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Abstract
In this paper, we propose a diffusive competition model with habitat degradation
and homogeneous Neumann boundary conditions in a bounded domain that is parti-
tioned into the healthy region (undisturbed habitat) and the degraded region (due to
anthropogenic habitat disturbance). Species follow the Lotka-Volterra competition in
the healthy region while in the degraded region species experience only exponential
decay (not necessarily at the same rate). This setup is novel in that it requires no pos-
itivity assumption on the environmental heterogeneity, either absolute or on average,
whichwould be far too restrictive for the study of the effects of habitat degradation.We
rigorously show competitive exclusion and coexistence via global stability analysis.
A remarkable finding is that the quality heterogeneity of landscapes can lead to the
competitive exclusion of the slower species by the faster species. This result is robust
as long as the degraded region has positive area, and moreover is at odds with classical
results predicting the deterministic extinction of the stronger species. On the other
hand, if the degraded region has intermediate negative effect on the faster competitor,
species can coexist. Differing from comparable existing results, coexistence does not
rely on a limit as the diffusion coefficients tend to zero or infinity. Together, these
results imply that coexistence is always a possibility under this basic, yet general,
configuration, providing insights into the varying impacts found through empirical
study of habitat loss and fragmentation on species.
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1 Introduction

1.1 Motivation

Habitat loss, caused by anthropogenic activities or natural processes, has drastic nega-
tive effects on virtually all species worldwide (Heinrichsa et al. 2016), particularly on
population persistence and biodiversity. This includes birds (Temple 1986), mammals
(Andren 1994), reptiles (Gibbons et al. 2000), amphibians (Stuart et al. 2004; Beebee
and Griffiths 2005), invertebrates (Didham et al. 1996), and plants (Hobbs and Yates
2003). Habitat loss has been one main culprit of species extinction worldwide, see
(Pimm and Raven 2000) and more recently (Betts and et al. 2019). Causes of habitat
loss can be naturally driven, such as forest fires, volcanic activity, hurricanes etc., but
can also be driven by human activities, such as land conversion for the use of farming,
harvesting natural resources, urban sprawl, or infrastructure development. However,
even indirect actions can lead to the collapse of habitat, such as desertification, defor-
estation, pollution, or a continual degradation of the habitat to a point where it can no
longer support its native species.

The extinction of species has been a serious concern in conservation biology and
can result in additional negative impacts, such as a reduction of genetic diversity
within a species. For example, 67% of North American freshwater mussel species
are considered threatened, and 35 species have gone extinct since 1900 (Nobles and
Zhang 2011). Mussels filter lake/river water for their own food and are consumed by
a wide variety of carnivores at higher trophic levels, such as otters and egrets. These
intimate and sophisticated connections between interacting species, paired with the
delicate balance in an ecosystem, provide substantial motivation for studying habitat
degradation and destruction and its effects on biodiversity and sustainability of an
ecosystem. In this example, habitat loss has been one of the major contributors to the
decline and extinction of freshwater mussels.

It is unfortunate, therefore, that despite our receptivity to the ideas presented by
biologists worldwide concerning the impact of habitat loss, we know little concerning
the relative impacts of the various forms of habitat loss presented in the literature. This
includes the overarching term habitat loss, but more specifically habitat degradation,
habitat destruction and habitat fragmentation. Facilitating this lack of understanding is
a lack of consistency in the definitions used when studying these phenomena, leading
to varying conclusions regarding the magnitude and direction of realized impacts.
Somewhat ironically, it is agreed, or at least recognized by some, that this lack of
consistency has indeed led to several issues when interpreting empirical results (Fahrig
2003; Jackson and Fahrig 2013). Furthermore, while highly focused research under
one definition may yield useful insights, they can also be problematic in that they lead
to oversights in other perspectives (Fischer and Lindenmayer 2007).
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Unfortunately still, the issues found in the ecological literature has bled into the
mathematical modelling literature. There have been a huge variety of models pro-
posed to describe these various forms of habitat loss, with varying mechanisms used
to describe the process of “lost” habitat, and so it is inevitable that these models do not
all reach the same conclusions.One facilitator of this outcome is, again, the lack of con-
sistency in what exactly constitutes habitat degradation versus habitat fragmentation,
for example. Additionally, thesemodelsmake varying assumptions about what aspects
are most important in their construction, such as habitat loss as a patch-scale problem
versus a landscape-scale problem, while some authors may dispute this distinction
entirely (Fahrig 2013). Combining these two issues has resulted in a vast amount of
modelling types and techniques with widely varying results and implications on the
impact of habitat loss on species.

For these reasons, we will precisely state what we mean when referring to these
occasionally ambiguous terms. It should be clear that we are not suggesting that one
definition is better than another necessarily, but rather that it is important to be precise
in our terminology so that all readers are on the same page. In this paper, we adhere
to the following definitions.

Habitat Degradation A general term describing any set of processes resulting in a
decrease in quality of habitat.

Habitat Destruction When a natural habitat is altered so dramatically that it no
longer supports the species it originally sustained (Laurance
2010).

Habitat Fragmentation Changes in habitat configuration that result from the breaking
apart of existing habitat, independent of habitat degradation
and/or destruction.

Habitat Loss Any combination of one or more of the process of habitat
degradation, destruction or fragmentation.

Sometimes, habitat loss is taken to be synonymous with habitat destruction. How-
ever, we feel that this equivalence can lead to confusion, as degraded habitat can also
conceptually be considered “lost” habitat if its net impact is negative on the native
species. Additionally, fragmentation is often considered as an implicit part of the
overall process of habitat loss, but for modelling purposes, fragmentation should be
considered as a distinct process from that of habitat destruction. The reason for this
distinction comes back to the desire to understand the relative impacts of these differ-
ing processes, independent of one another. For these reasons, habitat loss is taken to
mean any of the three processes described above.

Habitat degradation and destruction, as defined above, clearly reside on a spectrum.
That is to say, severe habitat degradation could be argued as destruction, and minor
amounts of habitat destruction could be considered as habitat degradation. However,
we do believe that it is important to make the distinction between the two, as it is
important to take into account the quality of the habitat and its impact on species
(Heinrichsa et al. 2016). This will become more important upon introduction of the
mathematical model to be discussed here.

Finally, for fragmentation, we have chosen to use the definition of fragmentation
per se presented in (Fahrig 2003) or (Jackson and Fahrig 2013), as it avoids many
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of the potential issues discussed thus far. That is, in making this distinction we are
able to discuss the individual impacts of the amount of good (or bad) habitat and the
configuration of said habitat. This is made more precise in the discussion section of
our paper, though is outside the scope of the concrete conclusions drawn here. This
leaves open an interesting direction for future research.

The goal of this paper is to introduce a spatially explicit competition-diffusion
model, given as a system of partial differential equations, whose purpose is to under-
stand the effect of habitat degradation on the persistence and extinction of two
competing species. We hope to use the distinctions outlined thus far in order to more
clearly define the factors and outcomes given by the modelling framework presented
in the following section. While it may be impossible to disentangle the various forms
of habitat loss in an empirical setting, it is reasonable to separate these effects in a
simplified modelling setting. Aside from alleviating some of the confusion found in
the literature, the framework presented in the following section demonstrates at least
one way to distinguish these various forms of habitat loss and provides an avenue to
further study both the individual as well as the combined effects of each. This leaves
open areas for future research, which wemake more concrete in the discussion section
of this paper. The choice to refer to our model as describing degradation will become
clear in its construction as follows.

1.2 Model derivation

Consider a smooth (e.g. C1), bounded domain � ⊂ R
N , N ≥ 1, which we will

treat as the entire available habitat for two competing species. We now introduce
some heterogeneity in the environment which seeks to model the degradation of some
portion of the habitat, or to be more precise, to model the variable effect on each
species’ population growth within the degraded portion of habitat. The assumptions
made in this regard can be stated as follows:

(i) The habitat is split into two regions such that � = G ∪ B. G denotes the
undisturbed region(s), while B denotes the region(s) of degraded habitat. We
always assume that 0 < |B| < |�|, where |·| denotes the Lebesgue measure.

(ii) In region G, both populations grow as described by the standard Lotka-Volterra
competition model (Cantrell and Cosner 2003; Murray 1989).

(iii) In region B, both species experience only mortality, though not necessarily at
the same rate.

Since our goal is to model the effect of habitat degradation on competing species,
assumption (i) simply ensures that there are both good and bad regions within the
available habitat (Fig. 1). Assumption (ii) should be clear, while assumption (iii)
deserves some attention. Assumption (ii) assumes that two competing species interact
as they normally would in the undisturbed regions. One could also consider other
forms of interaction between two species in this region, such as a mutualistic model.
This could be an interesting direction for further study, however we restrict ourselves
to one type of interaction in this paper. Assumption (iii) implicitly assumes that the
competing species do not interact in the degraded region B. This is more or less
reasonable depending on the actual mechanism of competition. If the interference
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Fig. 1 A two-dimensional
representation of assumption (i),
where the whole domain � is
broken into disjoint subdomains
representing the undisturbed
region of habitat “G” and the
degraded region of habitat “B”.
The regions can be of any (fixed)
shape or size, as long as both
regions have positive area

competition occurs in order to maintain access to a specific resource, such as water or
territory necessary for survival, it is assumed that the degraded region(s) do not contain
such resources, and so competition is no longer necessary in these regions. Similarly, in
the case of exploitative competition (i.e. competition which occurs indirectly between
individuals), the use of a necessary resource by one species results in less resource
for other species. In the degraded region(s), there are no such resources available, and
so it is reasonable to assume that there is no competitive interaction. Point (iii) also
introduces the concept of resilience in our model: an ability to withstand or recover
quickly from difficult conditions. The species which experiences a smaller level of
detriment in the degraded region is better able to withstand environmental changes
when compared to their competitor. In this sense, the more resilient species is the
stronger competitor.

If we denote by 1K the indicator function of a set K ⊂ R
N , the habitat degradation

model can be written as follows:{
ut = d1�u + 1Gu(1 − u − γ1v) − c11Bu in � × (0, T ),

vt = d2�v + 1Gv(1 − γ2u − v) − c21Bv in � × (0, T ).

Through this construction, we have split the domain into two (almost) disjoint
regions—assumption (i). We see logistic growth and competition in the undisturbed
habitat G, while both species experience mortality in region B at rates ci ≥ 0,
i = 1, 2—assumptions (ii) and (iii), respectively. For clarity, we assume the rate
of competition is equal, i.e. γ1 = γ2 = 1, so as to isolate the effects of degradation on
the interacting species alone. We consider species u as a slow diffuser and species v as
a fast diffuser, that is, d1 ≤ d2. This assumption has included all possibilities without
loss of generality because the system is symmetric for the competing species. For the
purpose of our analysis, we prescribe homogeneous Neumann boundary data along
∂�.

The Neumann problem may now be more conveniently written as follows:

⎧⎪⎨
⎪⎩

ut = d1�u + u[mc1 − 1G(u + v)] in � × (0, T ),

vt = d2�v + v[mc2 − 1G(u + v)] in � × (0, T ),
∂u
∂n = ∂v

∂n = 0 on ∂� × (0, T ),

(1.1)
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where

mci := 1G − ci1B, i = 1, 2. (1.2)

We now investigate the global dynamics of the system depending on the relation
between the parameters di and ci . In addition to the problem above, closely related is
the scalar counterpart

{
wt = d�w + w(mc − 1Gw) in � × (0, T ),
∂w
∂n = 0 on ∂� × (0, T ),

(1.3)

where mc = 1G − c1B with c ≥ 0, as well as the steady state problems associated
with both (1.1) and (1.3). These are discussed in details in the following sections.

1.3 Comparisons to other work

Webeginwith comparison to existinghabitat lossmodelling efforts. First and foremost,
it should be noticed that this model is spatially explicit, and so it explicitly captures
the impact that the heterogeneity has on the competing species. As a comparison, one
may consider a classic habitat loss model given in (Tilman et al. 1994) in which n
species compete for a shared resource. The model is given as a system of ordinary
differential equations, and is therefore spatially homogeneous. The species are ordered
in terms of their competitiveness, i.e. superior species can occupy the area of inferior
species, whereas inferior species cannot occupy the area held by a superior competitor.
The destruction is described in terms of the proportion of available habitat remaining,
i.e. the total available habitat is 1, and the proportion of available habitat is 1 −
D, where D is the proportion of total habitat that has been removed. Interestingly,
such a construction leads to the counterintuitive result that as D increases from 0
to 1, the ordering of deterministic extinction is from the strongest to the weakest
species. In particular, the superior species will always go extinct first under increasing
habitat removal, a result which is at odds with what we see in nature (Klausmeier
1998; Lin and Liu 2006). This setup does not consider the effect (whether positive
or negative) of configuration or fragmentation, as there is no distinction between
possible configurations. Furthermore, this type of model is more accurately described
as a habitat destruction model (as opposed to habitat degradation model), as the lost
region is removed from the model entirely for all species, and so no consideration is
given to the precise quality of the lost habitat. This framework introduced by Tilman et.
al. has been investigated extensively, including other effects not originally considered,
such as variation in patch quality and the rescue effect (Gyllenberg and Hanski 1997)
or the Allee effect (Chen and Hui 2009). In the first case, the study of variation in
patch quality is closest to a degradation model in one sense, however this approach
relies on a discrete spatial setting and hence lacks an inclusion of continuous spatial
features and does not consider the combined effects of competition and degradation.
Such constructions align more closely with the habitat amount hypothesis, see (Fahrig
2013).
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More generally, it has been a popular approach to model habitat loss through
metapopulations, or multiple patches, as introduced by Levins in 1969 (Levins 1969).
Such modelling efforts vary in their construction, application and complexity, see
for example, (Nee and May 1992; Hess 1996; Keymer et al. 2000) or more recently
(McVinish et al. 2015). These models are mathematically similar to the ODE habi-
tat loss model prototype described previously, and so suffer from similar drawbacks.
However, even in the cases where the models differ (both mathematically and concep-
tually) in a more significant way, the precise measurement of “habitat loss” is often
obscured, or at least inconsistent across modelling efforts. One may refer to (Jackson
and Fahrig 2013), which highlights some of the measures that may be used in these
contexts. This includes measures such as number of patches, mean patch size, mean
patch isolation, or total edge amount. Depending on the modelling framework, any
combination of thesemeasures can be interpreted as habitat loss or fragmentation. This
results in confusion, as highlighted by Figure 3 in (Jackson and Fahrig 2013). Roughly
speaking, one can hold any variable fixed and alter the remaining variables positively
or negatively in order to draw widely varying conclusions regarding the persistence
of species. One benefit of using a spatially explicit model is that all of these factors
are encapsulated within the model, with the drawback being an increased difficulty in
performing analysis for any particularly chosen configuration. Such drawbacks may
be overcome through the use of numerical simulation, however.

Some authors have proposed spatially explicit models comparable to that presented
here (Strohm and Tyson 2012), however, the analysis involves simplifications in order
to make comparisons to the spatially homogeneous ODE model. Such simplifications
include an appeal to a one dimensional model only, dropping higher order terms and
reducing to the form of an ordinary differential equation. Such efforts are valuable in
determining the disparity between spatially homogeneous and spatially heterogeneous
models, especially when it comes to using these models to inform decisions made in
the area of conservation biology.

Our mathematical model (1.1) most closely resembles existing models investigat-
ing the effect of heterogeneous environments, see chapter 4 in (Ni 2001) and the
references therein, and more recently (He and Ni 2015, 2016, 2017), which provide
a rather complete picture of the global dynamics under fairly mild assumptions on
the heterogeneity appearing in the system. However, these results rely on either pos-
itivity of the environmental heterogeneity (i.e. m(x) ≥ 0), or require the average
of the heterogeneity to be positive in the cases where it is allowed to change sign,
which is much too restrictive for our setting. In addition, the existence of coexistence
steady states are proven only for limiting cases where either (d1, d2) → (0+, 0+) or
(d1, d2) → (∞,∞) while the environment is held fixed. In our setup, we are able to
provide a complete description of the global dynamics in a way that removes some of
this abstraction due to the particular choices of spatial heterogeneity. In this way, we
provide a more detailed description of environmental impacts as opposed to impacts
of dispersal rates alone. This leads to a more detailed understanding of the impact of
habitat degradation in relation to diffusion rates and levels of resilience (parameters
di and ci , i = 1, 2), and even guarantees the existence of a stable coexistence steady
state for a large parameter regime. One may also note that our approach requires a
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consideration of the case when the environmental heterogeneity is discontinuous (but
bounded), which does not satisfy the usual Hölder continuity assumption.

Additionally, readers are referred to some interesting results found in (Cantrell
and Cosner 2003) where the authors consider a one dimensional habitat (0, 1) with
heterogeneity of the form

ma(x) :=

⎧⎪⎨
⎪⎩

−1 for x ∈ [0, a),

k for x ∈ [a, a + L),

−1 for x ∈ [a + L, 1].

The authors investigate the optimal location of the favorable region given by the
parameter a. This is done for both Dirichlet and Neumann boundary conditions, and
a more general investigation is given in (Cantrell and Cosner 1989, 1991a, b). Such
work provides some motivation and insight into the investigation presented here, but
tends to focus on the particular locations of favorable habitat patches in single species
models rather than the impact of the measure of detriment within the favorable and
unfavorable regions.

We now investigate the long term behaviour and properties of the steady states
corresponding to problem (1.1) depending on the parameters appearing within the
model. In particular, we explore changes in stability based on the parameters ci , which
measures the effect of the degraded region on the competing species u and v.

1.4 Statement of main results

Denote by C(�) the space of continuous functions on � equipped with the max-
imum norm. Denote by C+(�) the positive cone of C(�), namely, C+(�) ={

f ∈ C(�) : f ≥ 0 in �
}
.

Denote by (u, v) the unique global strong solution to (1.1) with initial data
(u0, v0) ∈ (C+(�) \ {0}) × (C+(�) \ {0}). See Definition 3.1 for the definition
of strong solutions and Theorem 3.1 for the well-posedness of the problem.

Denote byμ1(d1, mc1) (resp.μ1(d2, mc2)) the principal eigenvalue associated with
the linearization of (1.3) at 0 with (d, m) = (d1, mc1) (resp. (d, m) = (d2, mc2)). See
Proposition A.2.

Whenever μ1(d1, mc1) < 0 (resp. μ1(d2, mc2) < 0), denote by u∗ (resp. v∗)
the unique positive steady state of (1.3) with (d, m) = (d1, mc1) (resp. (d, m) =
(d2, mc2)). See Theorem 2.2.

The following is the main result of this paper.

Theorem 1.1 Let 0 < d1 < d2. Then the following hold (with all convergences hold
in C(�) × C(�)).

(1) Suppose μ1(d1, mc1) ≥ 0 and μ1(d2, mc2) ≥ 0. Then, (u, v) → (0, 0) as t → ∞.
(2) Suppose μ1(d1, mc1) < 0 and μ1(d2, mc2) ≥ 0. Then, (u, v) → (u∗, 0) as

t → ∞.
(3) Suppose μ1(d1, mc1) ≥ 0 and μ1(d2, mc2) < 0. Then, (u, v) → (0, v∗) as t →

∞.
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(4) Suppose μ1(d1, mc1) < 0 and μ1(d2, mc2) < 0. Then, there exist critical values
0 < c∗

2 < c∗
2 < c1 such that the following results hold.

(i) If c2 ∈ (c∗
2,∞), then (u, v) → (u∗, 0) as t → ∞.

(ii) If c2 ∈ (c∗
2, c∗

2), then (u, v) → (ũ, ṽ) as t → ∞, where (ũ, ṽ) is the unique
coexistence steady state of (1.1).

(iii) If c2 ∈ (0, c∗
2), then (u, v) → (0, v∗) as t → ∞.

Furthermore, c∗
2 and c∗

2 are given by the unique zero of the functions c2 
→
μ1(d1, mc1 − 1Gv∗) and c2 
→ μ1(d2, mc2 − 1Gu∗), respectively. That is,

c2 = c∗
2 ⇐⇒ μ1(d1, mc1 − 1Gv∗) = 0,

and

c2 = c∗
2 ⇐⇒ μ1(d2, mc2 − 1Gu∗) = 0.

Remark 1.2 Note that in the description of c∗
2, the dependence of μ1(d1, mc1 −1Gv∗)

on c2 is given implicitly by the dependence of v∗ on c2. This is in contrast to c∗
2 where

the dependence is more explicit, seen directly by mc2 .

The proof of Theorem 1.1 is given in Sect. 3.3. Points (1)–(3) follow rather directly
from the comparison principle and the global dynamics of the scalar equation (see
Theorem 2.2). Point (4) is much more delicate. This result follows from sharp results
on the linearized stability of (u∗, 0) and (0, v∗) (see Lemmas 3.3 and 3.4, respectively),
the stability of all any coexistence state (see Lemma 3.5), the ordering of c∗

2 and c∗
2 (see

Lemma 3.6), and finally a result from the theory of monotone flows (see Proposition
3.2).

Although the conditions above are implicit, given by the sign of a particular eigen-
value, the biological interpretation can be made quite clear. In case (1), two positive
eigenvalues indicates that neither species can survive on its own, let alone in the pres-
ence of a competitor. In this case, it is intuitive that both species should go extinct
in the presence of the other. Cases (2) and (3) indicate that if one species cannot
survive on its own while the other species can, the species that can survive on its
own will persist despite the presence of a competitor. This result is also biologically
intuitive. Most interesting is case (4), which demonstrates the trade off between the
rate of diffusion and the level of resilience within the degraded region B. Here, two
negative eigenvalues assumes that both species can survive in the absence of a com-
petitor. The interesting consequence is that, depending on the level of detriment each
species experiences in the degraded region B, one or both species may survive. Point
(4)(i) demonstrates that a minor amount of competitive advantage in the degraded
region is not enough to overcome the advantage gained by the slower rate of diffusion.
Note that it is generally understood that a slower rate of diffusion is advantageous in
competition-diffusion models, the phenomenon known as “the slower diffuser always
wins” (Dockery et al. 1998; Ni 2001), at least when the environmental heterogeneity
is constant in time. When there are both good (positive) and bad (negative) regions,
the advantage of slower diffusion can be understood as a result of less loss of indi-
viduals in the degraded region. However, this result holds even when the environment
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Fig. 2 A region plot showing the long term behaviour of solutions in the c2-d2 plane. We fix d1 = c1 = 1;
the black vertical line denotes c1 = 1. The habitat is given by� = (0, 10), G = (0, 4)∪(6, 10), B = (4, 6).
The quantities c∗

2, c∗
2 are the quantities defined in Theorem 1.1. The subplot is a cross section of the case

when d2 = 10, where the time dependent solution is compared to the respective competition independent
steady state after a sufficiently large amount of time has passed to reach a steady state

is strictly positive and so there may be other possible mechanisms behind this phe-
nomenon. Point (4)(ii) shows that coexistence is possible if the trade off between the
diffusion speed and the level of detriment is intermediate. Perhaps most importantly,
point (4)(iii) demonstrates that it is possible to overcome the advantage gained by a
slower rate of diffusion through advantage in the degraded region alone. To clarify
this point further, notice that while both populations decay in the degraded region,
an advantage can be gained through resilience, that is, a smaller rate of decay in
comparison to the other species.

Below, Fig. 2 and the related subplot capture points 4(i)–(iii) of the main theorem.
ũ, ṽ denote the time dependent solution after enough time has passed such that it
has reached equilibrium. u∗, v∗ denote the competition independent solutions, both
of which exist in the chosen parameter regimes. The norm used is L1(�). There is
a wide range of c2 for coexistence, and we can make the coexistence window even
wider if the degraded region has a less negative effect on both species.

In addition, we have the following limiting case relating to point (iii) in Theorem
1.1.

Theorem 1.3 Let 0 < d1 < d2 and c2 = 0 < c1. Then,

(u, v) → (0, v∗) in C(�) × C(�) as t → ∞.
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The proof of Theorem 1.3 also appears in Sect. 3.3, subsequent to the proof of The-
orem 1.1. The proof follows from the same arguments made in the proof of Theorem
1.1 point (4), but in the special case where c2 = 0.

This result is of notable significance due to its implications for the sustainability
of multiple species. This result suggests that, under the introduction of any amount
of degraded habitat, if one species is particularly resilient in the degraded region, not
only will it survive, but it will drive the other species to extinction! Moreover, this
result holds for any such 0 < d1 < d2. Hence, under the introduction of differing
environmental heterogeneity between the two species, the slower diffuser may not
always win! In fact, in the limiting case, as long as species u experiences some level
of mortality in some region of �, species v always drives species u to extinction! The
remarkable fact is that this holds for any c1 > 0, for any region B, regardless of how
small c1 or the region B might be.

Beloware some consequences of existing results, providing amore complete picture
of the overall dynamics of the system.

Theorem 1.4 Suppose that d1, d2 > 0 and c1 = c2 = 0. Then, there exists a curve
of steady states of the form {(σ, 1 − σ) : σ ∈ [0, 1]}. Furthermore, the linearization
about the semitrivial steady states (1, 0) and (0, 1) have a zero eigenvalue.

Proof In this case, our system becomes

{
ut = d1�u + 1Gu(1 − u − v),

vt = d2�v + 1Gv(1 − u − v).

Clearly, constant steady states consist of {(σ, 1 − σ) : σ ∈ [0, 1]}. Linearizing about
the steady state (u∗, 0) = (1, 0) gives

{
d1�ψ1 − 1Gψ1 − 1Gψ2 + λψ1 = 0,

d2�ψ2 + λψ2 = 0.

Obviously, λ = 0 is an eigenvalue with an eigenfuntion (ψ1, ψ2) = (1,−1). The same
argument applies to (0, v∗) = (0, 1), showing this state also has a zero eigenvalue. �
Theorem 1.5 Suppose that d1 = d2 > 0, and u∗ and v∗ exist. The following hold.

(1) If c1 < c2, then (u, v) → (u∗, 0) in C(�) × C(�) as t → ∞.
(2) If c1 > c2, then (u, v) → (0, v∗) in C(�) × C(�) as t → ∞.

Proof The proof is identical to the case when c1 = c2 and d1 < d2. More precisely,
the result follows from the monotonicity of the eigenvalue μ1(d, mc) with respect to
c. �

2 The scalar equation

In this section, we study the scalar Eq. (1.3) with c ≥ 0 in preparation for the investi-
gation of the system (1.1).
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2.1 Well-posedness and global dynamics

We start with the definition of strong solutions and steady states to (1.3).

Definition 2.1 (1) A strong solution on [0, T ) to (1.3) is a solution which belongs to
W 2,1

p (� × (0, T )) ∩ C([0, T ); C(�)) for all p ≥ 1, satisfies the equation almost
everywhere in � × (0, T ) and satisfies the boundary condition everywhere on ∂�

for all t ∈ (0, T ). A global strong solution is a strong solution on [0, T ) for all
T > 0.

(2) A steady state to (1.3) is a solution which belongs to W 2,p(�) for all p ≥ 1,
satisfies the equation almost everywhere in� and satisfies the boundary condition
everywhere on ∂�.

Remark 2.1 Since we may choose p as large as we like, the boundary condition is
satisfied in the classical sense due to the Sobolev embedding.

Denote byC++(�) the interior ofC+(�), namely,C++(�) = {
w ∈ C(�) : w > 0

on �
}
. For w1, w2 ∈ C(�), we write w1 � w2 if w2 − w1 ∈ C++(�).

We state the following comparison principle whose proof, being much simpler than
that of Proposition 3.1, is omitted.

Proposition 2.1 Suppose w1, w2 ∈ W 2,1
p (� × (0, T )) ∩ C([0, T ); C(�)) for any

p ≥ 1, and satisfy

{
w1

t ≤ d�w1 + w1(mc − 1Gw1) a.e. in � × (0, T ),
∂w1

∂n ≤ 0 on ∂� × (0, T ),{
w2

t ≥ d�w2 + w2(mc − 1Gw2) a.e. in � × (0, T ),
∂w2

∂n ≥ 0 on ∂� × (0, T ).

(1) If w1(·, 0) ≤ w2(·, 0), then w1(·, t) ≤ w2(·, t) for all t ∈ (0, T ).
(2) Suppose, in addition, w1, w2 ∈ C1((0, T ); C(�)). If w1(·, 0) ≤ w2(·, 0) and

w1(·, 0) �≡ w2(·, 0), then w1(·, t) � w2(·, t) for all t ∈ (0, T ).

Similarly, we have the following comparison theorem for nonnegative steady states.

Proposition 2.2 Suppose w1, w2 ∈ W 2,p(�) for any p ≥ 1 are nonnegative and
satisfy

{
−d�w1 ≤ w1(mc − 1Gw1) a.e. in �,
∂w1

∂n ≤ 0 on ∂�,{
−d�w2 ≥ w2(mc − 1Gw2) a.e. in �,
∂w2

∂n ≥ 0 on ∂�.

Then, w1 ≤ w2. Moreover, there holds either w1 < w2 or w1 ≡ w2.
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Proof Suppose that w1 ≤ w2 were false. Set α∗ := inf
{
α > 1 : w1 ≤ αw2

}
. The

continuity of w1 and w2 implies that α∗ > 1 and w1 ≤ α∗w2, and that there exists a
point x0 ∈ � such that w1(x0) = α∗w2(x0).

Since f (x, w) := w(mc(x)−1G(x)w) satisfiesα∗ f (·, w) ≥ f (·, α∗w) forw > 0,
we find −d�(α∗w2) ≥ f (x, α∗w2). In particular, w1 and α∗w2 are an ordered
sub/super solution pair.

If x0 ∈ �, the strong maximum principle (Arena 1972, Theorem 1) implies that
w1 ≡ α∗w2 in �. Then, 0 < w2 < w1 due to α∗ > 1, and hence, 0 = −d�(w1 −
α∗w2) ≤ 1Gw1(w2−w1) < 0 in G, a contradiction. If x0 ∈ ∂�, Hopf’s lemma gives
∂
∂n

(
w1 − α∗w2

)
> 0 at x0, in contradiction to the boundary conditions assumed.

Hence, w1 ≤ w2. Repeating the previous steps using the maximum principle and
Hopf’s lemma, we find that either w1 < w2 or w1 ≡ w2 in �. This completes the
proof. �

We now prove the following theorem concerning the well-posedness and global
dynamics of (1.3). Recall that μ1(d, mc) is the principal eigenvalue associated with
the linearization of (1.3) at 0.

Theorem 2.2 For any initial data w0 ∈ C+(�), (1.3) admits a unique global strong
solution w ∈ Cα([0,∞); C+(�))∩ C1((0,∞); C+(�)) for any α ∈ (0, 1). Further-
more, the following stability result holds.

(i) Suppose μ1(d, mc) < 0. Then, there exists a unique positive steady state w∗
d,c to

(1.3) and w(·, t) → w∗
d,c in C(�) as t → ∞ if w0 �≡ 0.

(ii) Suppose μ1(d, mc) ≥ 0. Then, w(·, t) → 0 in C(�) as t → ∞.

This theorem says that as long as the degraded regions are not too detrimental to
the species, the population will persist. The following proof is included for complete-
ness, but essentially follows from classical results, standard L p-theory of elliptic and
parabolic equations, Propositions 2.1 and 2.2 and the theory of monotone flows. In
what follows, QT := � × (0, T ) for T > 0.

Proof of Theorem 2.2 Note that the uniqueness of global strong solutions follows
immediately from Proposition 2.1. We show the existence. First, we may approxi-
mate mc and 1G by functions mε

c and 1ε
G belonging to C∞(�), and so that mε

c → m
and 1ε

G → 1G in L p(�) for any p ≥ 1. By classical parabolic theory (see e.g. Wu
et al. 2006, Chapter 8), for each ε > 0 there exists a unique, positive classical solution
wε. It is easy to show that the solution wε is uniformly bounded in ε with respect
to L∞(�), and so by standard L p theory of parabolic equations (see e.g. Wu et al.
2006, Chapter 9), wε is uniformly bounded in W 2,1

p (QT ) for any p > 1. Taking
ε → 0, up to subsequence if necessary, we conclude that wε → w in W 2,1

p (QT )

and this limit function w is a strong solution to problem (1.3). Furthermore, by
the Sobolev embedding, w ∈ C1+α,(1+α)/2(QT ) for any α ∈ (0, 1). Then, since
it is easily shown that solutions are exponentially bounded, this solution is in fact
global. In particular, w ∈ C (1+α)/2([0,∞); C(�)). The regularity of w is an imme-
diate consequence of (Stewart 1980, Theorem 3). Indeed, since w0 ∈ C+(�) and
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(x, t) 
→ w(x, t)(mc(x) − 1Gw(x, t)) is Hölder continuous in time, ∂w
∂t exists and is

uniformly continuous on (0,∞) × �. Hence, w ∈ C1((0,∞); C(�)).
We verify that w satisfies the Neumann boundary condition. Since wε → w in

C1+α(�) as ε → 0, we see for any fixed t > 0 and x0 ∈ ∂�

∣∣∣∣∂w

∂n
(x0, t)

∣∣∣∣ ≤
∣∣∣∣ ∂

∂n
(w(x0, t) − wε(x0, t))

∣∣∣∣ +
∣∣∣∣∂wε

∂n
(x0, t)

∣∣∣∣
=

∣∣∣∣ limx→x0

(w − wε)(x0, t) − (w − wε)(x, t)

x − x0

∣∣∣∣ ≤ ‖w − wε‖C1(�) .

Taking ε → 0 shows that ∂w
∂n = 0 for all x ∈ ∂� and t > 0.

The convergence results follow from standard arguments (see e.g. (Hess 1991;
Zhao 2017)).We include the arguments below for the sake of completeness. Denote by
{�t }t≥0 the semiflow onC+(�) generated by solutions of (1.3). Let u0 ∈ C+(�)\{0}.
Replacing u0 by �1u0, we may assume without loss of generality that u0 ∈ C++(�).

When μ1(d, mc) < 0, (1.3) admits a unique positive steady state w∗
d,m . Indeed,

denote by φ1 the positive eigenfunction associated with μ1(d, mc). Direct computa-
tions verify that εφ1 is a sub solution for all small ε, and each M � 1 is a super solution.
Fix ε so small and M so large that εφ1 ≤ u0 ≤ M . Then,�t (εφ1) ≤ �t u0 ≤ �t M for
all t ≥ 0 thanks to Proposition 2.1.Moreover,�t (εφ1) is increasing in t and converges
pointwise to the positive steady state w∗

d,mc
as t → ∞, and �t M is decreasing in t

and converges pointwise to a positive steady state w∗
d,c as t → ∞. Proposition 2.2

guarantees that w∗
d,c = w∗

d,c, that is, the steady state denoted by w∗
d,c is unique. By

Dini’s theorem, the convergence holds in C(�). It follows that�t u0 → w∗
d,c in C(�)

as t → ∞.
If μ1(d, mc) ≥ 0, then 0 is the only steady state to (1.3). Indeed, it follows that

for each M � 1, �t M is decreasing in t and converges in C(�) to 0 as t → ∞.
Fixing M so large that u0 ≤ M , we conclude that �t u0 → 0 in C(�) as t → ∞.
This completes the proof. �

From this result, we see that persistence depends intimately on mc. Since mc =
1G − c1B , the persistence of a single species depends on the size of the region B and
the level of resilience (described by the parameter c) within region B. In particular,
given any size or location of destroyed habitat, one can always choose c sufficiently
small such that

∫
�

mdx = |G| − c |B| > 0 so long as |G| > 0 (see Lemma 2.3). This
implies that given any configuration of good and bad regions, there is always a value
c sufficiently small such that the species’ population persists. Notice that the same
cannot be said concerning extinction if we take c large!

This motivates consideration of the special case when c = 0. In this case, our
nonlinear term becomes w(1G − 1Gw) = 1Gw(1 − w). In this form, w ≡ 1 is the
only steady state, and hence, w → 1 as t → ∞ for any nontrivial initial data. This
is an interesting result as it indicates that as long as there is some region where the
growth rate of the species is positive (in this case, in the region G at rate 1), the species
will reach carrying capacity everywhere. This point will become important later when
discussing a similar limiting case of the full system (1.1).
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2.2 Some useful results

In this section we present some results for later use.

Lemma 2.3 There exists c∗ = c∗(d) ∈ (0,∞] such that μ1(d, mc) < 0 if and only if
c ∈ [0, c∗).

Proof Direct computation shows that
∫
�

mc = |G| − c |B| ≥ 0 for all 0 ≤ c ≤ |G|
|B| .

It follows from Proposition A.2 (i) that μ1(d, mc) < 0 for all c ∈ [0, |G|
|B| ].

By Proposition A.2 (iv) and (v), the function c 
→ μ1(d, mc) is increasing and
continuous on [0,∞). Thus, if limc→∞ μ1(d, mc) > 0, then there is a unique c∗ ∈
(0,∞) such that μ1(d, mc) = 0 when c = c∗, and μ1(d, mc) < 0 if and only if
c ∈ [0, c∗). If limc→∞ μ1(d, mc) ≤ 0, then μ1(d, mc) < 0 for all c ∈ [0,∞). In this
case, c∗ = ∞. �

Let c∗ = c∗(d) be as in Lemma 2.3. Theorem 2.2 ensures that (1.3) admits a unique
positive steady state w∗

d,c for each c ∈ [0, c∗). We prove the following result.

Lemma 2.4 There hold w∗
d,c < 1 in � for all c ∈ (0, c∗). Furthermore, w∗

d,c → 1 in

C(�) as c → 0.

Proof We write w∗
c for w∗

d,c for notational simplicity.
Notice that w∗

0 ≡ 1. Then, for any c ∈ (0, c∗), w∗
c � 1 by Proposition 2.2. The

strong maximum principle for strong solutions (see e.g. Arena 1972, Theorem 1) then
implies that w∗

c < 1 in �. If w∗
c (x0) = 1 for some x0 ∈ ∂�, Hopf’s lemma implies

that ∂w∗
c

∂n (x0) > 0, which contradicts the boundary condition satisfied by w∗
c , and so

w∗
c < 1 in � for all c ∈ (0, c∗).
By Proposition 2.2, w∗

c is increasing as c decreases. Hence, the pointwise limits
w∗ := limc→0 w∗

c exist in �, and 0 < w∗ ≤ 1 in �. The auxiliary function zc :=
1 − w∗

c ≥ 0 satisfies

−d�zc = −w∗
c (mc − 1Gw∗

c ) a.e. in �. (2.1)

Multiplying the above equation by zc, integrating over � and integrating by parts
yield d

∫
�

|∇zc|2 dx = − ∫
�

zcw
∗
c (mc − 1Gw∗

c )dx . As mc = 1G − c1B , we find

d
∫

�

|∇zc|2 dx = −
∫

G
z2cw

∗
c dx + c

∫
B

zcw
∗
c dx ≤ c

∫
B

zcw
∗
c dx ≤ c |B| .

Hence, ‖∇zc‖L2(�) → 0 as c → 0. Since zc ∈ C1,α(�), ∇zc exists in the classical
sense and is uniformly bounded in c. Indeed, the Sobolev embedding guarantees that
‖zc‖C1(�) ≤ M ‖zc‖W 2,p(�) for some constant M > 0. Since the right hand side of
the equation satisfied by zc is uniformly bounded in L p for any p ≥ 1, ‖zc‖W 2,p(�)

is uniformly bounded by standard elliptic L p estimates. This together with Hölder’s
inequality and the convergence in L2(�) implies that ‖∇zc‖L p(�) → 0 for any p ≥ 1.

From previous arguments, the right hand side of (2.1) is uniformly bounded in
L p(�) for c ∈ (0, c∗) for any p ≥ 1. Standard L p estimates imply that zc is uniformly
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bounded in W 2,p(�), and compactness gives us the existence of a subsequence {ck}k

so that zck → z0 in W 1,p(�) as k → ∞. Then, since the right hand side of (2.1)
consists only of lower order terms, the same L p estimates imply that zc → z0 in
W 2,p(�). Consequently, for almost every x ∈ �, we see that z0 must satisfy

−d�z0 = −d�(z0 − zc) − d�zc = −d�(z0 − zc) − w∗
c (mc − 1Gw∗

c )

= −d�(z0 − zc) − 1Gw∗
c zc + c1B(w∗

c )2.

Taking c → 0, up to subsequence if necessary, yields −d�z0 = −1Gw∗
0z0 ≤ 0,

where the convergence is understood in the sense of L p(�). The maximum prin-
ciple implies that z0 = 0 a.e. in �. The Sobolev embedding ensures that z0 is in
fact continuous, and so z0 = 0 everywhere in �. Consequently, zc → z0 ≡ 0 in
L p(�). The Sobolev embedding allows us to conclude that for p appropriately large,
‖zc‖C(�) ≤ M ‖zc‖W 1,p(�) → 0 as c → 0. This implies that w∗

c → 1 uniformly in

�, completing the proof. �

3 The system

In this section, we study the system (1.1) and prove our main results, Theorems 1.1
and 1.3.

3.1 Comparison principles

In what follows, the orderings ≤K , <K and �K denote the standard skew orderings
for competitive systems: for u1, u2, v1, v2 ∈ C(�),

(u1, v1) ≤K (u2, v2) iff u2 − u1 ∈ C+(�) and v1 − v2 ∈ C+(�),

(u1, v1) <K (u2, v2) iff u2 − u1 ∈ C+(�) \ {0} and v1 − v2 ∈ C+(�) \ {0},
(u1, v1) �K (u2, v2) iff u2 − u1 ∈ C++(�) and v1 − v2 ∈ C++(�).

Proposition 3.1 Let T ∈ (0,∞). Suppose that u, u, v, v belong to W 2,1
p (�×(0, T ))∩

C([0, T ); C(�)) for any p ≥ 1 with u(·, 0), v(·, 0) ≥ 0 and satisfy the conditions:

ut − d1�u ≤ u(mc1 − 1G(u + v)) a.e. in � × (0, T ),

vt − d2�v ≤ v(mc2 − 1G(u + v)) a.e. in � × (0, T ),

ut − d1�u ≥ u(mc1 − 1G(u + v)) a.e. in � × (0, T ),

vt − d2�v ≥ v(mc2 − 1G(u + v)) a.e. in � × (0, T ),

∂u

∂n
≤ ∂u

∂n
on ∂� × (0, T ),

∂v

∂n
≤ ∂v

∂n
on ∂� × (0, T ).
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Then, the following hold.

(1) If (u(·, 0), v(·, 0)) ≤K (u(·, 0), v(·, 0)), then (u(·, t), v(·, t)) ≤K (u(·, t), v(·, t))
for all t ∈ (0, T ).

(2) Suppose in addition u, u, v, v belong to C1((0,∞); C(�)). If (u(·, 0), v(·, 0)) <K

(u(·, 0), v(·, 0)), then

(u(·, t), v(·, t)) �K (u(·, t), v(·, t)), ∀t ∈ (0, T ).

Proof (1) First, we claim that u, v ≥ 0 holds necessarily. Consider w = −u. Then by
assumption, w satisfies

wt − d1�w ≤ β(t)w, (3.1)

for somenonnegativeβ(t), the existenceofwhich follows fromv, u ∈ C([0, T ); C(�)).
Set w− = max{0,−u}. Multiplying (3.1) by w−, integrating the resulting inequality
over� and integrating by parts yields that 12

d
dt

∫
�
(w−)2dx ≤ β(t)

∫
�
(w−)2dx . From

the Gronwall inequality and the nonnegativity at t = 0, we obtain w− ≡ 0. The same
argument applies to v, and hence u, v ≥ 0.

Now, setw1 := u−u andw2 = v−v.We show thatw+
i := max{0, wi } ≡ 0 for i =

1, 2. Setting f1(x, u, v) = u(mc1 −1G(u+v)) and f2(x, u, v) = v(mc2 −1G(u+v)),
we estimate

1

2

d

dt

∫
�

[
(w+

1 )2 + (w+
2 )2

]
dx

≤
∫

�

w+
1

(
d1�w1 + f1(x, u, v) − f1(x, u, v)

)
dx

+
∫

�

w+
2

(
d2�w2 + f2(x, u, v) − f2(x, u, v)

)
dx

≤
∫

�

w+
1

(
f1(x, u, v) − f1(x, u, v)

)
dx

+
∫

�

w+
2

(
f2(x, u, v) − f2(x, u, v)

)
dx, (3.2)

where we used the assumed differential inequalities in the first inequality, and inte-
grated by parts and dropped non-positive terms in the second inequality.

We now write

f1(x, u, v) − f1(x, u, v) = u(mc1 − 1G(u + v)) − u(mc1 − 1G(u + v))

= mc1(u − u) − 1G
(
(u + u)(u − u) + v(u − u) − u(v − v)

)
= (mc1 − 1G(u + u + v))w1 + 1Guw2,

f2(x, u, v) − f2(x, u, v) = (mc2 − 1G(v + v + u)w2 + 1Gvw1.
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Inserting these into (3.2) yields

1

2

d

dt

∫
�

[
(w+

1 )2 + (w+
2 )2

]
dx

≤
∫

�

(mc1 − 1G(u + u + v))(w+
1 )2dx

+
∫

�

(mc2 − 1G(v + v + u)(w+
2 )2dx

+
∫

�

(
uw+

1 w2 + vw+
2 w1

)
dx

≤
∫

�

[
(mc1 − 1Gu)(w+

1 )2 + (mc2 − 1Gv)(w+
2 )2

]
dx +

∫
�

(u + v)w+
1 w+

2 dx .

Notice that in the second inequality, we have used that u, v ≥ 0 so that uw+
1 w2 =

uw+
1 (w+

2 − w−
2 ) ≤ uw+

1 w+
2 . A similar inequality holds for vw+

2 w1.
Next, applying Young’s inequality to the mixed term yields

1

2

d

dt

∫
�

[
(w+

1 )2 + (w+
2 )2

]
dx

≤
∫

�

(mc1 − 1Gu + (u + v)/2)(w+
1 )2dx

+
∫

�

(mc2 − 1Gv + (u + v)/2)(w+
2 )2dx

≤ β(t)
∫

�

[
(w+

1 )2 + (w+
2 )2

]
dx,

where the existence of such a functionβ(t) again follows from the fact that all sub/super
solution pairs belong to C([0, T ), C(�)). Gronwall’s inequality then gives

∫
�

(
(w+

1 )2 + (w+
2 )2

)
dx ≤ e2

∫ t
0 β(s)ds

∫
�

(
(w+

1 (0))2 + (w+
2 (0))2

)
dx = 0,

since w+
1 (0) = max{0, u(x, 0) − u(x, 0)} = 0 and w+

2 (0) = max{0, v(x, 0) −
v(x, 0)} = 0 by assumption. Consequently, w+

i = 0, and hence wi ≤ 0 a.e. in QT

for each i , i.e. u ≤ u and v ≤ v a.e. in QT . Finally, by the Sobolev embedding all
quantities are continuous in QT , and hence the inequality holds everywhere in QT .
This completes the proof of the first part of the theorem.

(2) Next, notice the Sobolev embedding ensures that u, u, v, v ∈ C1(�) for all
t ∈ (0, T ). If in addition we assume that u, u, v, v ∈ C1((0, T ); C(�)), wemay apply
the strong maximum principle as follows. Since w1 ≤ 0, the hypothesis of (Arena
1972, Theorem 1) is satisfied. Suppose there exists a point (x0, t0) ∈ � × (0, T ) such
that z = 0. Then, by (Arena 1972, Theorem 1), it must be the case thatw1 ≡ 0 in� for
all t ∈ (0, t0). This contradicts the fact thatw1(x, 0) = u(x, 0)−u(x, 0) < 0 for some
x ∈ �. Hence,w1 < 0 for all (x, t) ∈ �×(0, T ), i.e. u < u for all (x, t) ∈ �×(0, T ).
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As a final note, suppose that there exists x0 ∈ ∂� such that w1(x0, t0) = 0 for some
t0 > 0. Hopf’s lemma then guarantees that ∂w1

∂n > 0, which is clearly in contradiction

to the assumption that ∂w1
∂n = ∂u

∂n − ∂u
∂n ≤ 0. Hence, u < u for all (x, t) ∈ � × (0, T ).

The same procedure yields that v < v using instead that u ≤ u from (1) and
the boundary conditions for v, v. This completes the proof of the second part, and
concludes the proof of the theorem. �

3.2 Well-posedness and strongmonotonicity

In this section, we briefly discuss the well-posedness of problem (1.1), or more pre-
cisely, the existence and regularity of solutions, in addition to monotonicity properties
of the induced semiflow. Usually, details of this nature are suppressed as they follow
from classical results; however, due to the discontinuity of the heterogeneity in our
system, some care must be given in order to determine the strong monotonicity of the
system. We remind readers that QT = � × (0, T ).

Definition 3.1 A strong solution on [0, T ) to (1.1) a solution pair (u, v)which belongs
to

[
W 2,1

p (QT ) ∩ C([0, T ); C(�))
]2

for any p ≥ 1, satisfies the system almost everywhere in � and satisfies the boundary
condition everywhere on ∂�. A global strong solution is a strong solution on [0, T )

for all T > 0.

Definition 3.2 A steady state to (1.1) is a solution pair (ũ, ṽ) which belongs to
[W 2,p(�)]2 for any p ≥ 1, satisfies the system almost everywhere in � and sat-
isfies the boundary condition everywhere on ∂�. A steady state (ũ, ṽ) is referred to
as a coexistence steady state if (ũ, ṽ) ∈ [C+(�) \ {0}]2.
Theorem 3.1 For any initial data (u0, v0) ∈ C+(�) × C+(�), there exists a unique
global strong solution (u, v) to (1.1) satisfying (u, v) ∈ [Cα([0,∞); C+(�)) ∩
C1((0,∞); C+(�))]2 for any α ∈ (0, 1). Moreover, solutions to problem (1.1) are
strongly monotone in the sense that if (u0, v0), (ũ0, ṽ0) ∈ C+(�) × C+(�) are such
that (u0, v0) <K (ũ0, ṽ0), then (u(·, t), v(·, t)) �K (ũ(·, t), ṽ(·, t)) for all t > 0

Proof We may repeat the same process given in the scalar case in order to deduce
some preliminary regularity results. That is, regularize all discontinuities and argue via
compactness. Then, choose p large enough so that in fact (u, v) ∈ [C1+α,(1+α)/2(�×
[0, T ))]2 for any α ∈ (0, 1) by the Sobolev embedding (see e.g. Wu et al. (2006),
Theorem 1.4.1). We then easily verify that the boundary conditions are satisfied in the
classical sense due to the regularity obtained via the Sobolev embedding.

Next,we show that solutions are positive and global. First, we assert that the solution
(u, v) is nonnegative. To see this, note that the equation for each solution can bewritten
as

ut = d1�u + uF1(t),
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vt = d2�v + vF2(t),

where Fi (t) = mi − 1G(u + v) are bounded by some nonnegative function β(t) for
any T > 0. Multiplying each equation by u− = max{0,−u} and v− = max{0,−v}
respectively and integrating over �, we find that

1

2

d

dt

∫
�

[
(u−)2 + (v−)2

]
dx ≤ β(t)

∫
�

[
(u−)2 + (v−)2

]
dx .

The result then follows from Gronwall’s inequality and the fact that u−(·, 0) =
v−(·, 0) = 0.

Next, if one considers the pair (u, v) = (Meγ tψ1, 0) where ψ1 is the first eigen-
fuction solving (A.2) corresponding to μ1(d1, mc1), it is easy to see that

ut − d�u ≥ u(mc1 − 1G(u + v)),

so long as γ ≥ μ1(d1, mc1). Hence, u is exponentially bounded in time and thus
necessarily exists globally. Furthermore, we see that u(x, t) > 0 in � for all t > 0 so
long as u0(x) = u(x, 0) > 0 somewhere in �. A similar argument holds for v(x, t)
when one considers (u, v) = (0, Meγ tψ1) where ψ1 corresponds to μ1(d2, mc2) and
γ is chosen such that γ + μ1(d2, mc2) ≥ 0.

We may now improve the regularity in the time variable for application in the
following section. Most important in this argument is the Hölder continuity of the
solution in the variable t . This allows us to apply (Stewart 1980, Theorem 3) once
again: since u0 ∈ C(�) and (x, t) 
→ u(x, t)[mc1 − 1G(u(x, t) + v(x, t))] is Hölder
continuous with exponent α in the variable t , we may conclude that ∂u

∂t exists and is
uniformly continuous on (0,∞). Similarly, we conclude that ∂v

∂t exists and is also uni-
formly continuous on (0,∞). Consequently, the unique strong solution (u, v) belongs
to [Cα([0,∞); C(�)) ∩ C1((0,∞); C(�))]2.

With the sufficient regularity obtained, Proposition 3.1 (2) immediately gives us
the strong monotonicity of the system, completing the proof. �

The strong monotonicity allows us to use the following result (see e.g. Hess 1991,
Proposition 9.1 and Theorem 9.2 and Zhao 2017, Theorem 2.4.1). This result is only
necessarywhen applied toTheorem1.1 (4), andhence,we assume thatμ1(di , mci ) < 0
for i = 1, 2. This ensures that both u∗ and v∗ exist.

Proposition 3.2 Let d1, d2 > 0 and c1, c2 ≥ 0 be such that μ1(di , mci ) < 0 for
i = 1, 2. Suppose that every coexistence steady state of (1.1), if exists, is asymptotically
stable. Then one of the following alternatives holds.

(a) There exists a unique coexistence steady state of (1.1) which is globally asymptot-
ically stable.

(b) System (1.1) has no coexistence steady state, and one of (u∗, 0) or (0, v∗) is
globally asymptotically stable, while the other is unstable.

We also have the following existence-comparison theorem for the elliptic system.
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Proposition 3.3 Suppose that u, u, v, v belong to W 2,p(�) for any p ≥ 1 and satisfy
the conditions:

−d1�u ≤ u(mc1 − 1G(u + v)) a.e. in �,

−d2�v ≤ v(mc2 − 1G(u + v)) a.e. in �,

−d1�u ≥ u(mc1 − 1G(u + v)) a.e. in �,

−d2�v ≥ v(mc2 − 1G(u + v)) a.e. in �,

∂u

∂n
≤ ∂u

∂n
on ∂�,

∂v

∂n
≤ ∂v

∂n
on ∂�.

If u, u, v, v satisfy (u, v) ≤K (u, v), then

– there exist steady states (u∗, v∗) and (u∗, v∗) to (1.1) such that

(u, v) ≤K (u∗, v∗) ≤K (u∗, v∗) ≤K (u, v);

– any steady state (û, v̂) to (1.1) obeying (u, v) ≤K (û, v̂) ≤K (u, v) must satisfy

(u∗, v∗) ≤K (û, v̂) ≤K (u∗, v∗).

Proof The proof follows from standard iterative arguments and Aleksandrov’s max-
imum principle (see e.g. Gilbarg and Trudinger 1998, Chapter 9, Theorem 9.1) in
place of the classical maximum principle. Some key details are provided here for
completeness.

First, let K be so large that F1(x, u, v) := K u + u(mc1 − 1G(u + v)) and
F2(x, u, v) := Kv + v(mc2 − 1G(u + v)) are non-decreasing in the arguments u
and v, respectively. We then iterate through the process

−d1uk + K uk = F1(x, uk−1, vk−1),

−d2vk + Kvk = F2(x, uk−1, vk−1),

subject to homogeneousNeumann boundary conditions.We then use (u, v) = (u0, v0)

and (u0, v0) as initial iterates to create monotonic sequences satisfying

u ≤ uk ≤ uk+1 ≤ uk+1 ≤ uk ≤ u, v ≤ vk ≤ vk+1 ≤ vk+1 ≤ vk ≤ v,

for all k ≥ 1. Interested readers are directed to (Pao 1992, Chapter 8.4) for further
details.

Once these monotone sequences are constructed, the following pointwise limits
exist

lim
k→∞ uk = u∗, lim

k→∞ uk = u∗, lim
k→∞ vk = v∗, lim

k→∞ vk = v∗,
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with convergence understood in the sense of W 2,p(�) for any p ≥ 1. Since each
Fi (x, u, v) are Lipschitz continuous in the arguments u, v, one may then apply stan-
dard L p theory of elliptic equations in order to deduce that these limit functions are
indeed solutions to the steady state problem associated with (1.1). By the Sobolev
embedding we have that in fact all solutions belong to C1(�), and so also satisfy the
boundary conditions everywhere on ∂� in the classical sense. The ordering relation
of these solution obtained then follows immediately due to the ordering of the original
sequences.

Finally, if (u∗, v∗) is any other solution lying between the original sub/super solu-
tions pairs, choosing (u0, v0) = (u∗, v∗) yields u∗ ≤ u∗ and v∗ ≥ v∗. A similar
argument yields u∗ ≥ u∗ and v∗ ≤ v∗, completing the proof. �

We conclude this subsection with the following simple result.

Corollary 3.2 If a coexistence steady state (ũ, ṽ) to (1.1) exists, there must hold (ũ, ṽ) ∈
C++(�) × C++(�).

Proof It is easy to see that (0, v∗) ≤K (ũ, ṽ) ≤K (u∗, 0) from Proposition 3.3. The
result then follows from of Proposition 3.1 (2) with (u, v) = (0, v∗) and (u, v) =
(u∗, 0). �

3.3 Global dynamics and proof of main results

We prove Theorems 1.1 and 1.3 in this section. For notational simplicity, we omit
Neumann boundary conditions whenever no confusion is caused.

Proof of Theorem 1.1 (1)-(3) Parts (1)–(3) follow from standard arguments. We include
the proofs for completeness. Denote by (u, v) the unique global strong solution to (1.1)
with initial data (u0, v0) ∈ [C+(�) \ {0}]2.

(1) Suppose μ1(di , mci ) > 0 for i = 1, 2. Define (u, v) := (0, w2) and (u, v) :=
(w1, 0) in � × [0,∞), where w1 and w2 are respectively solutions to (1.3) with
(d, m) = (d1, mc1) and (d, m) = (d2, mc2) subject to the initial conditionsw1(·, 0) =
u0 and w2(·, 0) = v0. By Theorem 2.2, wi (·, t) → 0 in C(�) as t → ∞ for i = 1, 2.

Direct computation shows that the differential inequalities in Proposition 3.1 hold,
that is, (u, v) and (u, v) are respectively a sub solution and a super solution of (1.1).
We conclude from Proposition 3.1 that 0 ≤ u ≤ u and 0 ≤ v ≤ v in � for all t > 0.
Hence, (u, v) → (0, 0) in C(�) × C(�) as t → ∞, completing the proof.

Next we prove the result for case (3). Case (2) follows in a similar fashion. Suppose
that μ1(d1, mc1) ≥ 0 and that μ1(d2, mc2) < 0 so that v∗ exists.

Let w be the unique solution of (1.3) with (d, m) = (d1, mc1) and initial data
w0 = u0. Theorem 2.2 (ii) ensures that w → 0 in C(�) as t → ∞. Obviously, w

satisfies

wt − d1�w ≥ w(mc1 − 1G(w + v)) a.e. in � × (0,∞),

and hence, u ≤ w by Proposition 2.1. It follows that u → 0 in C(�) as t → ∞, and
thus, for any 0 < ε � 1, there is tε � 1 such that 0 ≤ u ≤ ε in � for all t ≥ tε. Let
zε be the strong solution to the following auxiliary problem
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{
zt = d2�z + z(mc2 − 1G(z + ε)) in � × (tε,∞),

z(·, tε) = v(·, tε) in �.

Proposition 2.1 yields that zε ≤ v for all t ≥ tε.
Recall that μ1(d2, mc2) < 0 by assumption. By Proposition A.2 (iii), we may

choose ε so small that μ1(d2, mc2 − ε1G) < 0. Then, the following equation:

d2�z∗ + z∗(mc2 − 1G(z∗ + ε)) = 0 in �

admits a unique positive solution z∗
ε . It follows from Theorem 2.2 that zε → z∗

ε in
C(�) as t → ∞.

Finally, let v solve

{
vt = d2�v + v(mc2 − 1Gv) in � × (0,∞),

v(·, 0) = v0 in �.

By Theorem 2.2, v → v∗ as t → ∞. Note that by Proposition 2.1, v ≤ v in � for all
t > 0. Combining these results, we deduce that

z∗
ε = lim

t→∞ zε ≤ lim inf
t→∞ v ≤ lim sup

t→∞
v ≤ lim

t→∞ v = v∗, ∀0 < ε � 1.

We conclude by showing that z∗
ε → v∗ in C(�) as ε → 0. It is clear that the family

{z∗
ε}ε is uniformly bounded in L∞(�), and hence is uniformly bounded in L p(�) for

any p ≥ 1. Consequently, standard elliptic L p-estimates (see e.g. Wu et al. 2006,
chapter 9) imply that {z∗

ε}ε is uniformly bounded in W 2,p(�), and by compactness,
there exists a subsequence, still denoted by {z∗

ε}ε, such that z∗
ε → z∗

0 in L p(�) as
ε → 0. Hence, z∗

ε (mc2 − ε1G − 1G z∗
ε ) → z∗

0(mc2 − 1G z∗
0) in L p(�) as ε → 0. In

particular, this means that {z∗
ε}ε is a Cauchy sequence in L p(�). Then, by the same

L p-estimates, we see that {z∗
ε}ε is a Cauchy sequence in W 2,p(�). Since W 2,p(�)

is a Banach space, there exists a unique limit denoted by z∗
0 such that zε → z∗

0 in
W 2,p(�) as ε → 0. We now see that z∗

0 must satisfy −d2�z∗
0 = 1G z∗

0(1 − z∗
0) a.e.

in �. Furthermore, the convergence in W 2,p(�) for p sufficiently large implies the

convergence in C1(�), and so z∗
0 satisfies

∂z∗
0

∂n = 0 on ∂�. It follows that z∗
0 is a strong

solution satisfying the same equation as v∗. The uniqueness of solutions implies that
z∗
0 = v∗ in �. This completes the proof. �
The rest of this section is devoted to the proof of Theorem 1.1 (4) with the short

proof of Theorem 1.3 presented at the end of this section.
In the next two results, we study the local stability of semi-trivial steady states of

(1.1). Whenever μ1(d1, mc1) < 0 (resp. μ1(d2, mc2) < 0), we denote by u∗ (resp. v∗)
the unique positive steady state of (1.3) with (d, c) = (d1, c1) (resp. (d, c) = (d2, c2)).
Therefore, Lemma 2.4 applies to u∗ and v∗ with respect to c1 and c2, respectively.

Lemma 3.3 Suppose c1 > 0 and μ1(d1, mc1) < 0. Then there exists a critical value
c∗
2 ∈ (0, c1) such that the following hold:
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(i) If c2 ∈ (0, c∗
2), then (u∗, 0) is unstable;

(ii) If c2 ∈ (c∗
2, c1), then (u∗, 0) is linearly stable.

Furthermore, c∗
2 satisfies c∗

2 > c2 := |G|−∫
G u∗

|B| > 0.

Proof Consider the following eigenvalue problem associated to the linearization of
(1.1) about (u∗, 0):

{
d1�ψ1 + (mc1 − 21Gu∗)ψ1 − 1Gu∗ψ2 + λψ1 = 0 in �,

d2�ψ2 + (mc2 − 1Gu∗)ψ2 + λψ2 = 0 in �.
(3.3)

In particular,

d2�ψ2 + (mc2 − 1Gu∗)ψ2 + λψ2 = 0 in �, (3.4)

and so all eigenvalues are real.
Since |G| >

∫
G u∗ due to Lemma 2.4, we deduce

∫
�
(mc2 −1Gu∗) = |G|−∫

G u∗−
c2 |B| ≥ 0 for all c2 ≤ c2, where c2 is as in the statement. It follows from Proposition
A.2 that

μ1(d2, mc2 − 1Gu∗) < 0, ∀c2 ≤ c2, (3.5)

where μ1(d2, mc2 − 1Gu∗) is the first eigenvalue of (3.4).
Assume c2 ≤ c2 and let ψ2 be the positive eigenfunction associated to λ :=

μ1(d2, mc2 − 1Gu∗) < 0. We solve for ψ1 in the first equation of (3.3) given by

d1�ψ1 + (mc1 − 21Gu∗)ψ1 − 1Gu∗ψ2 + λψ1 = 0 in �. (3.6)

Since μ1(d1, mc1 − 21Gu∗) > μ1(d1, mc1 − 1Gu∗) = 0 and λ < 0, the operator
given by

d1� + (mc1 − 21Gu∗) + λ : C(�) → C(�), (3.7)

is invertible. This together with the Krein-Rutman theorem (see e.g. Hess 1991, The-
orem 7.3) implies that (3.6) admits a unique positive solution. Hence, λ is a negative
eigenvalue to the problem (3.3) and (u∗, 0) is unstable.

So far, we have shown that (u∗, 0) is unstable for c2 ∈ (0, c2]. We extend this
interval to (0, c∗

2) for some c∗
2 > c2. First, if we choose c2 = c1 so that mc2 = mc1 , we

see from Proposition A.2 (iii) that μ1(d2, mc2 − 1Gu∗) > μ1(d1, mc2 − 1Gu∗) = 0.
This together with (3.5) and the monotonicity of c2 
→ μ1(d2, mc2 − 1Gu∗) yields
the existence of a unique value c∗

2 ∈ (c2, c1) such that μ1(d2, mc∗
2
− 1Gu∗) = 0. In

particular, μ1(d2, mc2 − 1Gu∗) < 0 for all c2 ∈ (0, c∗
2). Hence, the operator (3.7) is

again invertible for all c2 ∈ (0, c∗
2) and so (u∗, 0) is unstable. This proves part (i) of

the proposition.

123



Global dynamics of a diffusive competition model with... Page 25 of 34    18 

It remains to show that (u∗, 0) is linearly stable for all c2 ∈ (c∗
2, c1). Referring back

to the eigenvalue problem (3.3), if ψ2 �≡ 0, then λ must satisfy λ ≥ μ1(d2, mc2 −
1Gu∗) > 0, as c2 ∈ (c∗

2, c1). On the other hand, if ψ2 ≡ 0, one considers only

d1�ψ1 + (mc1 − 21Gu∗)ψ1 + λψ1 = 0 in �,

and notices that λ ≥ μ1(d1, mc1 − 21Gu∗) > μ1(d1, mc1 − 1Gu∗) = 0. In either
case, all eigenvalues of (3.3) are positive, and thus, (u∗, 0) is linearly stable for all
c2 ∈ (c∗

2, c1). This completes the proof of part (ii). �
Lemma 3.4 Let c1 > 0 and μ1(d2, mc2) < 0. There exists a critical value c∗

2 ∈ (0, c1)
such that the following hold:

(i) If c2 ∈ (0, c∗
2), then (0, v∗) is linearly stable;

(ii) If c2 ∈ (c∗
2, c1), then (0, v∗) is unstable.

Furthermore, c∗
2 satisfies c∗

2 > c2 := sup {c2 > 0 : v∗ ≥ u∗ in G} > 0.

Proof Consider the following eigenvalue problem associated to the linearization of
(1.1) about (0, v∗):

{
d1�ψ1 + (mc1 − 1Gv∗)ψ1 + λψ1 = 0 in �,

d2�ψ2 + (mc2 − 21Gv∗)ψ2 − 1Gv∗ψ1 + λψ2 = 0 in �.
(3.8)

By Lemma 2.4, u∗ < 1 in �, and v∗ → 1 in C(�) as c2 → 0, and thus, u∗ ≤ v∗
in G if c2 is sufficiently small. Hence, c2 is well-defined. Proposition A.2 (iv) yields
that

μ1(d1, mc1 − 1Gv∗) > μ1(d1, mc1 − 1Gu∗) = 0, ∀c2 ∈ (0, c2).

If ψ1 �≡ 0, then λ ≥ μ1(d1, mc1 − 1Gv∗) > 0. If ψ1 ≡ 0, then λ ≥ μ1(d2, mc2 −
21Gv∗) > μ1(d2, mc2 −1Gv∗) = 0. In either case, all eigenvalues of (3.8) are positive
for c2 ∈ (0, c2), and so (0, v∗) is linearly stable for c2 ∈ (0, c2).

We now extend the interval (0, c2) to (0, c∗
2). Notice that if we choose c2 = c1,

then

μ1(d1, mc1 − 1Gv∗) = μ1(d1, mc2 − 1Gv∗) < μ1(d2, mc2 − 1Gv∗) = 0,

and hence there exists a critical value c∗
2 > c2 such that μ1(d1, mc1 − 1Gv∗) = 0.

Consequently, (0, v∗) is linearly stable for all c2 ∈ [0, c∗
2).

Finally, we show that (0, v∗) is unstable for all c2 > c∗
2. Referring back to the

linearized system (3.8), set λ = μ1(d1, mc1 − 1Gv∗) < 0 and denote by ψ1 the
corresponding eigenfunction. We now solve for ψ2. This follows immediately from
the fact that the operator d2� + (mc2 − 21Gv∗) + λ is invertible since μ1(d2, mc2 −
21Gv∗) > 0 and λ < 0. Hence, (3.8) has a negative eigenvalue for all c2 > c∗

2 and so
(0, v∗) is unstable. This completes the proof. �
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Next, we state a result asserting that every coexistence steady state is linearly stable,
whenever it exists. This key result in conjunction with Proposition 3.2 will allow us
to prove the subsequent Lemma, which results in conclusions of global asymptotic
stability.

Lemma 3.5 Suppose 0 < d1 < d2 and 0 ≤ c2 < c1. Then, any coexistence steady
state of (1.1), whenever it exists, is linearly stable.

Proof We adapt the proof of (He and Ni 2015, claim (S)). Let (ũ, ṽ) be a coexistence
steady state of (1.1). Then, (0, ṽ) �K (ũ, 0) byCorollary 3.2. Consider the eigenvalue
problem associated to the linearization of (1.1) about (ũ, ṽ):

{
d1�ψ1 + (mc1 − 1G(ũ + ṽ) − 1Gũ)ψ1 − 1Gũψ2 + λψ1 = 0 in �,

d2�ψ2 + (mc2 − 1G(ũ + ṽ) − 1G ṽ)ψ2 − 1G ṽψ1 + λψ2 = 0 in �.
(3.9)

Denote by (φ1, φ2) the eigenfunction pair associated to the principal eigenvalue
λ1, whose existence and simplicity is ensured by the Krein-Rutman theorem. We may
chooseφ1, φ2 such that (0, 0) �K (φ1, φ2) and ‖φ1‖22+‖φ2‖22 = 1.Here, the ordering
of φ1, φ2 is a consequence of the existence of the eigenfunction pair obtained in the
ordered cone (X) × (−X), where X = C++(�). Direct calculations give

d1∇ ·
(

ũ2∇
(

φ1

ũ

))
= 1Gũ2(φ1 + φ2) − λ1ũφ1 in �.

Multiplying the above identity by
φ2
1

ũ2
and integrating over �, we find

−2d1

∫
�

ũφ1

∣∣∣∣∇
(

φ1

ũ

)∣∣∣∣
2

dx =
∫

G
φ2
1(φ1 + φ2)dx − λ1

∫
�

φ3
1

ũ
dx .

Similarly, there holds

−2d2

∫
�

ṽφ2

∣∣∣∣∇
(

φ2

ṽ

)∣∣∣∣
2

dx =
∫

G
φ2
2(φ1 + φ2)dx − λ1

∫
�

φ3
2

ṽ
dx .

Combining these two identities, we find

−λ1

∫
�

(
φ3
1

ũ
− φ3

2

ṽ

)
dx = −2d1

∫
�

ũφ1

∣∣∣∣∇
(

φ1

ũ

)∣∣∣∣
2

dx −
∫

G
φ2
1(φ1 + φ2)dx

+2d2

∫
�

ṽφ2

∣∣∣∣∇
(

φ2

ṽ

)∣∣∣∣
2

dx +
∫

G
φ2
2(φ1 + φ2)dx

≤ −
∫

G
(φ1 + φ2)(φ

2
1 − φ2

2)dx

= −
∫

G
(φ1 + φ2)

2(φ1 − φ2)dx ≤ 0.
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This implies that λ1 ≥ 0 with equality if and only if φ1
ũ ≡ const, φ2

ṽ
≡ const and

φ1 = −φ2.
If (ũ, ṽ) is not linearly stable, then λ1 = 0. It follows that ũ = kṽ for some k > 0,

which together with the system satisfied by (ũ, ṽ) gives

{
d1�ũ + ũ(mc1 − 1G(1 + k−1)ũ) = 0 in �,

d2�ṽ + ṽ(mc2 − 1G(1 + k)ṽ) = 0 in �.

Clearly, w∗ := (1 + k−1)ũ = (1 + k)ṽ satisfies

{
d1�w∗ + w∗(mc1 − 1Gw∗) = 0 in �,

d2�w∗ + w∗(mc2 − 1Gw∗) = 0 in �.

Hence, w∗ satisfies (d2 − d1)�w∗ − 1B(c1 − c2)w∗ = 0 in �, leading to w∗ = 0 in
�. This contradicts the positivity of ũ and ṽ. In conclusion, λ1 > 0, and hence, (ũ, ṽ)

is linearly stable. �
Lemma 3.5 allows us to show an additional property of the quantities c∗

2 and c∗
2.

Lemma 3.6 It holds c∗
2 < c∗

2. Moreover,

(i) If c2 ∈ [0, c∗
2) ∪ (c∗

2,∞), there is no coexistence steady state;
(ii) If c2 ∈ (c∗

2, c∗
2), then there exists a unique coexistence steady state.

Proof First, we claim that c∗
2 < c∗

2. Suppose otherwise. We then consider two cases:
c∗
2 > c∗

2 and c∗
2 = c∗

2.
In the first case, whenever c2 ∈ (c∗

2, c∗
2), both (u∗, 0) and (0, v∗) are linearly stable

according to Lemmas 3.3 and 3.4. Such a case is contradictory to Proposition 3.2.
Suppose now that c∗

2 = c∗
2. Let c2 be exactly this value. Note that v∗ is fixed

corresponding to c2, whereas u∗ is fixed and independent of c2. From the definition
of c∗

2 and c∗
2, we find simultaneously that

μ1(d1, mc1 − 1Gv∗) = 0 = μ1(d2, mc2 − 1Gu∗)

for some eigenfunctions ψ1, ψ2, while 0 = μ1(d1, mc1 − 1Gu∗) = μ1(d2, mc2 −
1Gv∗) with eigenfunctions u∗ and v∗, respectively. In other words, the following
equations are satisfied:

d1�ψ1 + (mc1 − 1Gv∗)ψ1 = 0, d1�u∗ + u∗(mc1 − 1Gu∗) = 0,

d2�ψ2 + (mc2 − 1Gu∗)ψ2 = 0, d2�v∗ + v∗(mc2 − 1Gv∗) = 0,

From the variational characterization of these eigenvalues, we have that

0 ≤
∫

�

[
d2 |∇φ|2 − φ2(mc2 − 1Gu∗)

]
dx, ∀φ ∈ H1(�) : φ �≡ 0,
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0 =
∫

�

[
d2

∣∣∇v∗∣∣2 − (v∗)2(mc2 − 1Gv∗)
]

dx, (3.10)

and also

0 ≤
∫

�

[
d1 |∇φ|2 − φ2(mc1 − 1Gv∗)

]
dx, ∀φ ∈ H1(�) : φ �≡ 0,

0 =
∫

�

[
d1

∣∣∇u∗∣∣2 − (u∗)2(mc2 − 1Gu∗)
]

dx . (3.11)

Note that the inequalities above are strictwhenφ is any function other than the principal
eigenfunction. Hence, if we choose φ = v∗ in the first equation appearing in (3.10)
and take the difference of the two, we find that

∫
G(v∗)2(u∗ − v∗) > 0. Similarly, if

we choose φ = u∗ in the first equation appearing in (3.11) and take the difference of
the two, we obtain

∫
G(u∗)2(v∗ − u∗) > 0. Adding these two quantities, we find

0<

∫
G
(v∗)2(u∗ − v∗)dx+

∫
G
(u∗)2(v∗−u∗)dx =−

∫
G
(u∗ − v∗)2(u∗ + v∗)dx ≤0,

which is a contradiction. Hence, c∗
2 �= c∗

2, and so combining these two cases implies
that c∗

2 < c∗
2 must hold.

(i) Let 0 ≤ c2 < c∗
2. Suppose on the contrary that there exists a coexistence steady

state (ũ, ṽ). In this case, (0, v∗) is linearly stable byLemma3.4,while (ũ, ṽ) is globally
asymptotically stable by Lemma 3.5 and Proposition 3.2, leading to a contradiction.

A similar argument holds when c2 > c∗
2.

(ii) Suppose c2 ∈ (c∗
2, c∗

2). Then, both (u∗, 0) and (0, v∗) are unstable, and hence,
Proposition 3.2 ensures the existence of a unique coexistence steady state. This com-
pletes the proof. �

We are ready to prove Theorem 1.1 (4).

Proof of Theorem 1.1 (4) By Lemmas 3.3, 3.4 and 3.6, there holds c∗
2 < c∗

2 < c1.
(i) Suppose c2 ∈ (c∗

2, c1). By Lemma 3.3, (u∗, 0) is linearly stable. Since c2 > c∗
2,

Lemma 3.4 implies that (0, v∗) is unstable. By Lemma 3.6, there is no coexistence
steady state. From Proposition 3.2, we conclude that (u∗, 0) is globally asymptotically
stable.

(ii) Suppose c2 ∈ (c2, c∗
2). Then, both (u∗, 0) and (0, v∗) are unstable. By Lemma

3.6, there exists a unique coexistence steady state, and is hence globally asymptotically
stable by Proposition 3.2.

(iii) Suppose c2 ∈ (0, c∗
2). Then, (0, v

∗) is linearly stable by Lemma 3.4. ByLemma
3.3, (u∗, 0) is unstable, and by Lemma 3.6, there is no coexistence steady state. Hence,
Proposition 3.2 implies that (0, v∗) is globally asymptotically stable. �

Theorem 1.3 follows almost immediately from the previous results.

Proof of Theorem 1.3 It is easy to see that when c2 = 0 < c1, (u∗, 0) is unstable
while (0, v∗) is linearly stable. From Lemma 3.6, we see that there cannot exist a
coexistence steady state when c2 = 0. Hence, (0, v∗) is globally asymptotically stable
by Proposition 3.2. �
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4 Discussion

In this paper we introduced a spatially explicit, two species competition-diffusion
model in the presence of habitat degradation. The entire habitat � was broken into
two distinct habitat types G and B. In the healthy region G, dynamics are governed
by standard Lotka-Volterra competition, while in the degraded region B, both species
decay exponentially (not necessarily at the same rate) without growth or competition.
The asymptotic behaviour of solutions was rigorously investigated depending on the
level of detriment experienced by each species in the degraded region, described by
the parameters ci , i = 1, 2. As suggested in the derivation, such a setup may be
more or less reasonable depending on the interpretation for application purposes. In
the case of interference competition (i.e. competition which occurs directly between
individuals), the species may still interact within a degraded area of habitat. This could
be derived throughdirect acts of aggression in order to prevent other individuals (within
the same species) from accessing their mating partner. In this case, the intraspecific
competition might be considered independent of habitat quality, and so assumption
(iii) introduced in Sect. 1.2 may not be reasonable. In the scalar case, one could
modify the reaction term to the form u(mc − u) (with a similar adjustment in the
system case) in order to include the competition interaction in the degraded region
B. However, the steady state in the limiting case c = 0 is no longer constant and
will complicate the subsequent analysis to some degree. Nevertheless, it is worth
noting that this says something interesting about the nature of the competition: under
exploitative competition, the species will reach carrying capacity everywhere so long
as the region G has positive area; in contrast, interference competition will result in a
total population density strictly less than the carrying capacity, dependent on the size
and shape of the favourable region G.

Through the application of classical PDE theory, some lesser known generaliza-
tions, and the theory of monotone flows, the global asymptotic stability of steady
states was determined. Consistent with the classic result “the slower diffuser always
wins” (Dockery et al. 1998), it was found that when the slower diffuser is also the
stronger competitor, it will surely drive the weaker species to extinction. However, it
was also found that if one species is particularly resilient to effects of the degraded
region while the other species is affected more negatively, the resilient species will
always drive the other to extinction! This result is best highlighted by the limiting case
when c2 = 0 < c1. In this case, species u experiences some level of detriment in the
degraded regionwhile the impact on species v is completely neutral, and hence species
v is found to always drive species u to extinction! The remarkable feature about this
result is that it is independent of the size of the region B and the level of impact expe-
rienced in region B (given by c1). That is to say, if there is no net growth or death of
species v in the degraded region, as long as there is some amount of degraded habitat
where species u experiences some level of detriment, species u always goes extinct.
This outcome is consistent with the competitive exclusion principle, where even the
slightest advantage over another species results in the persistence of the superior and
extinction of the inferior species. On the other hand, in the case where both species
experience some level of detriment in the degraded region, coexistence is always a
possibility. This result aligns with what we see in reality, where competing species
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occupying a similar ecological niche can sometimes coexist. In the end, this is a much
more intuitive result than “the slower diffuser always wins”: the slower diffuser may
or may not win, but the stronger competitor, where strength is measured in terms of
resilience to the effects of degraded habitat, is given the competitive advantage. Such
an outcome is at odds with more classical work, such as (Tilman et al. 1994), which
predicts that the strongest or most superior competitor will always go extinct first. In
this sense our results may be more realistic as they include the possibility to reverse
the order of extinction. Indeed, it has been previously noted that extinction ordering
does not necessarily proceed from best to worst, as the order depends on many other
factors not included in Tilman’s original model (Lin and Liu 2006).

These results have obvious implications to conservation biology. As an example,
one may consider a scenario in which two competing species occupy a conserved area
of habitat. If the first species is particularly resilient to changes in local habitat quality,
such as some rat species, even a slight decrease in quality of habitat for the second
species could result in its local extinction. Consequently, care should be taken when
implementing well intended conservation efforts, as unintended consequences due to
counter-intuitive species interactions may play an important in species survival.

An additional feature of this model not fully investigated in the current work is that
themodel allows one to distinguish between habitat loss and the process of habitat frag-
mentation (i.e. habitat fragmentation per se (Fahrig 2003; Jackson and Fahrig 2013)).
For example, if one holds the area of conserved habitat fixed, one may investigate the
impacts of fragmentation (in the sense of variable configurations) through considera-
tion of changes in stability based on configuration alone. In mathematical terms, one
can discuss the effect of fragmentation through changes in the size and sign of the
eigenvalue μ1(d, m) when the area of the degraded region B is held fixed. Roughly
speaking, all of the information concerning fragmentation is hidden within the proper-
ties of this eigenvalue, which clearly depends on geometric properties of the sets G and
B. It is interesting to note that some results (see e.g. Cantrell and Cosner (1989), Theo-
rem 3.1) indicate that a process of increasing fragmentation alonemay result in assured
deterministic extinction, while the amount of degradation in a particular region alone
is not enough to guarantee extinction. A more precise investigation of these effects is
currently in progress through consideration of the limiting case limc→∞ μ1(d, mc). A
combination of such results may have strong implications towards the debate of frag-
mentation versus habitat loss and which process (independent of the other) is “worse”
in terms of the survival of local populations. Furthermore, such a limiting case will
provide deeper connections between the impacts of mere degradation compared to
outright destruction.

In relation to the discussion above, as described in (Kun et al. 2019),we have a grow-
ing understanding of the various phases that altered landmay go through. This includes
the processes of habitat degradation, and habitat fragmentation. Although a detailed
general analytic investigation of the eigenvalue problems discussed here is unrealis-
tic, simulations provide an avenue of investigation to more accurately determine the
impact of these changes in environment on the local species. Most importantly, it is
understood that the effects of habitat loss and fragmentation are nonlinear, and so a
more precise understanding of how altering even a small piece of viable habitat may
impact the local species is rather important.
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A Appendix

In this section, we collect results related to some fundamental eigenvalue problems.

A.1 An auxiliary eigenvalue problem

Let m ∈ L∞(�) and consider the problem

{
�φ + λmφ = 0 in �,
∂φ
∂n = 0 on ∂�.

(A.1)

If there exists a value λ1(m) and a positive function φ1 solving (A.1), we call λ1(m)

the principal eigenvalue to problem (A.1). The following is a well known result and
a good discussion of this problem can be found in (Cantrell and Cosner 2003). The
main result is the following, with the statement taken from (Ni 2001, Chapter 4).

Proposition A.1 Let m ∈ L∞(�). Problem (A.1) has a nonzero principal eigenvalue
λ1(m) if and only if m changes sign and

∫
�

m �= 0. More precisely,

(i)
∫
�

m < 0 ⇒ λ1(m) > 0 ;
(ii)

∫
�

m > 0 ⇒ λ1(m) < 0;
(iii)

∫
�

m = 0 ⇒ 0 is the only principal eigenvalue.

One can see how this relates to the statement of Proposition A.2: when the average
heterogeneity is positive, λ1 < 0 and we always have a positive eigenvalue μ1 to
problem A.2. On the other hand, when the average heterogeneity is negative, λ1 > 0
and the sign of the eigenvalue μ1 to problem A.2 depends on the relationship between
the size of diffusion d and the size of λ1.

A.2 A related eigenvalue problem

Let m ∈ L∞(�) and consider the following eigenvalue problem:

{
d�φ + mφ + μφ = 0 in �,
∂φ
∂n = 0 on ∂�.

(A.2)
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It seems self evident that this problem is closely related to problem A.1. We call
μ1(d, m) a principal eigenvalue for problem (A.2) whenever there exists a solution
φ1 ∈ C+(�) \ {0}.

It is well-known that this problem has a unique principal eigenvalue admitting the
usual variational characterization:

μ1(d, m) = inf

{∫
�

[
d |∇φ|2 − mφ2

]
dx : φ ∈ H1(�),

∫
�

φ2dx = 1

}
. (A.3)

The following proposition highlights some of the classical properties of this eigen-
value. Recall λ1(m) from Subsect. A.1.

Proposition A.2 Suppose m ∈ L∞(�) is not a constant function. Then the following
hold.

(i)
∫
�

m ≥ 0 ⇒ μ1(d, m) < 0 for all d > 0.

(ii)
∫
�

m < 0 ⇒

⎧⎪⎨
⎪⎩

μ1(d, m) < 0, if d < λ−1
1 (m),

μ1(d, m) = 0, if d = λ−1
1 (m),

μ1(d, m) > 0, if d > λ−1
1 (m).

(iii) μ1(d, m) is strictly increasing and concave with respect to d > 0.
(iv) μ1(d, m) < μ1(d, m̃) whenever m � m̃.
(v) μ1(d, m) is continuous in m with respect to L∞(�).

Points (i)–(iv) appear in (Ni 2001), however point (v) is not explicitly discussed.
Point (v) is proven in (Hess 1991) when mn → m in C(�), whereas a weakened
regularity case (with respect to L p(�), p > N/2) is discussed in detail in (Daners
1997; Fleckinger and Lapidus 1986; Hess 1985), for example.
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