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Abstract

We examine a diffusive predator-prey model with a drift-feeding predator in open advective environ
ments. Our analysis reveals key insights: (i) When predator mortality is low, the stability of the semi-trivial 
steady state can shift at least twice as flow speed increases, regardless of predator diffusion; (ii) For inter
mediate mortality and low diffusion, stability transitions occur, but beyond a critical diffusion threshold, 
the steady state remains stable regardless of flow speed. Using bifurcation theory and auxiliary methods, 
we establish the existence and uniqueness of a positive steady state. Unlike previous studies suggesting in
creased flow speed harms population persistence, our results show it can sometimes promote predator-prey 
coexistence, highlighting the complex effects of advection on ecological dynamics.
© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Numerous organisms inhabit environments characterized by predominantly unidirectional 
flow, such as streams and rivers, which provide not only a foundation for the populations liv
ing there, but also many beneficial values and services [10]. The organisms living in such an 
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environment seek food and avoid being predated upon through random diffusion, while they are 
at risk of being swept downstream by the current and facing extinction. It was shown in [26] that 
the inhabitant can survive when their diffusion rate is in a certain intermediate range. Further 
investigations [20,29] indicate that for a single species model with logistic growth, the species 
can survive if and only if the flow speed is less than a critical flow speed. To explore how the 
joint effects of dispersal rate and flow speed alter competitive outcome for two species in advec
tive environments, many ecologists and mathematicians have been involved, and have achieved 
extensively excellent works [13,27,30,36].

A great many predator-prey systems also exist in advective environments. Hilker and Lewis 
[10] introduced a large number of predator-prey systems in streams and rivers. For some of 
these models, by traveling wave speed approximations, they distinguished the following flow 
speed scenarios: coexistence, persistence of prey only or predator only and extinction of both 
populations. Studies in [22] show that the specialist predator can invade successfully if both the 
predator mortality rate and the advection rate are sufficiently small. In addition, their numerical 
results show that the random dispersals of both populations favor the invasion of the specialist 
predator. The findings of [18] manifest significant differences between the specialist predator
prey system and the generalist predator-prey system in advective environments, including the 
evolution of the critical predation rates with respect to the flow speed ratio. Numerous related 
works have been devoted to some of its generalizations such as general boundary conditions 
and response functions. We refer interested readers to [11,21,23,31,28,33--35] and some of the 
references therein.

Most predators mentioned above move passively by flow speed. However, some predators 
are not pushed by flow speed but consume prey at a specific location, namely the drift-feeding 
predators. For example, many stream fish are drift-feeders, i.e., they hold fixed positions in the 
water current and feed on invertebrates that are drifting by. How do the drift-feeding predators 
invade the prey and form a persistence system? What are the differences between the dynamics 
of the traditional predator-prey models and the predator-prey models with drift-feeding? To ad
dress these questions, Hilker and Lewis [10] proposed a predator-prey model with a drift-feeding 
predator, where the functional response also depends on the water speed in addition to the prey 
population. The model can be described by the following reaction-diffusion-advection equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ñt = d1Ñxx − vÑx + rÑ
(︂

1 − Ñ

K

)︂
− 2devÑP̃ , 0 < x < 1, t > 0,

P̃t = d2P̃xx + (2devÑ − μ)P̃ , 0 < x < 1, t > 0,

d1Ñx(0, t) − vÑ(0, t) = Ñx(1, t) = 0, t > 0,

P̃x(0, t) = P̃x(1, t) = 0, t > 0,

Ñ(x,0) = Ñ0(x) ≥ 0, ≢ 0, 0 ≤ x ≤ 1,

P̃ (x,0) = P̃0(x) ≥ 0, ≢ 0, 0 ≤ x ≤ 1.

(1.1)

Herein Ñ = Ñ(x, t) and P̃ = P̃ (x, t) account for the population densities of the predator and 
prey in the bounded interval [0,1], respectively, at time t and position x, and are therefore as
sumed to be nonnegative with corresponding dispersal rates d1 and d2. The amount of prey eaten 
by a single predator per unit time is assumed to be 2devÑ , where d is the detection distance of 
predator per unit time, e is the capture success per prey, v > 0 is the velocity of drifting prey, and 
μ is the death rate of the predator. The prey species is assumed to satisfy Danckwert’s boundary 
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conditions, whereas the predator species is assumed to fulfill homogeneous Neumann boundary 
conditions.

Introduce the following changes of variable

N = r

K
Ñ, P = 2deP̃ , b = 2de

K

r
,

we obtain ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nt = d1Nxx − vNx + N(r − N) − vNP, 0 < x < 1, t > 0,

Pt = d2Pxx + (bvN − μ)P, 0 < x < 1, t > 0,

d1Nx(0, t) − vN(0, t) = Nx(1, t) = 0, t > 0,

Px(0, t) = Px(1, t) = 0, t > 0,

N(x,0) = r

K
Ñ0(x) ≥ 0, ≢ 0, 0 ≤ x ≤ 1,

P (x,0) = 2deP̃0(x) ≥ 0, ≢ 0, 0 ≤ x ≤ 1.

(1.2)

To understand the dynamics of model (1.2), we first collect some existing consequences of 
the single prey species model:

⎧⎪⎪⎨
⎪⎪⎩

Nt = d1Nxx − vNx + N(r − N), 0 < x < 1, t > 0,

d1Nx(0, t) − vN(0, t) = Nx(1, t) = 0, t > 0,

N(x,0) = r

K
Ñ0(x) ≥ 0, ≢ 0, 0 ≤ x ≤ 1.

(1.3)

It turns out that the dynamics of (1.3) is very closely relative to the following eigenvalue problem:

{︃
d1wxx − vwx + rw + σw = 0, 0 < x < 1,

d1wx(0) − vwx(0) = wx(1) = 0.
(1.4)

It is well known (see, e.g., [4,8]) that the eigenvalue problem (1.4) admits a principal eigenvalue, 
denoted as σ1. Moreover, it follows from [20, Lemma 2.2] that for fixed d1, r > 0, there exists a 
critical value v∗ = v∗(d1, r) ∈ (0,2

√
d1r) such that

⎧⎨
⎩

σ1(d1, v, r) < 0, if 0 ≤ v < v∗,
σ1(d1, v, r) = 0, if v = v∗,
σ1(d1, v, r) > 0, if v > v∗.

Therefore, for fixed d1 > 0, the following single equation [16,20,29]

{︃
d1Nxx − vNx + N(r − N) = 0, 0 < x < 1,

d1Nx(0) − vN(0) = 0, Nx(1) = 0
(1.5)

has a unique positive solution θv = θ(x, v) if 0 ≤ v < v∗, and only has zero solution provided that 
v ≥ v∗. We occasionally write θv as θv(x) to stress its dependence on spatial variable. Therefore, 
(1.2) has a semi-trivial steady state (θv,0) if 0 ≤ v < v∗, and a trivial steady state (0,0) provided 
that v ≥ v∗.
3 
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When the growth of the predator depends only on the prey and not on the flow speed (i.e., 
when the terms 2devÑ are replaced by 2deÑ ), one can utilize similar arguments to that of [22, 
Theorem 1.2] to conclude

Lemma 1.1. Suppose that d1, r > 0 are fixed and 0 < v < v∗. Then

(i) If 0 < μ < br , then there exists a critical value v̌ = v̌(μ) ∈ (0, v∗) such that for every d2 > 0, 
if 0 < v < v̌, then (θv,0) is unstable and (1.2) admits a unique positive steady state; while 
(θv,0) is locally asymptotically stable provided that v̌ < v < v∗.

(ii) If μ > br , then (θv,0) is locally asymptotically stable for all d2 > 0 and 0 < v < v∗.

In sharp contrast to the case where the growth of the predator depends only on the prey, it turns 
out that the dynamics of (1.1) is more complicated and should be characterized more delicately. 
The first main consequence of this paper is how (θv,0) changes its stability as d2 and v vary, 
which can be stated as follows:

Theorem 1.2. Suppose that d1, r > 0 are fixed and 0 < v < v∗. Then the following statements 
are true.

(i) If 0 < μ < b sup
v>0 

∫︁ 1
0 vθvdx, then for every d2 > 0, (θv,0) changes its stability at least twice 

as v varies from zero to v∗ (see Fig. 1.1).
(ii) If b sup

v>0 

∫︁ 1
0 vθvdx < μ < b sup

v>0 
vθv(1), then there exists a critical value d̂2 = d̂2(μ) > 0 such 

that if d2 > d̂2, then (θv,0) is locally asymptotically stable for every v ∈ (0, v∗); whereas if 
0 < d2 < d̂2, then (θv,0) changes its stability at least twice as v varies from zero to v∗ (see 
Fig. 1.2).

(iii) If μ > b sup
v>0 

vθv(1), then (θv,0) is locally asymptotically stable for every d2 > 0 and v ∈
(0, v∗).

Remark 1.3. Based on the stability conclusions of (θv,0) derived from Theorem 1.2, we shall 
make some appropriate hypotheses for subsequent bifurcation analysis.

(i) If 0 < μ < b sup
v>0 

∫︁ 1
0 vθvdx, then for every d2 > 0, the stability of (θv,0) changes at least 

twice, from stable to unstable, and thereafter from unstable to stable as v varies from small 
to large. Hence, we may assume that for every d2 > 0, there exist exactly two constants 
0 < v∗

1 < v∗
2 < v∗ such that λ1(v

∗
1) = λ1(v

∗
2) = 0 and ∂λ1

∂v (v∗
1) < 0, ∂λ1

∂v (v∗
2) > 0, where λ1 is 

the least eigenvalue of the eigenvalue problem (2.1).
(ii) If b sup

v>0 

∫︁ 1
0 vθvdx < μ < b sup

v>0 
vθv(1), then for every 0 < d2 < d̂2, the stability of (θv,0)

changes at least twice, from stable to unstable, and thereafter from unstable to stable as v
varies from small to large. Therefore, we may assume that for every 0 < d2 < d̂2, there exist 
exactly two numbers 0 < v∗

3 < v∗
4 < v∗ such that λ1(v

∗
3) = λ1(v

∗
4) = 0 and ∂λ1

∂v (v∗
3) < 0, 

∂λ1
∂v (v∗

4) > 0.
4 
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Fig. 1.1. Illustration the result of Theorem 1.2 (i), where v̄∗ and v̄∗ are the smallest and largest positive root of bvθv(1) =
μ, v∗ and v∗∗ are the smallest and largest positive root of b

∫︁ 1
0 vθvdx = μ, respectively.

Fig. 1.2. Explanation the consequences of Theorem 1.2 (ii), where v̄∗∗ and v̄∗∗ are the smallest and largest positive root 
of bvθv(1) = μ, respectively.

When the flow speed is taken as a central parameter, we can establish the existence and unique
ness of the positive steady state of system (1.2) for two different ranges of the predator’s death 
rate, respectively.

Theorem 1.4. Suppose that d1, r > 0 are fixed and 0 < v < v∗. Then the following results are 
valid.

(i) If 0 < μ < b sup
v>0 

∫︁ 1
0 vθvdx, then for every d2 > 0, there exist δi > 0 (i = 1,2) such that two 

branches of the steady states (N∗
i , P ∗

i ) to (1.2) bifurcate from (θv,0) at v = v∗
i , and they 

can be parameterized by v for the scopes v ∈ (v∗
1 , v∗

1 + δ1) ∪ (v∗
2 − δ2, v

∗
2), respectively. 

Moreover, the bifurcating solutions (N∗,P ∗) are locally stable for v ∈ (v∗, v∗ + δ1)∪ (v∗ −
i i 1 1 2

5 
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δ2, v
∗
2). Furthermore, the branches of the steady states to (1.2) bifurcating from (v∗

i , θv∗
i
,0)

are connected to each other. In addition, the bifurcation steady state to (1.2) is also unique.
(ii) If b sup

v>0 

∫︁ 1
0 vθvdx < μ < b sup

v>0 
vθv(1), then for every 0 < d2 < d̂2, there exist δi > 0 (i =

3,4) such that two branches of the steady states (N∗
i , P ∗

i ) to (1.2) bifurcate from (θv,0)

at v = v∗
i , and they can be parameterized by v for the scopes v ∈ (v∗

3 , v∗
3 + δ3) ∪ (v∗

4 −
δ4, v

∗
4), respectively. Moreover, the bifurcating solutions (N∗

i , P ∗
i ) are locally stable for v ∈

(v∗
3 , v∗

3 +δ3)∪ (v∗
4 −δ4, v

∗
4). In addition, the branches of the steady states to (1.2) bifurcating 

from (v∗
i , θv∗

i
,0) are connected to each other. Furthermore, the bifurcation steady state to 

(1.2) is unique as well.

When the dispersal rate of the predator is regarded as a central parameter, we derive the exis
tence and uniqueness of the positive steady state for system (1.2) under two different conditions 
of the predator’s death rate, respectively.

Theorem 1.5. Suppose that d1, r > 0 are fixed and 0 < v < v∗. Then the following consequences 
hold.

(i) If 0 < μ < b sup
v>0 

∫︁ 1
0 vθvdx, then for every v ∈ {v|b ∫︁ 1

0 vθvdx < μ < bvθv(1)}, there exists 

η1 > 0 such that a branch of the steady state (N∗
5 ,P ∗

5 ) to (1.2) bifurcates from (θv,0) at 
d2 = d∗

2 , and it can be characterized by d2 for the region d2 ∈ (d∗
2 − η1, d

∗
2 ). Moreover, the 

bifurcating solution (N∗
5 ,P ∗

5 ) is locally stable for d2 ∈ (d∗
2 −η1, d

∗
2 ). In addition, the branch 

of the steady state to (1.2) bifurcating from (d∗
2 , θv,0) extends to be zero in d2. Furthermore, 

the bifurcation steady state to (1.2) is unique.
(ii) If b sup

v>0 

∫︁ 1
0 vθvdx < μ < b sup

v>0 
vθv(1), then for every v ∈ {v|μ < bvθv(1)}, there exists η2 > 0

such that a branch of the steady state (N∗
6 ,P ∗

6 ) to (1.2) bifurcates from (θv,0) at d2 = d∗∗
2 , 

and it can be described by d2 for the range d2 ∈ (d∗∗
2 −η2, d

∗∗
2 ). Furthermore, the bifurcating 

solution (N∗
6 ,P ∗

6 ) is locally stable for d2 ∈ (d∗∗
2 − η2, d

∗∗
2 ). Moreover, the branch of the 

steady state to (1.2) bifurcating from (d∗∗
2 , θv,0) generalizes to be zero in d2. Additionally, 

the bifurcation steady state to (1.2) is also unique.

From a biological perspective, Theorem 1.2 (i) exhibits that when the death rate of the predator 
is low, the predator can successfully invade the prey when rare, provided the flow speed falls 
within an intermediate range, regardless of whether its dispersal rate is slow or fast. However, 
the predator cannot invade if the flow speed is either too low or too high. This implies that within 
certain flow speed regimes, the availability of food resources for the predator increases with 
flow speed, creating favorable conditions for the predator to invade and coexist with the prey. 
Nevertheless, when the flow speed exceeds a critical threshold, the predator’s ability to capture 
prey diminishes, leading to its eventual extinction. Simultaneously, the prey population is washed 
downstream, also resulting in extinction. Theorem 1.2 (ii) reveals that for intermediate ranges 
of the predator’s death rate, the predator cannot invade the prey when rare if its diffusion rate 
exceeds a critical threshold, regardless of the flow speed. However, when the diffusion rate of the 
predator falls below this critical value, the dynamics shift significantly: the flow speed becomes 
the dominant factor, and the scenario aligns closely with the behavior described in Theorem 1.2
(i). Specifically, the predator’s ability to invade and persist becomes highly sensitive to the flow 
speed, mirroring the conditions outlined in the earlier result. Theorem 1.2 (iii) demonstrates that 
6 
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when the predator’s mortality rate is sufficiently high, successful invasion becomes impossible, 
irrespective of the flow speed or the predator’s dispersal rate. This result underscores the critical 
role of mortality in determining the predator’s ability to establish itself in the system, highlighting 
that under high mortality conditions, neither flow speed nor dispersal rate can facilitate successful 
invasion.

Theorem 1.4 (i) establishes that when the mortality rate of the predator is low, the availability 
of food for the predator increases with flow speed, regardless of the predator’s dispersal rate. This 
increased availability of resources facilitates the coexistence of predator and prey populations. 
Theorem 1.4 (ii) further demonstrates that for intermediate predator death rates, if its diffusion 
rate is below a critical threshold, an increase in flow speed enables the predator to access more 
food, thereby promoting coexistence with the prey. Theorem 1.5 (i) implies that when the death 
rate of the predator is small, for some ranges of the flow speed, the predator can invade when 
rare and coexists with the prey if its diffusion rate is less than a critical diffusion rate. Intuitively, 
a lower diffusion rate is more favorable to the persistence of the predator in open advective 
environments. Theorem 1.5 (ii) can be interpreted in a similar manner, reinforcing the idea that 
limited dispersal enhances the predator’s ability to establish and maintain coexistence with the 
prey under specific flow conditions.

In some sense, our results could be related to a harvesting problem [2,7,24]: If the harvesting 
rate is small, then the population steady state is large and the yield (the product of the two) is 
small. If the harvesting rate is large, then the population state is small and hence the yield is 
small again. But there is some intermediate optimum where the yield, the product of the two, is 
largest. In our work, the downstream flow speed acts like a harvesting term on the prey and the 
yield (product of flow speed and density) is what supports the predator.

The remaining of the paper is organized as follows. In Section 2, we introduce some existing 
results of θv and establish a criterion for determining the stability of (θv,0). In Section 3, we 
separate the death rate of the predator into three distinct cases to investigate how (θv,0) changes 
its stability as d2 and v. Section 4 is devoted to establishing the existence and uniqueness of 
the bifurcation positive steady state of (1.2). Section 5 provides a comprehensive discussion and 
conclusion.

2. Preliminaries

In this section, we first display some existing conclusions of θv , and then present a criterion 
for determining the stability of the semi-trivial steady state (θv,0) and its relevant topics.

Lemma 2.1. Suppose that 0 ≤ v < v∗. Then

(i) If 0 < v < v∗, then 0 < θv < r on [0,1], and 0 < (θv)x < v
d1

θv in (0,1).
(ii) θv is continuously differentiable for v ∈ [0, v∗), and it is decreasing pointwisely on [0,1] as 

v increases.
(iii) θv satisfies

lim 
v→0+ θv = r, lim 

v→v∗− θv = 0

uniformly on [0,1].
7 
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Proof. Part (i) can be proved by the maximum principle, see, e.g., [20, Lemma 3.2] and [17, 
Lemma 5.4 (i)]. Part (ii) follows from [17, Lemma 5.4 (ii)] and [29, Theorem 6.5]. Part (iii) is 
obvious. □
Lemma 2.2. The semi-trivial steady state (θv,0) is stable/unstable if the following eigenvalue 
problem, for (λ,ψ) ∈ R × C2([0,1]), admits a positive/negative principal eigenvalue (denoted 
by λ1):

{︃
d2ψxx + (bvθv − μ)ψ + λψ = 0 in (0,1),

ψx(0) = ψx(1) = 0, ψ(x) > 0 on [0,1]. (2.1)

Proof. Let X = {(N,P ) ∈ W 2,p((0,1))×W 2,p((0,1))|d1Nx(0)−vN(0) = Nx(1) = 0,Px(0) =
Px(1) = 0} and Y = Lp((0,1)) × Lp((0,1)) with p > 1. Define the operator H(N,P ) : X → Y

by

H(N,P ) =
(︃ −d1Nxx + vNx − N(r − N) + vNP

−d2Pxx − (bvN − μ)P

)︃
.

Then

D(N,P )H |(θv,0) =
⎛
⎜⎝ −d1

d2

dx2 + v
d 

dx
− (r − 2θv) vθv

0 −d2
d2

dx2 − (bvθv − μ)

⎞
⎟⎠ .

It follows from (1.5) and the positivity of θv that zero is the smallest eigenvalue of the operator 

−d1
d2

dx2 + v
d 

dx
− (r − θv) with Danckwert’s boundary conditions. By the comparison principle 

for eigenvalues and the positivity of θv , the least eigenvalue of the operator −d1
d2

dx2 + v
d 

dx
−

(r − 2θv) with Danckwert’s boundary conditions is strictly positive. Therefore, to investigate the 
stability of semi-trivial steady state (θv,0), it remains to study the sign of the least eigenvalue of 
(2.1). □

From [19, Lemma 14] and [32, Lemma 19], we deduce the following properties of the princi
pal eigenvalue λ1.

Lemma 2.3. The principal eigenvalue λ1 of the eigenvalue problem (2.1) depends smoothly on 
d2. Furthermore, it possesses the following properties:

(i) λ1 is strictly increasing with respect to d2; Moreover, λ1 is a convex function of d2 as well.
(ii) λ1 has the following limiting behaviors:

lim 
d2→0+ λ1 = μ − bvθv(1) and lim 

d2→+∞λ1 = μ − b

1 ∫︂
vθvdx.
0 

8 
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To study how the principal eigenvalue λ1 of (2.1) changes sign as d2 and v vary, the idea is to 
connect (2.1) to a relevant eigenvalue problem with indefinite weight

{︃
ϕxx + κ(bvθv − μ)ϕ = 0, 0 < x < 1,

ϕx(0) = ϕx(1) = 0.
(2.2)

Now we first collect some existing results of (2.2).

Lemma 2.4. The eigenvalue problem (2.2) has a non-zero principal eigenvalue κ1 = κ1(bvθv −
μ) if and only if bvθv − μ changes sign and 

∫︁ 1
0 (bvθv − μ)dx ≠ 0. More precisely,

(i) if 
∫︁ 1

0 (bvθv − μ)dx < 0, then κ1 > 0;

(ii) if 
∫︁ 1

0 (bvθv − μ)dx > 0, then κ1 < 0;

(iii) if 
∫︁ 1

0 (bvθv − μ)dx = 0, then κ1 = 0.

Furthermore, for 
∫︁ 1

0 (bvθv − μ)dx < 0, κ1 is characterized by the following variational charac
terization:

κ1 = inf 
{ϕ∈H 1((0,1)):∫︁ 1

0 (bvθv−μ)ϕ2dx>0}

∫︁ 1
0 ϕ2

xdx ∫︁ 1
0 (bvθv − μ)ϕ2dx

. (2.3)

Proof. The above outcomes can be directly derived from [1,3,12]. See [14, Ch.9] for the abstract 
general cases. □
3. Local stability of semi-trivial steady state (𝜽𝒗,0)

In this section, we will divide the death rate of the predator into three different cases to inves
tigate how (θv,0) changes its stability as d2 and v vary.

Lemma 3.1. If 0 < μ < b sup
v>0 

∫︁ 1
0 vθvdx, then b

∫︁ 1
0 vθvdx = μ and bvθv(1) = μ admits at least 

two and at most finite many positive roots, denoted as v1 < v2 ≤ · · · ≤ v2l−1 ≤ v2l , and v̄1 <

v̄2 ≤ · · · ≤ v̄2k−1 ≤ v̄2k with l ≥ 1 and k ≥ 1, respectively. Furthermore, 
∫︁ 1

0 vθvdx and vθv(1)

satisfy

(i)

1 ∫︂
0 

bvθvdx > μ for every v ∈ ∪l
i=1(v2i−1, v2i );

(ii) bvθv(1) < μ for every v ∈ ∪k
j=0(v̄2j , v̄2j+1) with v̄0 := 0 and v̄2k+1 := v∗;

(iii)

1 ∫︂
0 

bvθvdx < μ < bvθv(1) for every v ∈ ∪0≤i≤l,1≤j≤k{(v2i , v2i+1) ∩ (v̄2j−1, v̄2j )} with 

v0 := 0 and v2l+1 := v∗;
9 
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(iv)

1 ∫︂
0 

bvθvdx = μ and 
∂

∫︁ 1
0 bvθvdx

∂v 
= 0 for certain points 0 < ṽ1 ≤ ṽ2 ≤ · · · ≤ ṽM < v∗ with 

M ≥ 1 (if exist).

(v) bvθv(1) = μ and 
∂bvθv(1)

∂v 
= 0 for some points 0 < v̂1 ≤ v̂2 ≤ · · · ≤ v̂N < v∗ with N ≥ 1

(if exist).

Proof. From Lemma 2.1 (i) and (ii), for every x ∈ [0,1], θv is uniformly bounded and strictly de
creasing with respect to v ∈ (0, v∗). Moreover, θv satisfies lim 

v→0+ θv = r and lim 
v→v∗ θv = 0. Clearly, 

the function 
∫︁ 1

0 bvθvdx of v satisfies

lim 
v→0+

1 ∫︂
0 

bvθvdx = lim 
v→v∗

1 ∫︂
0 

bvθvdx = 0.

Therefore, 
∫︁ 1

0 bvθvdx admits at least one maximum point in (0, v∗). Similarly, bvθv(1) also 
satisfies

lim 
v→0+ bvθv(1) = lim 

v→v∗ bvθv(1) = 0,

and has at least one maximum point in (0, v∗).
In the case 0 < μ < b sup

v>0 

∫︁ 1
0 vθvdx, the equations 

∫︁ 1
0 bvθvdx = μ and bvθv(1) = μ admits 

at least two and at most finite many positive roots, denoted as v1 < v2 ≤ · · · ≤ v2l−1 ≤ v2l , and 
v̄1 < v̄2 ≤ · · · ≤ v̄2k−1 ≤ v̄2k with l, k ≥ 1, respectively. Cases (i), (ii), (iv) and (v) are obvious, it 
remains to prove Case (iii). Because θv is strictly increasing in x, we derive

1 ∫︂
0 

bvθvdx < bvθv(1) (3.1)

for every v ∈ (0, v∗). We first display that v̄1 < v1 < v2 < v̄2. Since v̄1 < v̄2 and v1 < v2, we only 
need to prove that v̄1 < v1 and v2 < v̄2. If not, we may suppose that v̄1 ≥ v1. By Lemma 2.1 (ii) 
again, there exists η > 0 such that b

∫︁ 1
0 vθvdx ≥ bvθv(1) for every v ∈ (v̄1 − η, v̄1 + η), which 

contradicts (3.1). A similar argument can show v2 < v̄2. It suffices to show that the smallest set 
of ∪0≤i≤l,1≤j≤k{(v2i , v2i+1) ∩ (v̄2j−1, v̄2j )} is nonempty. When l = k = 1, we obtain

{(0, v1) ∩ (v̄1, v̄2)} ∪ {(v2, v
∗) ∩ (v̄1, v̄2)} = (v̄1, v1) ∪ (v2, v̄2).

Here we used the fact v̄1 < v1 < v2 < v̄2. □
For five distinct situations of μ derived from Lemma 3.1, we begin to inquire about how the 

stability of (θv,0) changes as v varies from small to large.
10 
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Fig. 3.1. The possible diagrams of 
∫︁ 1

0 bvθvdx and bvθv(1) can be utilized to illustrate the proof procedure for the case 
0 < μ < b sup 

v>0

∫︁ 1
0 vθvdx.

Lemma 3.2. If 0 < μ < b sup
v>0 

∫︁ 1
0 vθvdx, then for every d2 > 0, (θv,0) changes its stability at 

least twice as v varies from zero to v∗.

Proof. From Lemma 2.2, the stability of (θv,0) is determined by the sign of the smallest eigen
value of the eigenvalue problem

{︃
d2ψxx + (bvθv − μ)ψ + λψ = 0 in (0,1),

ψx(0) = ψx(1) = 0, ψ(x) > 0 on [0,1]. (3.2)

Case (i) Dividing (3.2) by ψ , integrating by parts and reorganizing the result, we obtain

λ1 = −d2

1 ∫︂
0 

ψ2
x

ψ2 dx −
1 ∫︂

0 

(bvθv − μ)dx < 0

for any d2 > 0 and v ∈ ∪l
i=1(v2i−1, v2i ) (see Fig. 3.1). That is, (θv,0) is unstable for any d2 > 0

and v ∈ ∪l
i=1(v2i−1, v2i ).

Case (ii) From Lemma 2.3 (ii), we derive

lim 
d2→0+ λ1 = μ − bvθv(1) > 0, lim 

d2→+∞λ1 = μ −
1 ∫︂

0 

bvθvdx > bvθv(1) −
1 ∫︂

0 

bvθvdx > 0

for every v ∈ ∪k
j=0(v̄2j , v̄2j+1). Because λ1 is strictly increasing with respect to d2, λ1 > 0

for every d2 > 0 and v ∈ ∪k
j=0(v̄2j , v̄2j+1). Hence, (θv,0) is stable for every d2 > 0 and v ∈

∪k (v̄2j , v̄2j+1).
j=0

11 
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Case (iii) In this case, for every v ∈ (v2i , v2i+1)∩(v̄2j−1, v̄2j ), i = 0,1, · · · , l, j = 1,2, · · · , k, 
it follows from Lemma 2.4 that the eigenvalue problem (2.2) has a positive principal eigenvalue, 
denoted by κi,j

1 = κ
i,j
1 (bvθv − μ). Then there exists some wi,j

1 > 0 such that

{︄
(w

i,j
1 )xx + κ

i,j
1 (bvθv − μ)w

i,j
1 = 0, 0 < x < 1,

(w
i,j

1 )x(0) = (w
i,j

1 )x(1) = 0.

Because the principal eigenvalue of (3.2) is strictly increasing in d2 (by Lemma 2.3 (i)), we have 
λ1 < 0 if 0 < d2 < 1 

κ
i,j
1

, λ1 = 0 at d2 = 1 
κ

i,j
1

and λ1 > 0 if d2 > 1 
κ

i,j
1

.

Claim 1.

lim 
v→v+

2i

κ
i,j

1 = lim 
v→v−

2i+1

κ
i,j

1 = 0. (3.3)

We argue by contradiction: passing to a subsequence if necessary, we may assume that κi,j

1 →
κ∗

1 > 0 as v → v+
2i and κi,j

1 → κ∗∗
1 > 0 as v → v−

2i+1. From (2.3), κi,j
1 is uniformly bounded 

from above by some positive constant in (v2i, v2i+1) ∩ (v̄2j−1, v̄2j ). By elliptic regularity theory 
and the Sobolev embedding theorem [9], we derive wi,j

1 → w∗
1 > 0 in C2([0,1]) as v → v+

2i . 
Furthermore, w∗

1 satisfies

{︄
(w∗

1)xx + κ∗
1 [bv2iθ(x, v2i ) − μ]w∗

1 = 0, 0 < x < 1,

(w∗
1)x(0) = (w∗

1)x(1) = 0.
(3.4)

Diving the above equation by w∗
1, integrating by parts and applying the boundary condition, we 

deduce

1 ∫︂
0 

(w∗
1,x)

2

(w∗
1)2 dx + κ∗

1

1 ∫︂
0 

[bv2iθ(x, v2i ) − μ]dx = 0.

Because 
∫︁ 1

0 [bv2iθ(x, v2i ) − μ]dx = 0, we have w∗
1 ≡ c1, where c1 > 0 is some constant. Plug

ging w∗
1 ≡ c1 into (3.4), since κ∗

1 > 0, we obtain bv2iθ(x, v2i ) − μ = 0. Because θ(x, v2i ) is a 
function of both the variables x and v, this is a contradiction. We can use the similar arguments 
to conclude that lim 

v→v−
2i+1

κ
i,j
1 = 0.

Claim 2.

lim 
v→v̄+

2j−1

κ
i,j
1 = lim 

v→v̄−
2j

κ
i,j
1 = +∞. (3.5)

We also argue by contradiction: passing to a subsequence if necessary, we may suppose that there 
exists some constant c2 > 0 such that κi,j

1 ≤ c2 in (v2i , v2i+1) ∩ (v̄2j−1, v̄2j ). Furthermore, there 

exists some wi,j ∈ C2([0,1]) such that
1

12 
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{︄
(w

i,j
1 )xx + κ

i,j
1 (bvθv − μ)w

i,j
1 = 0, 0 < x < 1,

(w
i,j
1 )x(0) = (w

i,j
1 )x(1) = 0.

(3.6)

Passing to a subsequence if necessary, we may assume that κi,j
1 → κ∗∗∗

1 ≥ 0 and wi,j
1 → w∗∗∗

1 >

0 in C2([0,1]) as v → v̄+
2j−1. In addition, w∗∗∗

1 satisfies

{︄
(w∗∗∗

1 )xx + κ∗∗∗
1 [bv̄2j−1θ(x, v̄2j−1) − μ]w∗∗∗

1 = 0, 0 < x < 1,

(w∗∗∗
1 )x(0) = (w∗∗∗

1 )x(1) = 0.
(3.7)

We consider the following two subcases:
(a) κ∗∗∗

1 = 0. Then w∗∗∗
1 must be some positive constant. Integrating (3.6) and applying 

the boundary condition, we obtain 
∫︁ 1

0 (bvθv − μ)w
i,j

1 dx = 0. By letting v → v̄+
2j−1, we derive ∫︁ 1

0 [bv̄2j−1θ(x, v̄2j−1) − μ]dx = 0. Because

μ = bv̄2j−1θ(1, v̄2j−1) >

1 ∫︂
0 

bv̄2j−1θ(x, v̄2j−1)dx,

this is a contradiction.
(b) κ∗∗∗

1 > 0. Integrating (3.7) and applying the boundary condition, we deduce ∫︁ 1
0 [bv̄2j−1θ(x, v̄2j−1) − μ]w∗∗∗

1 dx = 0. Because

bv̄2j−1θ(x, v̄2j−1) − μ < bv̄2j−1θ(1, v̄2j−1) − μ = 0,

we also reach a contradiction. A similar argument can prove lim 
v→v̄−

2j

κ
i,j
1 = +∞. Then the assertion 

(3.5) follows.
From the assertions (3.3) and (3.5), we conclude that for every d2 > 0, d2 − 1 

κ
i,j
1

changes its 

sign at least twice as v varies in (v2i , v2i+1) ∩ (v̄2j−1, v̄2j ). This together with the monotonicity 
of λ1 with respect to d2 means that for every d2 > 0, λ1 changes its sign at least twice as v
varies in (v2i , v2i+1) ∩ (v̄2j−1, v̄2j ). Here we have to exclude the possibility that d2 ≡ 1 

κ
i,j
1

in 

some interval [v0, v
0] ⊂ (v2i , v2i+1) ∩ (v̄2j−1, v̄2j ). If this case was true, then λ1 ≡ 0 for every 

v ∈ [v0, v
0]. Hence, we have λ1 ≡ 0 for every v ∈ (v2i , v2i+1) ∩ (v̄2j−1, v̄2j ) as λ1 is an analytic 

function with respect to v. Clearly, this is impossible. Consequently, for every d2 > 0, (θv,0)

changes its stability at least twice as v varies in ∪0≤i≤l,1≤j≤k(v2i , v2i+1) ∩ (v̄2j−1, v̄2j ).

Case (iv) 

1 ∫︂
0 

bvθvdx = μ and 
∂

∫︁ 1
0 bvθvdx

∂v 
= 0 for certain points 0 < ṽ1 ≤ ṽ2 ≤ · · · ≤ ṽM < v∗

with M ≥ 1 (if exist). We will divide two subcases to demonstrate that (θv,0) does not change 
its stability at these points (if exist). Assume that ṽi is a locally minimum point of 

∫︁ 1
0 bvθvdx. 

Then there exists ε > 0 such that
13 
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1 ∫︂
0 

(bvθv − μ)dx ≥ 0 in (ṽi − ε, ṽi + ε).

From similar arguments as in Case (i), one can obtain that λ1 < 0 for every v ∈ (ṽi − ε, ṽi + ε)

and d2 > 0. If ṽi is a locally maximum point of 
∫︁ 1

0 bvθvdx, then

1 ∫︂
0 

(bvθv − μ)dx < 0 in (ṽi − ϵ, ṽi) ∪ (ṽi , ṽi + ϵ)

for some ϵ > 0. It follows from Lemma 2.4 that (2.2) admits a positive principal eigenvalue 

κi
1 > 0. Let di

2 = 1 

κi
1

. Therefore, for every v ∈ (ṽi − ϵ, ṽi) ∪ (ṽi , ṽi + ϵ), λ1 > 0 if d2 > di
2 and 

λ1 < 0 if 0 < d2 < di
2. Applying the similar arguments as in Case (ii), we can conclude that 

limv→ṽi
di

2 = +∞. Thus λ1 < 0 at v = ṽi for every d2 > 0. Similar to Case (i), it is not hard to 
exhibit that λ1 < 0 at v = ṽi for every d2 > 0. Therefore, (θv,0) does not change its stability at 
these points (if exist).

Case (v) bvθv(1) = μ and 
∂bvθv(1)

∂v 
= 0 for some points 0 < v̂1 ≤ v̂2 ≤ · · · ≤ v̂N < v∗ with 

N ≥ 1 (if exist). We separate two subcases to examine that (θv,0) does not change its stability at 
these points (if exist). If v̂j is a locally maximum point of bvθv(1), then there exists δ1 > 0 such 
that

bvθv(1) − μ ≤ 0 in (v̂j − δ1, v̂j + δ1).

It follows from Lemma 2.3 (ii) that

lim 
d2→0+ λ1 = μ − bvθv(1) ≥ 0, lim 

d2→+∞λ1 = μ −
1 ∫︂

0 

bvθvdx > 0

for every v ∈ (v̂j − δ1, v̂j + δ1). Because λ1 is strictly increasing with respect to d2, we conclude 
that λ1 > 0 for every d2 > 0 and v ∈ (v̂j − δ1, v̂j + δ1).

If v̂j is a locally minimum point of bvθv(1), then there exists δ2 > 0 such that

bvθv(1) − μ > 0 and 

1 ∫︂
0 

(bvθv − μ)dx < 0

for every v ∈ (v̂j − δ2, v̂j ) ∪ (v̂j , v̂j + δ2). Lemma 2.4 implies that for every v ∈ (v̂j − δ2, v̂j ) ∪
(v̂j , v̂j + δ2), (2.2) admits a principal eigenvalue κj

1 > 0. Therefore, λ1 > 0 if d2 > 1 
κ

j
1

, λ1 = 0

if d2 = 1 
κ

j
1

and λ1 < 0 if d2 < 1 
κ

j
1

. Similarly, we can obtain lim 
v→v̂j

κ
j

1 = +∞. Hence, λ1 > 0 at 

v = v̂j for every d2 > 0. From the above analysis, for this case, we still have λ1 > 0 at v = v̂j

for every d2 > 0. Therefore, (θv,0) does not change its stability at these points (if exist).
14 
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Fig. 3.2. The possible graphics of 
∫︁ 1

0 bvθvdx and bvθv(1) can be utilized to manifest the proof procedure for the case 
b sup 

v>0

∫︁ 1
0 vθvdx < μ < b sup 

v>0
vθv(1).

In view of Cases (i)-(v), we conclude that for every d2 > 0, (θv,0) changes its stability at least 
twice as v varies from zero to v∗. □
Lemma 3.3. If b sup

v>0 

∫︁ 1
0 vθvdx < μ < b sup

v>0 
vθv(1), then there exists a critical value d̂2 =

d̂2(μ) > 0 such that if d2 > d̂2, then (θv,0) is locally asymptotically stable for every v ∈ (0, v∗); 
whereas if 0 < d2 < d̂2, then (θv,0) changes its stability at least twice as v varies from zero to 
v∗.

Proof. In this case, we always have 
∫︁ 1

0 (bvθv − μ)dx < 0 for every d2 > 0 and v ∈ (0, v∗). 
Similar as shown in Lemma 3.1, the equation bvθv(1) = μ admits at least two and at most finite 
many positive roots, denoted by v̄1 < v̄2 ≤ · · · ≤ v̄2k−1 ≤ v̄2k with k ≥ 1. Moreover, bvθv(1) > μ

for every v ∈ ∪k
j=1(v̄2j−1, v̄2j ) and bvθv(1) ≤ μ for every v / ∈ ∪k

j=1(v̄2j−1, v̄2j ). Here the case 

bvθv(1) = μ and 
∂bvθv(1)

∂v 
= 0 for some points 0 < v̂1 ≤ v̂2 ≤ · · · ≤ v̂N < v∗ with N ≥ 1 (if 

exist) has been excluded (see Lemma 3.2 Case (v)) and (θv,0) does not change its stability at 
these points (if exist) (see Fig. 3.2).

For every v ∈ (v̄2j−1, v̄2j ), it follows from Lemma 2.4 that (2.2) admits a principal eigenvalue 
κ

j
1 > 0. Because λ1 is strictly increasing with respect to d2 (by Lemma 2.3 (i)), we have λ1 > 0

if d2 > 1 
κ

j
1

, λ1 = 0 if d2 = 1 
κ

j
1

, and λ1 < 0 if d2 < 1 
κ

j
1

. Applying the similar arguments as in the 

proof of (3.5), we conclude

lim 
v→v̄+

2j−1

κ
j

1 = lim 
v→v̄−

2j

κ
j

1 = +∞. (3.8)

Define

d̂2 := max 
1≤j≤k

1 

infv∈(v̄2j−1,v̄2j ) κ
j
1

.

15 
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In fact, for every v ∈ (v̄2j−1, v̄2j ), we have 
∫︁ 1

0 (bvθv − μ)dx < 0 for every d2 > 0 and bvθv(1) >

μ. Lemma 2.4 implies that the eigenvalue problem (2.2) has a positive principal eigenvalue κj

1 for 

every v ∈ (v̄2j−1, v̄2j ). This together with (3.8) indicates that infv∈(v̄2j−1,v̄2j ) κ
j
1 must be positive.

We shall inquire about the following two cases:
(i) d2 > d̂2. In this case, we obtain d2 > 1 

κ
j
1

for any j and v ∈ (v̄2j−1, v̄2j ). Because λ1 is 

strictly increasing in d2, we conclude λ1 > 0 for every v ∈ (v̄2j−1, v̄2j ). Hence, λ1 > 0 for every 
v ∈ ∪k

j=1(v̄2j−1, v̄2j ). On the other hand, for every v / ∈ ∪k
j=1(v̄2j−1, v̄2j ), we have bvθv(1) ≤ μ. 

From Lemma 2.3 (ii), we find

lim 
d2→0+ λ1 = μ − bvθv(1) ≥ 0, lim 

d2→+∞λ1 = μ −
1 ∫︂

0 

bvθvdx > 0.

Therefore, λ1 > 0 for every d2 > 0 and v / ∈ ∪k
j=1(v̄2j−1, v̄2j ). Consequently, λ1 > 0 for every 

d2 > d̂2 and v ∈ (0, v∗). That is, if d2 > d̂2, then (θv,0) is stable for every v ∈ (0, v∗).
(ii) d2 < d̂2. In this case, there must exists some j such that d2 < 1 

infv∈(v̄2j−1,v̄2j ) κ
j
1

. Thus 1 
d2

>

infv∈(v̄2j−1,v̄2j ) κ
j
1 . This together with (3.8) implies that 1 

d2
− κ

j
1 changes its sign at least twice 

as v varies in (v̄2j−1, v̄2j ). Hence, λ1 changes its sign at least twice as v varies in (v̄2j−1, v̄2j ). 
Here it remains to exclude the possibility that 1 

d2
≡ κ

j

1 in some interval [v̄0, v̄
0] ⊂ (v̄2j−1, v̄2j ). 

If this case was true, then λ1 ≡ 0 for every v ∈ [v̄0, v̄
0]. Because λ1 is an analytic function with 

respect to v, we obtain λ1 ≡ 0 for every v ∈ (v̄2j−1, v̄2j ). Obviously, this is a contradiction. From 
the above analysis, λ1 > 0 for every d2 > 0 and v / ∈ ∪k

j=1(v̄2j−1, v̄2j ). Therefore, if 0 < d2 < d̂2, 

then λ1 changes its sign at least twice as v varies from zero to v∗. In other words, if 0 < d2 < d̂2, 
then (θv,0) changes its stability at least twice as v varies from zero to v∗. □

It remains to mention the proof of Theorem 1.2. Part (i) and (ii) follows from Lemmas 3.2 and 
3.3, respectively. The proof of (iii) is trivial, we omit it here.

4. Bifurcation analysis of positive steady state to system (1.1)

In this section, we shall utilize bifurcation theories [5,6] to investigate positive steady state 
of (1.2). To this end, we first make some preparations. The steady state system of (1.2) can be 
written as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d1Nxx − vNx + N(r − N) − vNP = 0, 0 < x < 1,

d2Pxx + (bvN − μ)P = 0, 0 < x < 1,

d1Nx(0) − vN(0) = Nx(1) = 0,

Px(0) = Px(1) = 0.

(4.1)

Set X = {(N,P ) ∈ W 2,p((0,1)) × W 2,p((0,1))|d1Nx(0) − vN(0) = Nx(1) = 0,Px(0) =
Px(1) = 0} and Y = Lp((0,1)) × Lp((0,1)) with p > 1. Denote the operator F(v,N,P ) :
R+ × X → Y by
16 
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F(v,N,P ) =
(︃

d1Nxx − vNx + N(r − N) − vNP

d2Pxx + (bvN − μ)P

)︃
.

It is obvious to see that F(v, θv,0) = 0. Moreover, it is not difficult to verify that the deriva
tives DvF(v,N,P ), D(N,P )F (v,N,P ), DvD(N,P )F (v,N,P ) exist and are all continuous in 
the neighborhood of (v, θv,0).

4.1. The advection rate is treated as a bifurcation parameter

Lemma 4.1. If 0 < μ < b sup
v>0 

∫︁ 1
0 vθvdx, then for every d2 > 0, there exist some δ > 0 and some 

functions vi(s) ∈ C2((−δ, δ)) with vi(0) = v∗
i (i = 1,2) such that all nonnegative steady states 

of (1.2) in the neighborhood of (v∗
i , θ(x, v∗

i ),0) can be described by

(v,N∗
i , P ∗

i ) = (vi(s), θ(x, vi(s)) + sφ∗
i + s2ζ ∗

i , sψ∗
i + s2ξ∗

i ),0 < s < δ, (4.2)

where (φ∗
i ,ψ∗

i ) is determined by (4.4) and (4.3), and (ζ ∗
i , ξ∗

i ) lies in the complement of the 
kernel of D(N,P )F |(v∗

i ,θ(x,v∗
i ),0) in X. Furthermore, the bifurcation direction of the solution 

(v∗
i , θ(x, v∗

i ),0) can be parameterized by v′
1(0) > 0 and v′

2(0) < 0, respectively.

Proof. It follows from Remark 1.3 (i) that for every d2 > 0, there exist two constants 0 < v∗
1 <

v∗
2 < v∗ such that λ1(v

∗
1) = λ1(v

∗
2) = 0 and ∂λ1

∂v (v∗
1) < 0, ∂λ1

∂v (v∗
2) > 0. By Lemma 2.2, there 

exists ψ∗
i ∈ C2([0,1]) with ψ∗

i > 0 (i = 1,2) such that

{︃
d2(ψ

∗
i )xx + (bv∗

i θ(x, v∗
i ) − μ)ψ∗

i + λ1(v
∗
i )ψ∗

i = 0, 0 < x < 1,

(ψ∗
i )x(0) = (ψ∗

i )x(1) = 0.
(4.3)

Through some calculations, we obtain

D(N,P )F |(v∗
i ,θ(x,v∗

i ),0) =
⎛
⎜⎝ d1

d2

dx2 − v∗
i

d 
dx

+ (r − 2θ(x, v∗
i )) −v∗

i θ(x, v∗
i )

0 d2
d2

dx2 + (bv∗
i θ(x, v∗

i ) − μ)

⎞
⎟⎠

and

DvD(N,P )F |(v∗
i ,θ(x,v∗

i ),0) =
(︄

− d 
dx

− 2θ ′(x, v∗
i ) −θ(x, v∗

i ) − v∗
i θ ′(x, v∗

i )

0 bv∗
i θ ′(x, v∗

i ) + bθ(x, v∗
i )

)︄
,

where ′ denotes the derivative with respect to v. Consequently, the kernel space of 
D(N,P )F |(v∗

i ,θ(x,v∗
i ),0) is spanned by (φ∗

i ,ψ∗
i ) and dim𝒩 (D(N,P )F |(v∗

i ,θ(x,v∗
i ),0)) = 1, where ψ∗

i

is the associated eigenfunction of (4.3) and φ∗
i is determined by

{︃
d1(φ

∗
i )xx − v∗

i (φ∗
i )x + (r − 2θ(x, v∗

i ))φ∗
i = v∗

i θ(x, v∗
i )ψ∗

i , 0 < x < 1,

d1(φ
∗
i )x(0) − v∗

i φ∗
i (0) = (φ∗

i )x(1) = 0.
(4.4)
17 
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Indeed, from (1.5) and the positivity of θ(x, v∗
i ), zero is the least eigenvalue of the operator 

−d1
d2

dx2 + v∗
i

d 
dx

− (r − θ(x, v∗
i )) with Danckwert’s boundary conditions. Then the least eigen

value of the operator −d1
d2

dx2 + v∗
i

d 
dx

− (r − 2θ(x, v∗
i )) with Danckwert’s boundary conditions 

is strictly positive. Moreover, there holds

φ∗
i =

[︂
− d1

d2

dx2 + v∗
i

d 
dx

− (r − 2θ(x, v∗
i ))

]︂−1[−v∗
i θ(x, v∗

i )ψ∗
i ] < 0.

In addition, it follows from the Fredholm alternative that codimℛ(D(N,P )F |(v∗
i ,θ(x,v∗

i ),0)) = 1.
For the eigenvalue problem (2.1), let ψ1 be an associated eigenfunction of the principal eigen

value λ1. We normalize ψ1 such that 
∫︁ 1

0 ψ1dx = 1. It can be shown that both λ1 and ψ1 are 
smooth functions of v [4,8]. Differentiating (2.1) with respect to v yields

⎧⎨
⎩ d2ψ

′
1,xx + (bθ(x, v) + bvθ ′(x, v))ψ1 + (bvθ(x, v) − μ)ψ ′

1 + ∂λ1

∂v 
ψ1 + λ1ψ

′
1 = 0,0 < x < 1,

ψ ′
1,x(0) = ψ ′

1,x(1) = 0.

(4.5)

Multiplying (4.5) by ψ1, integrating by parts and applying the boundary conditions, we derive

1 ∫︂
0 

(bθ(x, v) + bvθ ′(x, v))ψ2
1 dx = −∂λ1

∂v 

1 ∫︂
0 

ψ2
1 dx.

From elliptic regularity theory and the Sobolev embedding theorem [9], we see that ψ1 → ψ∗
i in 

C2([0,1]) as v → v∗
i . Thus

1 ∫︂
0 

(bθ(x, v∗
i ) + bv∗

i θ ′(x, v∗
i ))(ψ∗

i )2dx = −∂λ1

∂v 
(v∗

i )

1 ∫︂
0 

(ψ∗
i )2dx ≠ 0 (4.6)

as ∂λ1
∂v (v∗

1) < 0 and ∂λ1
∂v (v∗

2) > 0. Therefore, the equation d2ψxx + (bv∗
i θ(x, v∗

i ) − μ)ψ =
(bθ(x, v∗

i ) + bv∗
i θ ′(x, v∗

i ))ψ∗
i is not solvable. Thus the transversality condition

DvD(N,P )F |(v∗
i ,θ(x,v∗

i ),0)

(︃
φ∗

i

ψ∗
i

)︃

=
(︃ −(φ∗

i )x − 2θ ′(x, v∗
i )φ∗

i − θ(x, v∗
i )ψ∗

i − v∗
i θ ′(x, v∗

i )ψ∗
i

(bθ(x, v∗
i ) + bv∗

i θ ′(x, v∗
i ))ψ∗

i

)︃
∉ ℛ(D(N,P )F |(v∗

i ,θ(x,v∗
i ),0))

holds.
Substituting (4.2) into the second equation of (4.1), dividing by s2, integrating by parts and 

applying (4.3), we conclude
18 
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b[vi(s)θ(x, vi(s)) − v∗
i θ(x, v∗

i )]
s

ψ∗
i + bvi(s)φ

∗
i ψ∗

i + d2(ξi)xx + [bvi(s)θ(x, vi(s)) − μ](ξi)x

= −[bvi(s)ζiψ
∗
i + bvi(s)φ

∗
i ξi]s + o(s).

Multiplying both sides of the above equality by ψ∗
i , integrating by parts and taking the limit, we 

obtain

v′
i (0)

1 ∫︂
0 

[θ(x, v∗
i ) + v∗

i θ ′(x, v∗
i )](ψ∗

i )2dx = −
1 ∫︂

0 

v∗
i φ∗

i (ψ∗
i )2dx.

This together with the negativity of φ∗
i and (4.6) implies that v′

1(0) > 0 and v′
2(0) < 0. □

Lemma 4.2. (N∗
i , P ∗

i ) → (θ(x, v∗
i ),0), P ∗

i /∥P ∗
i ∥L∞((0,1)) → ψ∗

i ,ψ → ψ∗
i and φ → φ∗

i in 
C1([0,1]) as s → 0, where ψ > 0 is the corresponding eigenfunction of the least eigenvalue 
λ1 of (2.1) with ∥ψ∥L∞((0,1)) = 1.

Proof. From (4.2), it can be seen that (N∗
i , P ∗

i ) → (θ(x, v∗
i ),0) in C1([0,1]) as s → 0. Let 

ϑi = P ∗
i /∥P ∗

i ∥L∞(0,1). By elliptic regularity theory and Sobolev embedding theorem [9], we 
may assume that ϑi → ϑ∗

i in C1([0,1]) as s → 0, where ϑ∗
i ≥ 0 satisfies ∥ϑ∗

i ∥L∞((0,1)) = 1 and

{︄
d2(ϑ

∗
i )xx + (bv∗

i θ(x, v∗
i ) − μ)ϑ∗

i = 0, 0 < x < 1,

(ϑ∗
i )x(0) = (ϑ∗

i )x(1) = 0.

Thus ϑ∗
i ≡ ψ∗

i on [0,1]. In other words, P ∗
i /∥P ∗

i ∥L∞(0,1) → ψ∗
i in C1([0,1]) as s → 0. We 

can use the similar arguments to conclude that λ1 → 0, ψ → ψ∗
i and φ → φ∗

i in C1([0,1]) as 
s → 0. □

After some preparations, we now begin to inquire about the local stability of the bifurcation 
solutions (N∗

i , P ∗
i ) for small s > 0.

Lemma 4.3. The bifurcation solution (v,N∗
i , P ∗

i ) = (vi(s), θ(x, vi(s)) + sφ∗
i + s2ζ ∗

i , sψ∗
i +

s2ξ∗
i ) is linearly stable for small s > 0.

Proof. Linearizing the equation (4.1) at (N∗
i , P ∗

i ), we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d1φxx − vi(s)vφx + (r − 2N∗
i − vi(s)P

∗
i )φ − vi(s)N

∗
i ψ + λφ = 0, 0 < x < 1,

d2ψxx + (bvi(s)N
∗
i − μ)ψ + bvi(s)P

∗
i φ + λψ = 0, 0 < x < 1,

d1φx(0) − vi(s)φ(0) = 0, φx(1) = 0,

ψx(0) = ψx(1) = 0.

(4.7)

Denote operators Πs and Π0 : X → Y by

Πs

(︃
φ

ψ

)︃
=

(︄
d1φxx − vi(s)φx + (r − 2N∗

i − vi(s)P
∗
i )φ − vi(s)N

∗
i ψ

d2ψxx + (bvi(s)N
∗ − μ)ψ + bvi(s)P

∗φ

)︄
,

i i
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and

Π0

(︃
φ

ψ

)︃
=

(︄
d1φxx − v∗

i φx + (r − 2θ(x, v∗
i ))φ − v∗

i θ(x, v∗
i )ψ

d2ψxx + (bv∗
i θ(x, v∗

i ) − μ)ψ

)︄
,

respectively. Because (N∗
i , P ∗

i ) → (θ(x, v∗
i ),0) in C1([0,1]) as s → 0 (by Lemma 4.2), the 

operator Πs uniformly converges to Π0 in operator norm as s → 0. Moreover, it follows from 
Lemma 4.1 that the kernel of Π0 is spanned by (φ∗

i ,ψ∗
i ), and zero is a K-simple eigenvalue 

of Π0 (where the operator K is the canonical injection from X to Y ). Therefore, there exists 
a unique K-simple eigenvalue χ = χ(s) of Πs with χ → 0 as s → 0. Suppose that χ is an 
eigenvalue of (4.7) and (φ,ψ) is its associated eigenfunction. Obviously, we have χ = −λ.

The remaining proof will be divided into two distinct cases:
(i) ψ ≠ 0 on [0,1]. We normalize ψ such that ∥ψ∥L∞((0,1)) = 1. Since (N∗

i , P ∗
i ) →

(θ(x, v∗
i ),0) in C1([0,1]) as s → 0, we can apply similar argument as in Lemma 4.2 to con

clude that (φ,ψ) → (φ∗
i ,ψ∗

i ) in C1([0,1]) as s → 0. Multiplying the equation of ψ by P ∗
i , the 

equation of P ∗
i by ψ and applying integration by parts and the boundary conditions, we derive

χ

1 ∫︂
0 

P ∗
i ψdx =

1 ∫︂
0 

bvi(s)P
2
i φdx.

Dividing both sides of the above equality by ∥P ∗
i ∥2

L∞((0,1)) and applying the consequences 

P ∗
i /∥P ∗

i ∥L∞((0,1)) → ψ∗
i , φ → φ∗

i and ψ → ψ∗
i in C1([0,1]) as s → 0, we deduce

lim 
s→0

χ

∥P ∗
i ∥L∞((0,1))

=
∫︁ 1

0 bv∗
i φ∗

i ψ∗
i dx∫︁ 1

0 ψ∗
i dx 

.

In view of the positivity of ψ∗
i and φ∗

i < 0, we have χ < 0 for small s > 0.
(ii) ψ ≡ 0 on [0,1]. Therefore, φ ≢ 0 and satisfies

{︃
d1φxx − vi(s)φx + (r − 2N∗

i − vi(s)P
∗
i )φ = χφ, 0 < x < 1,

d1φx(0) − vi(s)φ(0) = 0, φx(1) = 0.

Because (N∗
i , P ∗

i ) → (θ(x, v∗
i ),0) in C1([0,1]) as s → 0 and the smallest eigenvalue of the 

operator −d1
d2

dx2 + v∗
i

d 
dx

− (r − 2θ(x, v∗
i )) with Danckwert’s boundary conditions is strictly 

positive, we obtain χ < 0 for small s > 0. That is, all eigenvalues of (4.7) must have positive real 
part, i.e., (N∗

i , P ∗
i ) is linearly stable for small s > 0. □

Lemma 4.4. Suppose that 0 < v < v∗ and d2 > 0. Let (N,P ) be a positive solution of (4.1).

(i) There exists η > 0 such that if d2 > η, then

0 < N < r and 0 < P < C1,

where C1 > 0 is some constant depending on η,b, r,μ and v∗.
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(ii) If v ∉ (0, v∗), then (4.1) admits no positive solution.

Proof. (i) It follows from the maximum principle that N < r for every x ∈ [0,1]. Integrating the 
first and second equation of (4.1), applying the boundary conditions and reorganizing the results, 
we obtain

bvN(1) + μ

1 ∫︂
0 

P dx = b

1 ∫︂
0 

N(r − N)dx.

Hence,

1 ∫︂
0 

P dx <
b

μ

1 ∫︂
0 

N(r − N)dx ≤ br2

4μ 
.

By applying Harnack inequality to the second equation of (4.1), there exists some η > 0 such 
that if d2 > η, then max 

x∈[0,1]P ≤ C̃1 min 
x∈[0,1]P for some positive constant C̃1 relying on η,b, r,μ

and v∗. Then the conclusions of (i) follow immediately.
(ii) Integrating the second equation of (4.1) and applying the boundary condition, we have

1 ∫︂
0 

(bvN − μ)P dx = 0.

If v ≤ 0, then P ≡ 0. It can be seen from (4.1) that

0 = d1Nxx − vNx + N(r − N) − vNP ≤ d1Nxx − vNx + N(r − N).

That is, θv is a supersolution of the first equation of (4.1) and satisfies N ≤ θv . Because θv = 0 for 
v ≥ v∗, we conclude that N = 0 and P = 0 for v ≥ v∗. Therefore, (4.1) has no positive solution 
for v ∉ (0, v∗). □
Proof of Theorem 1.4. The proof of part (ii) is similar to that of part (i), here we only present the 
proof of part (i). The local bifurcation result and the stability of the bifurcation steady state can 
be found in Lemmas 4.1 and 4.3, respectively. Now it suffices to generalize the local bifurcation 
result to a global one and display the uniqueness of the bifurcation positive steady state.

Step 1. Global bifurcation. Denote 𝒮+ by

𝒮+ := {︁
(v1(s),N

∗
1 (s),P ∗

1 (s)) : 0 < s < δ
}︁
,

where (v1(s),N
∗
1 (s),P ∗

1 (s)) satisfies (4.2). Define

Z :=
⎧⎨
⎩(N1,P1) ∈ X :

1 ∫︂
0 

P1ψ
∗
1 dx = 0

⎫⎬
⎭ .
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Then span{(φ∗
1 ,ψ∗

1 )}⊕Z = X. We extend the local bifurcation 𝒮+ to a global one by application 
of the global bifurcation consequences for Fredholm operators [15, Theorems 1.1 and 1.2] or [25, 
Theorems 4.3 and 4.4]. It follows from [15, Theorems 4.2 and 4.5] or [25, Theorem 3.3] that for 
any (v,N,P ) ∈ R+ × X, the Fréchet derivative D(N,P )F (v,N,P ) is a Fredholm operator with 
index zero, and F : R+ × X → Y is C1 smooth. Moreover, we can apply [15, Theorem 1.1] or 
[25, Theorem 4.3] to obtain a connected component Λ of the set

𝒮 := {(v,N,P ) ∈R+ × X : F(v,N,P ) = 0, (N,P ) ≠ (θv,0)}

emanating from (v,N,P ) = (v∗
1 , θv∗

1
,0). Similarly, we can show the existence of a connected 

component of 𝒮 emanating from (v,N,P ) = (v∗
2 , θv∗

2
,0). In addition, either Λ is not compact in 

R+ × X, or Λ contains a point (v, θv,0) with v ≠ v∗
1 . Note that 𝒮+ ⊂ Λ. Let X+ = {(N,P ) ∈

X : N > 0,P > 0 on [0,1]}. Then Λ ∩ (R+ × X+) ≠ ∅.
Let Γ = Λ ∩ (R+ × X+). Then Γ consists of the local positive solution branch 𝒮+ near the 

bifurcation point (v∗
1, θv∗

1
,0). Let Λ+ be the connected component of Λ\{(v1(s),N(s),P (s)) :

−δ < s < 0}. Thus Γ ⊂ Λ+. It follows from [15, Theorem 1.2] or [25, Theorem 4.4] that one of 
the following alternatives holds:

(i) Λ+ is not compact in R+ × X;
(ii) There exists v̂ ≠ v∗

1 such that (v̂, θv̂,0) ∈ Λ+;
(iii) There exists (v, θv + N,P ) with (N,P ) ∈ Z\{0}.

Suppose (iii) holds. For every (v,N,P ) ∈ Γ, we have P > 0 on [0,1]. Therefore,

1 ∫︂
0 

Pψ∗
1 dx > 0,

which contradicts the definition of Z.
For case (i), Lemma 4.4 (i) indicates that any positive solution of (4.1) is uniformly bounded 

for every v ∈ (0, v∗). Integrating the first equation of (4.1) from 0 to x and applying the boundary 
condition, we conclude that Nx is uniformly bounded in (0,1). It follows from (4.1) that Nxx and 
Pxx are also uniformly bounded in (0,1). Therefore, positive solutions of (4.1) must be bounded 
in X. Hence case (i) implies that Γ\{(v∗

1 , θv∗
1
,0)} ⊄ R+ × X+. Thus there exists (v̂, N̂, P̂ ) ∈

(Γ\{(v∗
1 , θv∗

1
,0)})∩∂(R+ ×X+), which is the limit of a sequence of {(vn,Nn,Pn)} ⊂ Γ∩ (R+ ×

X+) with Nn,Pn > 0 on [0,1]. Then (v̂, N̂ , P̂ ) ∈ ∂(R+ ×X+) means that (a) N̂ ≥ 0, N̂(x∗) = 0
for some point x∗ ∈ [0,1]; or (b) P̂ ≥ 0, P̂ (x∗) = 0 for some point x∗ ∈ [0,1]; or (c) v̂ → 0; or 
(d) v̂ → +∞.

If N̂ ≥ 0, N̂(x∗) = 0 for some point x∗ ∈ [0,1], then it follows from the strong maximum 
principle that N̂(x∗) ≡ 0 on [0,1]. Similarly, we obtain P̂ (x∗) ≡ 0 on [0,1] for case (b). There
fore, we have the following two alternatives: (1) (N̂, P̂ ) ≡ (0,0); (2) (N̂, P̂ ) ≡ (θv̂,0).

Suppose that (N̂, P̂ ) ≡ (0,0) holds. Then there exists (vn,Nn,Pn) ∈ X such that vn → v̂ and 
(Nn,Pn) → (0,0) as n → +∞. By the equation of N in (4.1), we have λ1(bvnNn − μ) = 0. By 
letting n → +∞, we derive λ1(−μ) = 0. Because λ1(−μ) = μ > 0, this is impossible.

Assume that (N̂, P̂ ) ≡ (θv̂,0) holds. Then there exists (vn,Nn,Pn) ∈ X such that vn → v̂ and 
(Nn,Pn) → (θv̂,0) as n → +∞. It follows from the equation of N in (4.1) that λ1(bvnNn −μ) =
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0. Taking n → +∞, we can conclude λ1(bv̂θv̂ − μ) = 0. Note that v̂ = v∗
1 is the only point on Γ

where positive solutions bifurcate. This is a contradiction.
It is obvious that cases (c) v̂ → 0 and (d) v̂ → +∞ can be excluded by Lemma 4.4 (ii). 

Therefore, the remaining possibility is case (ii). Namely, (v̂, N̂, P̂ ) = (v∗
2 , θv∗

2
,0), the only pos

sible point on the other connected component of 𝒮 where positive solutions bifurcate.
Step 2. Uniqueness. The uniqueness of the bifurcation positive solution of (4.1) can be proved 

by the maximum principle. Suppose (4.1) admits two positive solutions (N1,P1) and (N2,P2). 
Let Ñ = N1 − N2 and P̃ = P1 − P2. Then (Ñ, P̃ ) satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d1Ñxx − vÑx + (r − N1 − N2 − vP1)Ñ = vN2P̃ , 0 < x < 1,

d2P̃xx + (bvN1 − μ)P̃ = −bvP2Ñ, 0 < x < 1,

d1Ñx(0) − vÑ(0) = Ñx(1) = 0,

P̃x(0) = P̃x(1) = 0.

(4.8)

Set

ℒ1 = d1
d2

dx2 − v
d 

dx
+ (r − N1 − N2 − vP1) and ℒ2 = d2

d2

dx2 + (bvN1 − μ).

Then (4.8) is equivalent to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ℒ1Ñ = vN2P̃ , 0 < x < 1,

ℒ2P̃ = −bvP2Ñ, 0 < x < 1,

d1Ñx(0) − vÑ(0) = Ñx(1) = 0,

P̃x(0) = P̃x(1) = 0.

(4.9)

Because (N1,P1) is a positive solution of (4.1), we can conclude that the principal eigenvalues

λ1(ℒ1) < λ1(r − N1 − vP1) = 0 and λ1(ℒ2) = λ1(bvN1 − μ) = 0.

We first claim that both Ñ and P̃ must change sign in (0,1). Without loss of generality, we 
may suppose that P̃ > 0 in (0,1). It follows from the first equation of (4.9) that ℒ1Ñ > 0 in (0,1). 
By the strong maximum principle, we have Ñ < 0 on [0,1]. Multiplying the second equation of 
(4.1) by P̃ and (4.8) by P1, integrating by parts and applying the boundary conditions, we obtain

bv

1 ∫︂
0 

ÑP1P2dx = 0,

which contradicts the fact that bv
∫︁ 1

0 ÑP1P2dx < 0. Suppose Ñ > 0 in (0,1). A similar argument 

as above can show bv
∫︁ 1

0 ÑP1P2dx = 0, a contradiction. Hence, both Ñ and P̃ must change sign 
in (0,1).

Second, we claim that Ñ and P̃ have at most finitely many zeros in (0,1) where they change 
sign. Suppose Ñ(xk) = 0 for an infinite sequence of distinct points {xk} ⊂ [0,1] where Ñ
changes sign. By compactness, we may assume that there exists x0 ∈ [0,1] such that xk → x0 as 
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k → +∞ (passing to a subsequence if necessary). It follows from the mean value theorem that 
Ñ(x0) = 0, Ñx(x0) = 0 and Ñxx(x0) = 0. By the first equation of (4.9), we have P̃ (x0) = 0. We 
can apply the maximum principle to the second equation of (4.9) to conclude that P̃ must change 
sign in any neighborhood of x0. Hence, P̃x(x0) = 0. By the uniqueness of the Cauchy problem 
associated with (4.9), we derive (Ñ, P̃ ) = (0,0), which is a contradiction to (Ñ, P̃ ) ≠ (0,0). 
The same assertion holds for the zeros where P̃ changes sign.

It is not difficult to obtain Ñ(0) ≠ 0 or P̃ (0) ≠ 0. Otherwise, Ñ(0) = 0 and P̃ (0) = 0. By the 
uniqueness of the Cauchy problem associated with (4.9), we obtain (Ñ, P̃ ) = (0,0), a contradic
tion. Thus we may suppose that Ñ(0) > 0 and 0 < x1 < x2 < · · · < xq < 1 are the finite sequence 
of zeros of Ñ in (0,1) where it changes sign. Moreover, Ñ(x) > 0 in (0, x1). We claim that

(−1)i P̃ (xi) > 0 for i ∈ {1,2, · · · , q}.

We first argue by contradiction to show P̃ (x1) < 0. If P̃ (x1) ≥ 0, then

ℒ2P̃ = −bvP2Ñ < 0, 0 < x < x1, P̃x(0) = 0, P̃ (x1) ≥ 0,

and ℒ2P = 0 in (0, x1). The general maximum principle says that P̃ /P cannot reach its non
positive minimum in (0, x1). If min 

x∈[0,x1]
P̃ /P = P̃ (0)/P (0) ≤ 0, then (P̃ /P )x |x=0 > 0 by the gen

eral maximum principle, which contradicts (P̃ /P )x |x=0 = [P̃x(0)P (0) − P̃ (0)Px(0)]/P 2(0) =
0. Therefore, we may suppose that min 

x∈[0,x1]
P̃ /P = P̃ (x1)/P (x1) ≤ 0. In view of P̃ (x1) ≥ 0, we 

have P̃ (x1) = 0 and P̃ (x) > 0 in (0, x1). Consequently,

ℒ1Ñ = vN2P̃ > 0, 0 < x < x1, Ñx(0) = 0, Ñ(x1) = 0.

By the strong maximum principle, we obtain Ñ(x) < 0 in (0, x1), which contradicts Ñ(x) > 0
in (0, x1). Hence P̃ (x1) < 0.

Now it suffices to show that P̃ (xi)P̃ (xi+1) < 0 for i ∈ {1,2, · · · , q − 1}. Without loss of gen
erality, we may suppose that P̃ (xi) < 0 and Ñ(x) < 0 in (xi, xi+1). We will display P̃ (xi+1) > 0
by an indirect argument. Otherwise, we assume P̃ (xi+1) ≤ 0. Note that

ℒ2P̃ = −bvP2Ñ > 0 and ℒ2P = 0, xi < x < xi+1.

By the general maximum principle, P̃ /P cannot arrive at its nonnegative maximum in (xi, xi+1). 
In view of P̃ (xi) < 0, one can obtain that P̃ /P cannot reach its nonnegative maximum at xi . 
Suppose that max 

x∈[xi ,xi+1]
P̃ /P = P̃ (xi+1)/P (xi+1) ≥ 0. Because P̃ (xi+1) ≤ 0, we have P̃ (xi+1) =

0 and P̃ /P < 0 in (xi, xi+1). Therefore,

ℒ1Ñ = vN2P̃ < 0, Ñ(xi) = Ñ(xi+1) = 0, xi < x < xi+1.

It follows from the strong maximum principle that Ñ(x) > 0 in (xi, xi+1), a contradiction to 
Ñ(x) < 0 in (xi, xi+1). Hence, P̃ (xi+1) > 0. A similar argument can show that if P̃ (xi) > 0 and 
Ñ > 0 in (xi, xi+1), then P̃ (xi+1) < 0. Therefore, (−1)i P̃ (xi) > 0 for i ∈ {1,2, · · · , q}.
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Finally, we discuss the last interval by contradiction again. In this case, there are two cases: 
(a) Ñ > 0 in (xq,1); (b) Ñ < 0 in (xq,1).

(a) In this case, from the above analysis, we have P̃ (xq) > 0. Note that

ℒ2P̃ = −bvP2Ñ < 0 and ℒ2P = 0, xq < x < 1.

The general maximum principle implies that P̃ /P cannot arrive at its non-positive minimum in 
(xq,1). By virtue of P̃ (xq) > 0, we can conclude that P̃ /P cannot reach its non-positive mini
mum at xq . Then min 

x∈[xq ,1] P̃ /P = P̃ (1)/P (1) ≤ 0. It follows from the general maximum principle 

that (P̃ /P )x |x=1 < 0. On the other hand, (P̃ /P )x |x=1 = [P̃x(1)P (1) − P̃ (1)Px(1)]/P 2(1) = 0, 
a contradiction.

(b) In this case, from the above analysis, we have P̃ (xq) < 0. Note that

ℒ2P̃ = −bvP2Ñ > 0 and ℒ2P = 0, xq < x < 1.

The general maximum principle indicates that P̃ /P cannot arrive at its nonnegative maximum 
in (xq,1). In view of P̃ (xq) < 0, we can conclude that P̃ /P cannot reach its nonnegative maxi
mum at xq . Then max 

x∈[xq ,1] P̃ /P = P̃ (1)/P (1) ≥ 0. From the general maximum principle, we have 

(P̃ /P )x |x=1 > 0. On the other hand, (P̃ /P )x |x=1 = [P̃x(1)P (1) − P̃ (1)Px(1)]/P 2(1) = 0, a 
contradiction. Therefore, we obtain (Ñ, P̃ ) ≡ (0,0). This completes the proof.

4.2. The dispersal rate of the predator is regarded as a bifurcation parameter

Denote the operator G(d2,N,P ) :R+ × X → Y by

G(d2,N,P ) =
(︃

d1Nxx − vNx + N(r − N) − vNP

d2Pxx + (bvN − μ)P

)︃
.

Note that G(d2, θv,0) = 0. Moreover, it can be verified that the derivatives Dd2G(d2,N,P ), 
D(N,P )G(d2,N,P ), Dd2D(N,P )G(d2,N,P ) exist and are all continuous in the neighborhood of 
(d2, θv,0).

Lemma 4.5. If 0 < μ < b sup
v>0 

∫︁ 1
0 vθvdx, then for every v ∈ {v|b ∫︁ 1

0 vθvdx < μ < bvθv(1)}, there 

exist η > 0 and d2(s) ∈ C2((−η,η)) with d2(0) = d∗
2 such that all nonnegative steady state of 

(1.2) in the neighborhood of (d∗
2 , θv,0) can be described as

(d2,N
∗
5 ,P ∗

5 ) = (d2(s), θv + sφ∗∗ + s2χ∗∗, sψ∗∗ + s2ω∗∗), 0 < s < η, (4.10)

where (φ∗∗,ψ∗∗) is defined as (4.12) and (4.11), and (χ∗∗,ω∗∗) lies in the complement of the 
kernel of D(N,P )G|(d∗

2 ,θv,0) in X. Furthermore, the bifurcation direction of the solution (d∗
2 , θv,0)

can be characterized by d ′ (0) < 0.
2

25 



B. Wang and H. Wang Journal of Differential Equations 445 (2025) 113660 
Proof. For every v ∈ {v|b ∫︁ 1
0 vθvdx < μ < bvθv(1)}, from Lemma 2.3 (ii), we find

lim 
d2→0+ λ1 = μ − bvθv(1) < 0 and lim 

d2→+∞λ1 = μ − b

1 ∫︂
0 

vθvdx > 0.

Because λ1 is strictly increasing in d2, there exists a unique d∗
2 = d∗

2 (v) > 0 such that if 0 < d2 <

d∗
2 , then λ1 < 0, λ1 = 0 at d2 = d∗

2 and λ1 > 0 if d2 > d∗
2 . By elliptic regularity and the Sobolev 

embedding theorem, there exists ψ → ψ∗∗ ∈ C2([0,1]) as d2 → d∗
2 . Moreover, ψ∗∗ > 0 satisfies

d∗
2 ψ∗∗

xx + (bvθv − μ)ψ∗∗ = 0 in (0,1), ψ∗∗
x (0) = ψ∗∗

x (1) = 0. (4.11)

In other words, λ1 = 0 is the principal eigenvalue of the eigenvalue problem (2.1) with d2 = d∗
2

and ψ = ψ∗∗.
Through some simple computations, we arrive at

D(N,P )G|(d∗
2 ,θv,0)

(︃
φ

ψ

)︃
=

(︃
d1φxx − vφx + (r − 2θv)φ − vθvψ

d∗
2 ψxx + (bvθv − μ)ψ

)︃
.

Thus the kernel space of D(N,P )G|(d∗
2 ,θv,0) is spanned by (φ∗∗, ψ∗∗) and dim𝒩 (D(N,P )G|(d∗

2 ,θv,0)) 
= 1, where ψ∗∗ is the unique positive solution of (4.11) (up to a constant multiplier), and φ∗∗ is 
uniquely determined by

d1φ
∗∗
xx − vφ∗∗

x + (r − 2θv)φ
∗∗ − vθvψ

∗∗ = 0 in (0,1), φ∗∗
x (0) = φ∗∗

x (1) = 0.

It follows from (1.5) and the positivity of θv that zero is the smallest eigenvalue of the operator 

−d1
d2

dx2 + v
d 

dx
− (r − θv) with Danckwert’s boundary conditions. By the comparison principle 

for eigenvalues and the positivity of θv , the least eigenvalue of the operator −d1
d2

dx2 + v
d 

dx
−

(r − 2θv) with Danckwert’s boundary conditions is strictly positive. Therefore,

φ∗∗ =
[︂
− d1

d2

dx2 + v
d 

dx
− (r − 2θv)

]︂−1
(−vθvψ

∗∗) < 0. (4.12)

The Fredholm alternative indicates that codimℛ(D(N,P )G|(d∗
2 ,θv,0)) = 1. It remains to examine 

the transversality condition. Since 
∫︁ 1

0 (ψ∗∗
x )2dx ≠ 0, the equation d∗

2 ψxx + (bvθv − μ)ψ = ψ∗∗
xx

is not solvable. Hence,

Dd2D(N,P )G|(d∗
2 ,θv,0)

(︃
φ∗∗
ψ∗∗

)︃
=

(︃
0

ψ∗∗
xx

)︃
∉ℛ(D(N,P )G|(d∗

2 ,θv,0)).

Plugging (4.10) into the equation of v in (4.1) and dividing both sides by s yields

d2(s) − d∗
2

s
ψ∗∗

xx + d2(s)ω
∗∗
xx + (bvθv − μ)ω∗∗

= −bvφ∗∗ψ∗∗ − (bvψ∗∗χ∗∗ + bvφ∗∗ω∗∗)s + o(s). (4.13)
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Multiplying both sides of (4.13) by ψ∗∗, integrating by parts, applying the boundary condition 
and taking the limit, we obtain

d ′
2(0)

1 ∫︂
0 

(ψ∗∗
x )2dx =

1 ∫︂
0 

bvφ∗∗(ψ∗∗)2dx < 0.

This finishes the proof. □
Proof of Theorem 1.5. We here only prove part (i), the proof of part (ii) is similar. The local 
bifurcation conclusion immediately follows from Lemma 4.5. The stability of the bifurcation 
steady state can be examined by similar argument as in Lemma 4.3. The rest of proof can be 
achieved by similar argument to that of Theorem 1.4, we skip it here.

5. Discussion

We examined a predator-prey model with a drift-feeding predator in advective environments. 
In contrast to the predator-prey models without drift-feeding predators, the dynamics of this 
model is more complicated. For instance, for some ranges of the immorality rate and diffusion 
rate of the predator, the semi-trivial steady state of this model can change its stability at least 
twice (from stable to unstable, and then from unstable to stable) as the flow speed increases 
from small to large. Based on the stability results of the semi-trivial steady state, we derived 
the existence and uniqueness of positive steady state via bifurcation theories and the maximum 
principle. These findings imply that an appropriate increase in the flow speed will be beneficial 
for the invasion of the predator, which is in sharp contrast to the previous belief that increasing 
the flow speed has an exclusively negative impact on the persistence of both predator and prey 
species.

In comparison with traditional predator-prey models studied in previous studies [19,22,32], 
the drift-feeding model exhibits novel insights: (i) The predator does not move according to the 
flow speed; however, the growth of the predator depends on both the prey population and the flow 
speed; (ii) It was shown in [19,32] that when considering the corresponding eigenvalue problem 
that determines the stability of the semi-trivial steady state, the monotonicity of vθv(1) plays a 
critical role in understanding its principal eigenvalue. In sharp contrast, in this paper, vθv(1) has 
no monotonicity with respect to v; (iii) Previous investigation [22, Theorem 1.2] indicates that 
for some regions of the death rate of the predator, there exists a unique critical flow speed such 
that the predator can invade if and only if the flow speed is less than the critical flow speed, while 
the predator cannot invade when the flow speed is larger than the critical flow speed. However, 
our studies exhibit that there exist at least two critical flow speeds that separate the range of flow 
speed into three distinct areas: non-invasive area, invasive area and non-invasive area.

There are at least three remaining questions for further investigation: (i) How to precisely 
describe vθv(1) and 

∫︁ 1
0 vθvdx change as v increases (monotonicity or first increase and then 

decrease) because they play a vital role in inquiring about the dynamics of the predator-prey 
model; (ii) The asymptotic profiles of the positive steady state of (1.2) when one of the dispersal 
rates tends to zero or infinity, while the other one is fixed; (iii) What would be the dynamics of 
model (1.2) when the boundary conditions are changed to more general boundary conditions? 
for instance,
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d1Nx(0, t) − vN(0, t) = 0, d1Nx(1, t) − vN(1, t) = −qvN(1, t), q ≥ 0,

Px(0, t) = Px(1, t) = 0, t > 0.
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