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Abstract
In biology, evolutionary game-theoretical models often arise in which players’ strate-
gies impact the state of the environment, driving feedback between strategy and the
surroundings. In this case, cooperative interactions can be applied to studying ecolog-
ical systems, animal or microorganism populations, and cells producing or actively
extracting a growth resource from their environment. We consider the framework of
eco-evolutionary game theory with replicator dynamics and growth-limiting public
goods extracted by population members from some external source. It is known that
the two sub-populations of cooperators and defectors can develop spatio-temporal
patterns that enable long-term coexistence in the shared environment. To investigate
this phenomenon and unveil the mechanisms that sustain cooperation, we analyze two
eco-evolutionary models: a well-mixed environment and a heterogeneous model with
spatial diffusion. In the latter, we integrate spatial diffusion into replicator dynamics.
Our findings reveal rich strategy dynamics, including bistability and bifurcations, in
the temporal system and spatial stability, as well as Turing instability, Turing–Hopf
bifurcations, and chaos in the diffusion system. The results indicate that effective
mechanisms to promote cooperation include increasing the player density, decreasing
the relative timescale, controlling the density of initial cooperators, improving the
diffusion rate of the public goods, lowering the diffusion rate of the cooperators, and
enhancing the payoffs to the cooperators. We provide the conditions for the existence,
stability, and occurrence of bifurcations in both systems. Our analysis can be applied
to dynamic phenomena in fields as diverse as human decision-making, microorganism
growth factors secretion, and group hunting.
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1 Introduction

Social dilemmas arise from conflicts between individual and collective interests and
are observed in various domains, including humans (Bonnefon et al. 2016; Kummerli
et al. 2007; Li et al. 2018; Heggerud et al. 2022), animals (Cheng et al. 2022; Riehl
and Frederickson 2016; Yamaguchi and Iwasa 2021), and microorganisms (Wakano
et al. 2009; Behar et al. 2014; Lynn and De Leenheer 2019). Sustainable development
necessitates individual contributions and sacrifices for the collective good, such as air,
water, fossil fuels, andfisheries. In animal groups, foodobtained throughgrouphunting
efforts may be shared with non-contributing individuals (Cheng et al. 2022; Lett et al.
2004). Microorganisms secrete beneficial growth factors at a cost to acquire nutrients,
allowing others to exploit their efforts (Schuster et al. 2010; Smith and Schuster 2019).
Defectors exploit public resources without cost, potentially leading to a tragedy of the
commons (Milinski et al. 2002; Rankin et al. 2007). Despite the risks associated
with selfish behavior, cooperative behavior is prevalent in nature and human society,
making it crucial to comprehend the underlying mechanisms sustaining cooperation.
Evolutionary game theory (Hofbauer and Sigmund 1998) is a vital framework for
studying cooperation,with replicator dynamics (Nowak2006) beingwidely employed.

Cooperation in populations is triggered by the production of public goods,which are
essential for individual growth and development. Cooperators incur costs in order to
produce or capture these shared resources, benefiting the entire population. The pres-
ence of public goods fosters an environment conducive to cooperation. The cooperative
or non-cooperative behaviors of individuals have an impact on the availability of public
goods,which then affects players’ strategy choices. The term ’eco-evolutionary games’
corresponds to scenarios where evolutionary game dynamics are environmentally cou-
pled. This mutual feedback between public goods dynamics and strategy dynamics
(Weitz et al. 2016; Hauert et al. 2019; Tilman et al. 2020; Cheng et al. 2023) was often
overlooked in previous studies, which predominantly focused on economic aspects
and neglected the interplay between public goods and strategies within the replicator
dynamics framework (Charness et al. 2014; Lotito et al. 2013; Fallucchi et al. 2019).
To address this gap, we combine replicator dynamics with public goods dynamics
to construct an evolutionary game system with public goods feedback, enabling an
exploration of the impact of public goods feedback on the evolution of cooperation.

Spatial diffusion plays a crucial role in strategy evolution. Based on Fick’s law,
matter in space exhibits heterogeneous distribution due to diffusion, which has been
experimentally confirmed inmicroorganisms such asEscherichia coli (Kerr et al. 2002;
Kirkup and Riley 2004; Conlin et al. 2014; Lambert et al. 2014), yeasts (MacLean
and Gudelj 2006; Schuster et al. 2010), Pseudomonas aeruginosa (Wang et al. 2015;
Griffin et al. 2004; Figueiredo et al. 2021; Mridha and Kummerli 2022), and Bacillus
subtilis (Ratzke and Gore 2016). Cressman and Vickers (1997) examined density-
dependent game models in one spatial dimension and demonstrated resistance to
strategy invasion. Hauert (2002) compared spatially expanding populations to well-
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mixed populations and observed that spatial expansion promotes cooperation in 2× 2
games. Aydogmus (2018) incorporated spatial effects into the classical hawk-dove
game and revealed the disruption of evolutionarily stable strategies at low diffusion
rates. However, the pattern formation of strategies in replicator dynamics with spa-
tial diffusion remains unclear. Introducing spatial diffusion into replicator dynamics
is challenging due to the emphasis on frequency rather than density variation. In this
study, we convert player frequencies to player densities, allowing for the incorporation
of spatial diffusion into replicator dynamics. Thus, we enable analysis of the spatio-
temporal pattern formation in the framework of the eco-evolutionary model with both
spatial diffusion and improved replicator dynamics.

While complex patterns are prevalent in physics and chemistry (Maini et al. 1997;
Walgraef 2012; Deegan 2000), they also manifest in biological systems (Song et al.
2022, 2021; Manna et al. 2021). Previous studies have extensively explored spatial
patterns in prey-predator systems (Chowdhury et al. 2021a; Pal et al. 2020, 2021; Jia
et al. 2019; Yan et al. 2020) and infectious disease systems (Li et al. 2014; Berres and
Ruiz-Baier 2011; Sun et al. 2009). Nevertheless, the spatial dynamics and patterns of
cooperation in evolutionary game systems with public goods feedback remain under-
studied. In this analysis, we introduce spatial diffusion into the system by combining
improved replicator dynamics with public goods dynamics. Our objective is to investi-
gate the spatial strategy dynamics and patterns of cooperation in this eco-evolutionary
game system.

The structure of this paper is as follows. In Sect. 2, we construct temporal and
diffusion systems. In Sect. 3, we examine the existence and bistability of equilibria,
provide conditions for transcritical and Hopf bifurcations, as well as investigate the
direction and stability of the periodic solution. In Sect. 4, we analyze the local stability,
Turing instability, and Turing–Hopf bifurcation of the diffusion system. In Sect. 5, we
explore the effects of parameters and diffusion coefficients on the spatial distribution
of cooperation, leading to diverse spatial patterns. We summarize and discuss our
findings in Sect. 6.

2 Model Formulation

2.1 Temporal System

Consider a situation where individuals acquire resources from their surroundings to
benefit an entire population, such as predators hunting in groups or cells extracting iron
from some external substrate. Examine a scenario where every individual in a popu-
lation can fall into one of two categories: cooperators or defectors. Cooperators put
in some effort to produce public goods, while defectors directly cheat the cooperators
to acquire resources. In our model, cooperative interaction only affects the enrich-
ment process of public goods. Both cooperators and defectors consume resources
to maintain their vital activities. Suppose that the growth-limiting public goods are
extracted from some external source. Thus, the rate of public goods production should
be bounded even for high densities of productive population. According to Behar et al.
(2014), in this case, the production of public goods can be written in the form of βu

α+u .
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Assuming a linear consumption rate of the public goods, the dynamics of the resource
can be represented by the following equation:

dm

dT
= βu

α + u
− kNm, (2.1)

where β, α, and k are the maximum productivity, the saturation parameter of produc-
tion, and the consumption rate for public goods, respectively; u ∈ [0, N ] and N depict
the density of cooperators and that of all players, respectively; m is the concentration
of public goods. Constants β, α, k, and N are positive. The density of defectors can
be denoted as v = N − u. Converting the densities of cooperators and defectors into
frequencies gives ξ1 = u

N and ξ2 = v
N = 1 − u

N .
The payoffs in the game are influenced not only by the cooperation (C) and defec-

tion (D) strategies players adopt, but also by the concentration of public goods. Hence,
we assume payoffs in the game to be a weighted linear combination of payoff matri-
ces under poor and rich public goods conditions, where weights depend on resource
concentration. Thus, the payoff matrix can be written as

Π = (δ − m)

( C D

C A0 − σ0 B0 − σ0
D c0 d0

)
+ m

( C D

C A1 − σ1 B1 − σ1
D c1 d1

)
,

where δ > 0 represents baseline payoffs when m = 0. In the literature (Weitz et al.
2016; Tilman et al. 2020), it is usually assumed that δ = 1. In our study, we expand δ

to be any positive value, since the concentration of public goods is not restricted to the
interval [0, 1]. This enables us to study better the impact of δ on the game dynamics.
The cost of cooperation varies in different environments, while defectors do not bear
the cost of cooperation (Hauert et al. 2019). Parameters σ0 > 0 and σ1 > 0 represent
the costs of producing public goods under different environmental conditions. Later,
we will study the effect of payoffs on the concentration of public goods and the density
of cooperators. To enable independent consideration of each payoff, we rewrite the
payoff matrix as

Π = (δ − m)

( C D

C a0 b0
D c0 d0

)
+ m

( C D

C a1 b1
D c1 d1

)
,

where a0 = A0 − σ0, b0 = B0 − σ0, a1 = A1 − σ1, and b1 = B1 − σ1. Now we
calculate the fitness of strategies C and D:

fC (u,m) = (δa0 + (a1 − a0)m)
u

N
+ (δb0 + (b1 − b0)m)

(
1 − u

N

)
,

fD(u,m) = (δc0 + (c1 − c0)m)
u

N
+ (δd0 + (d1 − d0)m)

(
1 − u

N

)
.

(2.2)
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The incentives of behavioral changes can be explained by the following combinations
of elements in the payoff matrix.

Γ1 = fC (0, δ) − fD(0, δ) = δ(b1 − d1),

Γ2 = fC (N , δ) − fD(N , δ) = δ(a1 − c1),

Φ1 = fD(N , 0) − fC (N , 0) = δ(a0 − c0),

Φ2 = fD(0, 0) − fD(0, 0) = δ(d0 − b0).

Parameter Γ1 depicts the incentive for an individual within the population to choose
cooperation when other players in the population are defectors, and the public goods
are abundant. Parameter Γ2 depicts the incentive for an individual to follow suit and
become a cooperator when other players are already cooperators in a setting where the
public goods are affluent. Parameter Φ1 depicts the incentive for an individual to turn
defector in a state where the public goods are scarce and other individuals in the popu-
lation are cooperators. Finally, parameter Φ2 depicts the incentive for an individual to
follow a shift to strategy D when other players in the population have adopted strategy
D and the public goods are barren. These parameters obtained from the payoff matrix
explain the motivations that drive players to change their strategies. Thus, the payoff
matrix can be determined arbitrarily regardless of cooperative interaction.

The replicator dynamics (Hofbauer and Sigmund 1998) is a model used to describe
the evolution of populations. It assumes that the frequency of a strategy increases when
the fitness of those who adopt it is greater than the average fitness of the population.
Replicator dynamics has previously been used to model behavioural changes in set-
tings at the interface of ecology and game theory, such as economic activity around
a coral reef being based on fishing or tourism (Milne et al. 2022) and eutrophica-
tion in shallow lakes where the discharge of pollutants into the water is determined
by a behavioural model (Sun and Hilker 2021). Coupling Eq. (2.1) with replicator
dynamics, and accounting for potentially different rates of environmental and strate-
gic change, we obtain the public goods game system as follows:

{
ε du
dT = u

(
1 − u

N

)
( fC − fD),

dm
dT = βu

α+u − kNm,

in which ε > 0 is the relative timescale for evolutionary rate of public goods compared
to that of strategies. The inequality ε > 1 (ε < 1) means that public goods evolve
faster (slower) than strategies. Rescaling the time by substitution t = T

ε
and using

equalities (2.2), we rewrite the system as

⎧⎪⎪⎨
⎪⎪⎩

du

dt
= u

N 2 (N − u) [(η1u + Nη2)m − δ(η3u + N (d0 − b0))] ,

dm

dt
=ε

(
βu

α + u
− kNm

)
,

(2.3)
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where

η1 = a1 − a0 + b0 − b1 + c0 − c1 + d1 − d0, η2 = d0 − d1 + b1 − b0,

η3 = b0 + c0 − a0 − d0.

Thus, we have developed a game system that depicts cooperative behavior with
mutual feedback between strategy and surroundings within a well-mixed environ-
ment. This model is well-suited for describing planktonic cultures, where molecules
diffuse rapidly and all bacteria experience the same concentration (Julou et al. 2013).

2.2 Diffusion System

The spatial distribution of cooperators and the public goods they produce can signifi-
cantly affect the process of evolution. The evolution of cooperation exhibits significant
differences under homogeneous and heterogeneous conditions, ranging from the
extinction of cooperators to the coexistence of both cooperators and defectors (Julou
et al. 2013; MacLean and Gudelj 2006). There is a range of experiments done to inves-
tigate the cooperation of yeast (MacLean and Gudelj 2006),Escherichia coli (Lambert
et al. 2014; Kirkup and Riley 2004), and Pseudomonas aeruginosa (Julou et al. 2013)
within heterogeneous environments. Thus, to account for the dynamic spatial nature
of strategies and public goods, we introduce diffusion into the temporal system (2.3)
as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u(x,t)
∂t = u

N2 (N − u)[(η1u + Nη2)m
−δ(η3u + N (d0 − b0))] + du∇2u, x ∈ 
, t > 0,

∂m(x,t)
∂t = ε

(
βu

α+u − kNm
)

+ dm∇2m, x ∈ 
, t > 0,
∂u(x,t)

∂ν
= ∂m(x,t)

∂ν
= 0, x ∈ ∂
, t > 0,

u(x, 0) = u0(x) ≥ 0, m(x, 0) = m0(x) ≥ 0, x ∈ 
,

(2.4)

where u(x, t) andm(x, t) denote the density of cooperators and that of public goods in
position x at time t , respectively; x ∈ 
 ⊆ R

2 is a two-dimensional bounded domain;
ν is the outward unit normal vector of the smooth boundary ∂
;∇2 = ∂2

∂x2
+ ∂2

∂ y2
is the

Laplacian operator; du and dm are the diffusion coefficients for cooperators and public
goods, respectively. The Neumann boundary conditions are employed in system (2.4)
since individuals cannot leave and enter via the boundary. In the upcoming sections,
we will investigate various dynamical properties of systems 2.3 and 2.4. This includes
determining the presence and stability of equilibria, aswell as identifying any instances
of bistability, transcritical and Hopf bifurcations.

3 Dynamics of Temporal System

This section explores the various strategy dynamics properties, including the existence
of equilibria, stability, bistability, transcritical bifurcation, and Hopf bifurcation for
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the non-diffusion system (2.3), which helps to predict the outcome of the evolution of
cooperation in conditions where individuals and public goods are well-mixed.

3.1 Existence of Equilibria

The two equilibria of system (2.3), namely E1(0, 0) and E2(N ,
β

k(α+N )
), correspond-

ing to the absence of cooperators and public goods, and the absence of defectors,
respectively, always exist. Further, we explore the conditions under which the inter-
nal equilibrium E∗(u∗,m∗) is feasible, enabling cooperators and defectors to coexist.
From (2.3), u∗ and m∗ satisfy the following two equations:

(η1u
∗ + Nη2)m

∗ − δ(η3u
∗ + N (d0 − b0)) = 0, (3.1)

m∗ = βu∗

kN (α + u∗)
. (3.2)

Eliminating m∗ by substituting (3.2) into (3.1), we have

γ1u
∗2 + γ2Nu∗ + N 2γ3 = 0, (3.3)

where

γ1 = βη1 − Nδkη3, γ2 = ((b0 − d0)N − η3α)kδ + βη2, γ3 = αδk(b0 − d0).

After solving Eq. (3.3), we obtain the solution

u∗± =
N

(
−γ2 ±

√
γ 2
2 − 4γ1γ3

)

2γ1
. (3.4)

Denote

η̂3 = βη1

Nδk
,

η∗
3 = (b0 − d0)N

α
+ βη2

kα2 ,

η̃3 = 2βη1 + (b0 − d0)Nkδ + βη2

kδ(2N + α)
,

η̄3 = β(η1 + η2)

kδ(N + α)
+ (b0 − d0).

It is observed from (3.2) that m∗± > 0 holds invariably. Therefore, the existence of
E∗± only requires that u∗± ∈ (0, N ) is guaranteed. Condition u∗+ ∈ (0, N ) holds if
γ 2
2 > 4γ1γ3 and one of (H1)–(H4) below is true.

(H1): η∗
3 < η3 < min{η̂3, η̃3, η̄3}.

(H2): η3 < min{η̂3, η̃3, η̄3} and b0 < d0.
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Fig. 1 Existence of equilibria for system (2.3). The cooperator and the public goods nullclines are depicted
by green and blue curves, respectively, obtained from du

dt = 0 and dm
dt = 0 of system (2.3). The equilibria

marked with red dots are present at the intersection of the green and blue curves. Parameters: a a0 = 2.9,
a1 = 4, b0 = 0, b1 = 1, c0 = 0.1, c1 = 2, d0 = 1, d1 = 2, δ = 2, β = 2.5, α = 0.9, k = 0.2, N = 3,
ε = 1. b a1 = 3, b0 = 2.3. c a0 = 2, a1 = 3, b0 = 2, b1 = 5, c0 = 1, c1 = 6, d0 = 5, δ = 7, N = 2,
β = 5. d N = 3.0152. Note that the remaining parameters of b, c, and d are taken from a. The values of
the parameters are detailed in Table 3 (color figure online)

Fig. 2 Temporal behavior of cooperators and public goods for system (2.3). The blue and red curves depict
the evolution of cooperators and public goods over time, respectively. The initial conditions for a, b, and c
are (0.6, 2.5) and (2, 2.5), respectively. The parameters of a and b are a0 = 2.1, b0 = 2.1, d0 = 2.2 and the
rest of the parameters are adopted from Fig. 1b. The parameters of c remain the same as in Fig. 1b (color
figure online)

(H3): max{η̂3, η̃3} < η3 < η∗
3 and b0 < d0.

(H4): η̂3 < η3 < min{η̃3, η̄3}.
Similarly, E∗− exists i.e. u∗− ∈ (0, N ) holds if γ 2

2 > 4γ1γ3 and one of (H5)–(H8) is
satisfied.
(H5): η∗

3 < η3 < min{η̂3, η̄3} and b0 > d0.
(H6): max{η̃3, η̄3} < η3 < η̂3 and b0 > d0.
(H7): η3 > max{η̂3, η∗

3, η̄3} and b0 > d0.
(H8): max{η̂3, η̃3} < η3 < min{η∗

3, η̄3}.
In impoverished public goods environments, the disparities in payoffs between

encounters among players employing different strategies and those among players
employing the same strategy, along with the discrepancies in payoffs between encoun-
ters involving defectors, collectively contribute to determining the presence of internal
equilibria. The existence of equilibria for system (2.3) is demonstrated in Fig. 1. The
parameters for Fig. 1 are chosen to satisfy the above conditions for the existence
of internal equilibria and to demonstrate the potential positioning of equilibria. The
internal equilibrium points E∗− and E∗+ coincide in Fig. 1d.
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Fig. 3 Bistability of system (2.3). The phase portrait exhibits three different bistabilities. The red and blue
dotsmark the stable equilibria and saddle points, respectively. The black curves divide the plane into three or
four regions. The magenta and yellow-brown lines from different positions converge to separate equilibria.
The parameters in a and b are chosen from Figs. 2a and 1c, respectively. c δ = 2.11 and the remaining
parameters are selected from Fig. 2c (color figure online)

3.2 Local Stability and Bistability Analysis

For system (2.3), we investigate local stability and then derive bistability. Denote

ε∗ = u∗−
kN 3

[
((η1 − η2)N − 2η1u

∗)m∗− + ((d0 − b0 − η3) + 2u∗−η3)δ
]
,

b∗
0 = 1

(α + u∗−)δkN 2

[
(((d0 − η3)δ + m∗−(η1 − η2))(α + u∗−)k − βαη2)N

2

+(2(δη3 − m∗−η1)(α + u∗−)k + βα(η1 + η2))u
∗−N − βαu∗2− η1

]
,

ε̃∗ = u∗+
kN 3

[
((η1 − η2)N − 2η1u

∗)m∗+ + ((d0 − b0 − η3) + 2u∗+η3)δ
]
,

b̃0
∗ = 1

(α + u∗+)δkN 2

[
(((d0 − η3)δ + m∗+(η1 − η2))(α + u∗+)k − βαη2)N

2

+(2(δη3 − m∗+η1)(α + u∗+)k + βα(η1 + η2))u
∗+N − βαu∗2+ η1

]
.

The following theorem is utilized to elucidate the local stability of system (2.3).

Theorem 3.1 (I) E1(0, 0) is a locally asymptotically stable node if d0 > b0;
E1(0, 0) is a saddle point if d0 < b0.

(II) E2(N ,
β

k(α+N )
) is a locally asymptotically stable node if δ(c0 −a0) <

β(η1+η2)
k(N+α)

;

E2(N ,
β

k(α+N )
) is a saddle point if δ(c0 − a0) >

β(η1+η2)
k(N+α)

.
(III) E∗−(u∗−,m∗−) is a locally asymptotically stable node or focus if ε > ε∗ and

b0 > b∗
0; E

∗−(u∗−,m∗−) is an unstable node or focus if ε < ε∗ and b0 > b∗
0;

E∗−(u∗−,m∗−) is a saddle point if b0 < b∗
0 .

(IV) E∗+(u∗+,m∗+) is a locally asymptotically stable node or focus if ε > ε̃∗ and

b0 > b̃0
∗
; E∗+(u∗+,m∗+) is an unstable node or focus if ε < ε̃∗ and b0 > b̃0

∗
;

E∗+(u∗+,m∗+) is a saddle point if b0 < b̃0
∗
.

Proof See “Appendix A”. ��
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We discover the following bistability regarding system (2.3) by the discussion in
“Appendix A”.

Corollary 3.1 (I) E1(0, 0) and E2(N ,
β

k(α+N )
) are stable when d0 > b0 and δ(c0 −

a0) <
β(η1+η2)
k(N+α)

.
(II) E1(0, 0) and E∗−(u∗,m∗) are stable when d0 > b0 > b∗

0 and ε > ε∗.
(III) E2(N ,

β
k(α+N )

) and E∗−(u∗−,m∗−) are stablewhen δ(c0−a0) <
β(η1+η2)
k(N+α)

, ε > ε∗,
and b0 > b∗

0 .

Choosing parameters that satisfy the local stability conditions of Theorem 3.1 yields
Fig. 2, which illustrates the local stability of the temporal system. Three different
evolutionary outcomes, including the extinction of cooperators and extremely poor
public goods, pure cooperators and abundant public goods, and the coexistence of
cooperators and defectors, occur due to different initial states and parameter values.
For Fig. 2a and b, the same parameters are taken, but the difference in initial conditions
leads to distinct evolutionary results. Keeping the initial value of the public goods fixed
and increasing the initial density of cooperators leads to an evolutionary outcome from
pure defectors to pure cooperators. Larger initial densities of cooperators enable pure
cooperators to dominate if the initial concentration of public goods is identical. The
third case of the Theorem 3.1 illustrated in Fig. 2c indicates that increasing the payoff
of cooperator-defector encounters beyond its threshold and speeding up the evolution
of public goods saves cooperators from extinction. The rapid turnover of public goods
provides players with usable supplies, and the benefits to cooperators are increased,
whichmotivates players to cooperate.Holding the initial values unchanged andvarying
the values of the parameters produce different evolutionary results see Fig. 2b and c.

The three types of bistability in the temporal system are depicted in Fig. 3, with
parameters chosen based on Corollary 3.1. Illustrating the first case of the Corol-
lary 3.1 Fig. 3a shows that if the initial values are taken from regions II and III (resp.
I and IV), the densities finally converge to E1 (resp. E2). Thus, if the initial density
of cooperators is fixed, high initial concentrations of public goods lead to the extinc-
tion of cooperators and if the initial quantity of public goods is kept fixed, then the
likelihood of cooperators survival is a non-decreasing function of the initial density
of cooperators. Therefore, barren initial public goods and high initial values for the
cooperator facilitate the survival and continuation of cooperators. Illustrating the sec-
ond case of the Corollary 3.1 Fig. 3b displays two stable equilibria E1 and E∗−. The
basins of attraction for E1 (resp. E∗−) are regions III and IV (resp. I and II). Under such
circumstances, a high initial density of cooperators or an adequate supply of public
goods assists the cooperators in escaping extinction. Illustrating the third case of the
Corollary 3.1 Fig. 3c depicts two stable equilibria E2 and E∗−. If initial densities of
public goods and cooperators belong to region III (resp. regions I and II) then den-
sities eventually converge to E∗− (resp. E2). After a prolonged period of evolution,
cooperators and defectors eventually achieve stable coexistence when the population
initially resides in amoderate concentration of public goods. Various evolutionary con-
sequences can occur in the same subgraph with the same parameters due to varying
initial states. Comparing the three subgraphs, we find that even with the same initial
values different parameters might lead to diverse evolutionary outcomes. Therefore,
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Fig. 4 Stability of equilibria and bifurcation depending on b0, δ, d0, ε, α, and N for system (2.3). The
green, red, blue, and yellow lines indicate the values of u for E1, E2, E

∗+, and E∗−, respectively. The
solid, dotted, dashed, and dash-dotted lines depict stable equilibria, saddle points, unstable focus, and
the emergence of periodic solutions, respectively. The HB and TB marked by solid black dots indicate
the Hopf and transcritical bifurcations, respectively. The black dash-dotted line indicates the threshold at
which bifurcation happens. The parameters and initial values remain unchanged from those in Fig. 2c.
Bistability occurs in intervals δ ∈ (2.0604, 2.1967), α ∈ (1.0179, 1.1242) and N ∈ (3.1179, 4.7079).
Some calculations yield critical values δ∗ = 2.0604 and ε∗ = 0.7653 (color figure online)

the choice of parameter values, the initial density of cooperators, and the initial state of
the public goods can all lead to multiple evolutionary outcomes. In situations of scarce
public goods, individuals within the population necessitate more of them to sustain
essential life characteristics. This circumstance demands a high density of cooperators
to facilitate the production of public goods. This explains the initial high density of
cooperators favoring the continuation of cooperation in the case of initial public goods
scarcity.

3.3 Bifurcation Analysis

In this subsection we explore the transcritical and Hopf bifurcations for system (2.3).

Theorem 3.2 (I) If d0 = b0, then a transcritical bifurcation appears at E1(0, 0).
(II) If δ = δ∗, then a transcritical bifurcation appears at E2(N ,

β
k(α+N )

).
(III) If ε = ε∗ and b0 > b∗

0 , then a Hopf bifurcation appears at E∗−(u∗−,m∗−).

Proof See “Appendix B”. ��
Following the discussion above, we know that the Hopf bifurcation occurs at
E∗−(u∗−,m∗−). However, the characteristics of the Hopf bifurcation such as direction
and stability have not been clarified. Next, for the Hopf bifurcation, we investigate its
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Fig. 5 The dependence of cooperators and public goods in system (2.3) on parameters ε, a0, b0, σ0, σ1,
and N . a System (2.3) is unstable at E∗− when ε < 0.7653 and is stable at E∗− when ε ∈ (0.7653, 2).
Hopf bifurcation occurs if ε = 0.7653. b System (2.3) is stable at E∗− when a0 < 4.2905 and is unstable
at E∗− when a0 ∈ (4.2905, 5). Hopf bifurcation occurs if the payoff when the cooperators meet is equal to
4.2905. c E1 is stable when b0 < 1. If b0 lies in the interval (1, 6.6),then E∗− is stable. E∗− is unstable and
the periodic solution occurs when b0 ∈ (6.6, 10). Transcritical and Hopf bifurcations occur at b0 = 1 and
b0 = 6.6, respectively. d E∗− is stable when σ0 < 1.3. E1 is stable if σ0 lies in the interval (1.3, 5). The
transcritical bifurcation arises at σ0 = 1.3. e E∗− is stable. f Periodic solutions appear when N < 1.9225.
E∗− is stable if N lies in the interval (1.9225, 4.7079). If N ∈ (4.7079, 5), then E2 is stable. The remaining
parameter values are taken from Fig. 2c except for those shown in this figure (color figure online)

direction and stability. We know that ϒ determines the direction of the Hopf bifurca-
tion from “Appendix C”. The Hopf bifurcation is subcritical (supercritical) if ϒ < 0
(ϒ > 0). S1(ε∗) determines the stability of the periodic solution. The periodic solution
is stable (unstable) if S1(ε∗) < 0 (S1(ε∗) > 0). The direction of the Hopf bifurcation
and the stability of the periodic solutions depend on S1(ε∗) since ϕ′(ε∗) < 0. Here,
the forward and backward bifurcations are subcritical and supercritical bifurcations,
respectively. Thus, we conclude with Theorem 3.3.

Theorem 3.3 Suppose ε > ε∗ and b0 > b∗
0 . Hopf bifurcation is subcritical (resp.

supercritical), and the periodic solution is stable (resp. unstable) if S1(ε∗) < 0 (resp.
S1(ε∗) > 0).

Density of strategy C presents different evolutionary trends with parameters b0, δ, d0,
ε, α, and N (see Fig. 4). Increasing the values of payoff of cooperator encounter defec-
tor under poor public goods conditions (b0), baseline payoffs (α), relative timescale
(ε), and player density (N ) enhances the ability of cooperators to survive. However,
increasing the value of defector–defector payoff under scarce public goods conditions
(d0) leads to the extinction of cooperators. Interestingly, there is more than one param-
eter causing the bifurcation and bistability. Table 1 presents the properties of equilibria
and bifurcations for the temporal system. In Fig. 4a, E1 is stable, and E∗− does not

123



   67 Page 14 of 48 H. Cheng et al.

exist when b0 < d0. If b0 > d0, E∗− exists and is stable, while E1 becomes a saddle
point. The transcritical bifurcation occurs at b0 = d0, which corresponds to Theorem
3.2 (I). In addition, under given conditions E2 is always a saddle point meaning that
the value of b0 does not affect the stability of E2. There is an overall upward trend in
the density of cooperators as b0 increases, which means that increasing the payoff of
strategy C when it meets strategy D inspires more players to pursue strategy C .

The second case of Theorem 3.2 is illustrated in Fig. 4b. It shows that E∗− is stable,
while E2 is a saddle point if δ < δ∗ and E2 remains stablewhen δ > δ∗, the transcritical
bifurcation occurs at δ = δ∗. The interesting bistable phenomenon emerges due to
δ. Evidently, the value of δ does not affect the stability of E1, which complies with
Theorem 3.1 (I). The small δ favors the prevalence of the cooperative strategy in
the population. Once the critical value δ∗ is reached, defectors become extinct, and
cooperators dominate.

Illustrating the first case of the Theorem 3.2 Fig. 4c shows the occurrence of tran-
scritical bifurcation at d0 = b0. Notice that the density of strategy C decreases with
increasing d0 until d0 equals b0. If d0 is greater than b0, no player in the population
adopts strategy C , and strategy D dominates. This suggests that increasing defector
payoffs during defector encounters weakens players’ incentive to adopt strategy C .
Once the defector’s payoff exceeds the threshold, no player is happy to adopt strategy
C , which is detrimental to the continuation of the cooperative strategy.

Figure 4d reveals the effect of relative timescale ε on the evolution of strategy C . It
demonstrates that E1 and E2 are always saddle points and are unaffected by relative
timescale changes. Interestingly, the periodic solution appears when ε < ε∗. In this
case, the density of cooperators is in a state of periodic oscillation as shown in Fig. 6c
and d. This cyclical oscillatory behavior offers further possibilities for the retention
of biodiversity. The oscillating state gives both strategies C and D a fair chance of
survival. The Hopf bifurcation occurs when ε = ε∗, which verifies the third case of
Theorem 3.2. Once ε > ε∗, the density of cooperators is no longer influenced by
ε. If public goods evolve at a faster rate, the evolutionary outcomes of strategies in
populations no longer depend on relative timescales.

To explore the role of the saturation parameter of production, we plot the variation
in the density of strategy C with α in Fig. 4e. When α lies in the bistable interval
of α, E2 and E∗− are locally stable, and evolutionary outcomes are contingent on the
initial values of strategy densities and public goods. As the α increases, the density of
cooperators in stable equilibrium E∗− rises, while after transcritical bifurcation occurs,
E2 becomes stable. In this case, the increase in cooperators is more pronounced when
the small α gradually increases. When the value of production saturation reaches the
threshold, the cooperators fill the entire population, and the defectors vanish.

We examine the effect of total player density N in Fig. 4f. While N is changing
between 0 and the first threshold periodic solutions occur, where cooperators and
defectors oscillate and coexist. When N reaches the first threshold, system (2.3) has
a Hopf bifurcation at E∗−. When N reaches the second threshold, E2 transitions from
a saddle point to a stable equilibrium, and a transcritical bifurcation emerges. System
(2.3) exhibits a bistability,which is embodied in the fact that E2 and E∗− are stablewhen
N lies in its bistable interval. When N exceeds the bistable interval, E2 is stable, and
E∗− is absent. When fewer actors are involved in the game, individuals will vacillate
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Fig. 6 Temporal evolution of strategy C and public goods (on the left), and phase trajectories in the um-
plane (on the right). a, b E∗− is stable. c, d Choose ε = 0.5 and a stable periodic solution occurs near the
unstable equilibrium E∗−. e, f Setting a0 = 4.95 yields that E∗− is unstable, and a stable periodic solution
appears (color figure online)
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between strategies C and D, leading to circular choices. With an increasing density
of players and heightened competition, individuals exhibit a distinctive shift in their
choice of strategies, manifested in a phenomenon of bistability. In situations with a
high density of players, supplies become insufficient, prompting individuals to lean
towards cooperation to survive.

The changes in public goods and density of strategy C with ε, a0, b0, σ0, σ1, and
N are depicted in Fig. 5. While relative timescale value is small enough (ε < ε∗),
strategyC and public goods oscillate between the upper and lower lines, indicating the
emergence of periodic solutions. Some calculations give S1(ε∗) < 0. Thus, it follows
from Theorem 3.3 that the periodic solution is stable and the Hopf bifurcation is
subcritical.More detailed information on the periodic solution due to relative timescale
value is available in Fig. 6. Dencity of strategyC and public goods ultimately oscillate
in cycles as time changes and the periodic solution is stable. The Hopf bifurcation
appears when ε = ε∗ corresponding to the information expressed in Fig. 4d. The
parameters ε and a0 for Fig. 6a and b are taken from the stable interval in Fig. 5.
Figure6a and b illustrate the stabilization of system (2.3) at E∗−. A Hopf bifurcation
occurs at a0 = 4.2905. System (2.4) is stable at E∗− when a0 ∈ (0, 4.2905). Once the
payoff when the cooperators encounter each other exceeds its threshold, E∗− becomes
unstable, and stable periodic solutions emerge. The transition of stability due to the
change of b0 is demonstrated in Fig. 5c. The system is stable at E1(0, 0) when b0
lies in interval (0, 1). As b0 increases, the system is stable at the internal equilibrium
E∗−. Then, E∗− becomes unstable, and periodic solutions appear when b0 > 6.6.
Figure5d and e inspect the effects of cooperation costs σ0 and σ1 on the evolution
of cooperators and public goods. The transcritical bifurcation emerges at σ0 = 1.3,
which allows d0 = b0 to hold, thus verifying Theorem 3.2(I). Unsurprisingly, raising
the cost of cooperative strategies discourages individuals from choosing to cooperate.
In Fig. 5f, changes in N lead to multiple shifts in stability. Periodic solutions appear
near the internal equilibrium E∗− if N < 1.9225. When N exceeds its threshold, the
stability of the internal equilibrium E∗− changes, transitioning from unstable to stable.
After N = 4.7079, the stability shifts once more, from the internal equilibrium E∗−
being stable to E2 being stable.

We next scrutinize the combined effect of the two parameters on the eco-
evolutionary outcome. In Fig. 7, the shades of color indicate the evolutionary outcome
of strategy C and public goods, forming heat maps. We compare the effects of the
poverty and richness payoff matrices on evolution in Fig. 7a–l. We explore the far-
reaching implications of the different payoffs when cooperators encounter each other
in barren and abundant public goods settings as shown in Fig. 7a–d. If the coopera-
tors meet in a poverty public goods, then the increase in the payoff for cooperators
is conducive to the evolution of the cooperators in a positive direction. However, the
increase in the density of cooperators is relatively slight. Surprisingly, a1 causes the
huge transition of the densities, regardless of the size of a0. In other words, when play-
ers employing strategy C meet in an abundance of public goods, the higher payoffs
contribute to populations filledwith cooperators.We discover that changes in a1 have a
more significant and more profound impact on the evolution of cooperators and public
goods than does a0. The region III of the first row of Fig. 7 shows relatively significant
differences in densities between (a) and (b), (c) and (d) meaning that the amplitude
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Fig. 7 Evolutionary outcomes of cooperative strategies and public goods induced by two-dimensional
parameters. a–d,m–t Stable E∗−, stable E2, and unstable E

∗− are located in regions I, II, and III, respectively.
e–h Stable E1, stable E∗−, and unstable E∗− are located in regions I, II, and III, respectively. i, j The stable
E2 and E∗− are located in regions I and II, respectively. k, l The stable E∗− and E1 are located in regions
I and II, respectively. Note that periodic solutions occur in Region III. Region III in the first and second
columns represents themaximum andminimum values for the density of strategyC , respectively. Region III
in the third and fourth columns denotes the maximum and minimum values for public goods, respectively.
Parameters are taken from Fig. 2c (color figure online)
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Fig. 8 Turing–Hopf bifurcation
diagram in the plane ε-β. The
Turing–Hopf bifurcation occurs
at the black point
(β∗, ε∗∗) = (2.476, 0.762)
(color figure online)

of the oscillations in the density of cooperators and the concentration of public goods
is substantial, and this property is also revealed in Figs. 5b and 6e. A large a0 and an
intermediate value of a1 allow cooperators, defectors, and public goods to vary within
a specific range.

Figure 7e–h compares the effects of cooperators’ payoffs on the strategies selected
by players and the evolution of public goods in barren and rich environments when
cooperators and defectors encounter each other. When b1 is small, an increase in b0
favors strategy C to dominate. Unexpectedly, when b1 is big reducing the value of b0
stimulates the players to choose the cooperative strategy. Similar to before, in region III
of the second row of Fig. 7, system (2.3) oscillates around E∗−, which gives defectors
the possibility to occupy the population. A big b1 is always beneficial for cooperators
and public goods, regardless of the size of b0. When cooperators and defectors meet,
the high payoffs of cooperators always contribute positively to strategy C in a rich
environment. In contrast, the high payoffs for cooperators in poor environments have
sometimes been detrimental to the continuation of strategy C . The reason for this
phenomenon is that the abundance of the public goods exceeds the δ, and the payoff
matrix of the poor public goods plays a negative role, in which case individuals receive
lower payoffs in favor of survival.

To probe the effect of defectors’ payoffs on the evolution of players and public
goods when defectors encounter cooperators and defectors, respectively we plot heat
maps for c0 and c1, d0 and d1 in Fig. 7i–l. In Fig. 7i and j, it can be observed that small
c0 and c1 enable a high density of cooperators in the population. Under this scenario,
defectors are extinct, and public goods are supremely abundant. If c1 is small, the
density of strategy C first remains at its highest level as c0 increases. Once the switch
from region I to region II is made, then increasing c0 causes the density of strategy
C to decrease. Similarly, when c0 is small, increasing the value of c1 within a small
range does not affect the absolute dominance of strategy C . Increasing c1 will only
hurt the cooperators and the public goods once conversion from region I to region II
has taken place.
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An attractive phenomenon appears in Fig. 7k and l. When d1 is small, an increase
in d0 within a specific range is advantageous for cooperators and public goods, but
an excessive increase in d0 is counterproductive, causing the cooperators to become
extinct and the public goods to be depleted. When d1 is big, decreasing d0 provides
a relatively small benefit to both cooperators and public goods. This illustrates that
cooperators depend more on small d0. Figure7k and l also indicate that cooperators
and public goods prefer small d1. Abundant public goods amplify changes in the fitness
of cooperators and defectors caused by changes in payoffs. The replicator equation is
distinguished by the fact that strategies with higher fitness are popular with players
in the population. In Fig. 7a–l, the color changes more dramatically in the vertical
direction than in the horizontal direction. Therefore, the evolutionary outcomes of
strategies and public goods are more sensitive to players’ payoffs under rich public
goods than under poor public goods conditions.

The transformation from the region I to region II in Fig. 7m–p discloses that an
increase in the consumption rate of public goods increases the likelihood of survival of
cooperators. When k is small, the fascinating phenomenon emerges that increase in β

does not favor the dominance of cooperators. Unsurprisingly, reducing consumption
rates and increasing maximum productivity can enrich public goods. Those figures
also illustrate that the dominance of cooperators not necessarily leads to abundant
public goods.

In Fig. 7q–t, when δ is small the increase in the density of players involved in
the game brings a minor benefit for the cooperators. When δ is large, this correlation
becomesmore pronounced.When δ is big, increasing the player density benefits coop-
eration and makes the public goods more barren. In addition, we note an interesting
phenomenon in region II, the size of delta after fixing the density of participants in the
game does not affect the evolution of cooperators and public goods.

4 Dynamics of Diffusion System (2.4)

In this section, we explore relevant properties of diffusion system (2.4), such as local
stability, Turing instability, Hopf bifurcation, and Turing–Hopf Bifurcation.

4.1 Local Stability

Denote b∗∗
0 = η1(1−2u∗m∗)−η2

δN + 2u∗η3
N − η3 + d0 and b̂0 = 1

u∗+N

[
u∗η2 − N (d1 − b1

−d0)]. For system (2.4), we summarize the stability of steady states E1(0, 0),
E2(N ,

β
k(α+N )

), and E∗−(u∗−,m∗−) using the following theorem.

Theorem 4.1 (I) The steady state E1(0, 0) is spatially stable if d0 > b0; while
E1(0, 0) is spatially unstable if d0 < b0.

(II) The steady state E2(N ,
β

k(α+N )
) is spatially stable if δ(c0 −a0) <

β(η1+η2)
k(N+α)

; while

E2(N ,
β

k(α+N )
) is spatially unstable if δ(c0 − a0) >

β(η1+η2)
k(N+α)

.
(III) The steady state E∗−(u∗−,m∗−) is spatially stable if b0 > max{b∗

0, b
∗∗
0 } or b∗∗

0 <

b0 < b̂0.
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Fig. 9 Evolution of cooperators and public goods over time t and space x . The solution tends to E∗− when
ε = 1 > ε∗∗ = 0.7603. The initial densities and parameters are u(x, 0) = 0.4381 + 0.01sinx , and
m(x, 0) = 1.3642 + 0.01sinx , and ε = 1, a0 = 2.9, a1 = 3, b0 = 2.3, b1 = 1, c0 = 0.1, c1 = 2, d0 = 1,
d1 = 2 δ = 2, β = 2.5, α = 0.9, k = 0.2, N = 3, du = 2, dm = 3 (color figure online)

Proof See “Appendix D”. ��

4.2 Turing Instability

Next, we derive the conditions for Turing instability. According to “Appendix E”, we
obtain Theorem 4.2 as follows.

Theorem 4.2 Suppose ε > ε∗ and b0 > b∗
0 . If

dm
du

> φ1, then the Turing instability
driven by diffusion appears near the steady state E∗−(u∗−,m∗−).

Theorem 4.2 reveals that the diffusion ratio (dm : du) of public goods and cooperators
is decisive for whether Turing instability occurs. Smaller diffusion ratios do not affect
the stability of the steady state E∗−(u∗−,m∗−), while larger diffusion ratios destabilize
the steady state E∗−(u∗−,m∗−), and Turing instability arises.

4.3 Hopf Bifurcation

The diffusion system (2.4) undergoes a Hopf bifurcation as described in Theorem 4.3
below.

Theorem 4.3 The diffusion system (2.4) undergoes Hopf bifurcation at ε = ε∗∗ if

ε∗∗ >
j∗11dm
Nkdu

and b0 > b∗
0 .

Remark. The periodic solution is spatially homogeneous if n = 0. The periodic solu-
tion is spatially non-homogeneous if n 
= 0.

Proof See “Appendix F”. ��
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Fig. 10 Evolution of cooperators and public goods over time t and space x . The stable time-periodic solution
appears when ε = 0.35 < ε∗∗ = 0.7603 (color figure online)

Fig. 11 Evolution of cooperators and public goods over time t and space x . Unstable spatially non-
homogeneous periodic solution emerges (color figure online)

4.4 Turing–Hopf Bifurcation

Next, we explore the existence of the Turing–Hopf bifurcation. According to
“Appendix G”, we obtain Theorem 4.4 as follows.

Theorem 4.4 Suppose that du < d̂u and η2 <
η1u∗−
N , then system (2.4) undergoes a

Turing–Hopf bifurcation at point (β, ε) = (β∗, ε∗∗).
Figs. 8, 9, 10 and 11 illustrate Turing–Hopf bifurcation, whose conditions are formu-
lated in Theorem 4.4. The parameters for those figures are chosen from Fig. 2c to
allow the comparison between the temporal and diffusion systems and to explore the
impact of diffusion on the evolution of cooperation. Table 2 provides a summary of
the conditions that lead to steady states stability and the emergence of Turing–Hopf
bifurcations. In Figs. 5a and 12, Hopf bifurcations occur at ε∗ and ε∗∗, respectively,
meaning that the spatially diffusive system (2.4) has an earlier Hopf bifurcation than
the non-diffusive system (2.3).
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Fig. 12 The dependence of cooperative strategies and public goods in system (2.4) on parameter ε. Hopf
bifurcation appears when ε = ε∗∗ = 0.7603 (color figure online)

The Turing and Hopf bifurcation curves depicted in Fig. 8 divide the plain into four
regions. Figure9 illustrates that if parameters of system (2.4) correspond to region
I of Fig. 8, solution eventually converges to stable state E∗−, which indicates that
the stability of the constant steady state E∗− is not affected by ε when ε > ε∗∗. If
parameters of the system (2.4) belong to region II of Fig. 8, the stable time-periodic
solution emerges as depicted in Fig. 10. The values of parameters belonging to region
III meet the requirements stated in Theorem 4.4. Hence, E∗− is Turing–Hopf unstable,
and unstable spatially heterogeneous periodic solutions appear, as shown in Fig. 11.

5 Pattern Formation and Chaos

In this section, we further investigate the effects of parameters and diffusion coeffi-
cients on the spatial distribution of players and public goods. Figures13, 14, 15, 16, 17
and 20 contain stationary and chaotic patterns, with the spatial patterns of cooperators
and public goods evolving over time, showing various spatial distributions. To enable
comparison the evolution of cooperation in well-mixed and heterogeneous environ-
ments, the parameters in Figs. 13, 14, 15, 16, 17, 18, 19, 20, 21 and 22 are chosen
from Fig. 2c.

5.1 Pattern Formation Due to Relative Timescale

The different values of the time scale ε bring about several Turing patterns. In the
first column of Fig. 13, when public goods evolve slower than strategies (ε < 1),
the cooperators mainly cluster at the circular closed stripes, and a few are located in
the vicinity of the circular closed stripes in the form of spots or short stripes. The
predominance of cooperators at the higher abundance of public goods indicates that
the abundance of public goods helps cooperators to survive and reproduce. The shape
of the spatial distribution of public goods is relatively similar to that of the spatial
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Fig. 13 Spatial distribution of cooperators and public goods with ε = 0.8 (column I), ε = 1 (column II),
and ε = 1.5 (column III). The initial heterogeneous perturbation u(x, y, 0) = u� + 0.01cos 2πx

200 cos
2π y
200 ,

m(x, y, 0) = m� + 0.01cos 2πx
200 cos

2π y
200 is performed on the homogeneous steady state (u�,m�), with

the spatial domain [0, 200] × [0, 200]. All parameters are taken from Fig. 2c except for those mentioned
deliberately and those shown in the figures. The values of the diffusion coefficients du and dm are 0.1 and
3, respectively (color figure online)

distribution of cooperators, both showing circular closed stripes, the difference being
that the density of public goods is not consistent, compared to that of cooperators. It
illustrates that cooperators do not require extremely high densities of public goods and
that as long as public goods are not particularly scarce, there is hope for cooperators
to survive. As shown in the second column of Fig. 13, increasing the evolution rate of
public goods to that of strategies (ε = 1) results in a shift in the spatial distribution
of cooperators from circular stripes to scattered spots and short stripes. In this case,
cooperators are less capable of aggregating than they are under conditions of slow
public goods evolution rate. Further increasing of the evolution rate of public goods
makes it faster than the speed of the game (ε > 1). The third column of Fig. 13
illustrates, that high relative timescale value brings about a sparser distribution of
cooperators and public goods. Thus, large time scales are not conducive to the density
of cooperators and public goods. For the temporal system, we know that increasing the
timescale does not affect the evolutionary outcomewhen the relative timescale exceeds
its threshold value. However, increasing the value of the relative timescale decreases
the cohesion and survival chances of the cooperators, for the diffusion system.

5.2 Pattern Formation Due to Density of Players

We now explore the effect of the total density of players N on the Turing pattern of
cooperators and public goods. For the two-player game in column I of Fig. 14, some
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Fig. 14 Spatial distribution of cooperators and public goods with N = 2 (column I), N = 4 (column II), and
N = 5 (column III). Note that additional parameters and initial values of Figs. 14, 15, 16, 17, 18, 19, 20, 21
and 22 are taken from Fig. 13 (color figure online)

cooperators gather in solid circles in the formof speckles,while others disperse in other
areas. Column II of Fig. 13 reflects a three-player game with the same parameters.
In this case, the solid circle dissipates, and the short streak form of the cooperator
increases. Further increasing the density of participants in the game, the cooperators
are still mixed patterns of short stripes and spots, the difference being that the density
of cooperators increases after the shift from the second column of Fig. 13 to the second
column of Fig. 14. When the density of participants playing the game in the unit area
increases again, the cooperators form a maze pattern through the long stripe as shown
in the third column of Fig. 14. Thus, increasing the density of participants in the game
favors cooperators and public goods density, causing cooperators to get closer together
and form a long stripe pattern.

5.3 Pattern Formation Due to Spatial Diffusion

Diffusion disrupts the homogeneous distribution of cooperators and public goods in
space and induces Turing patterns, manifested in aggregating cooperators and pub-
lic goods into spots and stripes showing heterogeneous density spatial distribution.
We next investigate the influence of diffusion coefficients du and dm on the Turing
patterns. The different diffusion coefficients of cooperators create fascinating spatial
distributions. If the conditions b0 > b∗

0, ε > ε∗, and dm
du

> φ1 in Theorem 4.2 are
satisfied, the Turing patterns appear as shown in Fig. 15. In Fig. 15a, the coopera-
tors spontaneously gather in the thick stripes. As du changes, the coarse stripes are
reduced and supplanted by fine stripes and spots. Further increasing the value of du ,
we obtained Fig. 15c, containing circles and rectangles. On this occasion, the distance
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Fig. 15 Spatial distribution of cooperators and public goods with du = 0.03 (column I), du = 0.08 (column
II), and du = 0.15 (column III). The value of dm is 3 (color figure online)

between the cooperators is further increased, the stripes are further thinned, and the
spatial domain occupied by the spots becomes wider. Thus, increasing du makes the
density of cooperators lower. The growing thinness of the stripes and the decentral-
ization of the cooperators increases the chances of contact between cooperators and
defectors, which allows defectors to deceive cooperators more easily. Therefore, the
stronger the proliferation ability of cooperators, the weaker the cohesion of coopera-
tors, which suppresses players’ enthusiasm to choose strategyC and increases the risk
of cooperators’ extinction. Moreover, public goods gradually decrease, and the harsh
survival environment further exacerbates the players’ hesitancy to choose cooperative
strategies.

The spatial diffusion of public goods stimulates multiple patterns of populations
and has a distinguishing impact on the sustainability of cooperation. If inequality
dm
du

> φ1 in Theorem 4.2 holds, the Turing instability appears as shown in Fig. 16.
Figure16 considers the impact of the diffusion rate dm of public goods on the spatial
distribution of cooperators and public goods through the Turing pattern. In Fig. 16a,
cooperators are loosely distributed and not sufficiently cohesive. Cooperators prefer
coarse striped morphological distribution as the diffusion coefficient of public goods
rises, as shown in Fig. 16b. The further increasing in diffusion rate of public goods
allows for an increased density and cohesiveness of cooperators as shown in Fig. 16c.
Therefore, the increase in the diffusion rate of public goods assists players in adopting
cooperative strategies. Interestingly, the distribution of public goods and cooperators
form a similar overall profile except for the different intensities. Adequate public
goods attract cooperators, who produce public goods, which further increases the
level of public goods density, and then a suitable living environment is conducive to
the reproduction of cooperators. Public goods and cooperators promote each other for
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Fig. 16 Spatial distribution of cooperators and public goods with dm = 2 (column I), dm = 2.5 (column
II), and dm = 4 (column III). The value of du is 0.1 (color figure online)

mutual benefit. The diffusion rates of public goods and cooperators affect not only the
development of patterns but also the strategies employed by the players, thus affecting
the sustainability of the population.

5.4 Pattern Formation and Chaos Due to Payoffs

Figures 17 and 20 depict the effects of payoffs a0 and a1 on the spatio-temporal dynam-
ics of the cooperators, respectively. They reveal chaotic spatial patterns of cooperators,
mainly reflected in changing and chaotic spatial distributions over time and parame-
ters. Interestingly, the cooperators exhibit a regular centrosymmetric and axisymmetric
distribution in the early stages of evolution, which can be seen in the first two rows
of Figs. 17 and 20. Mixed distributions of chaotic patterns occur in the later stages of
evolution (the last two rows of Figs. 17 and 20). The tendency towards chaos is almost
unaffected by the changes in parameter values, with two exceptions. An intermedi-
ate value of a1 results in earlier chaos formation, whereas a large value of a1 leads to
defectors’ extinction, resulting in no chaotic patterns. Stationary patterns emerge in the
second columnof Fig. 13, and the distribution of cooperative behavior in space remains
unchanged after some time. Increasing the value of a0 yields Fig. 17, which shows the
chaotic patterns. The transition from the second column of Figs. 13, 14, 15, 16 and 17
suggests that the increase in a0 causes uncertainty in the evolutionary outcome of the
cooperators. In general, an increase in a0 benefits cooperators after a certain time of
evolution by encouraging them to gather together and increasing the chances of sur-
vival of cooperative clusters. The same, but more pronounced effect is observed due
to an increase in a1. Thus, the evolutionary outcomes of strategies and public goods
are more sensitive to players’ payoffs under abundant public goods conditions than
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Fig. 17 Spatial distribution of cooperators at times t = 500 (row I), t = 1000 (row II), t = 10000 (row
III), and t = 50000 (row IV) with a0 = 3.1 (column I), a0 = 3.5 (column II), and a0 = 4.2 (column III)
(color figure online)

under scarce conditions. For the diffusion system (2.4), it is intriguing that a0 takes
values from the stable interval of the non-diffusion system (2.3). However, unlike the
non-diffusion system, the diffusion system exhibits heterogeneous distributions con-
taining stationary and chaotic patterns, as shown in Fig. 17 and column II of Fig. 13.
Therefore, comparing the diffusion system with the non-diffusion system, diffusion
coefficients induce stationary and chaotic patterns for the cooperators.
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Fig. 18 The chaotic behavior occurs at position (100,100) with a0 = 3.1 (color figure online)

Fig. 19 The chaos induced by a0 at position (100,100). The blue part indicates that system (2.4) is spatially
stable. The red part indicates that chaos appears in system (2.4) (color figure online)

To show the appearance of chaotic behavior in system (2.4) due to a0 we plot
Fig. 18. In Fig. 18a and b, the cooperators and public goods evolve over time with
irregular oscillations, which manifest the emergence of chaos. Notice that the value of
cooperators is equal to zero in some cases, whichmeans that cooperators sometimes go
extinct, but not all the time. The value of the public goods is always greater than zero,
demonstrating that the public goods supply is never interrupted in the population. In
Fig. 18c, the phase trajectory eventually does not stabilize at a point or limit cycle but
keeps evolving haphazardly, reflecting chaos. Cooperators and public goods transform
from spatial stability to chaos as a0 changes as shown in Fig. 19. When the value of
a0 is taken from the interval corresponding to the blue part in Fig. 19, system (2.4)
is spatially stable at E∗−. Under this scenario, the density of cooperators and public
goods concentration increase with a0, suggesting that increasing the value of a0 assists
the cooperators, similar to the role of a0 in the non-diffusion system (2.3) shown in
Fig. 5b. Unlike the non-diffusion system, the diffusion system develops fascinating
chaotic dynamicswhena0 exceeds a certain threshold. The parameter values inFigs. 17
and 18 are chosen from the red chaotic interval of Fig. 19. Under these circumstances,
both cooperators and defectors have the opportunity to dominate parts of the area, and
public goods remain in supply.
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Fig. 20 Spatial distribution of cooperators at times t = 500 ( row I), t = 1000 (row II), t = 10,000 (row
III), and t = 50,000 (row IV) with a1 = 3.1 (column I), a1 = 3.5 (column II), and a1 = 4.2 (column III)
(color figure online)

The coexistence of the chaotic and homogeneous patterns captures the effect of the
payoff a1 on the spatial distribution of cooperators when they meet in high-density
public goods. The location where the spots and hills are located is favored by the
cooperators in Fig. 20a. The spots and hills disappear, and the hollow forked symbol
pattern appears in the middle of evolution. The first two subplots in the first column
are centrosymmetric and axially symmetric, which explains the regularity of the dis-
tribution of cooperators during their early evolution. After a period of evolution, the
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Fig. 21 The chaotic behavior occurs at position (100, 100) with a1 = 3.5 (color figure online)

Fig. 22 The chaos induced by a1 at position (100, 100). The blue part indicates that system (2.4) is spatially
stable. The red part indicates that chaos appears in system (2.4) (color figure online)

spatial distribution of cooperators shows irregular mixed patterns of stripes and spots
in Fig. 20g and j. The second column is obtained by increasing the value of a1 in
the first column. Unsurprisingly, the maximum level of cooperator density increases
with an increase of a1. Surprisingly, the symmetrical pattern does not appear but
rather a chaotic pattern in mid-evolution, demonstrating that the increase in a1 leads
to an accelerated cooperative irregularity. Further increasing in a1 leads cooperators
to evolve from a heterogeneous initial state to homogeneity. In this case, the density of
defectors is zero, and cooperators occupy the entire population. When a1 is relatively
small, the cooperators and defectors end up with a statically heterogeneous distribu-
tion in space, as shown in column II of Fig. 13. Under the circumstances, small a1
brings stable heterogeneous distributions.Moderate a1 leads to chaotic patterns, which
exposes cooperators to uncertain environments and challenges cooperative behavior.
Further increasing a1 allows only cooperative behavior in the population, in which it
is in the best interest for cooperators to be protected from the risk of being cheated by
defectors.

The time series of cooperators and public goods in Fig. 21 exhibit disorderly oscilla-
tions, reflecting the chaotic dynamics that happen in system (2.4). The erratic advance
of the phase trajectory indicates the presence of chaos. Figure22 presents the inter-
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Fig. 23 Dependence of cooperators’ and public goods’ densities in system (2.4) on different parameters. The
magenta and red curves indicate the spatially averaged density of cooperators and public goods, respectively
(color figure online)

conversion of system (2.4) between spatially stable and chaotic states due to a1. The
blue and red parts correspond to spatial stability and spatial-temporal chaos states,
respectively. System (2.4) is spatially stable at E∗− when a1 corresponds to the first
blue interval. Increasing the value of a1 within this interval promotes the prosperity
of cooperators. When a1 exceeds the upper limit of the interval, the diffusion sys-
tem changes from spatial stability to chaos, which is consistent with the phenomena
depicted in Figs. 20 and 21. In this case, the values of the cooperators transform
irregularly between zero and N , which allows the pure cooperators to occupy certain
regions. The system turns spatially stable when a1 corresponds to the second blue
interval, in which case defectors become extinct, and cooperators occupy the entire
population. Once a1 reaches the red part again, the diffusion system (2.4) switches
from spatial stability to chaos. Regardless of whether the diffusion system is spatially
stable or chaotic, the density of public goods is always greater than zero, and therefore
public goods are continuously supplied.

We restrict the parameters to the same range and explore their sensitivity by exam-
ining how the average density of the spatial distribution for cooperators and public
goods changes with these parameters (see Fig. 23). Changing the values of the parame-
ters does not affect the spatially averaged density of the cooperators when b0 ∈ (0, 1),
σ0 ∈ (1.32, 3), ε ∈ (1.44, 3), du ∈ (0.17, 3), and dm ∈ (0, 2.08). We observe that
increasing the benefit of cooperators, the diffusion rate of public goods, and player
density favor cooperation. In addition, decreasing the benefit of defectors, the cost
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of cooperation, the relative timescale, and the diffusion rate of cooperators can pro-
mote cooperation. The evolutionary outcome of the cooperators is sensitive to the
parameters b1, c1, d1 and ε.

6 Discussion

Eco-evolutionary game systems that involve mutual feedback between strategy and
environment frequently arise across different spheres of life. In ecology, one can
consider a model with two strategies, each of which leads to producing the pollutant
as a byproduct at different rates. Here the pollutant might be considered as a decaying
resource, affecting the environment (Tilman et al. 2020). In psychology, deliberative
and thoughtful decision-making can design an advantageously shared environment of
social norms and institutions, but in this new environment less costly, non-deliberative
decision-makingbenefits, forming cognition-environment feedback (Rand et al. 2017).
In biology, there is mutual feedback between strategies and public goods. In microbial
cooperation, public goods such as siderophores, enzymes, and biosurfactants (Smith
and Schuster 2019) produced by cooperators in microbial populations impact the
environment in which microbial populations live. Players in the microbial population
choosing cooperative strategies influence the density of public goods. The density
of public goods in turn affects the fitness of the strategies chosen by individuals in
the microbial population. Siderophores produced by cooperators help Pseudomonas
aeruginosa to scavenge iron in iron-depleted environments during quorum sensing
(Diggle et al. 2007). Defectors utilize siderophores by deception.

However, research on eco-evolutionary game systemswith spatial diffusion remains
scarce. We aim to investigate cooperative strategy and public goods dynamics in the
eco-evolutionary game with environmental feedback under well-mixed and hetero-
geneous environmental conditions. The focus of this work is on linear two-strategy
eco-evolutionary games in which actors can adopt one of two strategies—a coopera-
tive strategy to extract the resources at a cost and a defective strategy only to consume
the same resource. Even this most straightforward form of evolutionary game enables
substantial analysis of the spatio-temporal evolutionary patterns of cooperation and
public goods distribution. Such kind of interaction can be demonstrated through exper-
imental competitions between isogenic respirer (cooperator) and respiro-fermenter
(cheater) yeast strains with alternative pathways of glucosemetabolism (MacLean and
Gudelj 2006). There is a significant difference between competition in a homogeneous
environment (glucose-limited chemostats) and in a spatially structured environment
(glucose-limited batch cultures), where competition results in the extinction of the
cooperators and stable coexistence of both yeast strains, respectively.

In this study, we propose two models. Our first model combines replicator and pub-
lic goods dynamics under well-mixed environment conditions (2.3), and the second
model is a heterogeneous model with spatial diffusion (2.4). In our models, the fitness
of cooperative and defecting strategies depends on two payoff matrices corresponding
to poor or abundant public goods conditions, current public goods concentration, and
δ. In the resulting systems, we account for such parameters as player density, relative
timescale, maximum productivity, the saturation parameter of production, and public
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goods consumption rate. As shown in Figs. 1, 2, 3, 4, 5, 6 and 7 for temporal system and
in Figs. 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 and 22 for diffusion system,
each of those parameters can have a strong effect on the game dynamics. Unlike the
multiscale analysis (Heggerud et al. 2020), we find that relative timescales can lead to
Hopf bifurcations in both mixed and heterogeneous environments. In this study, we
analyze the influence of each parameter and some pairs of parameters on the evolu-
tion of the system with fixed values of the remaining parameters, based on previous
works (Weitz et al. 2016; Tilman et al. 2020; Cheng et al. 2023). We also explore var-
ious dynamical properties of the obtained systems, including the existence and local
stability of equilibria, bistability, transcritical, and Hopf bifurcations in the temporal
system, and spatial stability, Turing instability, Hopf and Turing–Hopf bifurcations,
Turing patterns formation in the diffusion system. Hence, we provide a mathematical
approach and theoretical framework for exploring the spatio-temporal dynamics of
eco-evolutionary game systems from an ordinary and partial differential perspective.

The presence and stability of equilibria reveal diverse evolutionary outcomes of
cooperators and public goods, shedding light on the effectiveness of strategies and
the adequacy of public goods. Some previous experimental studies have focused on
identifying the factors that can benefit cooperators. It was shown that a higher initial
population density in batch cultures leads to a higher equilibrium frequency of yeast
cooperative strain (MacLean and Gudelj 2006). Using iron-scavenging siderophore
pyoverdine as a model public goods for the bacterium Pseudomonas aeruginosa in
different environments, it was observed that the most potent beneficial factor for
cooperators was the reduction of individual dispersal (Figueiredo et al. 2021). In
our investigation of the temporal and diffusion models, we found several factors that
positively influence cooperator density. Such factors turn to be the player density
(Figs. 4f, 7q–t, 14), decreasing the relative timescale (Figs. 4d, 5a, 12, 13), improving
the diffusion rate of the public goods (Fig. 16), and lowering the diffusion rate of
the cooperators (Fig. 15). However, for such multi-parameter systems, it is vital to
consider a combination of all the factors when predicting the impact on cooperation
and public goods dynamics. Typically, when more individuals work together towards
a common goal, the benefits that come from that shared effort are greater. Yet, it is
crucial to take all system parameters into account when examining the impact on the
cooperation and availability of public goods. Our model suggests that a greater density
of cooperators doesn’t necessarily result in greater public goods density. Specifically,
if the δ is significant, increasing players’ density benefits cooperators, simultaneously
making the public goods more barren (Fig. 7q–t). Also, if the consumption rate of
resources is large, cooperators dominate, but public goods remain scarce (Fig. 7m–p).

Studying the combined effects of payoffs taken from poverty and richness payoff
matrices, also provides some counterintuitive conclusions. Increasing the cooperator’s
payoff while encountering defectors should increase the cooperator’s likelihood of
survival. However, as shown in Fig. 7e–h, this trend might change at certain parameter
values. Similarly, increasing the defector’s payoff should improve their chances of
survival, but under certain conditions, raising the defector–defector payoff in a poor
public goods environment could benefit cooperators (Fig. 7k–l). In a diffusion system,
increasing already large cooperator–cooperator payoff under abundant public goods
conditions leads to a shift from the chaotic coexistence of cooperators and defectors
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to the dominance of cooperators. However, with a further increase of that payoff, the
chaotic pattern returns (Fig. 22). Moreover, the system’s bistability makes it crucial
to consider not just the parameters but also the initial state of the system for correct
predictions of its behavior. Figure3 illustrates how the system’s various initial states
can result in different evolutionary outcomes, ranging from cooperators’ dominance
to the coexistence of both strategies, or to the defectors’ dominance. Therefore, it is
essential to consider all factors and the initial state of the system combined in order
to obtain accurate results.

To make the analysis of such systems easier, we present theorems for both non-
diffusion and spatial diffusionmodels in this paper. These theorems provide conditions
for the existence and stability of equilibria, and the occurrence of transcritical, Hopf,
andTuring–Hopf bifurcations. Thus,weobtain amathematical framework for studying
the spatio-temporal dynamics of eco-evolutionary game systems with environmental
feedbackunderwell-mixed andheterogeneous environmental conditions. This theoret-
ical framework will help to accurately predict the dynamics of cooperation and public
goods distribution for ecological and biological systems where actors extract growth-
limiting resources from their surroundings. However, certain aspects require further
investigation. For instance, it would be of practical significance to investigate time
delays (Xu et al. 2018; Yuan andMeng 2022;Wang and Cheng 2016) and environmen-
tal fluctuations (Zhao et al. 2022) in evolutionary game systems with spatial diffusion.
Additionally, considering spatial diffusion within the context of multi-strategy games
(Duong and Han 2016a, b) or multi-games (Cheng and Meng 2023; Chowdhury et al.
2021b) would also be worth further study.

A Proof of Theorem 3.1

Proof (I) The Jacobian matrix for E1(0, 0) is

J1 =
(

δ(b0 − d0) 0
βε
α

−Nkε

)
.

The eigenvalues of J1 are δ(b0 − d0) and −Nkε < 0. E1 is stable when d0 > b0. On
the contrary, E1 is a saddle point when d0 < b0.
(II) The Jacobian matrix at E2(N ,

β
k(α+N )

) is calculated as

J2 =
(

δ(c0 − a0) − β(η1+η2)
k(N+α)

0
βαε

(N+α)2
−Nkε

)
.

The eigenvalues are δ(c0 − a0) − β(η1+η2)
k(N+α)

and −Nkε < 0. The sign of δ(c0 − a0) −
β(η1+η2)
k(N+α)

governs the stability of E2. E2 is stable if δ(c0 − a0) <
β(η1+η2)
k(N+α)

. E2 is a

saddle point when δ(c0 − a0) >
β(η1+η2)
k(N+α)

.
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(III) The Jacobian matrix corresponding to the positive equilibrium E∗−(u∗−,m∗−) is
given by

J ∗ =
(
j∗11 j∗12
j∗21 j∗22

)
,

where

j∗11 = u∗−
N 2

[
((η1 − η2)N − 2η1u

∗−)m∗− + δ((d0 − b0 − η3)N + 2η3u
∗−)

]
,

j∗12 = u∗−(N − u∗)
N 2 (η1u

∗− − Nη2), j∗21 = αβε

(u∗− + α)2
, j∗22 = −Nkε.

The characteristic equation is

λ2 − tr(J ∗)λ + det(J ∗) = 0, (A.1)

where tr(J ∗) = j∗11+ j∗22 and det(J ∗) = j∗11 j∗22− j∗21 j∗12. The stability of E∗−(u∗−,m∗−)

is determined by the signs of tr(J ∗) and det(J ∗). Some calculations reveal that
tr(J ∗) < 0 (resp. tr(J ∗) > 0) and det(J ∗) > 0 (resp. det(J ∗) < 0) when ε > ε∗
(resp. ε < ε∗) and b0 > b∗

0 (resp. b0 < b∗
0). Therefore, E

∗−(u∗,m∗) is stable if ε > ε∗
and b0 > b∗

0. If ε < ε∗ and b0 > b∗
0, then E∗−(u∗−,m∗−) is an unstable node or focus.

In other cases, E∗−(u∗−,m∗−) is a saddle point.
(IV) Note that the analytical procedure for the stability of equilibrium E∗+(u∗+,m∗+) is
similar to that for E∗−(u∗−,m∗−). We will not go into details here. This completes the
proof. ��

B Proof of Theorem 3.2 and Values of the Parameters

Proof The two expressions on the right-hand side of (2.3) are denoted K1 and K2,
respectively.
(I) d0 is selected as the bifurcation parameter.When d0 = b0, the eigenvalues regarding
J1 are zero and −kεN < 0. The eigenvectors of J1 and J T1 concerning zero are

L1 =
(

1
β

Nkα

)
, M1 =

(
1
0

)
.

Then, we have

Kd0(E1; b0) =
( u

N2 (N − u)2(m − δ)

0

)
(E1;b0)

=
(
0
0

)
,

DKd0(E1; b0)L1 =
(

3u2+N2−4uN
N2

u(u2+N2−2uN )

N2

0 0

)(
1
β

Nkα

)
(E1;b0)

=
(
1
0

)
,
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D2K (E1; b0)(L1, L1) =
⎛
⎝ K1uu + 2β

Nkα K1um + β2

(Nkα)2
K1mm

K2uu + 2β
Nkα K2um + β2

(Nkα)2
K2mm

⎞
⎠

(E1;b0)

=
(

2
N2kα

(δkα(3 − N )(c0 − a0) + βN (b1 − d1))

− 2εβ
α2

)
,

where

K1uu = 1

N 2 [−6η1um + 6δη3 − 2N (2η2 − η1 − η2)m + 2Nδ(d0 − b0 − η3)],

K1um = 1

N 2 [−3η1u
2 + 2N (2η2 − η1 − η2)u + N 2η2],

K1mm = 0, K2uu = −2εβα

(α + u)3
, K2um = K2mm = 0.

Thus,

MT
1 Kd0(E1; b0) = 0,

MT
1 DKd0(E1; b0)L1 = 1 
= 0,

MT
1 D2K (E1; b0)(L1, L1) = 2

N 2kα
(δkα(3 − N )(c0 − a0) + βN (b1 − d1)) 
= 0.

So we conclude that when d0 = b0, there is a transcritical bifurcation at E1(0, 0).
(II) For J2, the eigenvalues are −Nkε and zero when δ = δ∗ = β(a0−a1−c0+c1)

(a0−c0)(N+α)k . For

the eigenvalue zero, the eigenvectors of J2 and J T2 are given by

L2 =
(

1
βα

Nk(N+α)2

)
, M2 =

(
1
0

)
.

Further,

Kδ(E2; δ∗) =
( u(N−u)

N2 (−η3u − N (d0 − b0))
0

)
(E2;δ∗)

=
(
0
0

)
,

DKδ(E2; δ∗)L2 =
(

γ4 0
0 0

) (
1
βα

Nk(N+α)2

)
(E2;δ∗)

=
(
c0 − a0

0

)
,

D2K (E2; δ∗)(L2, L2) =
⎛
⎝ K1uu + 2βα

Nk(N+α)2
K1um + (βα)2

(Nk)2(N+α)4
K1mm

K2uu + 2βα

Nk(N+α)2
K2um + (βα)2

(Nk)2(N+α)4
K2mm

⎞
⎠

(E2;δ∗)

=
(

γ5

− 2εβα

(α+N )3

)
,
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Table 3 The values of the parameters

a0 a1 b0 b1 c0 c1 d0 d1 σ0 σ1 δ β α k N ε

(1) 2.9 4 0 1 0.1 2 1 2 0.02 0.01 2 2.5 0.9 0.2 3 1

(2) 2.9 3 2.3 1 0.1 2 1 2 0.02 0.01 2 2.5 0.9 0.2 3 1

(3) 2 3 2 5 1 6 5 2 0.02 0.01 7 5 0.9 0.2 2 1

(4) 2.1 3 2.1 1 0.1 2 2.2 2 0.02 0.01 2 2.5 0.9 0.2 3 1

The parameters of Figs. 1a–c, and 2a, b are taken from (1), (2), (3), and (4), respectively. The parameters of
Fig. 3a and b are chosen from (4) and (3), respectively. The parameters in the remaining figures are taken
from (2)

where

γ4 = 1

N 2 (3η3u
2 + 2N (d0 − b0 − η3)u − N 2(d0 − b0)),

γ5 = 2β

kN (α + N )
(−2η1 − η2) + −2β(η1 + η2)

(a0 − c0)(N + α)kN 2 (3η3 + N (d0 − b0 − η3))

+ 2βα

N 3k(N + α)2
(−7(η1 + η2) + 8η2).

Therefore,

MT
2 Kδ(E2; δ∗) = 0,

MT
2 DKδ(E2; δ∗)L2 = c0 − a0 
= 0,

MT
2 D2K (E2; δ∗)(L2, L2) = γ5 
= 0.

Consequently, a transcritical bifurcation appears at E2(N ,
β

k(α+N )
) when δ = δ∗.

(III) We know that tr(J ∗) = 0 and det(J ∗) > 0 if ε = ε∗ and b0 > b∗
0. When ε = ε∗,

λ11 = i
√
det(J ∗) and λ12 = −i

√
det(J ∗) are the pure imaginary roots of (A.1). From

(A.1), we deduce that

[
dReλ

dε

]
λ=λ11, ε=ε∗

= 1

2

[
d(tr(J ∗)

dε

]
ε=ε∗

= −Nk

2
< 0.

Thus, a Hopf bifurcation emerges near E∗−(u∗−,m∗−) if ε = ε∗ and b0 > b∗
0. This

completes the proof. ��
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C Proof of Theorem 3.3

Proof Let û = u − u∗ and m̂ = m − m∗. For convenience, û and m̂ are still denoted
by u and m, respectively. Then system (2.3) is rewritten as

⎧⎪⎨
⎪⎩

du
dt = (u+u∗)

N2 (N − u − u∗)[(η1(u + u∗) + Nη2)(m + m∗)
−δ(η3(u + u∗) + N (d0 − b0))],

dm
dt = ε

(
β(u+u∗)
α+u+u∗ − kN (m + m∗)

)
.

(C.1)

Applying the Taylor expansion, system (C.1) becomes

(
ut
mt

)
= J ∗

(
u
m

)
+

(
g(u,m, ε)

h(u,m, ε)

)
. (C.2)

For the nonlinear terms g(u,m, ε) and h(u,m, ε) are given by

g(u,m, ε) = g1u
2 + g2um + g3u

3 + g4u
2m + · · · ,

h(u,m, ε) = h1u
2 + h2u

3 + · · · ,

where

g1 = 1

N 2

(
3δη3u

∗ − N (η2 − η1)u
∗m∗ − 3η1u

∗m∗ + Nδ(d0 − b0 − η3)
)
,

g2 = 1

N 2 (N 2η2 − 3η1u
∗2 − 2N (η2 − η1)u

∗),

g3 = 1

N 2 (δη3 − η1m
∗), g4 = 1

N 2 (N (η1 − η2) − 3η1u
∗),

h1 = − εβ

(α + u∗)3
, h2 = εβ

(α + u∗)4
.

The characteristic roots of J ∗ are denoted as λ13 = ϕ + iρ and λ14 = ϕ − iρ, where

ϕ = tr(J∗)
2 and ρ =

√
det(J ∗) −

(
tr(J∗)

2

)2
. When 4det(J ∗) > tr2(J ∗), λ13 and λ14

are conjugate complexes. In particular, λ13 = iρ and λ14 = −iρ are pure imaginary
numbers when ε = ε∗. Then the eigenvector of J ∗ about λ13 = ϕ + iρ is

θ =
(

1
θ1 − iθ2

)
,

where θ1 = ϕ− j∗11
j∗12

and θ2 = − ρ
j∗12
.

Let

� =
(

1 0
θ1 θ2

)
.
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By the following conversion,

(
u
m

)
= �

(
s
z

)
,

system (C.2) yields

( ds
dt
dz
dt

)
=

(
ϕ −ρ

ρ ϕ

) (
s
z

)
+

(
P(s, z)
Q(s, z)

)
, (C.3)

where

P(s, z) = p1s
2 + p2sz + p3s

3 + p4s
2z + · · · ,

Q(s, z) = h1s
2 + h2s

3 + · · · ,

with

p1 = g1 + g2θ1, p2 = g2θ2, p3 = g3 + g4θ1, p4 = g4θ2.

We formulate system (C.3) in polar form as follows

⎧⎪⎨
⎪⎩

dr0
dt

= ϕ(ε)r0 + S1(ε)r
3
0 + · · · ,

dθ0

dt
= ρ(ε) + S2(ε)r

2
0 + · · · .

(C.4)

If ε = ε∗, by the Taylor expansion, (C.4) leads to

⎧⎪⎨
⎪⎩

dr0
dt

= ϕ′(ε∗)(ε − ε∗)r0 + S1(ε
∗)r30 + · · · ,

dθ0

dt
= ρ(ε∗) + ρ′(ε∗)(ε − ε∗) + S2(ε

∗)r20 + · · · .

We next explore the positivity and negativity for the coefficient S1(ε∗).

S1(ε
∗) = 1

16
[Psss + Pszz + Qssz + Qzzz] + 1

16ρ(ε∗)
[Psz(Pss + Pzz)

− Qsz(Qss + Qzz) − Pss Qss + PzzQzz]|(0,0,ε∗),

where

Psss(0, 0, ε
∗) = 6p3, Pszz(0, 0, ε

∗) = Qssz(0, 0, ε
∗) = Qzzz(0, 0, ε

∗) = 0,

Psz(0, 0, ε
∗) = p2, Pss(0, 0, ε

∗) = 2p1, Pzz(0, 0, ε
∗) = Qsz(0, 0, ε

∗) = 0,

Qss(0, 0, ε
∗) = − ε∗β

(α + u∗)3
, Qzz(0, 0, ε

∗) = 0.
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Clearly,

sgn

[
∂(Reϕ)

∂ε

]
ε=ε∗

< 0.

Denote ϒ = − S1(ε∗)
ϕ′(ε∗) . ��

D Proof of Theorem 4.1

Proof The equilibria E1(0, 0), E2(N ,
β

k(α+N )
), and E∗−(u∗−,m∗−) of the temporal

system (2.3) also satisfy spatial system (2.4). Define a two-dimensional domain

 : {x = (x, y)|0 < x < V , 0 < y < V } and its boundary ∂
 is a rectangle.
As is known the following spatial eigenvalue problem

⎧⎨
⎩

∇2G + n2G = 0, x ∈ 
,

∂G
∂λ

= 0, x ∈ ∂
,

has eigenfunctions

Gp,q = Fp,qcos
pπx

V
cos

qπ y

V
, n2 = π2

(
p2

V 2 + q2

V 2

)
,

where p and q are integers, x = (x, y), and Fp,q are Fourier coefficients. Linearizing
system (2.4) at arbitrary steady state E(u,m) yields

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂W
∂t

= ΓW := D1∇2W + J̄W, x ∈ 
,

∂W
∂υ

= 0, x ∈ ∂
,

W(x, 0) = W0(x), x ∈ 
,

(D.1)

where

J̄ =
(
j̄11 j̄12
j̄21 j̄22

)
, W =

(
ũ − u
m̃ − m

)
, D1 =

(
du 0
0 dm

)
,

with

j̄11 = 1

N 2

[
−3η1u

2m + 3δη3u
2 − 2N (η2 − η1)um + 2Nδ(d0 − b0 − η3)u

+N 2η2m + N 2δ(b0 − d0)
]
,

j̄12 = u(N − u)

N 2 (η1u − Nη2), j̄21 = αβε

(u + α)2
, j̄∗22 = −Nkε.
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Now search for solutions Gp,q(x, t) of (D.1) in the following form

Gp,q(x, t) =
∑
p,q

Fp,qe
λ(n2)tcos

pπx

V
cos

qπ y

V
. (D.2)

Substituting (D.2) into (D.1) yields

λ2 − Tr(n2)λ + Det(n2) = 0, (D.3)

where

Tr(n2) = −(du + dm)n2 + j̄11 + j̄22,

Det(n2) = dudmn
4 − ( j̄11dm + j̄22du)n

2 + j̄11 j̄22 − j̄12 j̄21.

(I) When E(u,m) = E1(0, 0), Eq. (D.3) has two eigenvalues λ1n = −dun2 + δ(b0 −
d0) and λ2n = −dmn2 − Nkε. We know that λ2n < 0 always is valid. Thus, the
stability of E1(0, 0) relies on λ1n . If d0 > b0, then λ1n < 0 holds for all n. However,
there exists n = 0 such that λ10 = b0 − d0 > 0 when d0 < b0. Therefore, E1(0, 0) is
spatially unstable when d0 < b0.
(II) When E(u,m) = E2(N ,

β
k(α+N )

), λ1n = −dmn2 − Nkε and λ2n = −dun2 +
δ(c0−a0)− β(η1+η2)

k(N+α)
are eigenvalues of (D.3). Clearly, λ1n < 0 holds for all n. Further,

λ2n < 0 is true for all n when δ(c0 − a0) <
β(η1+η2)
k(N+α)

. Conversely, there exists n = 0

such that λ2n = δ(c0 − a0) − β(η1+η2)
k(N+α)

> 0 when δ(c0 − a0) >
β(η1+η2)
k(N+α)

.

(III) When E(u,m) = E∗−(u∗−,m∗−), we have J̄ |E=E∗− = J ∗. It is clear that j∗21 =
αβε

(u∗+α)2
> 0 and j∗22 = −Nkε < 0. Easily known b0 > b∗∗

0 and b0 < b̂0 enable
j∗11 < 0 and j∗12 < 0 to hold, respectively. Therefore, if b0 > max{b∗

0, b
∗∗
0 } or

b∗∗
0 < b0 < b̂0, then Tr(n2) < 0 and Det(n2) > 0 are valid for all n, which implies
that E∗−(u∗−,m∗−) is spatially stable. This completes the proof. ��

E Proof of Theorem 4.2

Proof Following Theorem 3.1 (III), the positive equilibrium E∗−(u∗−,m∗−) for the non-
diffusive system (2.3) is stable when ε > ε∗ and b0 > b∗

0. Turing instability occurs
when the spatially steady state E∗−(u∗−,m∗−) for the diffusive system (2.4) loses sta-
bility due to small amplitude heterogeneous perturbations around E∗−(u∗−,m∗−) in a
two-dimensional square domain. Assuming ε > ε∗ and b0 > b∗

0, Tr(n
2) < 0 con-

stantly holds, so Turing instability is only possible in the case of Det(n2) < 0. For
convenience, define

�(n2) := Det(n2) = dudmn
4 − (

j∗11dm + j∗22du
)
n2 + j∗11 j∗22 − j∗12 j∗21. (E.1)
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Whenb0 > b∗
0, one knows that det(J

∗) = j∗11 j∗22− j∗12 j∗21 > 0. From (E.1),�(n2) < 0
has the possibility to hold when

χ(du, dm) = j∗11dm + j∗22du > 0.

Combining (E.1) with tr(J ∗) = j∗11 + j∗22 < 0, it is evident that du 
= dm and j∗11 and
j∗22 have opposite signs. One can see j∗11 > 0 since j∗22 < 0. We obtain j∗12 < 0 since
j∗11 > 0, j∗21 > 0, j∗22 < 0, and det(J ∗) = j∗11 j∗22 − j∗12 j∗21 > 0. The minimum value
of �(n2) at n2min is

min
n

�(n2) = j∗11 j∗22 − j∗12 j∗21 − ( j∗11dm + j22du)2

4dudm
,

where

n2min = j∗11dm + j∗22du
2dudm

.

From min
n

�(n2) = 0, we obtain

j∗11 j∗22 − j∗12 j∗21 = ( j∗11dm + j∗22du)2

4dudm
.

Let

�(du, dm) := ( j∗11dm + j22du)
2 − 4dudm( j∗11 j∗22 − j∗12 j∗21)

= j∗211 d2m + j∗222 d2u + 2dudm(2 j∗12 j∗21 − j∗11 j∗22).

Set φ = dm
du
, then

�(du, dm) = j∗211 φ2 + 2(2 j∗12 j∗21 − j∗11 j∗22)φ + j∗222 = 0.

According to χ(du, dm) = 0, we get

φ = − j∗22
j∗11

�= φ∗.

Since j∗12 < 0, j∗21 > 0 and det(J ∗) > 0, we have

4(2 j∗12 j∗21 − j∗11 j∗22)2 − 4 j∗211 j∗222 = 16 j21 j12( j
∗
12 j

∗
21 − j∗11 j∗22) > 0.

Thus the equation �(du, dm) = 0 has two positive roots as follows

φ1 =
j∗11 j∗22 − 2 j∗21 j∗12 +

√
(2 j∗21 j∗12 − j∗11 j∗22)2 − j∗211 j∗222

j∗211
,
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φ2 =
j∗11 j∗22 − 2 j∗21 j∗12 −

√
(2 j∗21 j∗12 − j∗11 j∗22)2 − j∗211 j∗222

j∗211
.

Easily one can get

0 < φ2 < φ∗ < φ1.

If φ = dm
du

> φ1, then min
n

�(n2) < 0 and χ(du, dm) > 0. Thus, E∗−(u∗−,m∗−) is

spatially unstable which suggests that Turing instability emerges. Denote dcm = φ1du ,
then the critical wavenumber is

n2c = j∗11dcm + j∗22du
2dudcm

.

��

F Proof of Theorem 4.3

Proof When Tr(n2) = 0 and Det(n2) > 0, (D.3) has pure imaginary roots. Take ε as
the bifurcation parameter and denote

ε∗∗ = − (du + dm)n2

Nk
+ ε∗.

If ε = ε∗∗, then Tr(n2) = 0. Letting ε = ε∗∗, it is clear that ε∗∗ >
j∗11dm
Nkdu

allows
[ j∗11dm + j∗22du]|ε=ε∗∗ < 0. It is known that b0 > b∗

0 leads to det(J
∗)|ε=ε∗∗ = j∗11 j∗22−

j∗21 j∗12 > 0. Therefore, Det(n2)|ε=ε∗∗ > 0 when ε∗∗ >
j∗11dm
Nkdu

and b0 > b∗
0.

From (D.3), we obtain

Re

(
dλ

dε

)
ε=ε∗∗

= −Nk

2

= 0.

The transversality condition is valid, so the Hopf bifurcation occurs at ε = ε∗∗. ��

G Proof of Theorem 4.4

Proof Let Det(n2) = 0, that is

dudmn
4 − ( j∗11dm − Nkεdu)n

2 − j∗11Nkε − j∗12αβε

(u + α)2
= 0. (G.1)

Denote d̂u = j∗11(dm+Nkε)
dm+Nkε . Clearly, the Turing bifurcation curve cannot interact with

the Hopf bifurcation curve ε = ε∗∗ when du > d̂u and η2 <
η1u∗−
N . If du < d̂u and
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η2 <
η1u∗−
N , then substituting ε = ε∗∗ into (G.1) yields

β(n) =
(
Nk j∗11ε∗∗ + ( j∗11dm − Nkduε∗∗)n2 − dudmn4

)
(u∗− + α)2

(− j∗11αε∗∗)
,

n ∈ [1, n∗], (G.2)

where

n∗ =
⎡
⎣Nkduε∗∗ − j∗11dm +

√
(Nkduε∗∗ − j∗11dm)2 + 4dudmNk j∗11ε∗∗

−2dudm

⎤
⎦ ,

and [·] represents the integer part function. Let

f (z) = Nk j∗11ε∗∗ + ( j∗11dm − Nkduε
∗∗)z − dudmz

2, z ∈ [1, n∗2].

One can see that f ′(z) ≥ 0 for z ≤ z∗ and f ′(z) < 0 for z > z∗, where

z∗ = j∗11dm − Nkduε∗∗

2dudm
.

Let

n∗ =
⎧⎨
⎩
1, if z∗ ≤ 1,
[√z∗], if β([√z∗] + 1) ≤ β([√z∗]), 1 <

√
z∗ < n∗,

[√z∗] + 1, if β([√z∗]) ≤ β([√z∗] + 1), 1 <
√
z∗ < n∗.

There exists n∗ ∈ [1, n∗] such that β∗ = β(n∗) = max
1≤n≤n∗ β(n). Therefore, system

(2.4) undergoes Turing–Hopf bifurcation at point

(β∗, ε∗∗) =
((

Nk j∗11ε∗∗ + ( j∗11dm − Nkduε∗∗)n2∗ − dudmn4∗
)
(u∗− + α)2

(− j∗11αε∗∗)
, ε∗∗

)
.

��
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