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Abstract
Climate change models predict increases in atmospheric carbon dioxide concentra-
tion. As ecosystems equilibrate with the atmosphere, stimulation of photosynthesis is
expected to occur. However, growth limitation due to soil nutrients may potentially
limit sequestration of carbon. Additionally, changes in producer nutritional quality
may cause a decline in grazer populations. Here we extend the WKL model to allow
for consideration of the impacts of elevated atmospheric carbon dioxide concentration
on producer–grazer dynamics. We do so by explicitly tracking the free carbon in the
medium and allowing the producer’s growth rate to be limited by available carbon
instead of light. This model is analyzed using primarily local bifurcation analysis.
Overall, these analyses show that carbon sequestration due to increased atmospheric
carbon dioxide can be limited by insufficient available phosphorus. Furthermore,
increased atmospheric carbon dioxide will cause decreased stoichiometric quality of
producers where available phosphorus is limiting.

Keywords Carbon dioxide · Stoichiometric producer–grazer model · Bifurcation
analysis · Sequestration of carbon · Phosphorus · Photosynthesis · Photorespiration

Mathematics Subject Classification 92B05 · 34C23 · 34D20 · 37G15

1 Introduction

Since the Industrial Revolution, Earth’s atmosphere has been experiencing an unprece-
dented rate of increase in carbon dioxide (Pachauri et al. 2014). Climate changemodels
have predicted that atmospheric concentrations of carbon dioxide may surpass 700
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ppm by 2100 from the current ambient level of approximately 390 ppm (Pachauri
et al. 2014). Such a substantial change will likely have far-reaching impacts on the
environment and all life on earth.Changes in the global carbon cyclemay also influence
the global phosphorus and nitrogen cycles due to their coupling through biological
interactions (Hessen et al. 2013). The main mechanisms by which ecosystems are
directly impacted by increased atmospheric carbon dioxide concentration are changes
in photosynthesis, transpiration and respiration (Drake et al. 1997). However, there
are also indirect impacts.

According to Elser et al. (2010), the three possible scaling links between atmo-
spheric concentration of carbon dioxide and producer stoichiometry are: stimulation of
producer photosynthesis, potentially leading to increased carbon sequestration subject
to soil resource constraints; increased plant root to shoot ratios and leaf area, impacting
photosynthetic capacity and nutrient requirements; and reduction in Rubisco produc-
tion due to increased efficiency, allowing for reallocation of nitrogen. The increased
rate and efficiency of photosynthesis in C3 plants occur due to changes in the light-
independent reactions (Drake et al. 1997).

Photosynthesis is divided into twomain components: the light-dependent reactions,
and the light-independent reactions. The light-dependent reactions use solar energy
and water to produce the energy compound ATP and the electron carrier NADPH. The
light-independent reactions, also known as the Calvin Cycle, use these two products to
fix carbon dioxide into glucose. In particular, in the carbon fixation step of the Calvin
Cycle, the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) cat-
alyzes the carboxylation reaction, in which the carbon dioxide molecule combines
with a five-carbon acceptor molecule, ribulose-1,5-bisphosphate (RubP). The result-
ing 6-carbonmolecule then undergoes several other reactions to ultimately eithermake
glucose or regenerate the RubP acceptor molecule (Stitt et al. 2010).

However, Rubisco can also catalyse the oxygenation of RubP, which begins
the “photosynthetic carbon oxidation or photorespiratory pathway (PCO), which
decreases the net efficiency of photosynthesis by 20–50%” (Drake et al. 1997). Carbon
dioxide (CO2) competitively inhibits the oxygenation reaction, causing an increase in
both Rubisco- and RubP-limited net photosynthesis (Drake et al. 1997). This decrease
in oxygenation along with the fact that Rubisco is not CO2-saturated at the current
atmospheric concentration of CO2 in some plants are thought to be the reasons that
increased concentrations of atmospheric CO2 have been shown to increase the rate of
photosynthesis is C3 plants, which have no mechanisms in place to reduce photores-
piration (Ainsworth and Rogers 2007). According to Ainsworth and Rogers (2007),
we know that at room temperature approximately 23% of fixed carbon is lost due to
photorespiration, and that with all oxygenation reactions replaced with carboxylation
reactions, uptake of carbon dioxide would be increased by around 53%.

The meta-analysis of terrestrial plants completed by Du et al. (2019) showed that
elevated carbon dioxide stimulates photosynthesis, causing an increase in plant carbon
(C) and carbon to nitrogen ratio (C:N), and a decrease in plant nitrogen (N), phosphorus
(P), and nitrogen to phosphorus ratio (N:P). Thus elevated atmospheric carbon dioxide
has a larger impact on levels of N than P, likely due to the fact that a large proportion
(approximately 25%) of the nitrogen in a leaf is inRubisco (Drake et al. 1997).Notably,
the slight increase in C:P was not statistically significant, despite the relatively large
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sample size (Du et al. 2019). An alternative explanation for the differences between
nitrogen and phosphorus could consider the growth-rate hypothesis (Du et al. 2019):
increased growth rate is related to the decrease in N:P because phosphorus-rich RNA
is required by plant organs for rapid protein synthesis (Sterner and Elser 2002).

There is also evidence that increasing atmospheric carbon dioxide concentration
increases the rate of photosynthesis in aquatic producers. Experimentally, Urabe et al.
(2003) found that increased atmospheric concentrationof carbondioxide also increases
the partial pressure of carbon dioxide in water, resulting in the stimulation of algal
growth. The saturation level of algal abundance was higher in the increased CO2 treat-
ments, suggesting that growth of algae in the control was limited by carbon dioxide.
Furthermore, there was a significantly lower final algal cellular quota (P:C) for the
elevated carbon dioxide treatments compared to the control treatment.

The rate of exchange of carbon dioxide between water and the air above is directly
proportional to the concentration gradient of carbon dioxide across the water’s surface
(Low-Decarie et al. 2014). The proportionality constant, which is known as the gas
exchange transfer velocity, is hard to determine due to its relationshipwithwind speed,
which differs globally and temporally (Wanninkhof 2007). Despite the direct relation-
ship between the exchange rate of carbon dioxide and the concentration gradient of
the gas across the boundary, water bodies are rarely equilibrated with the atmosphere
(Low-Decarie et al. 2014; van deWaal et al. 2010). They can either be carbon sources,
such as inmany freshwater lakes, or sinks, as inmanyoceans (Low-Decarie et al. 2014).

Due to dissolved organic carbon from terrestrial ecosystems being mineralized by
bacteria into CO2, lakes are often carbon dioxide sources (van de Waal et al. 2010).
In natural lakes, the partial pressure of CO2 can vary over four orders of magnitude
and is impacted by environmental perturbations (Urabe et al. 2003). If algae species
have carbon concentration mechanisms (CCMs) that allow them to use dissolved
bicarbonate ions (HCO3

-) in photosynthesis efficiently, increased partial pressure of
carbon dioxide in their lake (pCO2)would have a reduced impact on their growth, since
inmost lakes pCO2 ismuch lower than the concentration ofHCO3

- (Low-Decarie et al.
2014; Urabe et al. 2003). However, CCMs appear to operate less efficiently under light
or nutrient limitation (Urabe et al. 2003). Therefore, an increase in atmospheric carbon
dioxide may have a larger impact in natural lakes where both nutrient and light are not
sufficiently abundant (Urabe et al. 2003).

Whether a water body is a carbon dioxide source or sink is determined primarily
by the amount of terrestrial carbon that enters the water (van de Waal et al. 2010).
However, in their experiments, Urabe et al. (2003) found that when algal biomass
reached saturated levels in the elevated carbon dioxide treatments, the carbon dioxide
in the water decreased to levels not significantly different from the control treatment.
Hence, the amount of algae in the water can also impact the concentration of dissolved
carbon dioxide, since their uptake rate of carbon dioxide can exceed the diffusion rate
from the atmosphere (Urabe et al. 2003). Additional factors that can determine carbon
dioxide concentration in ocean surface waters include mixing, temperature, salinity,
respiration, and calcification (Burkhardt and Riebesell 1997).

Although the major direct impacts on ecosystems of atmospheric carbon dioxide
concentration are related to the producer at the base of the food chain, there are also
indirect impacts on the grazer. Since herbivores tend to havemore rigid, higher nutrient
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requirements, their food can become less than optimal if the nutrient content of their
food falls below their requirement (Sterner and Elser 2002). Hence, the decrease in
algal P:C thatmay result from increased atmospheric carbon dioxide concentration can
result in a decrease in growth of the grazer (Urabe et al. 2003). Additional experiments
conducted by Urabe et al. (2003) confirmed that the decrease in grazer growth they
observed was due to the decreased algal P:C, and not due to a direct impact of carbon
dioxide on the grazer or to excessive food levels interfering with feeding activities.

Models such as the LKE andWKLmodels track the flow of carbon and phosphorus
through a producer-grazer system (Loladze et al. 2000; Wang et al. 2008). However,
these stoichiometric models assume that the system is open to carbon, given the preva-
lence in the atmosphere and relatively rapid dissolution of carbon dioxide into water.
Thus, the intention of this paper is to expand the WKLmodel to explicitly incorporate
atmospheric carbon dioxide concentration by adding a variable for free carbon in the
medium, and by allowing the producer’s growth to be limited by available carbon. A
limiting case of the model will be analyzed mathematically and numerically, with the
intention of addressing the potential impact of elevated atmospheric carbon dioxide
concentration on the absolute and relative amounts of nutrient in the producer, and
moreover, the impact of this change on the persistence of the grazer population.

2 Themodel

2.1 Model formulation

The WKL model is a stoichiometric producer-grazer model which includes carbon
and phosphorus (Wang et al. 2008). The variables are x , the density of carbon in the
producer; p, the density of phosphorus in the producer; y, the density of carbon in the
grazer; and P , the density of phosphorus in the medium.

The WKL model is composed of four ordinary differential equations (Wang et al.
2008). The change in the density of carbon in the producer (dx /dt) is determined
by producer growth limited by both nutrient (p/q) and light (K ) availabilities, and
by uptake by grazers. The change in producer phosphorus (dp/dt) is determined by
phosphorus uptake by the producer, and phosphorus loss due to grazing and producer
recycling. The change in the density of carbon in the grazer (dy/dt) is determined
by grazer growth limited by food quantity and food quality, and by grazer death and
respiration loss. Lastly, the change in free phosphorus in the system is determined by
phosphorus uptake by the producer, and by phosphorus recycling from the producer,
from the dead grazer, and from grazer feces.

The WKL model requires two main assumptions, originally from Loladze et al.
(2000). The first is that “the total mass of phosphorus in the entire system is fixed”,
i.e., the system is closed to phosphorus (Wang et al. 2008). This assumption allows for
the four-dimensional system to be reduced to three dimensions. The second assumption
is that the phosphorus to carbon ratio (P:C) in the producer (p/x) varies above a fixed
minimum q (p/x ≥ q), while the grazer maintains a constant P:C, θ (Wang et al.
2008). From this second assumption, we know the density of phosphorus in the grazer
is given by θ y.
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The parameters are r, the producer intrinsic growth rate (day-1); K, the producer
light-dependent carrying capacity ((mgC)/l); q, theminimal producer P:C ((mgP)/(mg
C)); ê, the grazer maximal conversion rate; θ , the constant grazer P:C ((mg P)/(mg
C)); d̂ , the grazer loss rate (day-1); and d, the producer phosphorus loss rate (day-1)
(Wang et al. 2008). Due to the second law of thermodynamics, ê < 1, and in reality,
θ >> q (Wang et al. 2008). Therefore, we assume herein that θ > q.

The model also uses two functions: f (x), which is the rate at which the grazers
ingest producer biomass, and g(P), which is the per capita phosphorus uptake rate of
the producers (Wang et al. 2008). If we assume f (x) and g(P) take the form of the
Holling type II functional response, then we have

f (x) = cx

a + x
,

g(P) = ĉP

â + P
.

For the WKL model, f and g are assumed to be bounded and smooth functions
which satisfy f (0) = 0, f ′(x) > 0 for x ≥ 0, and f ′′(x) ≤ 0 for x ≥ 0 (Wang et al.
2008). For the Holling type II functional responses chosen here, let c be the maximal
rate of ingestion of producer biomass by the grazers (day-1); ĉ be the producermaximal
phosphorus uptake rate ((mg P)/(mg C)/ day); a be the grazer carbon half-saturation
constant ((mg C)/l); and â be the producer phosphorus half-saturation constant ((mg
P)/l) (Wang et al. 2008).

The model developed here to investigate the impacts of elevated atmospheric con-
centration of CO2 on a producer-grazer system is a modification of theWKLmodel. In
addition to explicitly tracking free carbon in themedium,we replace the constant light-
dependent carrying capacity K with a carbon-dependent carrying capacity (h(C)). As
in the WKL model, all parameters are assumed to be positive.

Here C is the free carbon in the medium. The producer’s growth follows Liebig’s
Law of the Minimum, where the growth rate is now either limited by the amount of
phosphorus in the producer (p/q) or a carbon-dependent carrying capacity based on
availability in the medium (h(C)). These two factors are assumed to be independently
colimiting. Previously, data was fit for the algae Chlamydomonas acidophila to four
different Monod-type models for phosphorus and carbon limitation, and dependent
colimitationwas rejected in favour of independent limitation between these two factors
(Spijkerman et al. 2011). Rather than using a multiplicative form of independent
limitation, as in Spijkerman et al. (2011), we use Liebig’s Law of the Minimum for
simplicity of analysis. There is no strong evidence for classification of colimitation
between light and carbon, and therefore we assume that there is sufficient light in the
system so as to be non-limiting.

The equations are

dx

dt
= r x

(
1 − x

min{p/q, h(C)}
)

︸ ︷︷ ︸
producer growth limited by nutrient & carbon

− f (x)y︸ ︷︷ ︸
uptake by grazers

− ρ(C)lx x︸ ︷︷ ︸
respiration

, (1)
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dy

dt
= êmin

{
1,

p/x

θ

}
f (x)y

︸ ︷︷ ︸
grazer growth limited by food quality & quantity

− d̂ y︸︷︷︸
grazer death

− ly y︸︷︷︸
respiration

, (2)

dp

dt
= g(P)x︸ ︷︷ ︸

P uptake by producer

− p

x
f (x)y︸ ︷︷ ︸

P loss due to grazing

− dp︸︷︷︸
P loss due to producer recycling

, (3)

dP

dt
= −g(P)x︸ ︷︷ ︸

P uptake by producer

+ dp︸︷︷︸
P recycling from producer

+ θ d̂ y︸︷︷︸
P recycling from dead grazer

+
( p

x
− êmin

{
θ,

p

x

})
f (x)y︸ ︷︷ ︸

P recycling from grazer feces

+ θly y︸︷︷︸
P recycling from grazer respiration

, (4)

dC

dt
= ρ(C)lx x︸ ︷︷ ︸

producer respiration

+ ly y︸︷︷︸
grazer respiration

− r x

(
1 − x

min{p/q, h(C)}
)

︸ ︷︷ ︸
C uptake by producer

+
(
1 − êmin

{
1,

p/x

θ

})
f (x)y

︸ ︷︷ ︸
C recycling from grazer feces

+ d̂ y︸︷︷︸
C recycling from dead grazer

+α(β − C)︸ ︷︷ ︸
C exchange

. (5)

In order to model free carbon in the system, terms separately representing respi-
ration have been added to the equations. Now Eq. (1) includes a term for producer
respiration, where the rate of respiration is given by ρ(C)lx . Equation (2) also includes
a term for loss of carbon due to grazer respiration, where the rate of respiration is given
by ly . Note that whereas in the WKL model d̂ included grazer death and respiration
loss, now d̂ is only for loss due to grazer death. Due to the assumption of strict home-
ostasis for the grazers, a term for compensatory loss of phosphorus due to respiration
is now incorporated in Eq. (4). Lastly Eq. (5), which is for the free carbon in the
medium, includes producer respiration, grazer respiration, uptake by the producer via
photosynthesis, recycling from grazing, and then degradation/decomposition of dead
grazers which is assumed to be instantaneous.

Equation (5) also includes a term for C exchange with the environment outside
the system: α(β − C). Here β is the carbon density in the external medium, which
is assumed to be constant; that is, the system has no impact on the external source
of carbon dioxide. Hence, the rate of exchange of carbon dioxide is proportional to
the gradient across the boundary, as in the literature (Low-Decarie et al. 2014). The
parameter α is the rate of exchange between the system and the external environment,
also known as the transfer velocity (Wanninkhof 2007). A higher value of α means
the system is more “open”. Note that for α = 0, we have a system which is locally
closed, which is a limiting case of this open system. As α → ∞, the system becomes
entirely open, and there is an essentially unlimited amount of carbon, as in the WKL
model (Wang et al. 2008).

As aforementioned, h(C) is the carbon-dependent carrying capacity of the producer.
This term captures the limitation of carbon fixation by insufficient available carbon
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dioxide, since Rubisco is not saturated at the current atmospheric concentration in
some plants (Ainsworth and Rogers 2007). In general, we assume that h(C) is non-
decreasing, and that h(0) = 0. A basic choice for h(C) is a scalar multiple of C
(h(C) = γ C), although h(C) should likely plateau at a value of C at which Rubisco
is saturated.

In addition to incorporating the fact that Rubisco is not carbon dioxide saturated
at ambient atmospheric concentrations, this model also includes the reduction in pho-
torespiration rate due to competitive inhibition of the oxygenation reaction in Equation
(1): ρ(C)lx . Here ρ(C) is a monotonically decreasing function of C which allows for
the reduction of photorespiration at higher carbon levels.We observe that ρ(C) should
not tend towards 0 asC → ∞ since the total respiration term should also includemito-
chondrial/cellular respiration.

For much of the analysis completed here, we assume the system is closed to carbon,
i.e., that α = 0, and that ρ(C) = 1. In that case, we let TP be the total phosphorus in
the system, and TC be the total carbon in the system, where TP = p + P + θ y, and
TC = x + y + C . Hence, we can write P = TP − p − θ y and C = TC − x − y. Using
Eqs. (1)–(5), it can be shown that dTP/dt = 0 = dTC/dt . Thus, through the Law of
Conservation of Mass, we can reduce the dimension of the system in this limiting,
closed case (α = 0, ρ(C) = 1):

dx

dt
= r x

(
1 − x

min{p/q, h(TC − x − y)}
)

− f (x)y − lx x, (6)

dy

dt
= êmin

{
1,

p/x

θ

}
f (x)y − d̂ y − ly y, (7)

dp

dt
= g(TP − p − θ y)x − p

x
f (x)y − dp. (8)

2.2 Parameters

The parameters originally present in the WKL model were set at the values given in
Wang et al. 2008, with the exception of d̂ which was adapted due to the separate loss
terms in the equation for grazer carbon.

In order to select the ranges for the total carbon inside the closed limiting system
(TC ) as well as the fixed external carbon (β), the atmospheric carbon dioxide con-
centrations used in the experiments conducted by Urabe et al. (2003) as well as the
predicted concentration from Pachauri et al. (2014) were converted to carbon concen-
trations with classical stoichiometry. Urabe et al. (2003) used 360 ppm for ambient
atmospheric carbon dioxide, which is equivalent to 360 mg/l, and one of the two ele-
vated values usedwas 1500 ppm,which is equivalent to 1500mg/l. As aforementioned,
climate change models have predicted that the atmospheric concentration of carbon
dioxide may surpass 700 ppm by 2100 (Pachauri et al. 2014). The atmospheric carbon
dioxide concentrations of 360 mg/l, 700 mg/l, and 1500 mg/l were converted to 98.2
(mg C)/l, 191.0 (mg C)/l, and 409.4 (mg C)/l respectively using a relative atomic mass
of carbon equal to 12.0107 g/mol and 15.9994 g/mol for oxygen, which gives a total
mass of carbon dioxide of 44.0095 g/mol (Petrucci et al. 2011).
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Table 1 The parameter (P) values (V) used for simulations

P Description V

r Intrinsic growth rate of the producer 0.93 day−1

c Maximal ingestion rate of the grazer 0.75 day−1

ĉ Maximal phosphorus uptake rate of the producer 0.2 (mg P)/(mg C)/day

a Half-saturation constant of the grazer 0.25 (mg C)/l

â Phosphorus half-saturation constant of the producer 0.008 (mg P)/l

ê Maximal conversion rate of the grazer 0.74

d Phosphorus loss rate of the producer 0.05 day−1

θ Constant P:C of the grazer 0.04 (mg P)/(mg C)

q Minimal possible P:C of the producer 0.004 (mg P)/(mg C)

TP Total phosphorus in the system 0.003–0.3 (mg P)/l

TC Total carbon in the system 98.2–409.4 (mg C)/l

d̂ Death rate of the grazer 0.055 day−1

lx Respiration rate of the producer 0.183 day−1

ly Respiration rate of the grazer 0.165 day−1

γ Scaling factor for C dependent carrying capacity 0.005–0.4202

η Asymptote for PCO function 0.901639

ζ Difference between max and asymptote for PCO 0.670890

ξ Exponent for PCO function 0.019552 l/(mg C)

α Rate of C exchange between system and exterior 0–1e6 day−1

β Constant exterior C concentration 98.2–409.4 (mg C)/l

The carbon-dependent carrying capacity is given by h(C) = γ C . The range of the
parameter γ was selected dependent on the range of values for TP . In particular, we
determined what the carbon threshold for x would be dependent on the values of TP

studied by dividing them by q. For TP = 0.003, this threshold is 0.75; for TP = 0.030,
7.5; and for TP = 0.300, 75. Therefore, for carbon limitation to occur at ambient
carbon at roughly the same density as phosphorus limitation, we require γ = 0.00764,
0.0764, and 0.764 for TP = 0.003, 0.030, and 0.300 respectively. Hence, for our
analysis, we considered γ ∈ {0.005, 0.00764, 0.04202, 0.0764, 0.4202}, in order to
observe examples of both carbon and phosphorus limitation of producer growth.

The respiration parameters were selected by adapting those of Diehl (2007) to the
system parameters selected by Wang et al. (2008). Diehl modelled a Daphnia-algae
system with explicit respiration of the grazer and algae, as well as a grazer death rate
(Diehl 2007). The values assigned were 0.1 day−1 for algal respiration, 0.09 day−1

for grazer respiration, and 0.03 day−1 for the grazer death rate (Diehl 2007). Hence,
the total loss rate for the grazer used by Diehl (2007) is 0.12 day−1, which is less than
the value used for the WKL model (Wang et al. 2008), which is 0.22 day−1. In order
to match the rest of the parameters in the system, the values used by Diehl (2007) were
rescaled by the same factor (approximately 1.83) such that the total loss rate matched
that in the WKL model (Wang et al. 2008).
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The net respiration of the producer can be modelled using (von Caemmerer and
Quick 2000)

Net respiration = 2
∗Vcmax

Cc + Kc(1 + O/Ko)
+ Rd ,

where Cc is the CO2 partial pressure at the reaction site (μbar); 
∗ is the CO2 partial
pressure at which the carboxylation rate is equal to half the oxygenation rate (μbar);
Vcmax is the maximal carboxylation rate (μmol m−2s−1); Kc is the CO2 Michaelis
Menten constant (μbar); O is the O2 partial pressure at the reaction site (mbar); Ko is
the O2 MichaelisMenten constant (mbar); and Rd is the cellular respiration in light not
associated with the PCO pathway (μmol m−2s−1). Note that some of these parameters
vary between autotroph species. Values were selected from von Caemmerer and Quick
(2000).

This equation produces a respiration rate in μmolm−2s−1. In Equation (1), ρ(C) is
a dimensionless quantity. However, the above formula can be used to find approximate
values of the net respiration rate which can be rescaled such that ρ(C) = 1 at ambi-
ent carbon dioxide concentration. These values can then be used to find appropriate
parameters for a function of the form ρ(C) = η + ζe−ξC . This form was selected to
reduce the number of parameters and the complexity of estimating these quantities.

For the parameter that quantifies the degree of openness of the system in the open
model, α, using α = 0 would produce a systemwhich is closed to carbon. As α → ∞,
the model (with ρ(C) = 1) tends towards the completely open WKL system with
producer respiration included and assuming abundant light. Thus, α was selected to
range from 0 to 1,000,000 to give a broad range in order to begin to consider the impact
of α on the system.

3 Mathematical analysis

3.1 Invariant set

Similar to the WKL model (Wang et al. 2008), we have a theorem that shows that
solutions which start in a biologically meaningful region remain there for all forward
time for the limiting closed case of the model (α = 0, ρ(C) = 1). The region has
several constraints. Within the region, x , y and p are all positive. Note that we cannot
observe negative densities, and therefore this condition is biologically meaningful.
Additionally, the carbon density of the producer is bounded above by the maximum
phosphorus- and carbon-dependent carrying capacities, which would occur if all phos-
phorus and carbon in the system is in the medium. Also, the amounts of phosphorus
and carbon in the combined biomass pools should not exceed the total amounts in
the system. The proof of this theorem also very closely follows that of the dissipa-
tivity theorem for the WKL model (Wang et al. 2008). The proof of Theorem 1 is in
“Appendix A”.

123



   49 Page 10 of 48 C. M. Davies, H. Wang

Theorem 1 For the limiting case (6)–(8), the set

� = {(x, y, p):0< x<min{TP/q, h(TC )}, 0 < y, 0 < p, p+θ y < TP , x+y < TC }

is positively invariant.

3.2 Equilibria

Consider the limiting case where α = 0 and ρ(C) = 1, producing Eqs. (6)–(8). Let
h(C) = γ C . We consider two cases for f and g, dependent on if both f and g are
Holling type I or Holling type II functional responses.

First, we assume f (x) = cx , g(P) = ĉP and h(C) = γ C , i.e., that f and g are
Holling type I functional responses. The resulting system and equations for equilibria
are in “Appendix B”.

The trivial extinction equilibrium E0 = (0, 0, 0) is a possible solution of the sys-
tem. We can also explicitly find the forms of grazer extinction equilibria. The grazer
extinction equilibria always take the form (x̄, 0, p̄), where x̄ and p̄ are decided by
what is limiting the producer and other parameter-based conditions. There may also
be coexistence equilibria.

The resulting equilibria for Holling type I functional responses for the limiting case
are summarized in the following theorem.

Theorem 2 The simplified case of the model (6)–(8) with Holling type I functional
responses has the trivial extinction equilibrium E0 = (0, 0, 0) which always exists,
up to two grazer extinction equilibria, and may have coexistence equilibria, where the
grazer extinction equilibria depend on two quantities:

A := ĉγ TP (r − lx )
2 + (ĉTP − ĉqγ TC − dqγ )r(r − lx ) − dqr2

ĉqr(r − lx )
,

and

B := ĉγ TP (r − lx )
2 + (ĉTP − ĉqγ TC − dqγ )r(r − lx ) − dqr2

(ĉqγ TC (r − lx ) + dq(r + γ r − γ lx ))(r + γ r − γ lx )
.

The grazer extinction equilibria satisfy:

(i) If A ≤ 0 and B < 0, then there is one grazer extinction equilibrium, given by

EP :=
(

ĉTP (r − lx ) − dqr

ĉqr
, 0,

ĉTP (r − lx ) − dqr

ĉ(r − lx )

)
;

(ii) If A > 0 and B ≥ 0, then there is one grazer extinction equilibrium, given by

EC :=
(

γ TC (r − lx )

r + γ r − γ lx
, 0,

ĉγ TC TP (r − lx )

ĉγ TC (r − lx ) + d(r + γ r − γ lx )

)
;
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(iii) If A < 0 and B > 0, then there are two grazer extinction equilibria, EP and
EC ;

(iv) If A = B = 0, then there is one grazer extinction equilibrium, EP = EC ;
(v) If A > 0 and B < 0, then there are no grazer extinction equilibria.

Second, we assume f (x) = cx/(a + x), g(P) = ĉP/(â + P), and h(C) = γ C ,
i.e., that f and g are Holling type II functional responses. The necessary system and
equations used to find the equilibria are in “Appendix C”.

The trivial extinction equilibrium E0 = (0, 0, 0) is a possible solution of this
system. We can explicitly find the forms of the grazer extinction equilibria, dependent
uponwhat is limiting the producer and other parameter-based conditions.Additionally,
there may be coexistence equilibria, which are complicated to compute.

The following theorem summarizes the resulting equilibria.

Theorem 3 The simplified case of the model (6)–(8) with Holling type II functional
responses has the trivial extinction equilibrium E0 = (0, 0, 0) which always exists,
up to three grazer extinction equilibria, and may have coexistence equilibria, where
the grazer extinction equilibria depend upon three quantities:

A = ĉrTP (r − lx ) − dqr2(â + TP ) − γ TC (ĉqr(r − lx ) − dq2r2) + ĉγ TP (r − lx )2 − dqrγ (â + TP )(r − lx )

ĉqr(r − lx ) − dq2r2
,

B = ĉγ TC (r − lx ) + d(â + TP )(r + γ r − γ lx ) − 2dqrγ TC

2d(r + γ r − γ lx )

+
√

(ĉγ TC (r − lx ) + d(â + TP )(r + γ r − γ lx ))2 − 4ĉdγ TC TP (r − lx )(r + γ r − γ lx )

2d(r + γ r − γ lx )
,

C = ĉγ TC (r − lx ) + d(â + TP )(r + γ r − γ lx ) − 2dqrγ TC

2d(r + γ r − γ lx )

−
√

(ĉγ TC (r − lx ) + d(â + TP )(r + γ r − γ lx ))2 − 4ĉdγ TC TP (r − lx )(r + γ r − γ lx )

2d(r + γ r − γ lx )
.

The grazer extinction equilibria satisfy:

(i) If A ≤ 0, B < 0, and C < 0, then there is one grazer extinction equilibrium,
given by

EP =
(

ĉTP (r − lx )
2 − dqr(â + TP )(r − lx )

ĉqr(r − lx ) − dq2r2
, 0,

ĉTP (r − lx ) − dqr(â + TP )

ĉ(r − lx ) − dqr

)
;

(ii) If A > 0, B ≥ 0, and C < 0, then there is one grazer extinction equilibrium,
given by EC+ = (x̄, 0, p̄+), where

x̄ = γ TC (r − lx )

r + γ r − γ lx
,

p̄+ = ĉγ TC (r − lx ) + d(â + TP )(r + γ r − γ lx )

2d(r + γ r − γ lx )

+
√

(ĉγ TC (r − lx ) + d(â + TP )(r + γ r − γ lx ))2 − 4ĉdγ TC TP (r − lx )(r + γ r − γ lx )

2d(r + γ r − γ lx )
;
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(iii) If A > 0, B < 0, and C ≥ 0, then there is one grazer extinction equilibrium,
given by EC− = (x̄, 0, p̄-), where

x̄ = γ TC (r − lx )

r + γ r − γ lx
,

p̄- = ĉγ TC (r − lx ) + d(â + TP )(r + γ r − γ lx )

2d(r + γ r − γ lx )

−
√

(ĉγ TC (r − lx ) + d(â + TP )(r + γ r − γ lx ))2 − 4ĉdγ TC TP (r − lx )(r + γ r − γ lx )

2d(r + γ r − γ lx )
;

(iv) If A ≤ 0, B ≥ 0, and C < 0, then there are two grazer extinction equilibria, EP

and EC+;
(v) If A ≤ 0, B < 0, and C ≥ 0, then there are two grazer extinction equilibria, EP

and EC−;
(vi) If A > 0, B ≥ 0, and C ≥ 0, then there are two grazer extinction equilibria,

EC+ and EC−;
(vii) If A ≤ 0, B ≥ 0, and C ≥ 0, then there are three grazer extinction equilibria,

EP , EC+, and EC−;
(viii) If A > 0, B < 0, and C < 0, then there are no grazer extinction equilibria.

Note that the equilibria in the above theorem are not necessarily unique.

3.3 Stability

For the trivial extinction steady state, we have a theorem with a sufficient condition
for stability in the limiting case of the model (α = 0, ρ(C) = 1). This is very similar
to a theorem proven for the WKL model (Davies and Wang 2020; Wang et al. 2008),
and the proof follows similarly. Note that this theorem holds for the general forms of
f , g, and h. The proof of Theorem 4 is in “Appendix D”.

Theorem 4 The extinction steady state E0 = (0, 0, 0) for (6)–(8) is globally asymp-
totically stable if d > mg(TP), where m = min{x(0)/p(0), [1 + (d − lx )/r ]/q}.

We can also investigate the stability of the grazer extinction equilibria for α = 0
and ρ(C) = 1. We have

dx

dt
= x F(x, y, p),

dy

dt
= yG(x, y, p),

dp

dt
= H(x, y, p).
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The Jacobian matrix is

A =
⎡
⎣F + x Fx x Fy x Fp

yGx G + yG y yG p

Hx Hy Hp

⎤
⎦ .

Once again, we consider Eqs. (6)–(8) where f and g are both Holling type I func-
tional responses, thenwhen both are Holling type II functional responses. Throughout,
we assume h(C) = γ C .

Regardless of what forms f and g take, we consider four cases:

1. Producer is nutrient limited & grazer is quality (nutrient) limited at equilibrium.
2. Producer is nutrient limited & grazer is quantity (carbon) limited at equilibrium.
3. Producer is carbon limited & grazer is quality (nutrient) limited at equilibrium.
4. Producer is carbon limited & grazer is quantity (carbon) limited at equilibrium.

There are different Jacobian matrices dependent upon the limiting factors. We
determine the entries based on what is limiting, then substitute the equilibria found in
Sect. 3.2. From the Jacobian matrix, computation of the eigenvalues can be used to
determine conditions for stability.

First, we use f (x) = cx , g(P) = ĉP , and h(C) = γ C , i.e., f , g, and h are all
Holling type I. All of the necessary partial derivatives and sums/products required, as
well as the resulting Jacobianmatrices and analysis of the eigenvalues are in “Appendix
E”.

For the cases in which the producer’s growth is limited by nutrient, finding the
eigenvalues is not particularly illuminating. However, from the explicit form of the
eigenvalues, we do observe that stability does not depend upon TC or γ when the
grazer is quality limited (Case 1). Given that these factors pertain to carbon limitation,
and thus do not appear in the equations in this case due to the minimum term, this
result is not unexpected. When the grazer is quality limited (Case 2), stability does
not depend on TC , γ , or θ , because these parameters do not appear in the equations
for the case where nutrient and quantity are limiting due to the minimum functions.

The stability results for Cases 3 and 4 using Holling type I functional responses are
summarized in the following theorem. The proof is in “Appendix E”.

Theorem 5 For the limiting case of the model (6)–(8) with Holling type I functional
responses, the following stability results hold for the carbon-limited grazer extinction
equilibrium EC = (x̄, 0, p̄) from Theorem 2.

(i) If p̄ < θ x̄ , then the equilibrium is a stable node for either r + γ r − γ lx < 0 or
r − lx > 0, and

cĉêγ TC TP (r − lx )

ĉγ θTC (r − lx ) + dθ(r + γ r − γ lx )
< d̂ + ly,

and otherwise it is either a saddle with a one- or two-dimensional unstable mani-
fold, or an unstable node.
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(ii) If p̄ > θ x̄ , then the equilibrium is a stable node for either r + γ r − γ lx < 0 or
r − lx > 0, and

cêγ TC (r − lx )

r + γ r − γ lx
< d̂ + ly,

and otherwise it is a saddle with a one- or two-dimensional unstable manifold.

Note that for Cases 3 and 4 we require either r − lx > 0 and r + γ r − γ lx > 0, or
r − lx < 0 and r + γ r − γ lx < 0 for the equilibrium to be biologically feasible (see
“AppendixB”).Hence, the only biologically feasible classifications for the equilibrium
in these cases are either a stable node or a saddle with a two-dimensional stable
manifold and a one-dimensional unstable manifold.

Next, we let f (x) = cx/(a + x), g(P) = ĉP/(â + P), and h(C) = γ C , i.e., we let
f and g beHolling type II. Again, there are different Jacobianmatrices dependent upon
the limiting factors.We determine the entries based on what is limiting, then substitute
the equilibria found in Sect. 3.2. Eigenvalues are then computed and analyzed to
determine conditions for stability of the equilibria. All of the necessary computations,
eigenvalues, and analysis are in “Appendix F”.

Once again, for the cases inwhich theproducer is nutrient limited, the eigenvalues do
not yield clear stability conditions. However, the same parameters that did not appear
in the eigenvalues for the corresponding Holling type I cases also do not appear in
these eigenvalues. That is, for the case where the grazer is quality limited (Case 1),
stability does not depend on TC or γ ; for the case where the grazer is quantity limited
(Case 2), stability does not depend on TC , γ , or θ .

The stability results for Cases 3 and 4 using Holling type II functional responses
are summarized in the following theorem. The proof is in “Appendix F”.

Theorem 6 For the limiting case of the model (6)–(8) with Holling type II functional
responses, the following stability results hold for the carbon-limited grazer extinction
equilibria from Theorem 3, EC+ and EC−, both of the form (x̄, 0, p̄).

(i) If p̄ < θ x̄ , then the equilibrium is a stable node for either r + γ r − γ lx < 0 or
r − lx > 0, and

cê(r + γ r − γ lx ) p̄

aθ(r + γ r − γ lx ) + γ θTC (r − lx )
< d̂ + ly,

and otherwise it is either a saddle with a one- or two-dimensional unstable mani-
fold, or an unstable node.

(ii) If p̄ > θ x̄ , then the equilibrium is a stable node for either r + γ r − γ lx < 0 or
r − lx > 0, and

cêγ TC (r − lx )

a(r + γ r − γ lx ) + γ TC (r − lx )
< d̂ + ly,

and otherwise it is either a saddle with a one- or two-dimensional unstable mani-
fold, or an unstable node.
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Note that biological feasibility of the equilibria requires r − lx and r + γ r − γ lx

to have the same sign (see “Appendix C”). Hence, realistically, we would expect to
only observe a stable node or a saddle with a two-dimensional stable manifold and a
one-dimensional unstable manifold.

4 Numerical dynamics and their implications

4.1 Numerical simulations

For all numerical simulations, we used Holling type II functional responses for f
and g; that is, f (x) = cx/(a + x), g(P) = ĉP/(â + P), and h(C) = γ C . To
study the impacts of different parameters and functions on the observed dynamics,
simulations were run using Matlab’s ode23s, using a time span of [0, 200]. We sim-
ulated all combinations of TC ∈ {98.2, 191.0, 409.4}, TP ∈ {0.003, 0.030, 0.300},
γ ∈ {0.005, 0.00764, 0.0764}, and α ∈ {0, 1e − 6, 1e − 3, 1e0, 1e3, 1e6}. We also
used two different forms for ρ(C): ρ(C) = η + ζe−ξC , and ρ(C) = 1, where the
former was only used with α = 0. Recall that our limiting, simplified case (6)–(8)
uses α = 0 and ρ(C) = 1. Initial conditions differed between parameter combinations
dependent upon the value of TP . For α nonzero, we used C(0) = β − x(0) − y(0) for
β = TC .

The resulting dynamics were plotted and compared, with one example comparison
in Fig. 1. The other plots are not shown here. We also individually graphed what was
limiting the growth of the producer and grazer, as well as the producer P:C. All other
parameters were held constant at the values given in Table 1.

To compare to the WKL model, we also simulated a version of the model with
α = 0, ρ(C) = 1, and without carbon limitation of the producer’s growth rate (i.e.,
assuming h(C) is sufficiently high relative to TP such that carbon limitation will never
occur). Regardless of TP , this case tended towards the grazer extinction equilibrium,
(x̄, 0, p̄), because without light limitation, the producers become poor quality food
for the grazers, as discussed in Wang et al. (2008). The value of x̄ and p̄ did vary
depending upon TP . Both x̄ and p̄ roughly scaled with TP , increasing approximately
tenfold when TP was multiplied by ten.

Some problemswere encountered for a couple of the parameter combinations.More
specifically, for γ = 0.0764, TC = 98.2 or 191.0, and TP = 0.300, several of the
simulations failed. Despite the usage of ode23s, these cases produced results with
negative species densities before t = 200. This behaviour was also observed for some
simulations during bifurcation analysis.

Regardless of α or ρ(C), we tend to observe grazer extinction when one of the
limiting parameters (TP or TC ) is very low. Assuming the other limiting parameter
remains non-limiting, then as the limiting parameter increases, the system switches
to coexistence at an equilibrium, then coexistence in oscillations, then an additional
coexistence equilibrium, and then it returns to the grazer extinction equilibrium. This
is further explored for the limiting case of α = 0 and ρ(C) = 1 in the following
bifurcation analysis (Sect. 4.2).
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Fig. 1 Dynamics for γ = 0.005, TC = 409.4, TP = 0.300. We note the difference in x(200), indicative of
a slightly different period, as well as the slightly higher crests for x for non-constant ρ(C)

For all cases, minor differences between the asymptotic states given different α or
ρ(C)were observed. In general, these differences are not perceptible from the graphs.
However, examination of the end values of the simulations showed that changing
ρ(C) (with α = 0) was more impactful. For non-constant ρ(C) and higher total
carbon levels, the system demonstrated different periods of oscillations, as well as
different maximum or minimum values, relative to ρ(C) = 1. An example of this
minor difference is shown in Fig. 1.

4.2 One parameter bifurcation analysis

In order to compare and contrast the impacts on dynamics of the parameters that
determine limitation of the producer, bifurcation analysis was performed for TC

and TP for the limiting closed case of the model (α = 0, ρ(C) = 1), shown in
Eqs. (6)–(8), using Matcont (Dhooge et al. 2008). Multiple diagrams were gener-
ated for each parameter, varying the other parameter as well as γ to get as broad
an idea of the impact of each parameter as reasonably possible. For TP , we initially
made bifurcation diagrams for all combinations of TC ∈ {98.2, 191.0, 409.4} and
γ ∈ {0.005, 0.00764, 0.04202, 0.0764, 0.4202}. For TC , we initially made bifur-
cation diagrams for all combinations of TP ∈ {0.003, 0.030, 0.300}, and γ ∈
{0.005, 0.00764, 0.04202, 0.0764, 0.4202}. After beginning the two parameter bifur-
cation analysis we created several additional diagrams, all for γ = 0.005. For the total
phosphorus diagrams, we also examined TC ∈ {50, 75, 90, 150, 270, 275, 500}; for
the total carbon diagrams, we added TP ∈ {0.007, 0.010, 0.018, 0.022325, 0.025}.

For all one parameter diagrams, a solid blue curve represents a stable equilibrium
point, a magenta dashed curve is an unstable equilibrium point, and a red dotted curve
represents the minimum/maximum of a stable limit cycle.
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Fig. 2 TP bifurcation diagrams: TC = 75, γ = 0.005. x is on the left and y is on the right. There is a
transcritical bifurcation at TP = 0.008779. For TP < 0.008779, a grazer extinction equilibrium is stable
and for TP > 0.008779, a coexistence equilibrium is stable

4.2.1 Total system phosphorus

For total system phosphorus, TP , we observed five different types of diagram pairs.
The first type of diagram pair occurred for a couple of parameter combinations,

with very low γ and less than ambient carbon (γ = 0.005, TC ∈ {50, 75}). The only
bifurcation is a transcritical bifurcation. For values ofTP less than the bifurcationvalue,
a grazer extinction equilibrium is stable; for values greater than the bifurcation value,
a coexistence equilibrium is stable. The equilibrium value plateaus as total phosphorus
increases when the grazer switches from quality (phosphorus) limitation to quantity
(carbon) limitation. An example of this behaviour is shown in Fig. 2. We observe that
for these combinations, we have γ ∗ TC = 0.25 and 0.375. For the higher value of TC

(and thus γ ∗ TC ), the transcritical bifurcation occurs at a higher value of TP .
The second type of diagram pair occurred for two combinations: very low γ and

at or close to ambient carbon (γ = 0.005, TC ∈ {90, 98.2}). Initially, a grazer extinc-
tion equilibrium is stable. Then, after a transcritical bifurcation, the grazer extinction
equilibrium becomes unstable and a coexistence equilibrium is stable. This continues
until a saddle-node bifurcation, at which point the coexistence equilibrium becomes
unstable. At a very slightly higher value of TP , we then have another saddle-node
bifurcation, after which a different coexistence equilibrium becomes stable. Sample
diagrams are shown in Fig. 3. For these combinations, γ ∗ TC = 0.45 and 0.491.
Similar to the previous type, a higher value of TC (and thus γ ∗ TC ) correlated to
higher bifurcation values.

The third type of diagram pair occurred for two combinations: low γ and ambient
carbon (γ = 0.00764, TC = 98.2), and very low γ and intermediate carbon (γ =
0.005, TC = 191.0). For sufficiently low TP , a grazer extinction equilibrium is stable.
Then, after a transcritical bifurcation, a coexistence equilibrium is stable, until a saddle-
node bifurcation. There is an additional saddle-node bifurcation between the other
two bifurcations, at which point there is a second coexistence equilibrium which
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Fig. 3 TP bifurcation diagrams: TC = 98.2, γ = 0.005. x is on the left and y is on the right. There is
a transcritical bifurcation at TP = 0.01024, a saddle-node bifurcation at TP = 0.017028, and another
saddle-node bifurcation at TP = 0.017029 (see embedded plots). For TP < 0.01024, a grazer extinction
equilibrium is stable; for 0.01024 < TP < 0.017028, a coexistence equilibrium is feasible and stable; and
for TP > 0.017029, a different coexistence equilibrium is stable

is very briefly stable. Therefore, there is a brief phase of bistability between two
coexistence equilibrium. Then, after a Hopf bifurcation, there is a stable limit cycle.
Due to the relative values of the two saddle-node bifurcations, there is a phase of
bistability between a coexistence equilibrium and a stable limit cycle after the Hopf
bifurcation.Note that the value of theHopf bifurcation point could not be found exactly
using MatCont. However, we approximated the Hopf values by finding points on the
equilibriumcurveswhere the real part of the complex conjugate pair of eigenvalueswas
very close to 0 (within 0.011). A sample pair of diagrams is shown in Fig. 4. The values
of γ ∗ TC were 0.750 and 0.955 for the first and second combinations respectively.
The bifurcations occur at a larger value of TP for the higher value of γ ∗ TC .

As mentioned, the third type of bifurcation diagram pair implies bistability is possi-
ble. Indeed, further simulations prove this is true.Consider the parameter regime shown
in Fig. 4, i.e., γ = 0.005, TC = 191.0. The values of the saddle-node bifurcations
seem to indicate there should be a region of bistability for TP ∈ [0.02069, 0.02309].
As shown in Fig. 5, the asymptotic state of the system differs for TP = 0.0219 for
different initial conditions. This confirms that bistability does indeed occur in this
region, as indicated by Fig. 4.

The fourth type of diagram pair occurred for three combinations, with very low γ

and between intermediate and high systemcarbon (γ = 0.005, TC ∈ {150, 270, 275}).
These diagrams are very similar to the third type, with one key difference. The stable
limit cycle does not appear to begin until the coexistence equilibrium is unstable, and
therefore we do not definitively observe bistability between a coexistence equilibrium
and a limit cycle. We see similar bifurcations to type 3: a transcritical bifurcation,
a saddle-node bifurcation, a possible Hopf bifurcation, then a saddle-node bifurca-
tion. However, we cannot continue the stable limit cycle with MatCont for a value
of TP less than the later saddle-node bifurcation. Without being able to continue the
limit cycle, the only type of bistability we predict is that between the two coexistence
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Fig. 4 TP bifurcation diagrams: TC = 191.0, γ = 0.005. x is on the left and y is on the right. There is a
transcritical bifurcation at TP = 0.01612, a saddle-node bifurcation at TP = 0.02069, and another saddle-
node bifurcation at TP = 0.02309. There is also likely a Hopf bifurcation very close to TP = 0.02070
(Re(λ) = 0.006163). For TP < 0.01612, a grazer extinction equilibrium is stable; for 0.01612 < TP <

0.02309, a coexistence equilibrium is feasible and stable; for 0.02069 < TP < 0.02070, an additional
coexistence equilibrium is stable; and for TP > 0.02070, there is a stable limit cycle. There is bistability
between equilibria for TP ∈ (0.02069, 0.02070) and between an equilibrium and a limit cycle for TP ∈
(0.02070, 0.2309)
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Fig. 5 Bistable states for the limiting case of themodel,with TC = 191.0, TP = 0.0219,γ = 0.005, and two
distinct initial conditions. For (x(0), y(0), p(0)) = (0.5473, 0.2252, 0.0126), the coexistence equilibrium
point is stable; for (x(0), y(0), p(0)) = (0.16, 0.35, 0.0078), coexistence oscillations are stable

equilibria between the first saddle-node bifurcation and the approximate Hopf bifur-
cation point. Example diagrams of this type are shown in Fig. 6. Here, γ ∗ TC was
in {0.75, 1.35, 1.375}. For higher values of TC (and thus γ ∗ TC ), the bifurcations
occurred at a higher value of TP .

The fifth type of diagram pair occurred for the 13 remaining combinations of γ and
TC examined, with γ ∗ TC ranging from 1.45924 to 172.02988. Again, we could not
extend the limit cycle beyond the second saddle-node bifurcation. Note that for all of
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Fig. 6 TP bifurcation diagrams: TC = 275.0, γ = 0.005. x is on the left and y is on the right. There is a
transcritical bifurcation at TP = 0.02144, a saddle-node bifurcation at TP = 0.02188, and another saddle-
node bifurcation at TP = 0.02928. There is also likely a Hopf bifurcation very close to TP = 0.02189
(Re(λ) = −0.000996). For TP < 0.02144, a grazer extinction equilibrium is stable; for 0.02144 < TP <

0.02928, a coexistence equilibrium is feasible and stable; for 0.02188 < TP < 0.02189, an additional
coexistence equilibrium may be stable; and for TP > 0.02928, there is a stable limit cycle. There may be
bistability, first between two coexistence equilibria and then between a coexistence equilibrium and a limit
cycle

these combinations, the order of the bifurcation values is saddle-node, transcritical,
saddle-node, whereas in the fourth type, the transcritical bifurcation occurs at a lower
value of TP than both saddle-node bifurcations. Hence, the bistability observed is
between a grazer extinction equilibrium and a coexistence equilibrium, and then there
may be bistability between a grazer extinction equilibrium and a limit cycle, and then
between a coexistence equilibrium and a limit cycle. Using the bifurcation values
observed, we realize the transcritical bifurcation value fits a linear regression, with the
value approximately equal to 0.0094∗ γ ∗ TC + 0.0259, with R2 = 0.9976; the larger
saddle-node bifurcation value also fits a linear regression,with the value approximately
equal to 0.0119 ∗ γ ∗ TC + 0.0321, with R2 = 0.9981. Comparatively, with the
exception of the combination shown in Fig. 7, the other saddle-node bifurcations
occur at TP = 0.022325272 ± 0.00000028; the Hopf points with a |Re(λ)| < 0.011
occur at TP = 0.02232551 ± 0.00000039.

The value that determines which diagram pair a parameter combination corre-
sponds to may be γ ∗ TC . For the five different types, the values of γ ∗ TC are: (1)
{0.25, 0.375}; (2) {0.45, 0.491}; (3) {0.750248, 0.955}; (4) {0.75, 1.35, 1.375}; and
(5) [1.45924, 172.02988]. There may be threshold values of γ ∗ TC that determine the
bifurcations observed.

4.2.2 Total system carbon

For total system carbon, TC , we observed four different types of diagram pairs.
The first type of bifurcation diagram pair occurred for low system phosphorus

(TP = 0.003). There are no bifurcations. The total system phosphorus is sufficiently

123



Incorporating carbon dioxide into a stoichiometric… Page 21 of 48    49 

0 0.02 0.04 0.06 0.08 0.1
T

P

0

0.5

1

1.5

2
x

Stable EP
Unstable EP
Limit cycle

0 0.02 0.04 0.06 0.08 0.1
T

P

0

0.2

0.4

0.6

0.8

1

1.2

y

Stable EP
Unstable EP
Limit cycle

(a)Producer carbon (x) (b)Grazer carbon (y)

Fig. 7 TP bifurcation diagrams: TC = 191.0, γ = 0.00764. x is on the left and y is on the right. There is a
transcritical bifurcation at TP = 0.02247, a saddle-node bifurcation at TP = 0.022036, and another saddle-
node bifurcation at TP = 0.03051. There also may be a Hopf bifurcation very close to TP = 0.022038
(Re(λ) = −0.00930). For TP < 0.02247, a grazer extinction equilibrium is stable; for 0.022036 < TP <

0.022038, there is a stable coexistence equilibrium; for 0.02247 < TP < 0.03051, another coexistence
equilibrium is feasible and stable; and for TP > 0.03051, there is a stable limit cycle. There is bistability
between a grazer extinction equilibrium and a coexistence equilibrium for 0.022036 < TP < 0.022038,
and there may be bistability between a limit cycle and a grazer extinction equilibrium and then a coexistence
equilibrium
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Fig. 8 TC bifurcation diagrams: TP = 0.003, γ = 0.005. x is on the left and y is on the right. There are
no bifurcations. A grazer extinction equilibrium is stable throughout

low that the grazer extinction equilibrium is stable throughout, as shown in Fig. 8. The
producer carbon (x) equilibrium value plateaus as total carbon increases when the
producer’s growth switches from being carbon limited to being phosphorus limited.

The second type of bifurcation diagram pair occurred for very low γ and sev-
eral levels between low and intermediate system phosphorus (γ = 0.005, TP ∈
{0.007, 0.010, 0.018}). For the lowest values of TC , a grazer extinction equilibrium
is stable. Then, after a transcritical bifurcation, a coexistence equilibrium becomes
stable and the grazer extinction equilibrium becomes unstable. This behaviour con-
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Fig. 9 TC bifurcation diagrams: TP = 0.018, γ = 0.005. x is on the left and y is on the right. There are
two transcritical bifurcations at TC = 41.04412 and 220.65837

tinues until another transcritical bifurcation occurs, after which the grazer extinction
equilibrium is stable once more and the coexistence equilibrium unstable. A sample
pair of diagrams is shown in Fig. 9.

The third type of bifurcation diagram pair for total carbon was observed only for
one specific combination of parameters, selected using the total phosphorus diagrams.
The pair, shown in Fig. 10, corresponds to γ = 0.005 and TP = 0.022325. For very
low TC , a grazer extinction equilibrium is stable. Then, after a transcritical bifurcation,
a coexistence equilibrium becomes stable. This equilibrium point remains stable until
a Hopf bifurcation point, at which a limit cycle becomes stable. There is a saddle-
node bifurcation, after which another coexistence equilibrium becomes stable. After
a transcritical bifurcation, the second coexistence equilibrium becomes unstable and
the grazer extinction equilibrium becomes stable once more. Then, after another Hopf
bifurcation, the first coexistence equilibrium becomes stable once more. The limit
cycle could not be continued for larger values of TC , despite the second Hopf bifur-
cation seeming to imply it should be stable until the second Hopf bifurcation. Around
TC = 198, there is a limit point cycle, as well as a neutral saddle cycle, and the period
becomes incredibly large. However, we still clearly observe bistability. There is bista-
bility between a limit cycle and a coexistence equilibrium between the saddle-node
bifurcation and the value of TC at which the limit cycle could not be continued. There is
also bistability between a coexistence equilibrium and a grazer extinction equilibrium
after the second Hopf point.

The fourth type of bifurcation diagrampair occurred for intermediate to high system
phosphorus (TP ∈ {0.025, 0.030, 0.300}). For the lowest values of TC , a grazer extinc-
tion equilibrium is stable. Then, after a transcritical bifurcation, the grazer extinction
equilibrium becomes unstable and a coexistence equilibrium becomes feasible and
stable. This coexistence equilibrium becomes unstable at a Hopf bifurcation, at which
point a stable limit cycle appears. The amplitude of this limit cycle increases and
it remains stable until a saddle-node bifurcation. At the saddle-node bifurcation, the
limit cycle becomes unstable or disappears and we see different stable and unstable
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Fig. 10 TC bifurcation diagrams: TP = 0.022325, γ = 0.005. x is on the left and y is on the right.
There is a transcritical bifurcation at TC = 41.04412, a Hopf bifurcation at TC = 144.58605, a saddle-
node bifurcation at TC = 180.21078, a second transcritical bifurcation at TC = 288.88353, and a second
Hopf bifurcation at TC = 328.49123. The grazer extinction equilibrium is stable for TC < 41.04412 and
TC > 288.88353. The first coexistence equilibrium is stable for 41.04412 < TC < 144.58605 and for
TC > 328.49123. The second coexistence equilibrium is stable for 180.21078 < TC < 288.88353. The
limit cycle is stable for at least 144.58605 < TC < 198
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Fig. 11 TC bifurcation diagrams: TP = 0.030, γ = 0.005. x is on the left and y is on the right. There
is a transcritical bifurcation at TC = 41.04412, a Hopf bifurcation at TC = 144.58604, a saddle-node
bifurcation at TC = 284.55386, and another transcritical bifurcation at TC = 409.92590. For TC <

41.04412, a grazer extinction equilibrium is stable; for 41.04412 < TC < 144.58604, a coexistence
equilibrium is feasible and stable; for 144.58604 < TC < 284.55386, there is a stable limit cycle; for
284.55386 < TC < 409.92590, a different coexistence equilibrium is stable; and for TC > 409.92590, the
grazer extinction equilibrium is stable again

coexistence equilibrium branches appear. The stable second coexistence equilibrium
remains stable until a second transcritical bifurcation point, at which the coexistence
equilibrium becomes unstable and the grazer extinction equilibrium becomes stable
once more. A sample diagram is shown in Fig. 11.
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Fig. 12 Two parameter
bifurcation diagram for
γ = 0.005 (very low γ ). The
stable behaviours in the regions
are: (1) grazer extinction
equilibrium; (2) coexistence
equilibrium; (3) coexistence
oscillations; (4) coexistence
equilibrium or bistability
between a coexistence
equilibrium and a limit cycle; (5)
grazer extinction equilibrium or
bistability between a coexistence
equilibrium and a grazer
extinction equilibrium
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While the first transcritical bifurcation point and the Hopf bifurcation point occur
at fairly consistent values for the various TP values for a given γ , the saddle-node
bifurcation and the second transcritical bifurcation point occur at different values for
different TP . For the saddle-node bifurcation point, the bifurcation value for each γ

for high phosphorus is between 13.1928843 and 13.2105029 times the value for inter-
mediate phosphorus (average 13.2058894). For the second transcritical bifurcation
point, the bifurcation value for each γ for high phosphorus is between 11.3850574
and 11.3855909 times the value for intermediate phosphorus (roughly 11.3850574 for
all γ except the highest). For all bifurcation points for TC , the values decrease as γ

increases.

4.3 Two parameter bifurcation analysis

Two parameter bifurcation diagrams were also generated using MatCont (Dhooge
et al. 2008) for the limiting closed case of the model (α = 0, ρ(C) = 1). A diagram
was produced for each value of γ explored in the previous section.

In general, the two parameter bifurcation diagrams look very similar to each other.
The primary difference beyond the scale of TC lies in the codimension 2 bifurcations
MatCont found. For very low γ (γ = 0.005), there is a cusp point along the saddle-
node branch, at TC = 97.09174 and TP = 0.016942. For low γ (γ = 0.00764), there
is a Generalized Hopf point at TC = 94.82381 and TP = 0.019545. A sample two
parameter bifurcation diagram is shown in Fig. 12.

Several of the curves in this diagram were added manually using the bifurcation
values found in the one parameter analysis, since several of the curves could not
be continued in MatCont. The values for the more horizontal Hopf curve were all
approximate, and there may be an unlabelled region between the horizontal Hopf and
saddle-node curves, which seemingly intersect several times.

We observe that for very low values of TP and TC , we consistently see extinction of
the grazer, labelled with 1 in Fig. 12. After the transcritical bifurcation, we primarily
observe a stable coexistence equilibrium (region 2), until the Hopf bifurcation, after
which we observe a stable limit cycle (region 3). There are two regions with more
complicated dynamics. Region 4 is bounded by a saddle-node, aHopf, and transcritical

123



Incorporating carbon dioxide into a stoichiometric… Page 25 of 48    49 

bifurcation curve. The total phosphorus one parameter diagrams seem to indicate that
for this region, there should be bistability between a coexistence equilibrium and a
stable limit cycle. Comparatively, the total carbon diagrams primarily demonstrated
only a stable coexistence equilibrium, with the exception of TP = 0.0022325 (see
Fig. 10). Region 5 is bounded by a Hopf and a transcritical bifurcation curve. Here
the phosphorus diagrams demonstrated bistability between a coexistence and a grazer
extinction equilibrium, while all of the carbon diagrams exhibited grazer extinction,
except TP = 0.0022325. Given the contradictory results, there may be subcases that
are not shown due to extremely high sensitivity of the model simulations.

There is an interesting transition across the saddle-node bifurcation curve. For TC

larger than the Hopf bifurcation value, the saddle-node bifurcation curves approxi-
mate where one coexistence equilibrium becomes stable immediately before a Hopf
bifurcation (lower saddle-node curve), and where the other coexistence equilibrium
becomes unstable (higher saddle-node curve). However, for the brief portion of the
saddle-node bifurcation curve occurring at TC less than the Hopf bifurcation value,
a coexistence equilibrium is stable both before and after this bifurcation. Consider,
for example, TC = 98.2. The bifurcation is now a change in which coexistence equi-
librium is stable. There should be an additional saddle-node curve very close to the
one shown, where the saddle produced after the first saddle-node bifurcation collides
with the new stable coexistence equilibrium. The difference in coexistence equilibria
is likely due to a change in which factor is limiting for the producer and/or grazer,
since the equilibria are different for different limiting factors.

5 Discussion

There aremany ecological stoichiometrymodelswhich have been developed to explic-
itly track the impacts of multiple elements on ecological interactions. However, these
models usually assume that the system is completely open to carbon. This limits their
usefulness in studying the potential impacts of increased atmospheric carbon dioxide
concentration on food webs, since the availability of carbon for photosynthesis is not
modelled. It has been proven that an increase in atmospheric carbon dioxide can cause
an increase in the rate of photosynthesis, and a corresponding increase in growth and
production of autotrophs (Ainsworth and Rogers 2007). When producer-grazer sys-
tems are closed to nutrients such as phosphorus or nitrogen, the resulting decrease in
nutrient levels in the producer can impact the growth of the grazers, which tend to
have higher, more rigid nutrient requirements (Sterner and Elser 2002; Urabe et al.
2003).

In order to study the potential impacts of the current global increase in atmo-
spheric carbon dioxide on producer-grazer systems, a model was developed to allow
for explicit consideration of carbon availability. The model was based on the WKL
model (Wang et al. 2008), which was itself based on the LKE model (Loladze et al.
2000). Light was removed as a limiting factor for producer growth, and replaced with
a carbon-dependent carrying capacity (h(C)) for producer growth in the minimum
term. In addition, the model incorporates explicit consideration of producer respira-
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tion, including the reduction in photorespiration rate observed due to elevated CO2,
and allowance for some degree of openness in the system for carbon.

A limiting case of the model, in which the reduction in photorespiration rate and
allowance for openness were not incorporated (ρ(C) = 1, α = 0), was analyzed. For
this case, there is a biologically meaningful region which is forward invariant. There
is also a sufficient condition for global asymptotic stability of the total extinction
equilibrium, which depends on several parameters, including the total phosphorus in
the system. If we assume Holling type I functional responses for f and g, there are
between 1 and 3 boundary equilibria, and there may also be coexistence equilibria.
When f and g take the form of Holling type II functional responses, there are between
1 and 4 boundary equilibria, and potentially coexistence equilibria. There are many
complicated conditions for stability of these equilibria, which depend onwhich factors
are limiting for producer and grazer growth at the equilibria.

The two parameters examined in the bifurcation analysis of the limiting case were
the total nutrients in the closed system, TC and TP . These parameters contribute to
determining the limiting factors for growth of the producer and grazer. Bifurcation
analysis generally demonstrated sequential limitation by the different growth fac-
tors for the producer, with the general pattern being stability of a grazer extinction
equilibrium, then a coexistence equilibrium, and then a limit cycle. Occasionally the
system also transitions to a second stable coexistence equilibrium via a saddle-node
bifurcation, and then returns to the grazer extinction equilibrium. In particular, these
additional bifurcations occurred for intermediate to high phosphorus and using TC as
the bifurcation parameter.

Similar to the bifurcation diagrams for K in Wang et al. (2008), the grazers go
extinct at low TC due to insufficient quantity of food, and they go extinct at high TC

due to insufficient quality of food. Therefore, increased levels of atmospheric carbon
dioxide are expected to cause grazer extinction due to insufficient quality of food
when soil nutrients are limiting. Additionally, given the plateaus in x as TC increases
in the total carbon bifurcation diagrams, this model suggests that there is a limit to
carbon sequestration determined by availability of soil nutrients, as expected given
the application of Liebig’s Law of the Minimum.

Simulations were used to examine the impacts on the system of a non-constant pro-
ducer respiration rate (ρ(C) 	= 1) or transfer of carbon with the environment (α > 0),
as well as those of the potentially limiting parameters. In general, the combinations
examined either produced a grazer extinction equilibrium, a coexistence equilibrium,
or coexistence oscillations. In certain cases, bistability between a coexistence equilib-
rium and a limit cycle was observed. Overall, the dynamics seemed to be very similar
regardless of the ρ(C) or α used. Even though the differences were minimal, the most
distinct model at high carbon was observed with non-constant ρ(C).

There are limitations for both this model and its analysis. This model relies on an
assumption of independent colimitation of producer growth by carbon and phosphorus.
There is evidence for independent colimitation by carbon and phosphorus (Spijkerman
et al. 2011). However, no conclusive evidence was found for colimitation of producer
growth by light and carbon, and thus we assumed here that light was sufficient. This
simplifying assumption limits applicability of the results. There is certainly empirical
evidence for increased growth due to elevated carbon dioxide of plants growing in
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shade (Körner 2009; Lovelock et al. 1996; Würth et al. 1998). This is likely because
elevated carbon dioxide increases light use efficiency, partially because the increase in
carbon fixation due to reduction of photorespiration requires no additional light (Drake
et al. 1997), as well as because elevated CO2 can decrease the light compensation point
of a leaf (Long and Drake 1991). This evidence supports the theory that colimitation
of light and carbon may not be independent, and thus, there may be more complicated
dynamics observed naturally that cannot be covered by this model.

Additional impacts of increased carbon dioxide on producers that were not incor-
porated into this model include changes in carbon allocation, changes in light or
nutrient efficiencies, changes in dark respiration (mitochondrial/cellular respiration),
and changes in decomposition rates. There is contradictory evidence for changes in
carbon allocation. Some evidence seems to support an increase in plant root:shoot ratio
and leaf area (Elser et al. 2010); some supports no stimulation in foliage (Drake et al.
1997); and some suggests an increase in fine root allocation at the expense of wood and
leaves, or increase in wood allocation at the expense of leaves (De Kauwe et al. 2013;
Pugh et al. 2016). Similarly, the evidence for changes in respiration is inconsistent,
with plants grown in elevated carbon dioxide exhibiting an increase, decrease, or no
significant change in dark respiration rates (Leakey et al. 2009). Lastly, incorporation
of changes in the rates of decomposition in this model, such as those discussed in
de Graaff et al. (2006), would require relaxation of the assumption that carbon and
phosphorus released by the producer and grazer is immediately available for use.

There are many opportunities for future work for both this specific research ques-
tion and this model. The vast majority of analysis completed is for the limiting closed
case (α = 0, ρ(C) = 1), and thus the more complicated cases remain to be ana-
lyzed. In particular, it would be interesting to consider the impact of the “openness”
parameter (α). Additionally, a more evidence-based method of selecting ρ(C), as
well as modification to see at what point dynamics shift, may allow us to better under-
stand the impacts of increased global atmospheric carbon dioxide concentration on
producer-grazer systems. Also, the bifurcation analysis completed is local. Even with
the variety of parameter regimes considered, there are likely other behaviours that
would be observed in natural systems that are not explored here. Further investigation
of the regions that demonstrated bistability in the two parameter diagrams may also
be beneficial.

Modelling wise, incorporation of more factors such as those described above may
be interesting. In addition, a model considering nitrogen instead of phosphorus as a
limiting nutrient could be illuminating. Nitrogen is a commonly limiting nutrient in
terrestrial systems (Sterner and Elser 2002), and it may be more closely related to
photosynthesis since up to 25% of leaf nitrogen is used in Rubisco, the carbon fixation
enzyme, and increased efficiency of Rubisco due to increased atmospheric carbon
dioxide concentration causes a reduction in allocation of nitrogen to Rubisco (Drake
et al. 1997).

An additional research question that could be addressed using this model is inves-
tigation of dynamic shifts due to elevated carbon dioxide specifically for terrestrial
versus aquatic systems, similar to Davies and Wang (2020). Another question would
involve investigation of the impact of elevated atmospheric carbon dioxide concentra-
tion on competition between grazers with different nutrient requirements.
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Lastly, this model would likely benefit from data fitting and validation. As it stands,
many of the parameter regions examined are primarily theoretical. It would be valuable
to apply data from free-air carbon enrichment experiments, as well as experiments
such as those conducted by Urabe et al. (2003) to understand which parameter regions
require further study.
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Appendix A

This appendix contains the proof of Theorem 1.

Proof Let X(t) ≡ (x(t), y(t), p(t)) be a solution of Eqs. (6)–(8)with initial conditions
in�. Then, 0 < x(0) < min{TP/q, h(TC )}, 0 < y(0), 0 < p(0), p(0)+θ y(0) < TP ,

and x(0) + y(0) < TC . Assume for the sake of contradiction that there is time t1 > 0
such that X(t) touches or crosses the boundary of �̄ (closure of �) for the first time.
Therefore, (x(t), y(t), p(t)) ∈ � for 0 ≤ t < t1. We now consider cases for which
part of the boundary of �̄ X(t1) lies on.
Case 1 x(t1) = 0 but p(t1) 	= 0. Since (x(t), y(t), p(t)) ∈ � for 0 ≤ t < t1,
then 0 < p(t) and p(t) + θ y(t) ≤ TP for 0 ≤ t ≤ t1. Also, all parameters are
assumed to be positive. Therefore, y(t) ≤ TP/θ − p(t)/θ < TP/θ for 0 ≤ t ≤ t1.
Let p1 = min{p(t) : t ∈ [0, t1]} > 0, x1 = max{x(t) : t ∈ [0, t1]} > 0, and
y1 = max{y(t) : t ∈ [0, t1]} > 0. Both x1 and y1 are guaranteed to exist since the
initial conditions are in � and thus are positive. Then for 0 ≤ t ≤ t1, we have (using
Eq. 6)

dx

dt
= r x

(
1 − x

min{p/q, h(TC − x − y)}
)

− f (x)y − lx x

≥ r x

(
1 − min{TP/q, h(TC )}

min{p1/q, h(TC − x1 − y1)}
)

− f ′(0)(T /θ)x − lx x

=
[

r

(
1 − min{TP/q, h(TC )}

min{p1/q, h(TC − x1 − y1)}
)

− f ′(0)(T /θ) − lx

]
x ≡ μx,

where μ is a constant. Then, x(t) ≥ x(0)eμt for 0 ≤ t ≤ t1, which implies x(t1) ≥
x(0)eμt1 > 0, which is a contradiction.
Case 2 x(t1) = min{TP/q, h(TC )}. Since (x(t), y(t), p(t)) ∈ � for 0 ≤ t < t1, we
know 0 ≤ y(t) and p(t)+θ y(t) ≤ TP for 0 ≤ t ≤ t1. Therefore, p(t) ≤ TP −θ y(t) ≤
TP for 0 ≤ t ≤ t1. Clearly TC − x(t) − y(t) ≤ TC for x(t), y(t) ≥ 0. Since h(C)

is non-decreasing, then h(TC − x(t) − y(t)) ≤ h(TC ) for x(t), y(t) ≥ 0. Hence, for
0 ≤ t ≤ t1, we have

dx

dt
= r x

(
1 − x

min{p/q, h(TC − x − y)}
)

− f (x)y − lx x
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≤ r x

(
1 − x

min{TP/q, h(TC )}
)

.

Note that the right hand side is logistic growth in x with the carrying capacity
given by min{TP/q, h(TC )}. The standard comparison argument yields that x(t) <

min{TP/q, h(TC )} for all 0 ≤ t ≤ t1, a contradiction.
Case 3 y(t1) = 0. For 0 ≤ t ≤ t1, we have from Eq. (7)

dy

dt
= êmin

{
1,

p/x

θ

}
f (x)y − d̂ y − ly y

=
(

êmin

{
1,

p/x

θ

}
f (x) − d̂ − ly

)
y ≥ −(d̂ + ly)y

since all parameters are assumed to be positive; f (0) = 0, f ′(x) > 0, f ′′(x) ≤ 0 for

x ≥ 0; and (x(t), y(t), p(t)) ∈ � for 0 ≤ t < t1. Hence, y(t) ≥ y(0)e−(d̂+ly)t > 0
for 0 ≤ t ≤ t1, a contradiction.
Case 4 p(t1) = 0. Since (x(t), y(t), p(t)) ∈ � for 0 ≤ t < t1, we know p(t) +
θ y(t) ≤ TP for 0 ≤ t ≤ t1. Therefore, TP − p(t) − θ y(t) ≥ 0 for 0 ≤ t ≤ t1,
and since we assume that in general g(0) = 0 and g′(P) > 0 for P ≥ 0, then
g(TP − p(t) − θ y(t)) ≥ 0 for 0 ≤ t ≤ t1.

Also, since 0 ≤ p(t) and p(t) + θ y(t) ≤ TP for 0 ≤ t ≤ t1, then y(t) ≤
TP/θ − p(t)/θ ≤ TP/θ for 0 ≤ t ≤ t1, and therefore −TP/θ ≤ −y(t).

Thus, for 0 ≤ t ≤ t1, we have from Eq. (8)

dp

dt
= g(TP − p − θ y)x − p

x
f (x)y − dp ≥ − p

x
f (x)y − dp

≥ [− f ′(0)(TP/θ) − d]p ≡ ν p,

where ν is a constant. Thus, p(t) ≥ p(0)eνt > 0 for 0 ≤ t ≤ t1, a contradiction.
Case 5 p(t1)+θ y(t1) = TP . Let z(t) = TP − p(t)−θ y(t). Since p(t1)+θ y(t1) = TP ,
then z(t1) = 0. Also, since t1 is assumed to be the first time that X(t) touches or crosses
the boundary of �̄, then p(t) + θ y(t) < TP for 0 ≤ t < t1 and thus z(t) > 0 for
0 ≤ t < t1. Then for 0 ≤ t ≤ t1, we have

dz

dt
= d

dt
(TP − p − θ y) = d

dt
TP − dp

dt
− θ

dy

dt
= −dp

dt
− θ

dy

dt

= −
(

g(TP − p − θ y)x − p

x
f (x)y − dp

)
− θ

(
êmin

{
1,

p/x

θ

}
f (x)y − d̂ y − ly y

)

= −g(TP − p − θ y)x + p

x
f (x)y + dp − θ êmin

{
1,

p/x

θ

}
f (x)y + θ d̂ y + θly y

≥ −g(TP − p − θ y)x + dp + θ d̂ y + θly y ≥ −g(z)x + dp + (d̂ + ly)θ y

≥ −g′(0)zmin{TP/q, h(TC )} + min{d, d̂ + ly}(TP − z)

= min{d, d̂ + ly}TP − [g′(0)min{TP/q, h(TC )} + min{d, d̂ + ly}]z ≡ μ̃ − ṽz,
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where ũ > 0 and ṽ > 0 are constant. Thus z(t) ≥ e−ṽt z(0) > 0 for 0 ≤ t ≤ t1, a
contradiction.
Case 6 x(t1) + y(t1) = TC . Consider the limit of dx/dt as t → t1:

lim
t→t1

dx

dt
= lim

t→t1

[
r x

(
1 − x

min{p/q, h(TC − x − y)}
)

− f (x)y − lx x

]

= lim
t→t1

r x

(
1 − x

min{p/q, h(TC − x − y)}
)

− lim
t→t1

f (x)y − lim
t→t1

lx x

= r x(t1) − lim
t→t1

r x2

min{p/q, h(TC − x − y)} − f (x(t1))y(t1) − lx x(t1).

Since h(0) = 0, then the limit as t → t1 of min{p/q, h(TC −x − y)} is 0. However,
x(t1) > 0. Therefore, as t → t1, the limit of dx/dt is −∞. Clearly this implies that
dy/dt → −∞ as t → t1. But then as t → t1, x(t) + y(t) → −∞, a contradiction. ��

Appendix B

This appendix contains all the necessary information to find the equilibria assuming
Holling type I functional responses for f and g. In addition, we assume α = 0 and
ρ(C) = 1.

Substituting f (x) = cx , g(P) = ĉP and h(C) = γ C into Eqs. (6)–(8), we get the
following system:

dx

dt
= r x

(
1 − x

min{p/q, γ (TC − x − y)}
)

− cxy − lx x,

dy

dt
= êmin

{
1,

p/x

θ

}
cxy − d̂ y − ly y,

dp

dt
= ĉ(TP − p − θ y)x − p

x
cxy − dp.

Equilibria satisfy

0 = x̄

(
r

(
1 − x̄

min{ p̄/q, γ (TC − x̄ − ȳ)}
)

− cȳ − lx

)
≡ x̄ F(x̄, ȳ, p̄),

0 = ȳ

(
êmin

{
1,

p̄/x̄

θ

}
cx̄ − d̂ − ly

)
≡ ȳG(x̄, ȳ, p̄),

0 = ĉ(TP − p̄ − θ ȳ)x̄ − c p̄ ȳ − d p̄ ≡ H(x̄, ȳ, p̄).

Clearly the trivial extinction equilibrium E0 = (0, 0, 0) is a possible solution of the
above. We can also explicitly find the forms of the grazer extinction equilibria. The
grazer extinction equilibria always take the form (x̄, 0, p̄), where x̄ and p̄ are decided
by what is limiting the producer and other parameter-based conditions.
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When the producer is phosphorus limited at equilibrium ( p̄/q ≤ γ (TC − x̄)), a
grazer extinction equilibrium is given by (x̄, 0, p̄) where

x̄ = ĉTP (r − lx ) − dqr

ĉqr
,

p̄ = ĉTP (r − lx ) − dqr

ĉ(r − lx )
.

We assume all parameters are positive. For x̄ ≥ 0, we need ĉTP (r − lx ) − dqr ≥ 0.
Then, for p̄ ≥ 0, we need r − lx > 0.

When the producer is carbon limited at equilibrium (γ (TC − x̄) ≤ p̄/q), we have
(x̄, 0, p̄) where

x̄ = γ TC (r − lx )

r + γ r − γ lx
,

p̄ = ĉγ TC TP (r − lx )

ĉγ TC (r − lx ) + d(r + γ r − γ lx )
.

For this equilibrium to be biologically feasible and not equal to E0, we require either
r − lx > 0 and r + γ r − γ lx > 0, or r − lx < 0 and r + γ r − γ lx < 0.

To determine parameter-based conditions for which grazer extinction equilibria are
present, we substitute the equilibria into p̄/q = γ (TC − x̄). With some rearrangement,
we find that for both the phosphorus and carbon limited equilibria, p̄/q = γ (TC − x̄)

when

ĉγ TP (r − lx )
2 + (ĉTP − ĉqγ TC − dqγ )r(r − lx ) − dqr2 = 0.

A grazer extinction equilibrium takes the phosphorus limited form when p̄/q ≤
γ (TC − x̄), or equivalently,

ĉγ TP (r − lx )
2 + (ĉTP − ĉqγ TC − dqγ )r(r − lx ) − dqr2

ĉqr(r − lx )
≤ 0.

A grazer extinction equilibrium takes the carbon limited formwhen p̄/q ≥ γ (TC −
x̄), that is,

ĉγ TP (r − lx )
2 + (ĉTP − ĉqγ TC − dqγ )r(r − lx ) − dqr2

(ĉqγ TC (r − lx ) + dq(r + γ r − γ lx ))(r + γ r − γ lx )
≥ 0.

There may also be coexistence equilibria, which would satisfy

0 = r

(
1 − x̄

min{ p̄/q, γ (TC − x̄ − ȳ)}
)

− cȳ − lx = F(x̄, ȳ, p̄),

0 = êmin

{
1,

p̄/x̄

θ

}
cx̄ − d̂ − ly = G(x̄, ȳ, p̄),
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0 = ĉ(TP − p̄ − θ ȳ)x̄ − c p̄ ȳ − d p̄ = H(x̄, ȳ, p̄).

Appendix C

This appendix contains all the necessary information to find the equilibria assuming
Holling type II functional responses for f and g. In addition, we assume α = 0 and
ρ(C) = 1.

Using f (x) = cx/(a + x), g(P) = ĉP/(â + P), and h(C) = γ C ,

dx

dt
= r x

(
1 − x

min{p/q, γ (TC − x − y)}
)

− cx

a + x
y − lx x,

dy

dt
= êmin

{
1,

p/x

θ

}
cx

a + x
y − d̂ y − ly y,

dp

dt
= ĉ(TP − p − θ y)

â + TP − p − θ y
x − p

x

cx

a + x
y − dp.

Equilibria satisfy

0 = x̄

(
r

(
1 − x̄

min{ p̄/q, γ (TC − x̄ − ȳ)}
)

− c

a + x̄
ȳ − lx

)
≡ x̄ F(x̄, ȳ, p̄),

0 = ȳ

(
êmin

{
1,

p̄/x̄

θ

}
cx̄

a + x̄
− d̂ − ly

)
≡ ȳG(x̄, ȳ, p̄),

0 = ĉ(TP − p̄ − θ ȳ)

â + TP − p̄ − θ ȳ
x̄ − c p̄

a + x̄
ȳ − d p̄ ≡ H(x̄, ȳ, p̄).

Clearly the trivial extinction equilibrium E0 = (0, 0, 0) is a possible solution of this
system. We can explicitly find the forms of the grazer extinction equilibria, dependent
upon what is limiting the producer and other parameter-based conditions.

When the producer is phosphorus limited at equilibrium ( p̄/q ≤ γ (TC − x̄)), the
grazer extinction equilibrium is given by (x̄, 0, p̄) where

x̄ = p̄

q

(
1 − lx

r

)
= ĉTP (r − lx )

2 − dqr(â + TP )(r − lx )

ĉqr(r − lx ) − dq2r2
,

ȳ = 0,

p̄ = ĉTP (r − lx ) − dqr(â + TP )

ĉ(r − lx ) − dqr
.

Consider the equation for x̄ that includes p̄. Since we require x̄, ȳ, p̄ ≥ 0 for the
equilibrium to be biologically feasible, then we require r − lx ≥ 0, since otherwise x̄
is negative for positive p̄. The equation for p̄ would also yield additional conditions
for non-negativity, which are not included here.

When the producer is carbon limited at equilibrium (γ (TC − x̄) ≤ p̄/q), we have
multiple possible grazer extinction equilibria, given by (x̄, 0, p̄) where
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x̄ = γ TC (r − lx )

r + γ r − γ lx
,

ȳ = 0,

p̄ = ĉγ TC (r − lx ) + d(â + TP )(r + γ r − γ lx )

2d(r + γ r − γ lx )

±
√

(ĉγ TC (r − lx ) + d(â + TP )(r + γ r − γ lx ))2 − 4ĉdγ TC TP (r − lx )(r + γ r − γ lx )

2d(r + γ r − γ lx )
.

For x̄ ≥ 0, we need either r − lx ≥ 0 and r + γ r − γ lx > 0, or r − lx ≤ 0 and
r + γ r − γ lx < 0. Note that r − lx > 0 and r + γ r − γ lx < 0 is not possible for
positive parameters. Thus, the equilibrium is not biologically feasible if r − lx < 0
and r + γ r − γ lx > 0. As in the phosphorus limited case, the equation for p̄ would
also yield conditions for feasibility of the equilibria.

To determine conditions for which grazer equilibria are present dependent on
parameter values, we substitute the grazer extinction equilibria found above into
p̄/q = γ (TC − x̄). Using the values of x̄ and p̄ for the phosphorus limited equi-
librium, we require

ĉrTP(r − lx ) − dqr2(â + TP ) − γ TC (ĉqr(r − lx ) − dq2r2)

+ ĉγ TP (r − lx )
2 − dqrγ (â + TP )(r − lx ) = 0,

for p̄/q = γ (TC − x̄), and for phosphorus limited producer growth at equilibrium
( p̄/q ≤ γ (TC − x̄)), we require

ĉrTP (r − lx ) − dqr2(â + TP ) − γ TC (ĉqr(r − lx ) − dq2r2) + ĉγ TP (r − lx )2 − dqrγ (â + TP )(r − lx )

ĉqr(r − lx ) − dq2r2
≤ 0.

Using the values of x̄ and p̄ for the carbon limited equilibrium, we require

0 = ĉγ TC (r − lx ) + d(â + TP )(r + γ r − γ lx ) − 2dqrγ TC

±
√

(ĉγ TC (r − lx ) + d(â + TP )(r + γ r − γ lx ))2 − 4ĉdγ TC TP (r − lx )(r + γ r − γ lx )

for p̄/q = γ (TC − x̄), and for carbon limited producer growth at equilibrium (γ (TC −
x̄) ≤ p̄/q), we require

0 ≤ ĉγ TC (r − lx ) + d(â + TP )(r + γ r − γ lx ) − 2dqrγ TC

2d(r + γ r − γ lx )

±
√

(ĉγ TC (r − lx ) + d(â + TP )(r + γ r − γ lx ))2 − 4ĉdγ TC TP (r − lx )(r + γ r − γ lx )

2d(r + γ r − γ lx )
.

There may also be coexistence equilibria, which would satisfy

0 = r

(
1 − x̄

min{ p̄/q, γ (TC − x̄ − ȳ)}
)

− c

a + x̄
ȳ − lx = F(x̄, ȳ, p̄),
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0 = êmin

{
1,

p̄/x̄

θ

}
cx̄

a + x̄
− d̂ − ly = G(x̄, ȳ, p̄),

0 = ĉ(TP − p̄ − θ ȳ)

â + TP − p̄ − θ ȳ
x̄ − c p̄

a + x̄
ȳ − d p̄ = H(x̄, ȳ, p̄).

Appendix D

This appendix contains the proof of Theorem 4.

Proof Let u = x/p, then

du

dt
= d

dt

x

p
= (dx/dt)p − x(dp/dt)

p2
= dx/dt

p
− x

dp/dt

p2

= r x

p

(
1 − x

min{p/q, h(TC − x − y)}
)

− f (x)y

p
− lx x

p

− x2

p2
g(TP − p − θ y) + f (x)y

p
+ d

x

p

= r x

p

(
1 − x

min{p/q, h(TC − x − y)}
)

− lx x

p
− x2

p2
g(TP − p − θ y) + d

x

p

= ru

(
1 − x

min{p/q, h(TC − x − y)}
)

− lx u − u2g(TP − p − θ y) + du.

Since g(0) = 0 and g′(P) > 0 for P ≥ 0, then −u2g(TP − p − θ y) ≤ 0. Note
that min{p/q, h(TC − x − y)} ≤ p/q if and only if

− 1

min{p/q, h(TC − x − y)} ≤ − 1

p/q
.

Thus

du

dt
≤ ru

(
1 − x

p/q

)
− lx u + du = ru(1 − qu) − lx u + du = ru(1 − qu) + (d − lx )u

≤ ru(1 − qu) + ru
d − lx

r
= ru

(
1 − qu + d − lx

r

)
.

Hence, u ≤ min{x(0)/p(0), [1 + (d − lx )/r ]/q} ≡ m. Consider the equation for
(dp/dt):

dp

dt
= g(TP − p − θ y)x − p

x
f (x)y − dp ≤ g(TP)x − dp ≤ g(TP)mp − dp

= (g(TP)m − d)p.
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Since d > mg(TP) implies g(TP)m − d < 0, then dp/dt < 0 and thus p → 0 as
t → ∞.

Now, consider the equation for (dx/dt):

dx

dt
= r x

(
1 − x

min{p/q, h(TC − x − y)}
)

− f (x)y − lx x

≤ r x(1 − (qx/p)).

Hence lim supt→∞x(t) ≤ p/q and x → 0 as t → ∞. Given the dependence of y on x,
this implies that y → 0 as t → ∞. Therefore, the extinction steady state E0 = (0, 0, 0)
is globally asymptotically stable if d > mg(TP), where m = min{x(0)/p(0), [1 +
(d − lx )/r ]/q}. ��

Appendix E

This appendix contains all the necessary calculations for the stability results in Sect. 3.3
using Holling type I functional responses for f and g.

For f (x) = cx , g(P) = ĉP , and h(C) = γ C , using F, G, H as defined in
“Appendix B”,

∂ F

∂x
=

{− r
p/q , p/q ≤ γ (TC − x − y),

− r(TC −y)

γ (TC −x−y)2
, p/q > γ (TC − x − y),

∂ F

∂ y
=

{
−c, p/q ≤ γ (TC − x − y),

− r x
γ (TC −x−y)2

− c, p/q > γ (TC − x − y),

∂ F

∂ p
=

{
r x

p2/q
, p/q ≤ γ (TC − x − y),

0, p/q > γ (TC − x − y),

∂G

∂x
=

{
0, p/x ≤ θ,

cê, p/x > θ,

∂ H

∂x
= ĉ(TP − p − θ y),

∂G

∂ y
= 0,

∂ H

∂ y
= −ĉθx − cp,

∂G

∂ p
=

{
cê
θ

, p/x ≤ θ,

0, p/x > θ,

∂ H

∂ p
= −ĉx − cy − d.

We compute the products/sums we need for the Jacobian:

x Fx =
{− r x

p/q , p/q ≤ γ (TC − x − y),

− r x(TC −y)

γ (TC −x−y)2
, p/q > γ (TC − x − y),

F + x Fx =
⎧⎨
⎩

r
(
1 − 2x

p/q

)
− cy − lx , p/q ≤ γ (TC − x − y),

r
(
1 − x(2TC −x−2y)

γ (TC −x−y)2

)
− cy − lx , p/q > γ (TC − x − y),
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x Fy =
{−cx, p/q ≤ γ (TC − x − y),

− r x2

γ (TC −x−y)2
− cx, p/q > γ (TC − x − y),

x Fp =
{

r x2

p2/q
, p/q ≤ γ (TC − x − y),

0, p/q > γ (TC − x − y),

yGx =
{
0, p/x ≤ θ,

cêy, p/x > θ,

G + yG y = G = êmin

{
1,

p/x

θ

}
cx − d̂ − ly,

yG p =
{

cêy
θ

, p/x ≤ θ,

0, p/x > θ.

Case 1 Producer nutrient limited and grazer quality limited
The corresponding Jacobian matrix with EP from Theorem 2 substituted in is

A1 =
⎡
⎣a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦ ,

where

a11 = lx − r ,

a12 = −cĉTP (r − lx ) − cdqr

ĉqr
,

a13 = (r − lx )
2

qr
,

a21 = 0, a22 = cĉêTP (r − lx ) − cdêqr

ĉθ(r − lx )
− d̂ − ly,

a23 = 0,

a31 = dqr

r − lx
,

a32 = − ĉTPθ(r − lx ) − dqrθ

qr
− cĉTP (r − lx ) − cdqr

ĉ(r − lx )
,

a33 = − ĉTP (r − lx )

qr
.

The three eigenvalues for A1 are (see “Appendix G” for proof)

λ1 = cĉêTP (r − lx ) − cdêqr

ĉθ(r − lx )
− d̂ − ly,
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λ2 = −1

2

√(
lx − r + ĉTP (r − lx )

qr

)2

+ 4d(r − lx ) + 1

2

(
lx − r − ĉTP (r − lx )

qr

)
,

λ3 = 1

2

√(
lx − r + ĉTP (r − lx )

qr

)2

+ 4d(r − lx ) + 1

2

(
lx − r − ĉTP (r − lx )

qr

)
.

Case 2 Producer nutrient limited and grazer quantity limited
The corresponding Jacobian matrix with EP from Theorem 2 substituted in is

A2 =
⎡
⎣a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦ ,

where all entries except a22 are the same as in A1 (Case 1 above), and

a22 = cĉêTP (r − lx ) − cdêqr

ĉqr
− d̂ − ly .

As in Case 1, we can explicitly find the eigenvalues for A2:

λ1 = cĉêTP (r − lx ) − cdêqr

ĉqr
− d̂ − ly,

λ2 = −1

2

√(
lx − r + ĉTP (r − lx )

qr

)2

+ 4d(r − lx ) + 1

2

(
lx − r − ĉTP (r − lx )

qr

)
,

λ3 = 1

2

√(
lx − r + ĉTP (r − lx )

qr

)2

+ 4d(r − lx ) + 1

2

(
lx − r − ĉTP (r − lx )

qr

)
.

Case 3 Producer carbon limited and grazer quality limited
The Jacobian with EC from Theorem 2 substituted in takes the form

A3 =
⎡
⎣a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦ ,

where

a11 = − (r − lx )(r + γ r − γ lx )

r
,

a12 = −γ (r − lx )
2

r
− cγ TC (r − lx )

r + γ r − γ lx
, a13 = 0,

a21 = 0, a22 = cĉêγ TC TP (r − lx )

ĉγ θTC (r − lx ) + dθ(r + γ r − γ lx )
− d̂ − ly, a23 = 0,

a31 = ĉdTP (r + γ r − γ lx )

ĉγ TC (r − lx ) + d(r + γ r − γ lx )
,
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a32 = − ĉθγ TC (r − lx )

r + γ r − γ lx
− cĉγ TC TP (r − lx )

ĉγ TC (r − lx ) + d(r + γ r − γ lx )
,

a33 = − ĉγ TC (r − lx )

r + γ r − γ lx
− d.

A 3 x 3 matrix with zeros in these specific entries has its eigenvalues along the
main diagonal, since it can be decomposed into a 2 x 2 upper triangular matrix and
the eigenvalue given by a22. Thus, in this case

λ1 = − (r − lx )(r + γ r − γ lx )

r
,

λ2 = cĉêγ TC TP (r − lx )

ĉγ θTC (r − lx ) + dθ(r + γ r − γ lx )
− d̂ − ly,

λ3 = − ĉγ TC (r − lx )

r + γ r − γ lx
− d.

Consider r + γ r − γ lx and r − lx . We see that for r , γ, lx > 0,

r + γ r − γ lx < 0 ⇒ r + γ (r − lx ) < 0 ⇒ r − lx < − r

γ
⇒ r − lx < 0.

Also, since all parameters are assumed to be positive,

r − lx > 0 ⇒ γ (r − lx ) > 0 ⇒ r + γ (r − lx ) > 0 ⇒ r + γ r − γ lx > 0.

For stability of the grazer extinction equilibrium, we need λ2 < 0, which requires

cĉêγ TC TP (r − lx )

ĉγ θTC (r − lx ) + dθ(r + γ r − γ lx )
< d̂ + ly

and either r + γ r − γ lx < 0 (in which case r − lx < 0) or r − lx > 0 (in which
case r + γ r − γ lx > 0). Then, the grazer extinction equilibrium is a stable node since
λ1, λ3 < 0 when r + γ r − γ lx and r − lx have the same sign.

For either r + γ r − γ lx < 0 or r − lx > 0, and

cĉêγ TC TP (r − lx )

ĉγ θTC (r − lx ) + dθ(r + γ r − γ lx )
> d̂ + ly,

the grazer extinction equilibrium is a saddle with a two-dimensional stable manifold
and a one-dimensional unstable manifold.

Now, for r − lx < 0 and r + γ r − γ lx > 0 we have a few cases. λ1 is guaranteed
to be positive, but the signs of λ2 and λ3 depend on additional conditions.

For λ2 < 0, we need either ĉγ θTC (r − lx )+ dθ(r + γ r − γ lx ) > 0 or ĉγ θTC (r −
lx ) + dθ(r + γ r − γ lx ) < 0 and

cĉêγ TC TP (r − lx )

ĉγ θTC (r − lx ) + dθ(r + γ r − γ lx ))
< d̂ + ly .
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For λ3 < 0, we need

− ĉγ TC (r − lx )

r + γ r − γ lx
< d.

Hence, for r − lx < 0 and r + γ r − γ lx > 0, we can have either a saddle with
a one- or two-dimensional unstable manifold, or an unstable node. However, when
r − lx < 0 and r + γ r − γ lx > 0, the equilibrium is not biologically feasible.

Case 4 Producer carbon limited and grazer quantity limited
The Jacobian with EC from Theorem 2 substituted in is as follows:

A4 =
⎡
⎣a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦ ,

where all entries are the same as A3 (Case 3), except a22 and

a22 = cêγ TC (r − lx )

r + γ r − γ lx
− d̂ − ly .

As in the previous case, this matrix has its eigenvalues along the main diagonal.
Thus, we have

λ1 = − (r − lx )(r + γ r − γ lx )

r
,

λ2 = cêγ TC (r − lx )

r + γ r − γ lx
− d̂ − ly,

λ3 = − ĉγ TC (r − lx )

r + γ r − γ lx
− d.

If r + γ r − γ lx < 0, then we know r − lx < 0. Therefore, if r + γ r − γ lx < 0,
then λ1, λ3 < 0 and we also need for stability

cêγ TC (r − lx )

r + γ r − γ lx
< d̂ + ly .

If r − lx > 0, then we know r + γ r − γ lx > 0 and therefore λ1, λ3 < 0. For λ2 to
be less than 0 and therefore for stability we also require

cêγ TC (r − lx )

r + γ r − γ lx
< d̂ + ly .
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Hence, the grazer extinction equilibrium is a stable node for

cêγ TC (r − lx )

r + γ r − γ lx
< d̂ + ly

and either r + γ r − γ lx < 0 or r − lx > 0.
For either r + γ r − γ lx < 0 or r − lx > 0, and

cêγ TC (r − lx )

r + γ r − γ lx
> d̂ + ly,

the grazer extinction equilibrium is a saddle with a two-dimensional stable manifold
and a one-dimensional unstable manifold.

For r − lx < 0 and r + γ r − γ lx > 0, we have λ1 > 0 and λ2 < 0. Therefore, we
have a saddle. If λ3 < 0, the saddle has a two-dimensional stable manifold and a one-
dimensional unstablemanifold; ifλ3 > 0, it has a one-dimensional stablemanifold and
a two-dimensional unstable manifold. Note that for r − lx < 0 and r + γ r − γ lx > 0,
the equilibrium is not biologically feasible.

Appendix F

This appendix contains all the necessary calculations for the stability results in Sect. 3.3
using Holling type II functional responses for f and g.

For f (x) = cx/(a + x), g(P) = ĉP/(â + P), and h(C) = γ C , using F, G, H as
defined in “Appendix C”,

∂ F

∂x
=

{− r
p/q + cy

(a+x)2
, p/q ≤ γ (TC − x − y),

− r(TC −y)

γ (TC −x−y)2
+ cy

(a+x)2
, p/q > γ (TC − x − y),

∂ F

∂ y
=

{
− c

a+x , p/q ≤ γ (TC − x − y),

− r x
γ (TC −x−y)2

− c
a+x , p/q > γ (TC − x − y),

∂ F

∂ p
=

{
r x

p2/q
, p/q ≤ γ (TC − x − y),

0, p/q > γ (TC − x − y),

∂G

∂x
=

{− cê p
θ(a+x)2

, p/x ≤ θ,

acê
(a+x)2

, p/x > θ,

∂G

∂ y
= 0,

∂G

∂ p
=

{
cê

θ(a+x)
, p/x ≤ θ,

0, p/x > θ,

∂ H

∂x
= ĉ(TP − p − θ y)

â + TP − p − θ y
+ cpy

(a + x)2
,
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∂ H

∂ y
= − âĉθx

(â + TP − p − θ y)2
− cp

a + x
,

∂ H

∂ p
= − âĉx

(â + TP − p − θ y)2
− cy

a + x
− d.

The necessary products and sums for the Jacobian are

x Fx =
{− r x

p/q + cxy
(a+x)2

, p/q ≤ γ (TC − x − y),

− r x(TC −y)

γ (TC −x−y)2
+ cxy

(a+x)2
, p/q > γ (TC − x − y),

F + x Fx =
⎧⎨
⎩

r
(
1 − 2x

p/q

)
− acy

(a+x)2
− lx , p/q ≤ γ (TC − x − y),

r
(
1 − x(2TC −x−2y)

γ (TC −x−y)2

)
− acy

(a+x)2
− lx , p/q > γ (TC − x − y),

x Fy =
{− cx

a+x , p/q ≤ γ (TC − x − y),

− r x2

γ (TC −x−y)2
− cx

a+x , p/q > γ (TC − x − y),

x Fp =
{

r x2

p2/q
, p/q ≤ γ (TC − x − y),

0, p/q > γ (TC − x − y),

yGx =
{− cê py

θ(a+x)2
, p/x ≤ θ,

acêy
(a+x)2

, p/x > θ,

G + yG y = G = êmin

{
1,

p/x

θ

}
cx

a + x
− d̂ − ly,

yG p =
{

cêy
θ(a+x)

, p/x ≤ θ,

0, p/x > θ.

Case 1 Producer nutrient limited and grazer quality limited
The corresponding Jacobian matrix with EP from Theorem 3 substituted in is

B1 =
⎡
⎣b11 b12 b13

b21 b22 b23
b31 b32 b33

⎤
⎦ ,

where for EP = (x̄, 0, p̄) (Theorem 3)

b11 = lx − r ,

b12 = − c p̄(r − lx )

arq + p̄(r − lx )
,

b13 = (r − lx )
2

qr
,
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b21 = 0,

b22 = cêqr p̄

θ(aqr + p̄(r − lx ))
− d̂ − ly,

b23 = 0,

b31 = dqr

r − lx

b32 = − âĉθ p̄(r − lx )

qr(â + TP − p̄)2
− cqr p̄

aqr + p̄(r − lx )
,

b33 = − âĉ p̄(r − lx )

qr(â + TP − p̄)2
− d.

As in Holling type I Case 1, we can explicitly determine the eigenvalues:

λ1 = cêqr p̄

θ(aqr + p̄(r − lx ))
− d̂ − ly,

λ2 = −1

2

√(
lx − r + âĉ p̄(r − lx )

qr(â + TP − p̄)2
+ d

)2

+ 4d(r − lx )

+ 1

2

(
lx − r − âĉ p̄(r − lx )

qr(â + TP − p̄)2
− d

)
,

λ3 = 1

2

√(
lx − r + âĉ p̄(r − lx )

qr(â + TP − p̄)2
+ d

)2

+ 4d(r − lx )

+ 1

2

(
lx − r − âĉ p̄(r − lx )

qr(â + TP − p̄)2
− d

)
.

Again, the eigenvalues are not particularly illuminating. Also similar to the Holling
type I case, stability does not depend on TC or γ . Given the producer is nutrient limited
at this equilibrium, it is reasonable that the carbon-dependent carrying capacity has
no impact on its stability.

Case 2 Producer nutrient limited and grazer quantity limited
The corresponding Jacobian with EP from Theorem 3 substituted in is

B2 =
⎡
⎣b11 b12 b13

b21 b22 b23
b31 b32 b33

⎤
⎦ ,

where all entries are the same as B1 (Case 1) except b22, which is

b22 = cê p̄(r − lx )

aqr + p̄(r − lx )
− d̂ − ly,

for EP = (x̄, 0, p̄) (Theorem 3).
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The eigenvalues are

λ1 = cê p̄(r − lx )

aqr + p̄(r − lx )
− d̂ − ly,

λ2 = −1

2

√(
lx − r + âĉ p̄(r − lx )

qr(â + TP − p̄)2
+ d

)2

+ 4d(r − lx )

+ 1

2

(
lx − r − âĉ p̄(r − lx )

qr(â + TP − p̄)2
− d

)
,

λ3 = 1

2

√(
lx − r + âĉ p̄(r − lx )

qr(â + TP − p̄)2
+ d

)2

+ 4d(r − lx )

+ 1

2

(
lx − r − âĉ p̄(r − lx )

qr(â + TP − p̄)2
− d

)
.

The eigenvalues do not provide any stability conclusions in this case. As in Case 2
for Holling type I functional responses, stability does not depend on TC , γ , or θ . The
producer is nutrient limited at equilibrium, so TC and γ should not impact stability
of the equilibrium. Note that since the grazer is quantity limited at equilibrium, we
would also expect the stability of the equilibrium to not depend on the grazer’s P:C
ratio, θ .

Case 3 Producer carbon limited and grazer quality limited
Here we use EC+ or EC− from Theorem 3 and compute

B3 =
⎡
⎣b11 b12 b13

b21 b22 b23
b31 b32 b33

⎤
⎦ ,

where

b11 = − (r − lx )(r + γ r − γ lx )

r
,

b12 = −γ (r − lx )
2

r
− cγ TC (r − lx )

a(r + γ r − γ lx ) + γ TC (r − lx )
,

b13 = 0,

b21 = 0,

b22 = cê(r + γ r − γ lx ) p̄

aθ(r + γ r − γ lx ) + γ θTC (r − lx )
− d̂ − ly,

b23 = 0,

b31 = ĉ(TP − p̄)

â + TP − p̄
,

b32 = − âĉγ θTC (r − lx )

(r + γ r − γ lx )(â + TP − p̄)2
− c(r + γ r − γ lx ) p̄

a(r + γ r − γ lx ) + γ TC (r − lx )
,
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b33 = − âĉγ TC (r − lx )

(r + γ r − γ lx )(â + TP − p̄)2
− d,

where x̄ and p̄ correspond to the possible carbon-limited equilibrium values from
Theorem 3.

The corresponding eigenvalues are along themain diagonal, as in the corresponding
Holling type I case:

λ1 = − (r − lx )(r + γ r − γ lx )

r
,

λ2 = cê(r + γ r − γ lx ) p̄

aθ(r + γ r − γ lx ) + γ θTC (r − lx )
− d̂ − ly,

λ3 = − âĉγ TC (r − lx )

(r + γ r − γ lx )(â + TP − p̄)2
− d.

For these eigenvalues, we consider stability cases using r − lx and r + γ r − γ lx .
As in the Holling type I case, we recognize that r + γ r − γ lx < 0 implies r − lx < 0,
and r − lx > 0 implies r + γ r − γ lx > 0, when all parameters are assumed to be
positive. Therefore we consider three cases.

If r + γ r − γ lx < 0 (and therefore r − lx < 0), then λ1 < 0 and λ3 < 0. The sign
of λ2 depends on the sign of p̄. Looking at the forms of the equilibria in Sect. 3.2, we
observe that for r + γ r − γ lx < 0 and r − lx < 0, both equilibria have a positive p̄.
Hence, the equilibrium is a stable node for r + γ r − γ lx < 0 and

cê(r + γ r − γ lx ) p̄

aθ(r + γ r − γ lx ) + γ θTC (r − lx )
< d̂ + ly .

If r + γ r − γ lx < 0 but the additional condition is not satisfied, then the equilibrium
is a saddle with a two-dimensional stable manifold and a one-dimensional unstable
manifold.

If r − lx > 0 (and therefore r + γ r − γ lx > 0), then λ1 < 0 and λ3 < 0. Since
p̄ > 0 for r − lx > 0 and both forms of p̄, then the equilibrium is a stable node for
r − lx > 0 and

cê(r + γ r − γ lx ) p̄

aθ(r + γ r − γ lx ) + γ θTC (r − lx )
< d̂ + ly .

If r − lx > 0 but λ2 > 0 because the above condition is not satisfied, then the
equilibrium is a saddle with a two-dimensional stable manifold and a one-dimensional
unstable manifold.

Lastly, if r − lx < 0 and r + γ r − γ lx > 0, then λ1 > 0. The signs of λ2 and
λ3 depend on additional conditions. For the equilibrium to be a saddle with a two-
dimensional stablemanifold and a one-dimensional unstablemanifoldwhen r−lx < 0
and r + γ r − γ lx > 0, we require

cê(r + γ r − γ lx ) p̄

aθ(r + γ r − γ lx ) + γ θTC (r − lx )
< d̂ + ly,
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− âĉγ TC (r − lx )

(r + γ r − γ lx )(â + TP − p̄)2
< d.

Note that here the sign of p̄ is not determined by the signs of r − lx and r + γ r − γ lx

alone. If either one of these additional conditions is not satisfied (i.e.,λ2 > 0 orλ3 > 0)
and the other is satisfied, then the equilibrium is a saddle with a one-dimensional
stable manifold and a two-dimensional unstable manifold. If both of these additional
conditions are not satisfied, then the equilibrium is an unstable node. However, in
this case, the equilibrium is only biologically feasible when the signs of r − lx and
r + γ r − γ lx are the same.

Case 4 Producer carbon limited and grazer quantity limited
The Jacobian with EC+ or EC− from Theorem 3 substituted in takes the form

B4 =
⎡
⎣b11 b12 b13

b21 b22 b23
b31 b32 b33

⎤
⎦ ,

where all entries are the same as in B3, except

b22 = cêγ TC (r − lx )

a(r + γ r − γ lx ) + γ TC (r − lx )
− d̂ − ly .

Once again, the eigenvalues are along the main diagonal, using p̄ from EC+ or
EC− from Theorem 3:

λ1 = − (r − lx )(r + γ r − γ lx )

r
,

λ2 = cêγ TC (r − lx )

a(r + γ r − γ lx ) + γ TC (r − lx )
− d̂ − ly,

λ3 = − âĉγ TC (r − lx )

(r + γ r − γ lx )(â + TP − p̄)2
− d.

We consider cases based on r − lx and r + γ r − γ lx . Note that we cannot have
r − lx > 0 and r + γ r − γ lx < 0 for positive r , γ and lx .

If r − lx < 0 and r + γ r − γ lx < 0, then λ1 < 0 and λ3 < 0. Therefore, the
equilibrium is a stable node if r + γ r − γ lx < 0 and

cêγ TC (r − lx )

a(r + γ r − γ lx ) + γ TC (r − lx )
< d̂ + ly .

If this additional condition is not satisfied (i.e.,λ2 > 0), then the equilibrium is a saddle
with a two-dimensional stable manifold and a one-dimensional unstable manifold.

Similarly, if r − lx > 0 and r + γ r − γ lx > 0, then λ1 < 0 and λ3 < 0. Hence,
the equilibrium is a stable node if r − lx > 0 and

cêγ TC (r − lx )

a(r + γ r − γ lx ) + γ TC (r − lx )
< d̂ + ly .
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If the above condition is not satisfied, then the equilibrium is a saddle with a two-
dimensional stable manifold and a one-dimensional unstable manifold.

If r − lx < 0 and r + γ r − γ lx > 0, then λ1 > 0. The equilibrium is a saddle with
a two-dimensional stable manifold and a one-dimensional unstable manifold if

cêγ TC (r − lx )

a(r + γ r − γ lx ) + γ TC (r − lx )
< d̂ + ly,

− âĉγ TC (r − lx )

(r + γ r − γ lx )(â + TP − p̄)2
< d.

If either of these conditions is not met, the equilibrium is a saddle with a one-
dimensional stable manifold and a two-dimensional unstable manifold; if both
conditions are not met, the equilibrium is an unstable node. Note that if r − lx < 0
and r + γ r − γ lx > 0, then the equilibrium is not biologically feasible.

Appendix G

This appendix proves the form of the eigenvalues for the nutrient limited grazer extinc-
tion equilibria.

Claim: For a matrix of the form

A =
⎡
⎣a b c
0 d 0
f g h

⎤
⎦

where all entries are real numbers, the eigenvalues are

λ1 = d,

λ2 = 1

2

(
−

√
(a − h)2 + 4c f + a + h

)
,

λ3 = 1

2

(√
(a − h)2 + 4c f + a + h

)
.

Proof We know an eigenvalue λ of matrix A satisfies det(A − λI ) = 0. Hence, we
solve this equation for λ.

We see that

det(A − λI ) = det

⎛
⎝

⎡
⎣a − λ b c

0 d − λ 0
f g h − λ

⎤
⎦

⎞
⎠ .

Using a cofactor expansion along the second row, we see

det(A − λI ) = (d − λ)det

([
a − λ c

f h − λ

])
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= (d − λ)((a − λ)(h − λ) − c f )

= (d − λ)(ah − (a + h)λ + λ2 − c f )

= (d − λ)(λ2 − (a + h)λ + (ah − c f )).

We can find solutions to the following using the quadratic formula:

(d − λ)(λ2 − (a + h)λ + (ah − c f )) = 0.

The resulting solutions are

λ1 = d,

λ2 = 1

2

(√
(a + h)2 − 4(ah − c f ) + a + h

)
,

λ3 = 1

2

(
−

√
(a + h)2 − 4(ah − c f ) + a + h

)
.

Clearly

(a + h)2 − 4(ah − c f ) = a2 + 2ah + h2 − 4ah + 4c f

= a2 − 2ah + h2 + 4c f = (a − h)2 + 4c f ,

and this proves the claim. ��
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