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We formulate and analyze a general diffusive host-pathogen model with an 
incubation period and nonlocal infections in a spatially heterogeneous environment. 
The model system is partially degenerate and the solution map is not compact. We 
first prove that the solutions of the model exist globally and are ultimately bounded. 
Next, we define the basic reproduction number R0 as the spectral radius of the sum 
of two next generation operators corresponding to direct and indirect infection 
modes, and prove that R0 is decreasing with respect to the incubation period 
and the diffusion coefficient of infectious hosts under some conditions. Finally, 
we demonstrate that the model system possesses a global attractor, and explore 
the global dynamics of the system. Especially, we show that the infection-free 
steady state is globally asymptotically stable if R0 ≤ 1. On the other hand, if 
R0 > 1, then the infection will persist and the model system admits at least one 
positive steady state. For spatial homogeneous system, global asymptotic stability 
of the positive steady state is proved via Lyapunov functional technique. Numerical 
simulation is conducted to explore singular perturbation phenomenon when the 
diffusion coefficients approach zero. We observe that the diffusion will not only 
spread the infection to the low-risk region, but it may also increase the infection 
level in the high-risk region.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

To understand the dynamics of the host-pathogen interaction, Anderson and May [2] proposed and 
investigated a nonlinear system of ordinary differential equations, where a class representing the population 
of infectious pathogen particles was introduced. This model system was then revised by Dwyer [8] to include 
density dependent mortality and spatial diffusion of the host population. Moreover, the consumption of the 
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pathogen by the hosts was ignored for simplicity. Dwyer’s work was further generalized in [35] to incorporate 
with spatial heterogeneity in model parameters such as the carrying capacity for the host, the transmission 
rate, and the shedding rate. It is also noted that in Dwyer’s model the habitat was assumed to be unbounded 
in a one dimensional space, while the domain in the model of [35] was bounded in a finite dimensional space.

Only one transmission path was assumed in the aforementioned models. However, it is more biologi-
cally realistic to incorporate both direct and indirect transmission mechanisms in the model. For instance, 
the Vibrio cholerae bacteria can spread Cholera through direct human-to-human infection via faecal-oral 
route and indirect environment-to-human transmission from polluted aquatic reservoir [21,22]. The direct 
transmission is rare and can be ignored in the areas where good hygiene is maintained. But in many de-
veloping countries such as Rwanda, Zimbabwe, and Haiti, where Cholera outbreaks occurred and caused 
serious public health crisis [7,12,18], the direct human-to-human infection contributed a significant number 
of cases. It is thus important to consider transmissions of pathogens both between the hosts and through 
the environment [23]. As we shall see later in our analysis, ignoring one of the two infection routes will 
cause the problem of underestimating the basic reproduction number of infection and the seriousness of the 
pathogen transmission.

Recently, some spatial homogeneous models were proposed and developed to consider both direct and in-
direct transmission routes; see, for instance, [3,9,14,16,22,23,32,33]. To better understand the spatial pattern 
of host-pathogen dynamics, one should also introduce spatial heterogeneity into the model. It has been shown 
in [22,34] that the (local) basic reproduction numbers are different in 10 different regions in Zimbabwe and 
Haiti. Reaction-diffusion equations were used to investigate traveling waves, asymptotic spreading speed, 
spatiotemporal dynamics, and bifurcation dynamics of host-pathogen models [6,8,35,37].

Many pathogens undergo a latent/incubation period within the host before becoming infectious [2]. To 
incorporate the incubation period in our model, we shall make use of the stage structure of the infected 
host. Let i(x, t, a) be the density of infected hosts at location x time t with infection age a. We consider the 
following age-structure equation,(

∂

∂t
+ ∂

∂a

)
i(x, t, a) = −μ(x, a)i(x, t, a) + ∇ · (d(x, a)∇i(x, t, a)) ,

for x ∈ Ω, t > 0, a > 0, where Ω ⊂ Rn is a bounded spatial habitat with a smooth boundary ∂Ω, 
∇ · (d(x, a)∇i(x, t, a)) describes the divergence of d(x, a)∇i(x, t, a) with d(x, a) being the diffusion rate of 
infected hosts with infection age a, and μ(x, a) is the death rate of infected hosts with infection age a. 
Let τ be a cutoff age for the incubation period of the infected hosts, and denote by u2,I(x, t) and u2(x, t), 
respectively, the densities of inactively and actively infected hosts; namely,

u2,I(x, t) =
τ∫

0

i(x, t, a)da, u2(x, t) =
∞∫
τ

i(x, t, a)da.

Denote u1(x, t) and u3(x, t) as the density of susceptible hosts and pathogen particles at location x time t, 
respectively. We assume they satisfy the following differential equations.

∂u1

∂t
= ∇ · (d1(x)∇u1) + n(x, u1) − f(x, u1, u2) − g(x, u1, u3),

∂u3

∂t
= k(x)u2 − μ3(x)u3,

for x ∈ Ω, t > 0, where ∇ · (d1(x)∇u1) represents the divergence of d1(x)∇u1 with d1(x) being the diffusion 
rate of susceptible hosts, n(x, u1) is the intrinsic growth function of susceptible hosts, which couples the 
recruitment (or influx) and the natural death, f(x, u1(x, t), u2(x, t)) and g(x, u1(x, t), u3(x, t)) are the direct 
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and indirect nonlinear transmission functions, respectively, k(x) and μ3(x) are the reproduction rate by 
actively infected hosts and the death rate of the pathogen particles, respectively. The inflow of infected 
hosts comes from the nonlinear transmissions:

i(x, t, 0) = f(x, u1(x, t), u2(x, t)) + g(x, u1(x, t), u3(x, t)).

It is natural to assume that i(x, 0, ∞) = 0. Now, we assume that the diffusion rate and mortality rate are 
piecewisely defined as

d(x, a) =
{
d2,I(x), x ∈ Ω, a ≤ τ,

d2(x), x ∈ Ω, a > τ,
μ(x, a) =

{
μ2,I(x), x ∈ Ω, a ≤ τ,

μ2(x), x ∈ Ω, a > τ.

An integration along the characteristic lines leads to the following equation for the actively infected hosts.

∂u2(x, t)
∂t

= ∇ · (d2(x)∇u2(x, t)) − μ2(x)u2(x, t)

+
∫
Ω

K(x, y, τ) (β1(y)u1(y, t− τ)u3(y, t− τ) + β2(y)u1(y, t− τ)u2(y, t− τ)) dy,

where K(x, y, t) is the kernel function for the solution operator (i.e., C0 semigroups) T2,I(t) generated by 
the differential operator ∇ ·(d2,I∇) −μ2,I with no-flux boundary condition on Ω. To consider a more general 
kernel function K(x, y, τ), we make the following assumptions:

(H1) For any τ ≥ 0, 
∫
Ω K(x, y, τ)dy is continuous in x ∈ Ω̄, 

∫
Ω K(x, y, τ)dx is continuous in y ∈ Ω̄, and ∫

Ω K(x, y, τ)ψ(y)dy > 0 for any x ∈ Ω̄ and ψ ∈ C(Ω̄, R+) with ψ �≡ 0. Moreover, there exists α(τ) > 0
such that

∫
Ω

v(x)

⎡⎣∫
Ω

K(x, y, τ)w(y)dy

⎤⎦ dx ≤ α(τ)
∫
Ω

[v2(x) + w2(x)]dx for any v, w ∈ C(Ω̄).

It is obvious that both the heat kernel and the delta kernel satisfy this condition. For convenience, we 
introduce the following operator: for x ∈ Ω and t > 0,

(χ(τ)ψ)(x) =
∫
Ω

K(x, y, τ)ψ(y)dy for any ψ ∈ C(Ω̄).

For simplicity, we denote ui,−τ (x, t) = ui(x, t − τ) for i = 1, 2, 3. Motivated by the above derivation, we 
propose a general diffusive host-pathogen model with an incubation period and two nonlocal infection modes 
in a spatially heterogeneous environment:

∂u1

∂t
= ∇ · (d1(x)∇u1) + n(x, u1) − f(x, u1, u2) − g(x, u1, u3),

∂u2

∂t
= ∇ · (d2(x)∇u2) + χ(τ)f(·, u1,−τ , u2,−τ ) + χ(τ)g(·, u1,−τ , u3,−τ ) − μ2(x)u2,

∂u3

∂t
= k(x)u2 − μ3(x)u3,

(1.1)

for x ∈ Ω, t > 0, with nonnegative initial conditions and homogeneous Neumann boundary conditions
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∇ui · ν = 0, i = 1, 2, x ∈ ∂Ω, t > 0,

where ν is the unit outward normal to ∂Ω. Throughout this paper, we assume that d1(x), d2(x), k(x), 
μ2(x), μ3(x) are positive and continuous functions on Ω̄. We further make the following biologically moti-
vated assumptions:

(H2) n(x, u1) ∈ C0,1(Ω̄ ×R+) and ∂u1n(x, u1) ≤ 0 for all x ∈ Ω and u1 ≥ 0; for each x ∈ Ω̄, there exists a 
unique ū1(x) > 0 in C(Ω̄, R) such that n(x, ̄u1(x)) = 0.

(H3) f(x, u1, u2), g(x, u1, u3) ∈ C0,1,2(Ω̄ × R+ × R+), which are strictly increasing with respect to ui and 
concave down with respect to the third variable for all x ∈ Ω and ui ≥ 0 (i = 1, 2, 3); f(x, v, w) =
0 (resp. g(x, v, w) = 0) if and only if vw = 0.

Throughout this paper, we assume that (H1), (H2) and (H3) are satisfied. The motivation of this paper 
is to investigate the joint impacts of nonlocal infections, incubation period and spatial heterogeneity on 
the dynamics of diffusive host-pathogen models. As we shall see, the global dynamics is determined by a 
threshold parameter called the basic reproduction number, which is defined as the spectral radius of the 
sum of two next generation operators corresponding to direct and indirect infection modes. Under certain 
conditions, we will also prove that this threshold parameter is decreasing with respect to the incubation 
period and the diffusion coefficient of infectious hosts. We will further conduct numerical simulation to 
explore singular perturbation phenomenon when the diffusion coefficients approach zero. Moreover, we will 
show that the diffusion will not only spread the infection to the low-risk region, but it may also increase 
the infection level in the high-risk region.

The rest of this paper is organized as follows. In Section 2, we obtain some preliminary results on 
the well-posedness of our model system, including uniqueness, global existence, and ultimately uniform 
boundedness of the solution. In Section 3, we define the basic reproduction number R0 by using the next 
generation operator, and explore its properties as the dispersal rate varies from zero to infinity. In Sections 4, 
we prove a dichotomy result that the infection-free steady state is globally stable when R0 ≤ 1 while 
the model is uniformly persistent and possesses a positive steady state when R0 > 1. In Section 5, we 
consider the special case when the system is spatial homogeneous and prove that the positive steady state is 
unique, homogeneous, and globally asymptotically stable. In Sections 6, we conduct numerical simulations 
to verify the theoretical results on monotonicity of basic reproduction number and to illustrate the singular 
perturbation phenomenon of steady state solutions when the diffusion rates approach zero. In Section 7, a 
brief summary is provided to conclude the paper.

2. Well-posedness and basic dynamics

Denote by X := C(Ω̄, R3) the Banach space of continuous functions on Ω̄ with the supremum norm ‖ ·‖X. 
For τ ≥ 0, let Cτ := C([−τ, 0], X) be the Banach space of continuous maps from [−τ, 0] to X with the norm 
‖φ‖ := max

θ∈[−τ,0]
‖φ(θ)‖X for any φ ∈ Cτ . The nonnegative cones of X and Cτ are denoted by X+ = C(Ω̄, R3

+)

and C+
τ := C([−τ, 0], X+), respectively. It is obvious that (X, X+) and (Cτ , C+

τ ) are strongly ordered spaces 
[29]. Given a continuous function u(x, t) : Ω × [−τ, ∞) → X, we define ut ∈ Cτ as ut(θ) = u(·, t + θ) for any 
θ ∈ [−τ, 0]. Let T1(t) and T2(t) be the C0 semigroups generated by the second-order differential operators 
∇ · (d1∇) and ∇ · (d2∇) − μ2(·), respectively, with homogeneous Neumann boundary conditions. It then 
follows from [29, Corollary 7.2.3] that Ti(t) is compact and strongly positive for all t > 0 and i = 1, 2. 
Moreover, T (t) := (T1(t), T2(t), T3(t)) is a C0 semigroup on X with an infinitesimal generator A [26], where 
T3(t)ϕ3 = e−μ3(·)tϕ3. We define û(t) = u(·, t + ·) ∈ C+

τ for t ≥ 0. Then system (1.1) can be written as an 
abstract differential equation
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[û′(t)](·, θ) =
{

∂[û(t)]
∂θ (·, θ), θ ∈ [−τ, 0),

A{[û(t)](·, 0)} + F (û(t)), θ = 0,

where the nonlinear operator F = (F1, F2, F3) : C+
τ → X is defined by

F (ϕ)(x) :=

⎛⎜⎝ n(x, ϕ1(x, 0)) − f(x, ϕ1(x, 0), ϕ2(x, 0)) − g(x, ϕ1(x, 0), ϕ3(x, 0))
[χ(τ)f(·, ϕ1(·,−τ), ϕ2(·,−τ))] (x) + [χ(τ)g(·, ϕ1(·,−τ), ϕ3(·,−τ))] (x),

k(x)ϕ2(x, 0)

⎞⎟⎠
for any ϕ = (ϕ1, ϕ2, ϕ3) ∈ C+

τ . Given ϕ ∈ C+
τ , it is obvious that F (ϕ) ∈ X. Moreover, there exists c > 0 such 

that f(x, ϕ1(x, 0), ϕ2(x, 0)) + g(x, ϕ1(x, 0), ϕ3(x, 0)) ≤ cϕ1(x, 0) for all x ∈ Ω̄. Hence, ϕ(x, 0) + εF (ϕ)(x) ≥
(ϕ1(x, 0)(1 − εc), ϕ2(x, 0), ϕ3(x, 0))T for x ∈ Ω. If ε ∈ (0, 1/c), then ϕ(·, 0) + εF (ϕ) ∈ X+. Especially,

lim
ε→0+

1
ε
dist(ϕ(·, 0) + εF (ϕ),X+) = 0.

Thus, by using [20, Corollary 4] or [29, Theorem 7.3.1], we establish the existence of a unique solution to 
system (1.1). Since the nonlinear operator F = (F1, F2, F3) is mixed quasimontone [25], the nonnegativity of 
solutions can be easily obtained by using the comparison principle. To summarize, we obtain the following 
lemma on the existence, uniqueness, and nonnegativity of solutions to system (1.1).

Lemma 2.1. For every initial condition ϕ ∈ C+
τ , system (1.1) with homogeneous Neumann boundary con-

ditions has a unique solution u(·, t, ϕ) = (u1(·, t, ϕ), u2(·, t, ϕ), u3(·, t, ϕ)) on a maximal interval of existence 
[0, tmax) for u(·, 0, ϕ) = ϕ, and if tmax < ∞, then lim sup

t→t−max

‖u(·, t)‖X = ∞. Moreover, u(x, t) ≥ 0 for all 

t ∈ [−τ, tmax).

We are now in the position to address that tmax = ∞ by proving the boundedness of solutions for system 
(1.1). First, we recall the following lemma in [28].

Lemma 2.2. Let n(x, u1) satisfy (H2). For any positive and continuous diffusion coefficient d1(x), the 
reaction-diffusion equation

∂w(x, t)
∂t

= ∇ · (d1(x)∇w(x, t)) + n(x,w(x, t)), x ∈ Ω, t > 0 (2.1)

with the homogeneous Neumann boundary condition admits a unique and strictly positive steady state w∗(x), 
which is globally asymptotically stable in C(Ω̄, R+). Moreover, if d(x) = d and n(x, w) = n(w) are indepen-
dent of x, then ū1(x) = ū1 is also independent of x and w∗(x) ≡ ū1, where ū1 is defined in (H2).

Theorem 2.3. For every initial condition ϕ ∈ C+
τ , system (1.1) has a unique global solution u(x, t) =

(u1(x, t), u2(x, t), u3(x, t)) ≥ 0 for t ≥ 0, and all solutions are ultimately bounded in C+
τ with the ultimate 

bound independent of initial conditions.

Proof. For any initial condition ϕ ∈ C+
τ , the first equation of (1.1) yields ∂u1(x, t)/∂t ≤ ∇ · (d1(x)∇u1) +

n(x, u1(x, t)). It follows from the comparison principle and Lemma 2.2 that u1(x, t) ≤ w(x, t) for all t ∈
[0, τmax), where w(x, t) is the solution of (2.1) with initial condition w(x, 0) = ϕ1(x, 0). Since w(x, t) → w∗(x)
as t → ∞, we have

lim supu1(x, t) ≤ w∗(x) uniformly for x ∈ Ω̄. (2.2)

t→∞



6 H. Shu et al. / J. Math. Anal. Appl. 516 (2022) 126477
Recalling the definitions of Ti(t) (i = 2, 3) from the beginning of Section 2 for the last two equations of 
(1.1), we have

u2(x, t) = T2(t)ϕ2(·, 0) +
t∫

0

T2(t− s)χ(τ)[f(·, u1,−τ , u2,−τ ) + g(·, u1,−τ , u3,−τ )]ds

= T2(t)ϕ2(·, 0) +
t−τ∫
−τ

T2(t− τ − s)χ(τ)[f(·, u1(·, s), u2(·, s)) + g(·, u1(·, s), u3(·, s))]ds,

u3(x, t) = T3(t)ϕ3(·, 0) +
t∫

0

T3(t− s)ku2(·, s)ds.

Let −λ2 < 0 be the principal eigenvalue of ∇ · (d2∇) − μ2 with the homogeneous Neumann boundary 
condition, and denote λ3 = min{min

x∈Ω̄
μ3(x), λ2/2} > 0. We obtain ‖T2(t)‖ ≤ e−λ2t and ‖T3(t)‖ ≤ e−λ3t. By 

(H1) and continuity of [χ(τ)1](x) =
∫
Ω K(x, y, τ)dy in Ω̄, there exists m1 > 0 such that

χ(τ) (f(·, u1(·, s), u2(·, s)) + g(·, u1(·, s), u3(·, s))) ≤ m1 (‖u2(·, s)‖ + ‖u3(·, s)‖)

for all s ∈ [−τ, tmax). Consequently,

‖u2(·, t)‖ ≤ e−λ2t‖ϕ2‖ + m1

t−τ∫
0

e−λ2(t−s) (‖u2(·, s)‖ + ‖u3(·, s)‖) ds,

‖u3(·, t)‖ ≤ e−λ3t‖ϕ3‖ + k̄

t∫
0

e−λ3(t−s)‖u2(·, s)‖ds,

(2.3)

where k̄ = max
x∈Ω̄

k(x). Substituting the second inequality into the first one gives

‖u2(·, t)‖ ≤ C1 + C2

t−τ∫
0

‖u2(·, s)‖ds ≤ C1 + C2

t∫
0

‖u2(·, s)‖ds for any t ∈ (0, tmax).

Thus, Gronwall’s inequality implies that ‖u2(·, t)‖ ≤ C1e
C2t for t ∈ [0, tmax). This together with the second 

inequality in (2.3) yields

‖u3(·, t)‖ ≤ ‖ϕ3‖ + k̄C1

C2
eC2t for t ∈ [0, tmax).

By Lemma 2.1, tmax = ∞ and the solution u(x, t) exists globally.
Next, we will prove that the solution is ultimately bounded by a constant independent of the initial 

condition. From the above argument, we have lim sup
t→∞

u1(x, t) ≤ w∗(x). Especially, there exist t1 > 0 and 

M1 > 0 such that u1(x, t) ≤ M1 for all x ∈ Ω and t ≥ t1. By (H3), there exists m2 > 0 such that

f(x, u1, u2) + g(x, u1, u3) ≤ m2(u2 + u3), x ∈ Ω, t ≥ t1. (2.4)



H. Shu et al. / J. Math. Anal. Appl. 516 (2022) 126477 7
To find the ultimate bound of ‖u2(·, t)‖1 and ‖u3(·, t)‖1, we denote c1 = max
y∈Ω̄

∫
Ω K(x, y, τ)dx and μ2 =

min
x∈Ω̄

μ2(x) > 0. Here, c1 is finite because 
∫
Ω K(x, y, τ)dx is continuous for y ∈ Ω̄. By integrating the 

reaction-diffusion equations for u1 and u2, we obtain

∂

∂t

∫
Ω

u1dx =
∫
Ω

n(x, u1(x, t))dx−
∫
Ω

[f(x, u1(x, t), u2(x, t)) + g(x, u1(x, t), u3(x, t))]dx,

∂

∂t

∫
Ω

u2dx ≤ c1

∫
Ω

[f(x, u1(x, t− τ), u2(x, t− τ))

+ g(x, u1(x, t− τ), u3(x, t− τ))]dx− μ2

∫
Ω

u2dx.

It then follows from u1(t − τ) ≤ M1 and monotonicity of n in the second variable that

c1
∂

∂t

∫
Ω

u1(x, t− τ)dx + ∂

∂t

∫
Ω

u2(x, t)dx ≤ c2 − μ2[c1
∫
Ω

u1(x, t− τ)dx +
∫
Ω

u2(x, t)dx],

where c2 = μ2c1M1|Ω| + c1
∫
Ω n(x, 0)dx. By comparison principle, lim sup

t→∞

∫
Ω u2(x, t)dx ≤ c2/μ2. Especially, 

there exist t2 > t1 and M2 > 0 such that ‖u2(·, t)‖1 ≤ M2 for t ≥ t2. Similarly, we denote μ3 = min
x∈Ω̄

μ3(x) > 0

and obtain

∂

∂t

∫
Ω

u3dx ≤ k̄M2 − μ3

∫
Ω

u3dx for t ≥ t2.

By comparison principle, there exist t3 > t2 and M3 > 0 such that ‖u3(·, t)‖1 ≤ M3 for t ≥ t3.
For t > t3, we shall estimate ‖u2(·, t)‖2 and ‖u3(·, t)‖2. First, we multiply the equation for u2 (resp. u3) 

by u2 (resp. u3) and integrate on Ω. It follows from (2.4) and (H3) that

1
2
∂

∂t

∫
Ω

u2
2dx ≤ −d2

∫
Ω

|∇u2|2dx + m2α(τ)[
∫
Ω

(2u2
2(x, t) + u2

2(x, t− τ) + u2
3(x, t− τ))dx],

1
2
∂

∂t

∫
Ω

u2
3dx ≤ k

∫
Ω

u2u3dx− μ3

∫
Ω

u2
3dx,

where d2 = min
x∈Ω̄

d2(x) > 0. Adding the above two inequalities, and applying Young’s inequality:

u2u3 ≤
μ3

4k
u2

3 + k

μ3
u2

2,

we have

1
2
∂

∂t

∫
Ω

(u2
2 + u2

3)dx ≤− d2

∫
Ω

|∇u2|2dx + (2m2α(τ) + k
2

μ3
)
∫
Ω

u2
2dx

+ m2α(τ)[
∫
Ω

(u2
2(x, t− τ) + u2

3(x, t− τ))dx] − 3
4μ3

∫
Ω

u2
3dx.
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The Gagliardo-Nirenberg interpolation inequality guarantees the existence of c > 0 such that

‖w‖2
2 ≤ ε‖∇w‖2

2 + cε−n/2‖w‖2
1

for any w ∈ W 1,2(Ω) and small ε > 0. Consequently, we obtain

1
2
∂

∂t

∫
Ω

(u2
2 + u2

3)dx ≤C1 + C2[
∫
Ω

(u2
2(x, t− τ) + u2

3(x, t− τ))dx]

− (C2 + C3)[
∫
Ω

(u2
2(x, t) + u2

3(x, t))dx],

for some generic positive constants C1, C2, C3. A simple application of comparison principle gives 
lim sup
t→∞

[
∫
Ω(u2

2(x, t) + u2
3(x, t))dx] ≤ C1/C3. Especially, there exist t4 > t3 and M4 > 0 such that 

‖u2(·, t)‖2
2 + ‖u3(·, t)‖2

2 ≤ M4 for all t ≥ t4.
Denote Lp = lim sup

t→∞
(‖u2(·, t)‖pp +‖u3(·, t)‖pp). By using a similar argument as in the estimation of L2, we 

obtain L2p ≤ Cpn/2(Lp + 1)2, where C is a constant independent of p and initial condition ϕ. By a simple 
induction and limiting argument, we have lim sup

t→∞
ui(x, t) ≤ M for all x ∈ Ω and i = 1, 2, 3, where M is a 

constant independent of the initial condition. This completes the proof. �
We now state the positivity of solutions of (1.1) and the persistence of u1(x, t).

Proposition 2.4. Let u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) be the solution of system (1.1) with initial condition 
φ ∈ C+

τ .

(i) We have u1(x, t) > 0 for all t > 0 and x ∈ Ω. Moreover, there exists a positive constant m0 independent 
of φ such that lim inf

t→∞
u1(x, t) ≥ m0 uniformly for x ∈ Ω̄.

(ii) If there exists some t0 ≥ 0 such that either u2(·, t0) �≡ 0 or u3(·, t0) �≡ 0, then ui(x, t) > 0 for all i = 2, 3, 
t ≥ t0 + τ and x ∈ Ω.

Proof. (i) From the first equation of (1.1), it is easily seen that u1(x, t) > 0 for t > 0 and x ∈ Ω by using 
the strong maximum principle [27]. From Theorem 2.3, it follows that there exist t1 > 0 and M > 0 such 
that ui(x, t) < M for all t > t1, i = 1, 2, 3 and x ∈ Ω. Then the first equation of (1.1) and (H3) imply that, 
there exists some constant c0 > 0 such that

∂u1(x, t)
∂t

≥∇ · (d1(x)∇u1(x, t)) + n(x, u1(x, t)) − c0u1(x, t)

for all t ≥ t1. By Lemma 2.2 and comparison principle it follows that u1(x, t) is ultimately bounded 
below by the unique and strictly positive steady state w̄∗(x) of (2.1). Denote m0 = min

x∈Ω̄
w̄∗(x) > 0. Then 

lim sup
t→∞

u1(x, t) ≥ m0 for all x ∈ Ω.

(ii) From the third equation of (1.1), we have

u3(x, t) = e−μ3(x)(t−t0)u3(x, t0) +
t∫

t0

e−μ3(x)(t−s)k(x)u2(x, s)ds,

which, together with the assumptions that u2(·, t0) �≡ 0 or u3(·, t0) �≡ 0, implies that u3(·, t) �≡ 0 for any 
t > t0 and sufficiently close to t0. Then the strong maximum principle implies that u3(x, t) > 0 for all t > t0
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and x ∈ Ω. Similarly, we apply strong maximum principle to the equation for u2 and obtain u2(x, t) > 0 for 
all t > t0 + τ and x ∈ Ω. �
3. Basic reproduction number

Note from Lemma 2.2 that (2.1) has a unique and strictly positive steady state w∗(x). Thus, system (1.1)
has a unique infection-free steady state (w∗(x), 0, 0). For simplicity, we denote

βd(x) = ∂f(x,w∗(x), 0)
∂u2

, βi(x) = ∂g(x,w∗(x), 0)
∂u3

, (3.1)

where βd(x) and βi(x) are the direct and indirect transmission rates. Linearizing system (1.1) at (w∗(x), 0, 0)
gives a single equation for u1(x, t) and the following cooperative system for (u2(x, t), u3(x, t)):

∂u2
∂t = ∇ · (d2(x)∇u2) + χ(τ)βd(x)u2,−τ + χ(τ)βi(x)u3,−τ − μ2(x)u2,
∂u3
∂t = k(x)u2 − μ3(x)u3,

(3.2)

for x ∈ Ω and t > 0, with the homogeneous Neumann boundary conditions. Now, we introduce two linear 
operators:

F =
(
χ(τ) ◦ βd(·) χ(τ) ◦ βi(·)

0 0

)
, B =

(
∇ · (d2∇) − μ2(·) 0

k(·) −μ3(·)

)
,

and define the basic reproduction number R0 as the spectral radius of −FB−1; namely, R0 = r(−FB−1). 
Since B is resolvent-positive with s(B) < 0, where s(B) = sup{Reλ, λ ∈ σ(B)} is the spectral bound of 
B, F is positive and F +B is also resolvent-positive. It follows from [31, Theorem 3.5] that R0 − 1 has the 
same sign as s(F + B).

Let T̂ (t) be the solution semigroup of the linear system (3.2) with the infinitesimal generator denoted 
by Â. Let ω(T̂ ) := ln r(T̂ (t))/t be the growth bound of T̂ . It is well known (see [10, Chapter IV]) that 
ω(T̂ ) = max{s(Â), ωe(T̂ )}, where ωe(T̂ ) = (ln re(T̂ (t)))/t is the essential growth bound and re denotes the 
essential spectral radius. According to [17, Section 4], s(Â) has the same sign as s(F + B), which has the 
same sign as R0 − 1. We have the following results.

Theorem 3.1. (i) If R0 ≥ 1, then s(Â) ≥ 0 is the principal eigenvalue of Â with a strongly positive 
eigenfunction.
(ii) If R0 ≤ 1, then there exists a constant Ma > 0 such that ‖T̂ (t)‖ ≤ Ma.
(iii) If R0 < 1, then ω(T̂ ) < 0.

Proof. We decompose T̂ (t) = T̂2(t) + T̂3(t), where

T̂2(t)φ̂ =

⎛⎝u2(·, t, φ̂),
t∫

0

e−μ3(·)(t−s)k(·)u2(·, s, φ̂)ds

⎞⎠
and T̂3(t)φ̂ = (0, e−μ3(·)tφ3), for any continuous and nonnegative initial value φ̂ := (φ2, φ3). Since T̂2(t) is 
compact, we have

re(T̂ (t)) = re(T̂2(t) + T̂3(t)) = re(T̂3(t)) ≤ e−μ3t,

which implies that the essential growth bound ωe(T̂ ) ≤ −μ3 < 0.
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(i) If R0 ≥ 1, then s(Â) ≥ 0 and the spectral radius r(T̂ (t)) = es(Â)t ≥ 1 > re(T̂ (t)). By generalized Krein-
Rutman Theorem [24], es(Â)t is the principal eigenvalue of T̂ (t) with a positive eigenfunction. Consequently, 
s(Â) is the principal eigenvalue of Â with the same eigenfunction.

(ii) If R0 ≤ 1, then s(Â) ≤ 0 and ω(T̂ ) ≤ 0. Especially, there exists a constant Ma > 0 such that 
‖T̂ (t)‖ ≤ Ma.

(iii) If R0 < 1, then s(Â) < 0 and ω(T̂ ) < 0. �
To derive an equivalent formula and biologically relevant expression of R0, we first calculate that

−B−1 =
(

(μ2 −∇ · (d2∇))−1 0
μ−1

3 k(μ2 −∇ · (d2∇))−1 μ−1
3

)
.

Consequently, we have

−FB−1 =
(
χ(τ) ◦ βd(μ2 −∇ · (d2∇))−1 + χ(τ) ◦ βiμ

−1
3 k(μ2 −∇ · (d2∇))−1 χ(τ) ◦ βiμ

−1
3

0 0

)
,

which implies

R0 = r(−FB−1) = r (Ad + Ai) , (3.3)

where

Ad = χ(τ) ◦ βd(μ2 −∇ · (d2∇))−1, Ai = χ(τ) ◦ βiμ
−1
3 k(μ2 −∇ · (d2∇))−1

are the next generation operators for direct and indirect transmission, respectively.
If the kernel function K(x, y, τ) is a constant multiplication of delta function such that (χ(τ) ◦ ψ)(x) =

ρ(τ)ψ(x), we have a variational formula for the basic reproduction number

R0 = r(Ad + Ai) = sup
ψ∈H1(Ω),ψ �=0

∫
Ω ρ(τ)

(
βd(x) + βi(x)μ−1

3 (x)k(x)
)
ψ2(x)dx∫

Ω (d2(x)|∇ψ(x)|2 + μ2(x)ψ2(x)) dx
. (3.4)

Note that the basic reproduction number for the direct transmission without indirect transmission is

Rd
0 = r(Ad) = sup

ψ∈H1(Ω),ψ �=0

∫
Ω ρ(τ)βd(x)ψ2(x)dx∫

Ω (d2(x)|∇ψ(x)|2 + μ2(x)ψ2(x)) dx
.

On the other hand, in the absence of direct transmission, the basic reproduction number for indirect trans-
mission is given by

Ri
0 = r(Ai) = sup

ψ∈H1(Ω),ψ �=0

∫
Ω ρ(τ)βi(x)μ−1

3 (x)k(x)ψ2(x)dx∫
Ω (d2(x)|∇ψ(x)|2 + μ2(x)ψ2(x)) dx

.

Clearly, R0 ≤ Rd
0 + Ri

0. To analyze the property of the basic reproduction number R0, we further assume 
that d2 is a constant function on Ω̄. By Krein-Rutman theorem, R0 is the principal eigenvalue of Ad + Ai

with a positive eigenfunction, denoted by ξ(x); namely,

ρ(τ)βd(μ2 −∇ · (d2∇))−1ξ + ρ(τ)βi(x) k(x)
μ3(x) (μ2 −∇ · (d2∇))−1ξ = R0ξ, x ∈ Ω,

∇ξ(x) · ν = 0, x ∈ ∂Ω,
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which can be rewritten as

d2Δξ − μ2ξ + ρ(τ)βd + ρ(τ)βiμ
−1
3 k

R0
ξ = 0, x ∈ Ω,

∇ξ(x) · ν = 0, x ∈ ∂Ω.

(3.5)

We obtain the following result.

Theorem 3.2. Assume that (χ(τ) ◦ ψ)(x) = ρ(τ)ψ(x) and d2 is independent of x. Then R0 is a monotone 
decreasing function of d2 and τ . Moreover, we have

R0 → R0 := max
x∈Ω̄

{
ρ(τ)βd(x)
μ2(x) + ρ(τ)βi(x)k(x)

μ2(x)μ3(x)

}
as d2 → 0,

R0 → R0 :=
∫
Ω
(
ρ(τ)βd(x) + ρ(τ)βi(x)μ−1

3 (x)k(x)
)
dx∫

Ω μ2(x)dx
as d2 → ∞.

Proof. (i) We observe that R0 is a decreasing function of d2 and τ . We claim that R0 ≤ R0 for all d2 > 0; 
otherwise, −μ2 + ρ(τ)(βd + βiμ

−1
3 k)/R0 < 0 for some d2 > 0, and consequently, the principal eigenvalue of 

d2Δ − μ2 + ρ(τ)(βd + βiμ
−1
3 k)/R0 is negative, which contradicts (3.5). Thus, lim

d2→0
R0 ≤ R0. To show that 

the equality holds, we assume to the contrary that there exists ε > 0 such that R0 < R0 − ε for all positive 
d2. By continuity, there exist x0 ∈ Ω, δ > 0 and ε0 > 0 such that

−μ2 + ρ(τ)βd + ρ(τ)βiμ
−1
3 k

R0
> ε0 for all x ∈ Bδ(x0).

This together with (3.5) implies that −Δξ > ε0ξ/d2 for x ∈ Bδ(x0). Denote ψ+(x) = ξ(x)/ min
x∈Bδ(x0)

ξ(x). 

Then we have −Δψ+(x) > ε0ψ+(x)/d2 and ψ+(x) ≥ 1 in Bδ(x0). Let η > 0 be the principal eigenvalue 
of −Δ on Bδ(x0) with Neumann boundary condition and ψ−(x) the corresponding eigenfunction such that 
ψ−(x) ≤ 1 on Bδ(x0). Then, we obtain −Δψ−(x) = ηψ−(x) < ε0ψ−(x)/d2 for all d2 < ε0/η. Thus, ψ+(x)
and ψ−(x) are the super- and sub-solutions of −Δϕ = ε0ϕ/d2 with Neumann boundary condition. Hence, 
ε0/d2 is an eigenvalue of −Δ on Bδ(x0) with Neumann boundary condition, which contradicts the fact that 
ε0/d2 > η and η is the principal eigenvalue. Therefore, R0 → R0 as d2 → 0.

(ii) Note from (3.4) that R0 ≥ R0 for all d2 > 0. Hence, lim
d2→∞

R0 ≥ R0. As d2 → ∞, the normalized 

eigenfunction ξ converges to a positive constant function by elliptic regularity [11]. Integrating (3.5) and 
then passing to the limit d2 → ∞ imply R0 → R0. This completes the proof. �

A direct application of the above theorem is the following classification of infection environment.

Corollary 3.3. Assume that (χ(τ) ◦ψ)(x) = ρ(τ)ψ(x) and d2 is independent of x. βd(x), βi(x) are defined in 
(3.1).

(i) If ρ(τ)βd(x)/μ2(x) + ρ(τ)βi(x)k(x)/(μ2(x)μ3(x)) ≤ 1 for all x ∈ Ω, then R0 < 1 for all d2 > 0 and Ω
is an infection-free environment.

(ii) If 
∫
Ω(ρ(τ)βd(x) + ρ(τ)βi(x)μ−1

3 (x)k(x))dx ≥
∫
Ω μ2(x)dx, then R0 > 1 for all d2 > 0 and Ω is a 

favorable environment for infection.
(iii) If 

∫
Ω(ρ(τ)βd(x) + ρ(τ)βi(x)μ−1

3 (x)k(x))dx <
∫
Ω μ2(x)dx and ρ(τ)βd(x)/μ2(x) + ρ(τ)βi(x)k(x)/

(μ2(x)μ3(x)) > 1 for some x ∈ Ω, then there exists d∗2 > 0 such that R0 ≤ 1 if d2 ≥ d∗2 and R0 > 1 if 
d2 < d∗2.
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4. Global dynamics of the system

4.1. Global attractor

Define the continuous semiflow {Φ(t)}t≥0 : C+
τ → C+

τ of system (1.1) by

Φ(t)φ := u(·, t + ·, φ), t ≥ 0.

Note that the semiflow Φ(t) of system (1.1) is not compact because the third equation has no diffusion term. 
However, we will show that Φ(t) is a κ-contraction. First, recall Kuratowski measure of the noncompactness 
[13] defined by:

κ(B) := inf{d ≥ 0 : B has a finite cover of diameter less than d}

for any bounded B ⊆ C+
τ . We set κ(B) = ∞ whenever B is unbounded. Obviously, B is precompact if and 

only if κ(B) = 0. Next, we decompose Φ(t) = Φ1(t) + Φ2(t), where

(Φ1(t)u0)(x, θ) =

⎛⎝u1(x, t + θ, u0), u2(x, t + θ, u0),
t+θ∫
0

e−μ3(x)(t+θ−s)k(x)u2(x, s;u0)ds

⎞⎠ ,

(Φ2(t)u0)(x, θ) = (0, 0, e−μ3(x)(t+θ)u30(0)),

for x ∈ Ω, θ ∈ [−τ, 0], t ≥ τ , and any initial data u0 = (u10, u20, u30) ∈ C+
τ . Similar as in [38, Lemma 2.5], 

we can show that Φ1(t) is compact for t > τ . Let B ⊆ C+
τ be a bounded set. Then we have κ(Φ1(t)B) = 0

for any t > 0. Consequently,

κ(Φ(t)B) ≤ κ(Φ1(t)B) + κ(Φ2(t)B) = κ(Φ2(t)B) ≤ e−μ3tκ(B)

for t > 0, which proves that Φ(t) is a κ-contraction. This implies that Φ(t) is asymptotically smooth. Note 
from Theorem 2.3 that Φ(t) is point dissipative. By [13, Theorem 2.4.6], we have the following result.

Theorem 4.1. System (1.1) admits a connected global attractor in C+
τ .

4.2. Persistence of infection and existence of positive steady states

Let R0 be defined in (3.3). If R0 > 1, we apply the permanence theorem in [30, Theorem 3] to obtain 
persistence of infection. Denote

Z0 := {φ = (φ1, φ2, φ3) ∈ C+
τ : φ2(·, 0) �≡ 0 and φ3(·, 0) �≡ 0}

and

∂Z0 := C+
τ \Z0 = {φ = (φ1, φ2, φ3) ∈ C+

τ : φ2(·, 0) ≡ 0 or φ3(·, 0) ≡ 0}.

Obviously, Z0 ∩ ∂Z0 = ∅, C+
τ = Z0 ∪ ∂Z0, Z0 is open and dense in C+

τ , and Φ(t)∂Z0 ⊆ ∂Z0. It then follows 
from Proposition 2.4(ii) and the maximum principle that Φ(t)Z0 ⊆ Z0, that is, Z0 is positively invariant 
with respect to Φ(t). Let M∂ be the largest positively invariant set of Φ(t) in ∂Z0, i.e.

M∂ := {φ ∈ ∂Z0 : Φ(t)φ ∈ ∂Z0 for any t ≥ 0}.
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By the strong maximum principle, for any φ ∈ M∂ , we have ui(·, t, φ) ≡ 0 with i = 2, 3 for all t ≥ 0. Thus, 
we obtain

M∂ = {φ = (φ1, φ2, φ3) ∈ C+
τ : φ2(·, 0) ≡ 0 and φ3(·, 0) ≡ 0}.

This together with Lemma 2.2 implies that lim
t→∞

u1(x, t, φ) = w∗(x) for any φ ∈ M∂ . Hence, ω(φ) =
{(w∗(x), 0, 0)} for all φ ∈ M∂ , where ω(φ) is the omega limit set of the orbit γ+(φ) :=

⋃
t≥0

{Φ(t)φ}. We now 

define a continuous function d : C+
τ → [0, ∞) by

d(φ) = min{φi(x, 0) : x ∈ Ω̄, i = 2, 3} for any φ ∈ C+
τ .

It is obvious that d(Φ(t)φ) > 0 for all t > 0 and every φ ∈ d−1(0, ∞) ∪ (Z0 ∩ d−1(0)). Thus, d(x) is a 
generalized distance function for the semiflow Φ(t); see [30, Theorem 3].

We next verify that the stable manifold of (w∗(x), 0, 0) does not intersect d−1(0, ∞) if R0 > 1. Suppose 
to the contrary that Φ(t)φ̃ = (u1(·, t, φ̃), u2(·, t, φ̃), u3(·, t, φ̃)) → (w∗(x), 0, 0) for some φ̃ ∈ d−1(0, ∞). For 
any small δ > 0, there exists t̃ > 0 such that

f(x, u1, u2) > (βd − δ)u2, g(x, u1, u3) > (βi − δ)u3,

for all t ≥ t̃ − τ and x ∈ Ω. Similarly to the proof of Theorem 3.1(i), we can show that the eigenvalue 
problem

∂ϕ2(x, t)
∂t

= ∇ · (d2(x)∇ϕ2) + χ(τ)(βd − δ)ϕ2,−τ + χ(τ)(βi − δ)ϕ3,−τ − μ2(x)ϕ2,

∂ϕ3(x, t)
∂t

= k(x)ϕ2(x, t) − μ3(x)ϕ3(x, t),

with Neumann boundary condition has a principal eigenvalue λδ with a strongly positive eigenfunction 
(ϕδ

2, ϕ
δ
3). Since R0 > 1, it follows from Theorem 3.1 that λ0 = s(Â) > 0. By continuity of λδ in δ, we can 

choose δ > 0 small enough such that λδ > 0. On the other hand, for t ≥ t̃, we have

∂u2(x, t)
∂t

> ∇ · (d2(x)∇u2) + χ(τ)(βd − δ)u2,−τ + χ(τ)(βi − δ)u3,−τ − μ2(x)u2,

∂u3(x, t)
∂t

= k(x)u2(x, t) − μ3(x)u3(x, t).

Since ui(x, t, φ̃) > 0 for all x ∈ Ω̄, t > 0, i = 2, 3, we can choose ε > 0 sufficiently small such that 
(u2(·, t, φ̃), u3(·, t, φ̃)) ≥ ε(ϕδ

2, ϕ
δ
3) for all t ∈ [t̃− τ, ̃t]. By the comparison principle we obtain

(u2(·, t, φ̃), u3(·, t, φ̃)) ≥ εeλδ(t−t̃)(ϕδ
2, ϕ

δ
3) for all t > t̃,

a contradiction. It then follows from Proposition 2.4(i) and the abstract persistence theory in [30, Theorem 
3] that Φ(t) is uniformly persistent. Moreover, by [19, Theorem 4.7], Φ(t) possesses at least one positive 
steady state (u∗

1(x), u∗
2(x), u∗

3(x)), which we refer to as a pathogen persistent steady state. We summarize 
the above results in the following theorem.

Theorem 4.2. If R0 > 1, then there exists η > 0 such that for any φ = (φ1, φ2, φ3) ∈ C+
τ with φ2 �≡ 0 or 

φ3 �≡ 0, we have

lim inf ui(x, t, φ) ≥ η (i = 1, 2, 3) uniformly for all x ∈ Ω̄.

t→∞
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Moreover, system (1.1) admits at least one positive steady state (u∗
1(x), u∗

2(x), u∗
3(x)).

4.3. Global stability of the infection-free steady state when R0 ≤ 1

It follows from [36, Theorem 3.1] that the infection-free steady state (w∗(x), 0, 0) is locally asymptotically 
stable when R0 < 1. To establish the global asymptotic stability of the infection-free steady state when 
R0 < 1, we need the following result.

Theorem 4.3. Assume that R0 < 1. Then the infection-free steady state (w∗(x), 0, 0) of (1.1) is globally 
attractive.

Proof. By (2.2), for any δ > 0, there exists t0 > 0 such that 0 ≤ u1 ≤ w∗ + δ for all t > t0. For any ε0 > 0, 
in view of (H3), we can choose δ sufficiently small such that

f(x, u1, u2) < (βd + ε0)u2, g(x, u1, u3) < (βi + ε0)u3,

for any 0 ≤ u1 ≤ w∗ + δ, u2 > 0, u3 > 0 and x ∈ Ω. Let T0(t) be the solution semigroup of the linear system

∂u2(x, t)
∂t

= ∇ · (d2(x)∇u2) + χ(τ)(βd + ε0)u2,−τ + χ(τ)(βi + ε0)u3,−τ − μ2(x)u2,

∂u3(x, t)
∂t

= k(x)u2(x, t) − μ3(x)u3(x, t),
(4.1)

with the homogeneous Neumann boundary conditions. Since R0 < 1, it follows from Theorem 3.1(iii) that 
the growth bound ω(T̂ ) < 0. By choosing ε0 sufficiently small, we have ω(T0) < 0 and any solution of 
the above linear system converges to (0, 0). Let (û2(x, t), ̂u3(x, t)) be the solution of the problem (4.1) for 
t > t0 with the initial conditions (û2(x, t), ̂u3(x, t)) = (u2(x, t), u3(x, t)) for x ∈ Ω and t ∈ [t0 − τ, t0]. By 
the comparison principle, we have (u2(x, t), u3(x, t)) ≤ (û2(x, t), ̂u3(x, t)) → (0, 0) as t → ∞ uniformly for 
x ∈ Ω̄. This together with Lemma 2.2 implies that u1(x, t) → w∗(x) as t → ∞ uniformly for x ∈ Ω̄. The 
proof is completed. �

The critical case R0 = 1 requires a special treatment.

Theorem 4.4. If R0 = 1, then the infection-free steady state (w∗(x), 0, 0) of (1.1) is globally asymptotically 
stable.

Proof. First, we prove that the infection-free steady state (w∗(x), 0, 0) is locally asymptotically stable. Let 
δ > 0 be an arbitrary small number and u(x, t) be the solution with initial condition in the δ neighborhood 
of the infection-free steady state:

max
θ∈[−τ,0]

[‖u1(·, θ) − w∗(x)‖ + ‖u2(·, θ)‖ + ‖u3(·, θ)‖] < δ.

By the comparison principle, there exists M1 > 0 such that u1(x, t) < M1 for all x ∈ Ω and t ≥ −τ . Since 
ω(x, t) = u1(x, t) − w∗(x) satisfies

∂ω

∂t
≤ ∇ · (d1(x)∇ω(x, t)) − μ1ω,

where μ is the minimum of −∂n(x,u1) for x ∈ Ω̄ and 0 ≤ u1 ≤ M1, we obtain
1 ∂u1
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u1(x, t) − w∗(x) = ω(x, t) ≤ M̃δe−λ1t,

where −λ1 < 0 is the principal eigenvalue of the differential operator ∇ ·(d1(·)∇) −μ1 with the homogeneous 
Neumann boundary condition, and M̃ > 0 is a constant that depends on the semigroup generated by such 
operator.

Recall that T̂ (t) is the solution semigroup of the linear system (3.2) with the infinitesimal generator 
denoted by Â. Moreover, since R0 = 1, we have from Theorem 3.1(ii) that ‖T̂ (t)‖ ≤ Ma for some Ma > 0. 
Denote

q = χ(τ)(f(x, u1, u2) − βdu2 + g(x, u1, u3) − βiu3).

We have

(
u2(·, t)
u3(·, t)

)
= T̂ (t)

(
u2(·, 0)
u3(·, 0)

)
+

t∫
0

T̂ (t− s)
(
q(·, s− τ)

0

)
ds.

On account of (H3) and u1(x, t) − w∗(x) ≤ M̃δe−λ1t, we obtain

q ≤ M̃δe−λ1t(fu2 + gu3),

where

f̄ = max
0≤u1≤M1

∣∣∣∣∂2f(u1, 0)
∂u1∂u2

∣∣∣∣ , ḡ = max
0≤u1≤M1

∣∣∣∣∂2g(u1, 0)
∂u1∂u3

∣∣∣∣ .
Denote

E(t) = max
{

max
x∈Ω̄

u2(x, t),max
x∈Ω̄

u3(x, t)
}
.

It follows that E(θ) ≤ δ for all θ ∈ [−τ, 0] and

E(t) ≤ δMa + δMa(f̄ + ḡ)M̃
t∫

0

e−λ1(s−τ)E(s− τ)ds.

By Gronwall’s inequality, we obtain E(t) = O(δ). It remains to prove w∗ − u1(·, t) = O(δ) as δ → 0. By 
(H3), we have

f(x, u1, u2) ≤
∂f(x,M1, 0)

∂u2
u2 = O(δ), g(x, u1, u3) ≤

∂g(x,M1, 0)
∂u3

u3 = O(δ).

Thus, it follows from the above inequalities and the first equation of (1.1) that

∂[w∗(x) − u1(x, t)]
∂t

≤ ∇ · (d1(x)∇[w∗(x) − u1(x, t)]) − μ1[w
∗(x) − u1(x, t)] + Qδ,

where Q > 0 is a large constant. By the comparison principle, w∗(x) − u1(x, t) ≤ Qδ/μ1. Therefore, 
‖u1(·, t) − w∗(·)‖ + ‖u2(·, t)‖ + ‖u3(·, t)‖ = O(δ) as δ → 0, which implies the local asymptotic stability of 
(w∗(x), 0, 0).
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Next, we prove the global attractivity of (w∗(x), 0, 0) in the positively invariant set D := {φ =
(φ1, φ2, φ3) ∈ C+

τ : φ1 ≤ w∗}. Let u = (u1, u2, u3) be the solution of (1.1) with the initial data 
φ = (φ1, φ2, φ3) ∈ D. If φ2 ≡ 0 and φ3 ≡ 0, it follows from Lemma 2.2 that (u1, u2, u3) → (w∗(x), 0, 0). 
Now, we assume that φ2 �≡ 0 or φ3 �≡ 0. Proposition 2.4 implies that ui > 0 for all t > τ . Since R0 = 1, 0 is 
the principal eigenvalue of F + B with a positive eigenfunction; namely, there exists (ϕ, ψ) > 0 such that

0 = ∇ · [d2(x)ϕ(x)] − μ2(x)ϕ(x) + χ(τ)[βd(x)ϕ(x) + βi(x)ψ(x)],

0 = k(x)ϕ(x) − μ3(x)ψ(x).

We introduce

c(t;u) = max
{

max
x∈Ω̄,θ∈[−τ,0]

u2(x, t + θ)
ϕ(x) , max

x∈Ω̄,θ∈[−τ,0]

u3(x, t + θ)
ψ(x)

}
.

Since u1 ≤ w∗, we obtain from (H3) that f(x, u1, u2) < βdu2 and g(x, u1, u3) < βiu3 for all x ∈ Ω. 
Consequently, we have

∂u2(x, t)
∂t

< ∇ · (d2(x)∇u2(x, t)) − μ2(x)u2(x, t) + χ(τ)[βdu2(·, t− τ) + βiu3(·, t− τ)](x),

∂u3(x, t)
∂t

= k(x)u2(x, t) − μ3(x)u3(x, t).

By the strong maximum principle, u2(x, t) < c(t1; u)ϕ(x) and u3(x, t) < c(t1; u)ψ(x) for all t > t1 > τ . 
Thus, c(t; φ0) is strictly decreasing and c∗ := limt→∞ c(t; φ0) ≥ 0 exists. We claim that c∗ = 0. Otherwise, 
there exist tk → ∞ such that Φt+tk(φ) → U = (U1, U2, U3) ∈ D and either U2 or U3 is not a zero function. 
By a similar argument as above, we can define c(t, U) and show that c(t, U) is strictly decreasing. However, 
c(t, U) = limk→∞ c(t + tk, u) = c∗, a contradiction. So, we have c∗ = 0. Especially, u2(x, t) → 0 and 
u3(x, t) → 0 as t → 0. Since the limiting system when u2 ≡ 0 and u3 ≡ 0 has a unique globally attractive 
steady state w∗, it follows from [31, Theorem 4.1] that (w∗(x), 0, 0) is globally attractive in D.

Finally, given any φ ∈ C+
τ , the comparison principle shows that the omega limit set ω(φ) ⊂ D. This 

together with [39, Theorem 1.2.1] implies that (w∗(x), 0, 0) is globally attractive in C+
τ . The proof is com-

pleted. �
5. Spatially homogeneous case

For the spatially heterogeneous case, we obtain persistence of infection and existence of at least one 
positive infection steady state if R0 > 1. To achieve uniqueness and global asymptotic stability of the 
positive infection steady state, we require that the model parameters are spatially homogeneous; namely, 
we assume that d1, d2, μ2, μ3 and k are constants, and n(x, u1) = n(u1) is independent of x. It is readily 
seen that βd and βi are constants, and w∗(x) = ū1, where ū1 is the unique positive solution of n(u1) = 0. 
Assume further that χ(τ) is a constant multiplication of delta function: (χ(τ) ◦ ψ)(x) = ρ(τ)ψ(x). It then 
follows from (3.3) and Theorem 3.2 that

R0 = R0 = R0 = ρ(τ)βd

μ2
+ ρ(τ)βik

μ2μ3
(5.1)

is independent of the diffusion coefficient d2. First, we shall establish the existence of a positive homogeneous 
steady state, which satisfies the algebraic system

n(u1) = f(u1, u2) + g(u1, u3) = μ2
u2 = μ2μ3

u3.

ρ(τ) kρ(τ)
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Eliminating u2 and u3, we obtain

G(u1) := f(u1,
ρ(τ)
μ2

n(u1)) + g(u1,
ρ(τ)k
μ2μ3

n(u1)) − n(u1) = 0.

Obviously, G(0) = −n(0) < 0 and G(ū1) = 0. Moreover, it is easy to calculate that G′(ū1) = (R0−1)n′(ū1) <
0. Hence, there exists u∗

1 ∈ (0, ̄u1) such that G(u∗
1) = 0. Consequently,

u∗
2 = ρ(τ)

μ2
n(u∗

1) > 0, u∗
3 = ρ(τ)k

μ2μ3
n(u∗

1) > 0.

This proves the existence of a positive homogeneous steady state u∗ = (u∗
1, u

∗
2, u

∗
3). To obtain the global 

attractivity of this steady state, we need another assumption:

f(u1, u2) = u1f1(u2), g(u1, u3) = u1g1(u3). (5.2)

Denote h(z) = z − 1 − ln z. Clearly, h(z) ≥ 0 for z > 0, and h(z) = 0 if and only if z = 1. We introduce the 
Lyapunov functional

L(φ) :=
∫
Ω

{ 0∫
−τ

[
u∗

1f1(u∗
2)h

(
φ1(x, θ)f1(φ2(x, θ))

u∗
1f1(u∗

2)

)
+ u∗

1g1(u∗
3)h

(
φ1(x, θ)g1(φ3(x, θ))

u∗
1g1(u∗

3)

)]
dθ

+ u∗
1h

(
φ1(x, 0)

u∗
1

)
+ u∗

2
ρ(τ)h

(
φ2(x, 0)

u∗
2

)
+ u∗

1g1(u∗
3)

μ3
h

(
φ3(x, 0)

u∗
3

)}
dx

for φ = (φ1, φ2, φ3) ∈ C+
τ . Taking derivative along the solution u = (u1, u2, u3), we obtain

d

dt
L(u) = −

∫
Ω

(
d1u

∗
1

u2
1

|∇u1|2 + d2u
∗
2

ρ(τ)u2
2
|∇u2|2

)
dx−

∫
Ω

M(x, t)dx,

where

M =(1 − u∗
1

u1
)(n(u∗

1) − n(u1)) + u∗
1u2

f1(u2)
(f1(u2) − f1(u∗

2))
(
f1(u∗

2)
u2

− f1(u2)
u2

)
+ u∗

1u3

g1(u3)
(g1(u3) − g1(u∗

3))
(
g1(u∗

3)
u∗

3
− g1(u3)

u3

)
+ u∗

1f1(u∗
2)

(
h(u

∗
1

u1
) + h(u2f1(u∗

2)
u∗

2f1(u2)
) + h(u1,−τu

∗
2f1(u2,−τ )

u∗
1u2f1(u∗

2)
)
)

+ u∗
1g1(u∗

3)
(
h(u

∗
1

u1
) + h(u2u

∗
3

u∗
2u3

) + h(u3g1(u∗
3)

u∗
3g1(u3)

) + h(u1,−τu
∗
2g1(u3,−τ )

u∗
1u2g1(u∗

3)
)
)
.

It follows from (H2)-(H3) that n′, f ′′
1 and g′′1 are nonpositive functions. Consequently, M ≤ 0 and d

dtL ≤ 0. 
The largest invariant set on which the equality holds is the singleton {u∗}. By Lyapunov-LaSalle invariance 
principle, the homogeneous steady state u∗ is globally attractive. Especially, it is the unique positive steady 
state.

Finally, we will prove that u∗ is locally asymptotically stable when R0 > 1. Assume to the contrary that 
there exists an eigenvalue λ with positive real part for the linearized system of (1.1) about u∗. There exists 
a nonnegative eigenvalue ξ of −Δ with the homogeneous Neumann boundary condition on Ω such that the 
determinant of the following matrix
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(
n′(u∗

1) − f1(u∗
2) − g1(u∗

3) − λ− d1ξ −u∗
1f

′
1(u∗

2) −u∗
1g

′
1(u∗

3)
ρλ(τ)[f1(u∗

2) + g1(u∗
3)] ρλ(τ)u∗

1f
′
1(u∗

2) − μ2 − λ− d2ξ ρλ(τ)u∗
1g

′
1(u∗

3)
0 k −μ3 − λ

)

vanishes, where ρλ(τ) := ρ(τ)e−λτ . A simple calculation yields

(λ + μ3)(λ + d2ξ + μ2) (λ + d1ξ − n′(u∗
1) + f1(u∗

2) + g1(u∗
3))

=ρλ(τ)(λ + d1ξ − n′(u∗
1)) (λu∗

1f
′
1(u∗

2) + μ3u
∗
1f

′
1(u∗

2) + ku1g
′
1(u∗

3)) ,

which can be rewritten as PL = PR, where

PL := λ + μ3
λu∗

1f
′
1(u∗

2)
u∗

1f
′
1(u∗

2)+ku1g′
1(u∗

3)/μ3
+ μ3

(
λ + d2ξ

μ2
+ 1

)(
f1(u∗

2) + g1(u∗
3)

λ + d1ξ − n′(u∗
1)

+ 1
)
,

PR :=ρλ(τ)
μ2

(
u∗

1f
′
1(u∗

2) + ku∗
1g

′
1(u∗

3)
μ3

)
.

It is obvious that |PL| > 1. On the other hand, since f ′
1(u∗

2) ≤ f1(u∗
2)/u∗

2 and g′1(u∗
3) ≤ g1(u∗

3)/u∗
3, we have

|PR| ≤
ρ(τ)
μ2

[
u∗

1f1(u∗
2)

u∗
2

+ ku∗
1g1(u∗

3)
μ3u∗

3

]
= 1.

This leads to a contradiction. To summarize, we have the following theorem.

Theorem 5.1. Assume that (χ(τ) ◦ ψ)(x) = ρ(τ)ψ(x) and the model parameters are spatial homogeneous. 
Let R0, f and g be given as in (5.1) and (5.2), respectively. If R0 > 1, then model (1.1) possesses a unique 
positive steady state which is homogeneous and globally asymptotically stable.

6. Numerical simulations

In this section, we perform numerical simulations to verify our theoretical results and to illustrate singular 
perturbation phenomenon when the diffusion coefficients tend to zero. For simplicity, we assume that the 
domain is an interval [0, 1] with the length of unit kilometer, and the time unit is one day. Based on [14,22], 
we introduce spatial heterogeneity to the model system by choosing

k(x) = 24 − 12x, μ2(x) = 0.24 + 0.24x, μ3(x) = 2.4 + 2.4x.

Moreover, we assume that n(x, u1) = 10 − 0.02u1 + 0.03u1(1 − u1/1500), f(x, u1, u2) = 0.00012u1u2 and 
g(x, u1, u3) = 0.000024u1u3 are spatial homogeneous functions. As shown in Theorem 3.2, the basic repro-
duction number R0 is decreasing in both d2 and τ when we choose the delta kernel [χ(τ)ψ](x) = e−0.02τψ(x), 
see Fig. 1. If we choose the following nonlocal kernel function

[χ(τ)ψ](x) =
e−0.02τ ∫

Ω e−(x−y)2ψ(y)dy∫
Ω e−(x−y)2dy

. (6.1)

It is also observed that R0 is decreasing in both d2 and τ , see Fig. 1. We then numerically find out that 
the nonlocal infection cannot change the monotonicity of the basic reproduction number with respect to d2
and τ .

Next, we choose the delta kernel [χ(τ)ψ](x) = e−0.02τψ(x), and define the local basic reproduction number 
of infection
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Fig. 1. The basic reproduction number R0 is a decreasing function of the diffusion coefficient d2 and the delay τ . Left: [χ(τ)ψ](x) =
e−0.02τψ(x). Right: [χ(τ)ψ](x) is defined in (6.1).

Fig. 2. The local basic reproduction number Rl
0.

Rl
0(x) = e−0.02τβd(x)

μ2(x) + e−0.02τβi(x)k(x)
μ2(x)μ3(x) ,

where βd(x) and βi(x) are defined in (3.1). Following the ideas in [1], we divide the whole domain into a 
high-risk region Ωh := {x ∈ Ω : Rl

0(x) > 1} and a low-risk region Ωl := {x ∈ Ω : Rl
0(x) < 1}. For simplicity, 

we also set τ = 0. Numerical calculation shows that Rl
0(x) ≤ 1 when x ≥ x0 ≈ 0.22 and Rl

0(x) > 1 when 
x < x0, see Fig. 2.

Now, we set d1 = 0.02 and d2 = 0.002, and compute the steady state solution via finite difference and 
Newton’s method. It is noted from Fig. 3 that the steady state of actively infected hosts distributions u2(x)
for diffusion-free system is zero in the low-risk region, and the infection will persist only in the high-risk 
region. However, the diffusion enables the infection to propagate through the whole domain. Moreover, it 
may also increase the infection level in the high-risk region. This agrees with the phenomenon observed in 
[28].

To further understand the singular perturbation of steady state solution when the diffusion coefficients 
approach zero, we choose small diffusion coefficients d1 = d2 = 0.000002, and compare the steady state 
solution with that for the diffusion-free system. Note from Fig. 4 that the steady state solutions for small 
diffusion system and diffusion-free system are close to each other except near the high-risk boundary or the 
interface of high-risk and low-risk regions. To investigate the boundary and internal layers, we compare the 
gradients of steady state solutions (i.e., u′

2(x)) for both systems. We observe that a boundary layer occurs 
near the high-risk boundary (i.e., x = 0), where the steady state solution for the diffusion-free system 
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Fig. 3. Comparison of steady states of actively infected hosts distributions u2(x) for diffusion-free system (solid curve) and diffusion 
system (dashed curve).

Fig. 4. The profiles of steady states u2(x) and their gradients u′
2(x) of actively infected hosts distributions for diffusion-free system 

(plus signs) and low diffusion system (solid curves), respectively.

does not satisfy the homogeneous Neumann boundary condition. Moreover, the gradient of the steady state 
solution for the diffusion-free system is not continuous near the interface of high-risk and low-risk regions, 
which induces an internal boundary layer.

7. Conclusion

As a summary, we have proposed a general diffusive host-pathogen model with an incubation period and 
nonlocal infections in a spatially heterogeneous environment. Energy estimate and interpolation inequality 
are used to obtain the global existence and well-posedness of the system. We define the basic reproduction 
number R0 in terms of the next generation operators for both direct and indirect infection modes. Analytical 
properties of R0 and biological interpretations are also provided. We further prove that R0 is the threshold 
parameter for the global dynamics of the model. If R0 ≤ 1, then the infection-free steady state is globally 
asymptotically stable. If R0 > 1, then the infection is uniformly persistent and there exists at least one 
positive steady state. For the special case of spatial homogeneous system, there is a unique positive steady 
state, which is homogeneous and globally asymptotically stable. We use numerical simulations to illustrate 
the theoretical results on the monotonicity of R0 in the diffusion coefficient of actively infected hosts and 
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the incubation period. We also observe that the diffusion will spread the infection to the low-risk region 
and increase the infection level in the high-risk region. When the diffusion coefficients approach zero, the 
homogeneous Neumann boundary conditions will induce a boundary layer near the high-risk boundary. 
Moreover, an internal layer may occur near the interface of high-risk and low-risk regions. Finally, we 
mention that a possible future research work is to incorporate the models with fractional derivatives; see 
[4,5,15].

Acknowledgments

We would like to express our gratitude to the anonymous referees for their constructive comments and sug-
gestions. H. Shu is partially supported by the National Natural Science Foundation of China (No. 11971285), 
and the Fundamental Research Funds for the Central Universities (No. GK202201002). H. Wang is partially 
supported by the Natural Sciences and Engineering Research Council of Canada (Discovery Grant RGPIN-
2020-03911 and Accelerator Grant RGPAS-2020-00090).

References

[1] L.J.S. Allen, B.M. Bolker, Y. Lou, A.L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion 
model, Discrete Contin. Dyn. Syst. 21 (2008) 1–20.

[2] R.M. Anderson, R.M. May, The population dynamics of microparasites and their invertebrate hosts, Philos. Trans. R. 
Soc. Lond. B, Biol. Sci. 291 (1981) 451–524.

[3] J.R. Andrews, S. Basu, Transmission dynamics and control of cholera in Haiti: an epidemic model, Lancet 377 (2011) 
1248–1255.

[4] D. Baleanu, M.H. Abadi, A. Jajarmi, K.Z. Vahid, J.J. Nieto, A new comparative study on the general fractional model of 
COVID-19 with isolation and quarantine effects, Alex. Eng. J. 61 (2022) 4779–4791.

[5] D. Baleanu, F.A. Ghassabzade, J.J. Nietoe, A. Jajarmi, On a new and generalized fractional model for a real cholera 
outbreak, Alex. Eng. J. 61 (2022) 9175–9186.

[6] E. Bertuzzo, R. Casagrandi, M. Gatto, I. Rodriguez-Iturbe, A. Rinaldo, On spatially explicit models of cholera epidemics, 
J. R. Soc. Interface 7 (2010) 321–333.

[7] S.F. Dowell, J.W. Tappero, T.R. Frieden, Public health in Haiti − challenges and progress, N. Engl. J. Med. 364 (2011) 
300–301.

[8] G. Dwyer, Density dependence and spatial structure in the dynamics of insect pathogens, Am. Nat. 143 (1994) 533–562.
[9] M.C. Eisenberg, Z. Shuai, J.H. Tien, P. van den Driessche, A cholera model in a patchy environment with water and 

human movement, Math. Biosci. 246 (2013) 105–112.
[10] K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 

vol. 194, Springer-Verlag, New York, 2000.
[11] I.D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1983.
[12] Goma Epidemiology Group, Public health impact of Rwandan refugee crisis: what happened in Goma, Zaire, in July, 

1994?, Lancet 345 (1995) 339–344.
[13] J.K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, 1988.
[14] D.M. Hartley, J.G. Morris Jr., D.L. Smith, Hyperinfectivity: a critical element in the ability of V. cholerae to cause 

epidemics?, PLoS Med. 3 (2006) 63–69.
[15] A. Jajarmi, D. Baleanu, K.Z. Vahid, S. Mobayen, A general fractional formulation and tracking control for immunogenic 

tumor dynamics, Math. Methods Appl. Sci. 45 (2022) 667–680.
[16] R.I. Joh, H. Wang, H. Weiss, J.S. Weitz, Dynamics of indirectly transmitted infectious diseases with immunological 

threshold, Bull. Math. Biol. 71 (2009) 845–862.
[17] W. Kerscher, R. Nagel, Asymptotic behavior of one-parameter semigroups of positive operators, Acta Appl. Math. 2 (1984) 

297–309.
[18] R. Koenig, Public health: International groups battle cholera in Zimbabwe, Science 323 (2009) 860–861.
[19] P. Magal, X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. 

Anal. 37 (2005) 251–275.
[20] R. Martin Jr., H.L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Am. Math. 

Soc. 321 (1990) 1–44.
[21] C. Miller, R. Feachem, B. Drasar, Cholera epidemiology in developed and developing countries: new thoughts on trans-

mission, seasonality, and control, Lancet 1 (1985) 261–263.
[22] Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D.L. Smith, J.G. Morris, Estimating the reproductive numbers for the 2008-2009 

cholera outbreaks in Zimbabwe, Proc. Natl. Acad. Sci. USA 108 (2011) 8767–8772.
[23] E.J. Nelson, J.B. Harris, J.G. Morris, S.B. Calderwood, A. Camilli, Cholera transmission: the host, pathogen and bacte-

riophage dynamics, Nat. Rev. Microbiol. 7 (2009) 693–702.
[24] R.D. Nussbaum, Eigenvectors of Nonlinear Positive Operator and the Linear Krein-Rutman Theorem, Fixed Point Theory, 

Lecture Notes in Mathematics, vol. 886, Springer, Berlin, 1981, pp. 309–331.

http://refhub.elsevier.com/S0022-247X(22)00491-7/bibBD285A40F83BE4F4D3F0AE622EA48FACs1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bibBD285A40F83BE4F4D3F0AE622EA48FACs1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib5BBA29E1BF0680D80DA4BDD0D287A9E3s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib5BBA29E1BF0680D80DA4BDD0D287A9E3s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib1ACF2E55429DADB54210D07BEFB72B67s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib1ACF2E55429DADB54210D07BEFB72B67s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib56FCB9DD045DDA17FCF55DC6AAA3C3ADs1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib56FCB9DD045DDA17FCF55DC6AAA3C3ADs1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib0932780A3EAAD1521AD883B3027C946Bs1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib0932780A3EAAD1521AD883B3027C946Bs1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib4A8C0E4A773A43F4161F0ABC49E74D1Ds1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib4A8C0E4A773A43F4161F0ABC49E74D1Ds1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib93129C37AB9C75D8B508032F8E48E27Ds1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib93129C37AB9C75D8B508032F8E48E27Ds1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bibAFFB23B341218C2532BB5DB3A819B099s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib09E757F5ADBC9CD2B6630E7CEEBE9414s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib09E757F5ADBC9CD2B6630E7CEEBE9414s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bibAA85F1840E282D8A8304DBC2C0D7C9B2s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bibAA85F1840E282D8A8304DBC2C0D7C9B2s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib4A6DDBC667721F52203ACCE6954D00B6s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib8EC026138864D373326513FBA00B9AAFs1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib8EC026138864D373326513FBA00B9AAFs1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bibFD4A8E90235351D97EE59269DD4361C4s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bibFABBD7FEF82AD1CFD0F4D1D96B922C63s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bibFABBD7FEF82AD1CFD0F4D1D96B922C63s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib854DB59D328DED5C7A8BA7B9DA886A6Ds1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib854DB59D328DED5C7A8BA7B9DA886A6Ds1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib5917003CDA0ED0789D68B9021FEC5A29s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib5917003CDA0ED0789D68B9021FEC5A29s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bibEB9CCFAB4C0FAB793F29F7DC1C0ECAD2s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bibEB9CCFAB4C0FAB793F29F7DC1C0ECAD2s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib5DAE8AFA8A4955DE8F144C42A156D567s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib87E6C078833A3C35B65067A50C936B37s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib87E6C078833A3C35B65067A50C936B37s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib8172161079BC31B672E366FEFA8940A3s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib8172161079BC31B672E366FEFA8940A3s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib81E96A38330580EBDF07421E55C37A31s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib81E96A38330580EBDF07421E55C37A31s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib5055CD5FF668BFE93118A725A7806872s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib5055CD5FF668BFE93118A725A7806872s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib407372A46C32BEBD88FC4EDD0C9534D7s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib407372A46C32BEBD88FC4EDD0C9534D7s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bibCD3C9BB8ACB671DBD1FABA3DEAA1E03Es1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bibCD3C9BB8ACB671DBD1FABA3DEAA1E03Es1


22 H. Shu et al. / J. Math. Anal. Appl. 516 (2022) 126477
[25] C.V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum, New York, 1992.
[26] A. Pazy, Semigroups of Linear Operators and Application to Partial Differential Equations, Springer, Berlin, 1983.
[27] M.H. Protter, H.F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984.
[28] H. Shu, Z. Ma, X.-S. Wang, Threshold dynamics of a nonlocal and delayed cholera model in a spatially heterogeneous 

environment, J. Math. Biol. 83 (2021) 41–73.
[29] H.L. Smith, Monotone Dynamical Systems: an Introduction to the Theory of Competitive and Cooperative Systems, 

American Mathematical Society, Providence, 1995.
[30] H.L. Smith, X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal. 47 (2001) 6169–6179.
[31] H.R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time hetero-

geneity, SIAM J. Appl. Math. 70 (2009) 188–211.
[32] J.P. Tian, J. Wang, Global stability for cholera epidemic models, Math. Biosci. 232 (2011) 31–41.
[33] J.H. Tien, D.J.D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bull. 

Math. Biol. 72 (2010) 1506–1533.
[34] A.R. Tuite, J.H. Tien, M.C. Eisenberg, D.J.D. Earn, J. Ma, D.N. Fisman, Cholera epidemic in Haiti, 2010: using a 

transmission model to explain spatial spread of disease and identify optimal control interventions, Ann. Intern. Med. 154 
(2011) 293–302.

[35] F.B. Wang, J. Shi, X. Zou, Dynamics of a host-pathogen system on a bounded spatial domain, Commun. Pure Appl. Anal. 
14 (2015) 2535–2560.

[36] W. Wang, X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst. 11 
(2012) 1652–1673.

[37] X. Wang, X.-Q. Zhao, J. Wang, A cholera epidemic model in a spatiotemporally heterogeneous environment, J. Math. 
Anal. Appl. 468 (2018) 893–912.

[38] Y. Wu, X. Zou, Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates, J. Differ. Equ. 264 
(2018) 4989–5024.

[39] X.-Q. Zhao, Dynamical Systems in Population Biology, second edition, CMS Books in Mathematics, Springer, 2017.

http://refhub.elsevier.com/S0022-247X(22)00491-7/bib2E8E30CD8B371BCFFCA73390500B90DDs1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bibD95F760E1C7E59C0FC7BDC2FEA4C264Cs1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib002F27E5064E874ECF4F5DEF17D1B797s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bibD407DEAACBBA0A2188B6A7C92EDF5328s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bibD407DEAACBBA0A2188B6A7C92EDF5328s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bibD8300E8E52854B77F3D95179E9700525s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bibD8300E8E52854B77F3D95179E9700525s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib59D29956E76C503A57B1C552BED1C743s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bibFD4C638DA5F85D025963F99FE90B1B1As1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bibFD4C638DA5F85D025963F99FE90B1B1As1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib1DD0DDD32626CEDE2884E4C9F123ABEEs1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bibF295AD771817BD21BDBABDA72B9835E8s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bibF295AD771817BD21BDBABDA72B9835E8s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib05E59B0E347244AE4D35D0A4A2204668s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib05E59B0E347244AE4D35D0A4A2204668s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib05E59B0E347244AE4D35D0A4A2204668s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib37D7C7E7B066FE69CAD224FD9DDC1FE0s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib37D7C7E7B066FE69CAD224FD9DDC1FE0s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bibF597273DBAD55BB6AE9B40EC8DFD7655s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bibF597273DBAD55BB6AE9B40EC8DFD7655s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib58C146D5987DE18B57F7E2A4783092F1s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib58C146D5987DE18B57F7E2A4783092F1s1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib7CCAF1F3BEC158433E8C3C7E363C25DBs1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib7CCAF1F3BEC158433E8C3C7E363C25DBs1
http://refhub.elsevier.com/S0022-247X(22)00491-7/bib533D80CC8ACA6B12171BF728EC813C67s1

	Diffusive host-pathogen model revisited: Nonlocal infections, incubation period and spatial heterogeneity
	1 Introduction
	2 Well-posedness and basic dynamics
	3 Basic reproduction number
	4 Global dynamics of the system
	4.1 Global attractor
	4.2 Persistence of infection and existence of positive steady states
	4.3 Global stability of the infection-free steady state when R0≤1

	5 Spatially homogeneous case
	6 Numerical simulations
	7 Conclusion
	Acknowledgments
	References


