = γ1, γ2, γ3 with
γ1 < γ2 < γ3. It then follows that F (u) is decreasing in (0, γ1) ∪ (γ2, γ3)
and increasing in (γ1, γ2)∪(γ3,∞). Then when F (γ2) > 0 and F (γ3) < 0,
F (u) = 0 has three different positive roots u = u∗1, u∗2 and u∗3 with
u∗1 < u∗2 < u∗3; when F (γ2) = 0, u∗1 and u∗2 coincide into a positive root
u = u∗1,2 = γ2, and F (u) = 0 has two positive roots u = u∗1,2, u∗3 with
u∗1,2 < u∗3; when F (γ2) < 0, u∗1,2 disappears and F (u) = 0 has a unique
positive root u = u∗3; when F (γ3) = 0, u∗2 and u∗3 coincide into a positive
root u = u∗2,3 = γ3, and F (u) = 0 has two positive roots u = u∗1, u∗2,3 with
u∗1 < u∗2,3; when F (γ3) > 0, u∗2,3 disappears, and F (u) = 0 has a unique
positive root u = u∗1.

(3c-2) when `1 ≥ 0, if F1(β2) > 0 or F1(β2) = 0 and F (β2) 6= 0, then
F (u) = 0 has a unique positive root u∗; if F1(β2) = F (β2) = 0, then
u = β2 is a positive root with multiplicity 3 of F (u) = 0; if F1(β2) < 0,
then F1(u) = 0 has two different positive roots and we denote them as
u = γ1, γ2 with γ1 < γ2. It then follows that F (u) is increasing in
(0, γ1) ∪ (γ2,∞) and decreasing in (γ1, γ2). Then when F (γ1) > 0 and
F (γ2) < 0, F (u) = 0 has three different positive roots u = u∗1, u∗2 and u∗3
with u∗1 < u∗2 < u∗3; when F (γ1) = 0, u∗1 and u∗2 coincide into a positive
root u = u∗1,2 = γ1, and F (u) = 0 has two positive roots u = u∗1,2, u∗3
with u∗1,2 < u∗3; when F (γ1) < 0, u∗1,2 disappears and F (u) = 0 has a
unique positive root u = u∗3; when F (γ2) = 0, u∗2 and u∗3 coincide into a
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positive root u∗2,3, and F (u) = 0 has two positive roots u = u∗1, u∗2,3 with
u∗1 < u∗2,3; when F (γ2) > 0, u∗2,3 disappears, and F (u) = 0 has a unique
positive root u = u∗1.

Appendix B. The coefficients appearing in (32). The following is the coeffi-
cients appearing in (32):

α̃00(ε) =− ã00(ε)̃b01(ε) +
2ã00(ε)ã02(ε)

ã01(ε)
+

2ã200(ε)ã02(ε)̃b01(ε)

ã201(ε)
− 2ã300(ε)ã02(ε)̃b02(ε)

ã301(ε)
,

α̃10(ε) =ã01(ε)̃b10(ε)− ã10(ε)̃b01(ε)− ã00(ε)̃b11(ε)−
6ã200(ε)ã02(ε)̃b02(ε)ã10(ε)

ã301(ε)

+
ã00(ε)

ã01(ε)
(2ã10(ε)̃b02(ε)− 2ã02(ε)̃b10(ε)− ã11(ε)̃b01(ε))

+
ã00(ε)

ã201(ε)

(
4ã02(ε)̃b01(ε)ã10(ε) + 2ã00(ε)ã02(ε)̃b11(ε) + ã00(ε)ã11(ε)̃b02(ε)

)
,

α̃01(ε) =ã10(ε) + b̃10(ε)− ã00(ε)

ã01(ε)
(ã11(ε) + 2b̃02(ε))− 4ã02(ε)ã00(ε)̃b01(ε)

ã201(ε)

+
6ã02(ε)ã200(ε)̃b02(ε)

ã301(ε)
,

α̃20(ε) =ã01(ε)̃b02(ε)− ã20(ε)̃b01(ε)− ã10(ε)̃b11(ε) + ã11(ε)̃b10(ε)

+
ã210(ε)̃b02(ε)

ã01(ε)
+

2b̃02(ε)ã00(ε)ã20(ε)

ã01(ε)
− 2ã02(ε)ã00(ε)̃b20(ε)

ã01(ε)
− ã11(ε)̃b01(ε)ã10(ε)

ã01(ε)

− ã11(ε)̃b11(ε)ã00(ε)

ã01(ε)
− 2ã02(ε)ã10(ε)̃b10(ε)

ã01(ε)

+
4ã02(ε)ã00(ε)

ã201(ε)
(̃b01(ε)ã20(ε) + b̃11(ε)ã10(ε))

− 6ã00(ε)ã02(ε)̃b02(ε)

ã301(ε)
(ã210(ε) + ã00(ε)ã20(ε))

+
2ã11(ε)̃b02(ε)ã00(ε)ã10(ε)

ã201(ε)
+

2ã02(ε)ã
2
10(ε)̃b01(ε)

ã201(ε)
,

α̃11(ε) =b̃11(ε) +
1

ã01(ε)
(ã11(ε)̃b01(ε) + 2ã02(ε)̃b10(ε)− ã10(ε)̃b02(ε))

− 2

ã201(ε)
(ã11(ε)ã00(ε)̃b02(ε)− 2ã02(ε)ã10(ε)̃b01(ε)− 2ã02(ε)ã00(ε)̃b11(ε))

+
12ã02(ε)ã10(ε)ã00(ε)̃b02(ε)

ã301(ε)
,

α̃02(ε) =
1

ã01(ε)
(ã11(ε) + b̃02(ε)) +

2ã02(ε)̃b01(ε)

ã201(ε)
− 6ã02(ε)ã00(ε)̃b02(ε)

ã301(ε)

Appendix C. Stochastic sensitivity analysis. We first show the sensitivity
analysis for the equilibrium. Define

W =

(
w11 w12

w21 w22

)
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be the stochastic sensitivity matrix of any equilibrium (u∗, v∗). It follows from [31]
that W satisfies

2J11w11 + J12w12 + J12w21 = −g211,
J21w11 + (J11 + J22)w12 + J12w22 = 0,

J21w11 + (J11 + J22)w21 + J12w22 = 0,

J21w12 + J21w21 + 2J22w22 = −g222,

where g11 = u∗, g22 = v∗, Ji,j(i, j = 1, 2) is defined by (7) and stands for the
elements of Jacobi matrix evaluated at (u∗, v∗). Then the confidence ellipse equation
can be written as

〈(u− u∗, v − v∗)T ,W−1(u− u∗, v − v∗)T 〉 = −2σ2 ln(1− P ),

where P is the fiducial probability.
In what follows, we compute the stochastic sensitivity functions of the limit cycle.

For convenience, we define

F1(u, v) =
ru

1 + kv
− du− au2 − puv

1 + cu
,

F2(u, v) = −mv2 +
quv

1 + cu
,

and denote this limit cycle mentioned as above as T (u(t), v(t)), t ∈ [0, T ], where T
is the period.

According to [31], we know that the stochastic sensitivity functions ϑ(t) of
T (u(t), v(t)) satisfies

dϑ(t)

dt
= m(t)ϑ(t) + n(t),

ϑ(0) = ϑ(T ),

where

m(t) = 2j11(t)g21(t) + 2(j12(t) + j21(t))g1(t)g2(t) + 2j22(t)g22(t),

n(t) = s11(t)g21(t) + s22(t)g22(t),

where Jij(i, j = 1, 2) is evaluated at T , s11(t) = u2|T , s22(t) = v2|T , and

g1(t) =
F2(u, v)√

F 2
1 (u, v) + F 2

2 (u, v)

∣∣∣
T
,

g2(t) = − F1(u, v)√
F 2
1 (u, v) + F 2

2 (u, v)

∣∣∣
T
.

Then the boundaries T1,2(t), t ∈ [0, T ], of the confidence bands with the fiducial
probability P = 0.95 are

T1(t) = T (t) + 1.9597σ
√
ϑ(t)g(t),

T2(t) = T (t)− 1.9597σ
√
ϑ(t)g(t),

(44)

where g(t) = (g1(t), g2(t))T .
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