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Abstract. In this paper, we discretize and analyze a stoichiometric optimal

foraging model where the grazer’s feeding effort depends on the producer’s nu-
trient quality. We systematically make comparisons of the dynamical behaviors

between the discrete-time model and the continuous-time model to study the

robustness of model predictions to time discretization. When the maximum
growth rate of producer is low, both model types admit similar dynamics in-

cluding bistability and deterministic extinction of the grazer caused by low nu-

trient quality of the producer. Especially, the grazer is benefited from optimal
foraging similarly in both discrete-time and continuous-time models. When the

maximum growth rate of producer is high, dynamics of the discrete-time model
are more complex including chaos. A phenomenal observation is that under ex-

tremely high light intensities, the grazer in the continuous-time model tends to

perish due to poor food quality, however, the grazer in the discrete-time model
persists in regular or irregular oscillatory ways. This significant difference in-

dicates the necessity of studying discrete-time models which naturally include

species’ generations and are thus more popular in theoretical biology. Finally,
we discuss how the shape of the quality-based feeding function regulates the

beneficial or restraint effect of optimal foraging on the grazer population.

1. Introduction. Ecological stoichiometry is the study of the balance of energy
and essential chemical elements throughout ecological systems [18]. Due to the ex-
istence of the chemical heterogeneity between grazers and their food resources, the
stoichiometric ratios of elements, such as carbon (C) and phosphorus (P), admit
rich dynamics as they vary within and across trophic levels. Loladze et al [10] stud-
ied a concise two-dimensional model with Lotka-Volterra type (LKE model) that
incorporates stoichiometry into the transfer rate of elements between producer and
grazer. This work emphasizes that food quality of producer can cause significant
influence on the growth of grazer. LKE model lays a foundation for studying the
impact of food quality (P:C) on ecological dynamical model. The main assumption,
nutrient is either in the producer or in the grazer, was relaxed in WKL model [20]
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which mechanistically modeled the free nutrient in media. The widely used “strict
homeostasis” assumption (also applied in LKE model) was relaxed and carefully
examined for its validity in stoichiometric models [22, 23] with one key conclusion
that the “strict homeostasis” assumption works for many herbivores except for her-
bivores with small mortality rates. Based on LKE and WKL models, stoichiometric
modeling has been studied from different perspectives [9, 11, 12, 13, 14, 21].

It is generally known that the selection of time scale plays an important role in
the study of biology and ecology [6]. The above-mentioned stoichiometric models
are continuous in time. Recent studies focused on the robustness of stoichiometric
effects to time discretization because discrete-time models naturally include gener-
ations of species and are preferred in theoretical biology. Lots of theoretical and
numerical comparisons have been done to investigate the departure of dynamical
behaviors between continuous-time models and discrete-time models [2, 3, 5, 19, 24].
The existing results show that continuous-time models and their discrete analogues
share many similarities. However, populations are more likely to oscillate in discrete-
time models.

Optimal foraging theory employs models that aim to predict animal behaviors
that maximize their fitness [16]. Many evidences show that foraging strategies em-
ployed by herbivores are related to the nutritional contents of their food [8, 17].
Peace and Wang [15] proposed a continuous-time optimal foraging model incorpo-
rating the P:C ratio–dependent feeding effort to study the compensatory foraging.
Since biologists collect experimental data in discrete time and most species have non-
overlapping generations, we develop the discrete-time version of the optimal foraging
model to study the robustness and departure of results from the continuous-time
model.

The main purpose of this paper is to compare the dynamics of the continuous-time
stoichiometric optimal foraging model [15] with its discrete-time analog. We study
the discrete-time model in two cases: low and high growth rates of producer. We
explore the robustness of some important phenomena exhibited in the continuous-
time model by comparing to the discrete-time model, such as bistability, optimal
foraging behavior and extinction of grazer caused by low food quality. Furthermore,
we explore new dynamical behaviors including chaos in the discrete-time model.

In section 2, we follow the approach developed in [1, 4] to describe the construc-
tion of the discrete-time analogue of the stoichiometric optimal foraging model. In
section 3, we theoretically study dynamics of the discrete-time model. Section 4 is
devoted to investigate the similarities and differences of dynamic behaviors between
the discrete-time model and the continuous-time model under low and high growth
rates of producer, respectively. Section 5 concludes and discusses our results.

2. The discrete-time analogue. Using stoichiometric principles, Peace and Wang
[15] proposed a stoichiometric producer-grazer model with compensatory foraging.
The feeding effort defined in [15] is quadratic, which is an unbounded function. To
guarantee the extension of solutions in the discrete-time model, we assume that the
feeding function admits an upper bound described by a minimum function, which
seems scientifically reasonable. Of course, with realistic parameters the results are
similar in the absence or presence of this upper bound. The continuous-time optimal
foraging model is described by
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dx

dt
= bmin

{
1− x

K
, 1− q

Q

}
x− µξ(Q)x

1 + µξ(Q)τx
y,

dy

dt
= emin

{
1,
Q

θ

}
µξ(Q)x

1 + µξ(Q)τx
y − ξ(Q)y − δ y,

(1)

where

Q =
PT − θy

x
and ξ(Q) = min{a0, a1Q

2 + a2Q+ a3}.

In system (1), x(t) and y(t) represent the densities of producer and grazer
(mg C/L), respectively. b denotes the maximum growth rate of producer (day−1).
δ is the specific loss rate of grazer including death and respiration (day−1). e is
maximum production efficiency in carbon terms for grazer (no unit). It is satisfied
that e < 1 due to the second law of thermodynamics. K is the producer’s constant
carrying capacity determined by light intensity.

Similar to many stoichiometric models, three assumptions are proposed as fol-
lows:

A1: The total mass of phosphorus in the entire system is fixed, i.e., the system
is closed for phosphorus with a total of PT (mgP/L).

A2: P : C ratio in the producer varies, but never falls below a minimum q
(mgP/mgC); the grazer maintains a constant P : C, θ (mg P/mg C).

A3: All phosphorus in the system is divided into two pools: P in the grazer and
P in the producer.

These assumptions explain the implications of Q and the two minimum functions
of system (1). Here, Q describes the variable P quota of the producer. The first
minimum function min{1 − x/K, 1 − q/Q} describes the growth rate limited by C
(light) and P (nutrient) availability. The second minimum function min{1, Q/θ}
describes the biomass growth rate of grazer, constrained by energy and nutrient
limitations.

Considering the compensatory foraging effect, the ingestion rate of grazer (day−1)
takes Holling type-II functional response

f(x) :=
µξ(Q)x

1 + µξ(Q)τx
,

which is called“optimal foraging functional response” [15]. τ represents the handling
time, and µ represents the amount of water cleared per mgC invested to generate
energy for filtering behavior, ξ(Q) is the feeding effort which is related to the variable
P quota of producer Q. Based on [15], ξ(Q) can be described as the quadratic
function with an upper bound (a0) as defined in system (1). The upper and lower
bounds of ξ(Q) can be easily found. We denote

ξ̆ = min ξ(Q) = ξ(− a2

2a1
) > 0 and ξ̂ = max ξ(Q) = a0 > 0.

The above stoichiometric optimal foraging model (1) in continuous time scale
can be converted to discrete-time analogue through the method developed in [1, 4].
Considering the differential equations with piecewise constant arguments, we assume
that the per capita growth rate stays constant in a given time interval [t, t+ 1].
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Table 1. Parameters of model (4) with default values and units

Par. Description Value Unit

PT Total phosphorus 0.02 mgPL−1

K Producer carrying capacity determined by light 0− 3.5 mgCL−1

b Maximal growth rate of the producer 1.2 or 3 day−1

δ Grazer loss rate 0.12 day−1

θ Grazer constant P : C 0.03 mgP/mgC
q Producer minimal P : C 0.0038 mgP/mgC
e Maximal production efficiency in carbon terms for grazer 0.8

α Phosphorus half saturation constant of the producer 0.008 mgCL−1

µ Water cleared/mg C invested to generate filtering energy 700 L/mgC
τ Handling time (-inverse of max feeding rate) 1.23 day
ξ(Q) Feeding cost, function for optimal foraging model a0 = 0.01,a1 = 5.17

ξ(Q) = min{a0, a1Q2 + a2Q+ a3} a2 = −0.31,a3 = 0.007

Assume that the per capita growth rates in (1) change only at t = 0, 1, 2, ..., then

1

x(t)

dx(t)

dt
= bmin

{
1− x[t]

K
, 1− q

Q

}
− µξ(Q)

1 + µξ(Q)τx[t]
y[t],

1

y(t)

dy(t)

dt
= emin

{
1,
Q

θ

}
µξ(Q)x[t]

1 + µξ(Q)τx[t]
− ξ(Q)− δ , t 6= 0, 1, 2, ...,

(2)

where

Q =
PT − θy[t]

x[t]
and ξ(Q) = min{a0, a1Q

2 + a2Q+ a3}.

Here [t] represents the integer part of t ∈ (0,+∞). We can integrate system (2) on
any interval [n, n + 1), n = 0, 1, 2, · · · . Then we obtain the following equations for
n ≤ t < n+ 1:

x(t) = x(n) exp

{[
bmin

{
1− x(n)

K
, 1− q

Q

}
− µξ(Q)

1 + µξ(Q)τx(n)
y(n)

]
(t− n)

}
,

y(t) = y(n) exp

{[
emin

{
1, Qθ

} µξ(Q)x(n)

1 + µξ(Q)τx(n)
− ξ(Q)− δ

]
(t− n)

}
,

(3)
where

Q =
PT − θy(n)

x(n)
and ξ(Q) = min{a0, a1Q

2 + a2Q+ a3}.

Let t → n + 1. Then, the discrete-time analogue of system (1) is well proposed as
follows:

x(n+ 1) = x(n) exp

{
bmin

{
1− x(n)

K
, 1− q

Q

}
− µξ(Q)

1 + µξ(Q)τx(n)
y(n)

}
,

y(n+ 1) = y(n) exp

{
emin

{
1, Qθ

} µξ(Q)x(n)

1 + µξ(Q)τx(n)
− ξ(Q)− δ

}
,

(4)

where

Q =
PT − θy(n)

x(n)
and ξ(Q) = min{a0, a1Q

2 + a2Q+ a3}.

3. Model analysis. In this section, we establish the boundedness and positive
invariance for system (4). Then, we analyze the stability of equilibria in system (4).
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3.1. Boundedness and invariance. In this subsection, we view f(x) as a function
of two variables, f(x, ξ) . Then we have

∂f

∂x
> 0,

∂f

∂ξ
> 0 for x > 0.

For convenience we assume that f(x, ξ) = xp(x, ξ). It is easy to verify that

∂p

∂x
< 0,

∂p

∂ξ
> 0 for x > 0.

Theorem 3.1. For system (4), we have for all n ∈ N+,

x(n) ≤ max

{
x(0),

K

b
exp(b− 1)

}
≡ U, y(n) ≤ max{y(0), v} exp(2êf(U, ξ̂)− 2d) ≡ V,

where v satisfies ef
(
U exp(b− p(U, ξ̆)v)

)
< ξ̆ + δ.

Proof. We can verify that maxx∈R x exp(b − bx
K ) = K

b exp(b − 1) for b > 0. Hence,
from system (4) we have

x(n+ 1) < x(n) exp

{
b− bx(n)

K

}
≤ K

b
exp(b− 1) ≡ u.

Then, for all n ∈ N, we obtain

x(n) ≤ max{x(0), u} ≡ U.

If ef(U, ξ̂) ≤ δ, then we have y(n) ≤ y(0), for all n ∈ N+. Assume below that

ef(U, ξ̂) > δ. Let v be large enough that

ef
(
U exp(b− p(U, ξ̆)v), ξ̂

)
< ξ̆ + δ.

For all n ∈ N, we obtain

y(n) ≤ max{y(0), v} exp(2ef(U, ξ̂)− 2ξ̆ − 2δ) ≡ V.

This is true for n = 1, 2 obviously. We can prove the claim below in two cases.
Case I. y(0) ≤ v. If the claim is not true, then we have v < y(n1 − 2) ≤ V ,

v < y(n1 − 1) ≤ V and y(n1) > V , for some n1 > 2. By the assumption that
∂p/∂x < 0, we have

x(n1 − 1) ≤ x(n1 − 2) exp(b− p(x(n1 − 2), ξ̆)y(n1 − 2)) < U exp(b− p(U, ξ̆)v),

which implies that

y(n1) < y(n1 − 1) exp{ef [U exp(b− p(U, ξ̆)v), ξ̂]− ξ̆ − δ} < y(n1 − 1) ≤ V.

There exists contradiction with y(n1) > V.

Case II. y(0) > v. Hence, we obtain x(1) < U exp(b − p(U, ξ̆)v). This implies
that y(2) < y(1). In other words, as long as y(n) > v, we have y(n+ 2) < y(n+ 1).
There can be two possibilities: (a) y(n∗) ≤ v for some n∗ ∈ N+; (b) y(n) > v for all
n ∈ N+. In case (a), from the proof of case I, we see that for y(n) < V for n > n∗

and hence the claim is also true. In case (b), y(n) is strictly decreasing for n > 1
and the claim is true, proving the theorem.

The above theorem implies the forward invariant set

∆ =

{
(x, y) : 0 < x <

K

b
exp(b− 1), 0 < y < v

}
.
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Theorem 3.2. For system (4), ∆ is globally attractive with respect to initial values
(x(0),y(0)) such that x(0) > 0 and PT /θ > y(0) > 0.

Proof. From Theorem 3.1, we find that ∆ is a positively invariant domain of system
(4) and x(n) ∈

(
0, Kb exp(b− 1)

)
, for large values of n. If y(n) > v for large values of

n ∈ N+, then y(n) satisfies y∗ = lim supx→∞ y(n) ≥ v due to boundedness. Then,
for large values of n, we have

y(n) < y(n− 1) exp{êf [U exp(b− p(U, ξ̆)v), ξ̂]− ξ̆ − δ}.
Let n→∞, we obtain

y∗ ≤ y∗ exp{êf [U exp(b− p(U, ξ̆)v), ξ̂]− ξ̆ − δ} < y∗,

which contradicts y∗ > v > 0. Thus, we have y(n) ∈ (0, v), for large values of n.
This completes the proof.

3.2. Boundary equilibria. For convenience, we rewrite system (4) as

x(n+ 1) = x(n) exp{F (x(n), y(n))},

y(n+ 1) = y(n) exp{G(x(n), y(n))},
where

F (x, y) = bmin

{
1− x

K
, 1− q

Q

}
− µξ(Q)

1 + µξ(Q)τx
y,

G(x, y) = emin

{
1,
Q

θ

}
µξ(Q)x

1 + µξ(Q)τx
− ξ(Q)− δ.

Possible equilibrium points of the system (4) can be solved from the equations

x[1− exp{F (x, y)}] = 0, y[1− exp{G(x, y)}] = 0.

The boundary equilibrium points are E0 = (0, 0) and E1 = (k, 0), where k =
min{K,PT /q}

We investigate the stability of equilibria in system (4) by using Jury Test.

Lemma 3.3. (Jury Test) Let A be a 2 × 2 constant matrix. Both characteristic
roots of A have magnitude less than one if and only if

2 > 1 +Det(A) > |Tr(A)|. (5)

The Jacobian of (4) is

J(x, y)=

exp{F (x, y)}+x exp{F (x, y)}∂F (x, y)

∂x
x exp{F (x, y)}∂F (x, y)

∂y

y exp{G(x, y)}∂G(x, y)

∂x
exp{G(x, y)}+y exp{G(x, y)}∂G(x, y)

∂y

 .

The stability of boundary equilibria can be described by the following theorem using
Jury Test in Lemma 3.3.

Theorem 3.4. For system (4), E0 is always unstable. E1 is locally asymptotically
stable (LAS) if

0 < b < 2 and emin

{
1,
PT
kθ

}
µξ(PT /k)k

1 + µξ(PT /k)τk
− ξ(PT /k)− δ < 0;

it is unstable if

b > 2 or emin

{
1,
PT
kθ

}
µξ(PT /k)k

1 + µξ(PT /k)τk
− ξ(PT /k)− δ > 0.
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Proof. The Jacobian matrix at the origin E0 becomes

J(E0) =

(
eb 0
0 e−d

)
.

There exists one characteristic root with magnitude of eb larger than one. Hence,
E0 is always unstable.

The Jacobian matrix at E1 turns out to be

J(E1) =

 1− b k
∂F (x, y)

∂y
|(k,0)

0 exp{G(k, 0)}

 ,

where

G(k, 0) = emin

{
1,
PT
kθ

}
µξ(PT /k)k

1 + µξ(PT /k)τk
− ξ(PT /k)− δ.

On one hand, the condition

0 < b < 2 and emin

{
1,
PT
kθ

}
µξ(PT /k)k

1 + µξ(PT /k)τk
− ξ(PT /k)− δ < 0

implies that the characteristic roots of J(E1) are both less than one. Thus E1 is
LAS. On the other hand, E1 is unstable if one of the opposite strict inequalities
holds.

3.3. Internal equilibria.
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Figure 1. Attractor of discrete-time optimal foraging model (4) in phase

plane for different light intensities in two cases. Panels of (ai) describe the
case when the producer’s growth rate is low b = 1.2, i = 1, 2, 3. Panels of (bi)

describe the case when the producer’s growth rate is high b = 3, i = 1, 2, 3.

The red dashed curves are defined by F (x, y) = 0, which denote the producer
nullclines. The blue dotted curves are defined by G(x, y) = 0, which denote the

grazer nullclines. Solid bullets denote stable equilibria while circles represent

unstable equilibria.
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The internal equilibrium can be found at the interaction of the two nullclines
F (x, y) = 0 and G(x, y) = 0. We discuss the stability of internal equilibria in two
cases: Case I, the maximum growth rate of producer is low (b = 1.2); Case II, the
maximum growth rate of producer is high (b = 3). Fig. 1 illustrates the phase
portraits of system (4) in two cases as K increases. When the light intensity is
very low (K = 0.1), the internal equilibrium is stable for both two cases (Fig. 1
(a1) and (b1)). When the light intensity increases to intermediate level (K = 0.15),
there will be a periodic orbit circling around an unstable internal equilibrium (Fig.
1 (a2) and (b2)). Specially, there exist multiple internal equilibria in Case II (Fig.
1 (b2)). Phase trajectory generated from another initial value tends to a stable
equilibrium, which shows that system (4) is bistable. When the light intensity
further increases to high level (K = 2.5), there exist multiple stable equilibria in
Case I. (Fig. 1 (a3)). However, the internal equilibrium is unstable in Case II. The
phase trajectory irregularly oscillates and then tends to a singular orbit (Fig. 1
(b3)).

In general, the internal attractors of system (4) can be either equilibria or a
limit cycle when the growth rate of producer is low. However, when the growth
rate of producer is high, the attractors can be a singular orbit besides equilibria
and a limit cycle. In addition, the discrete-time optimal foraging model exhibits
bistability, which means that solution curves with different initial values tend to
either one of the two different asymptotic states, such as Fig. 1 (a3) and (b2).

4. Numerical simulations. In this section, we will numerically compare dynami-
cal behaviors of the discrete-time model (4) and the continuous-time model (1). We
choose the parameter K as the bifurcation parameter, which represents the light
intensity. We will discuss the robustness of discretization at low (b = 1.2) and high
(b = 3) maximum growth rates of producer, respectively. The parameters are se-
lected from Table 1 and the initial conditions are set as x(0) = 0.2 mg C/L and
y(0) = 0.2 mg C/L.

4.1. Low growth rate of producer. We first conduct simulations when the pro-
ducer’s growth rate is low (b = 1.2). The bifurcation diagrams in Fig. 2 illustrate
the transitions of dynamic behaviors in models (4) and (1) as K varies. Fig. 3
presents the solution curves of the two systems, which can be intuitively served as
the typical examples with varying K.

For K less than 0.03 mg C/L, the grazer cannot survive due to low food quantity.
Fig. 3 (a1) and (b1) show such a typical case with K = 0.02. When K increases,
the grazer can persist at a stable positive equilibrium, and its density increases.
A typical example with K = 0.1 is shown in Fig. 3 (a2) and (b2). When K
further increases, the system undergoes a Hopf bifurcation and the equilibrium
loses its stability to a limit cycle, whose the amplitude increases as K increases.
In the parameter region of a stable limit cycle, there is a subtle difference between
discrete-time and continuous-time models. The amplitude of oscillations in the
continuous-time model is smaller than that in the discrete-time model (Fig. 3
(a3) and (b3)). When K even further increases, the limit cycle disappears through
a saddle-node bifurcation and populations return to a new stable equilibrium, as
shown in Fig. 3 (a4) and (b4). After the saddle-node bifurcation point, the grazer
in both continuous-time model (1) and discrete-time model (4) are benefited by
optimal foraging, where the grazer remains at a high density (see shaded regions in
Fig. 2 (a2) and (b2)). When K is sufficiently large, the optimal foraging behavior is
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Figure 2. Bifurcation diagram of the population densities with respect to K
(light intensity) for the discrete-time model (4) (ai), i=1,2, and the continuous-

time model (1) (bi), i=1,2. Shaded regions with + represent the parameter

regions of the optimal foraging behaviors benefiting the grazers. All parameters
are provided in Table 1 with b = 1.2.

no longer in force. As the grazer’s growth is constrained by the gradual worsening
food quality, the grazer’s density in either model begins to decline and tends to
perish. Due to the loss of predation, the producer’s density in either model reaches
its carrying capacity. Solution curves show this phenomenon in Fig. 3 (a5) and
(b5).
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Figure 3. Solution curves for system (4) and (1). (ai) and (bi) denote
the dynamics of (4) and (1) with increasing K, respectively. Producer and

grazer’s densities (mg C/L) are plotted by dashed and solid lines, respectively.
All parameters are provided in Table 1 with b = 1.2.

4.2. High growth rate of producer. In fact, discretization can cause significant
differences on the dynamics of system (1) when the maximum growth rate of pro-
ducer is high (b = 3). Some parameter sets yield different dynamics for models
(4) and (1). When K = 0.15, populations of the continuous-time model tend to
a positive stable equilibrium, while those of the discrete-time model show periodic
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Figure 4. Solution curves for system (4) and (1). (ai) and (bi) denote the
dynamics of (4) and (1) with increasing K, respectively. Producer and grazer

densities (mg C/L) are described by dashed and solid lines, respectively. All

parameters are provided in Table 1 with b = 3.

oscillations (Fig. 4 (a1) and (b1)). When K = 3.5, populations of the continuous-
time model tend to a boundary stable equilibrium, while those of the discrete-time
model show chaotic behaviors (Fig. 4 (a2) and (b2)).
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Figure 5. The bifurcation curves with respect to K for the discrete-time

model (ai), i=1,2, and continuous-time model (bi), i=1,2. All parameters are

provided in Table 1 with b = 3.

Bifurcation diagrams with the high growth rate of producer are sketched in Fig.
5. Different from the case with the low growth rate of producer, we cannot observe
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obvious optimal foraging behavior when the growth rate of producer is high. One
can observe that dynamics of the continuous-time model (1) and the corresponding
discrete-time model (4) are completely different as exhibited in Fig. 5. The species
in the discrete-time model can coexist and the system is persistent even when the
light intensity is extremely high (Fig. 5 (a1) and (a2)). However, Fig. 5 (b2) shows
the extinction of grazer in the continuous-time model under extremely high light
intensities.

Additionally, the attractor in continuous-time model (1) can be the boundary
equilibrium or the internal equilibrium (Fig. 5 (b1) and (b2)). However, in discrete-
time model (4), besides boundary equilibrium and internal equilibrium, the attractor
can also be a limit cycle or even a strange attractor (chaos) as shown in Fig. 5 (a1)
and (a2). In Fig. 6, when K varies within the intervals (0.01, 0.05) and (2.1, 3.5),
the maximum Lyapunov exponent (MLE) of system (4) is positive, which proves
that the discrete-time model indeed has chaos. Fig. 5 (a1) and (a2) show the
pathway from period-doubling to chaos. Hence, discretization can lead to regular
and irregular oscillations of populations.
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K

-30
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0

10

20
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Figure 6. Spectrum of the maximum Lyapunov exponent (MLE) with re-

spect to K for the discrete-time model. All parameters are provided in Table

1 with b = 3.

5. Discussion. In this paper, we discretized the optimal foraging model in [15]
by applying the method developed in [1, 4]. Different from most other stoichio-
metric models, the grazer ingestion rate is considered as a Holling type II func-
tional response that depends not only on the producer’s quantity but also on its
quality. We rigorously investigated the asymptotic stability of equilibria in the
discrete-time model. We explored the dynamical behaviors of the discrete-time
model through numerical solutions and bifurcation diagrams and compared them
with the continuous-time model.

When the maximum growth rate of producer is low, the results of the continuous-
time model are robust to time discretization. Most important dynamical features
exhibited in the continuous-time optimal foraging model can also be observed in the
discrete-time model, such as bistability, optimal foraging behavior and deterministic
extinction of grazer due to poor food quality.

When the growth rate of producer is high, one can observe significant differences
in dynamical behaviors between discrete-time and continuous-time models. When
faced with extremely high light intensities, the grazer in the continuous-time model
tends to perish due to poor food quality. However, the dynamical behaviors of
the discrete-time model show that the grazer can coexist with the producer under
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extremely strong light. Furthermore, populations in the continuous-time model
tend to a steady state, while the discrete-time model shows richer dynamics, such
as periodic oscillations or even chaos.
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Figure 7. A two-parameter bifurcation diagram for varying light level K

and varying maximal growth rate of producer b for the discrete-time model
(a) and continuous-time model (b). All other parameter values are listed in

Table 1 and the initial point is x(0) = 0.2 mgCL−1 and y(0) = 0.2 mgCL−1.

Discrete-time model (4) exhibits periodic oscillations in blue region and chaotic
behaviors in red region. Outside these regions, model (4) has stable equilibria.

Figure 8. Bifurcation diagram of the grazer densities with respect to K
(light intensity) for the discrete-time model (4) (ai), i=1,2, and the continuous-

time model (1) (bi), i=1,2. Specially, (a1) and (b1) denote the case with the
low growth rate of producer (b = 1.2); (a2) and (b2) denote the case with the
high growth rate of producer (b = 3). Light (+) and dark (−) shaded regions

represent the parameter regions of the optimal foraging behaviors benefiting

and restraining the grazers, respectively. All parameters are provided in Table
1 except the parameter a1 = 3.5.

We classify the behaviors of discrete-time model (4) and continuous-time model
(1) in b-K planes (Fig. 7). For discrete-time model (4), the red region of Fig.
7(a) shows that chaotic behavior occurs when the growth rate is high and the light
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intensity is not too low. The attractor can also be a limit cycle (the blue region)
or a steady state (the white region). Comparing (a) and (b) of Fig. 7, we find that
the parameter region driving oscillations for discrete-time model is far larger than
that for continuous-time model.

The shape of the optimal foraging function ξ(Q) can greatly affect the grazer
dynamics. In the optimal foraging function, a1 is a key parameter governing the
width of “open mouth” of the quality-dependent feeding effort. We decrease a1 =
5.17 in Table 1 to a1 = 3.5 in Fig. 8. Compared with Fig. 2 (a2) and (b2), we
can observe that the grazer can be either benefited from optimal foraging in the
light grey region with + or constrained by optimal foraging in the dark grey region
with − in Fig. 8 (a1) and (b1). Compared with Fig. 5 (a2) and (b2) with no
obvious optimal foraging behaviors, the grazer is inhibited by optimal foraging in
Fig. 8 (a2) and (b2). The inhibition effect occurs at lower light intensities in the
discrete-time model than in the continuous-time model. Lower a1 in the quality-
based feeding function leads to the purely negative impact of optimal foraging on
the grazer population.
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