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Abstract. Cholera remains a considerable public health challenge globally, especially in regions with inadequate water in-
frastructure. During disease outbreaks, human behavior changes often serve as a critical, and sometimes primary, factor
influencing disease transmission. This paper proposes a degenerate reaction-diffusion model that incorporates distinct hu-
man mobilities and human behavior change under a spatially heterogeneous environment to investigate the dynamics and
mitigation of cholera outbreaks. A key index, the basic reproduction number, is introduced as a surrogate for infection risk,
providing insights into the potential for extinction or persistence of cholera. The asymptotic profiles of positive steady states
are explored as human mobility to zero or infinity. Specifically, positive human behavior changes may reduce the asymptotic
profiles under certain conditions. Numerical simulations are employed to examine how heterogeneity, human mobility and
human behavior change influence infection risk and final epidemic size. Our findings indicate that infection risk alone is
insufficient for predicting final epidemic size. While human behavior changes do not fundamentally alter the infection risk,
they may quantitatively reduce the final epidemic size, thereby regulating the spread of cholera. The methods and results
presented in this study can be applied to investigate other host-pathogen models.
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1. Introduction

Cholera is an acute gastrointestinal epidemic caused by the bacterium Vibrio cholerae (or V. cholerae)
[1], which produces toxins and thrives in brackish aquatic environments. The disease presents a signifi-
cant public health threat, particularly in regions with limited access to safe drinking water and healthcare
resources [2], and is characterized by severe symptoms including watery diarrhea, vomiting, thirst, ab-
dominal pain, kidney failure, and low blood pressure, potentially resulting in death if left untreated. The
infection process of cholera is influenced by complex interactions among human body, V. cholerae, and
environment [1]. Transmission can occur both indirectly, through contaminated food or water [3–6], and
directly, via contact with infected individuals [7–9]. Historically, cholera has caused seven documented
pandemics and numerous localized outbreaks. Notably, the Yemeni cholera outbreak stands as the most
extensive recorded event in recent times, resulting in over 2800 fatalities [10] and an estimated 2.5 million
cases as of November 2021 [11].

Mathematical modeling plays a crucial role in understanding the mechanisms of cholera spread, build-
ing upon the Cappasso-Fontona model [13] and the Codeço model [12]. One approach, as employed by
[7,8,13], involves classifying individuals and pathogens into distinct compartments. According to the fact
that infections will manifest when bacterial density surpasses a specified threshold, Kong et al. [4] con-
ducted an iSIR model which incorporates the susceptible-infected-recovered model along with indirect
transmission. Actually, the classification of subpopulations is associated with disease-related factors such
as transmission mode, recovery, and hyper-infectivity, as well as ecological, geographical, socio-economic,
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population, mobility, and demographic factors [14]. Spatial heterogeneity is crucial in epidemiological
models [15] and natural ecosystems [16]. Consequently, it is natural to construct epidemic models with
transmission coefficients that depend on the spatial location of contact. Indeed, human mobility can exert
influence on both infection risk and the final epidemic size [17]. To capture the complex influence of spa-
tial heterogeneity and human mobility on the dynamics of cholera, researchers have commonly employed
reaction-diffusion equations [18–22].

There is a mutual interaction between epidemics and human behaviors. Human behavior plays a cru-
cial role in reducing morbidity and mortality by decreasing exposure to infectious agents and influencing
epidemic and endemic patterns. Conversely, epidemic outbreaks may increase awareness of the potential
for infection, leading to changes in population activities and social behaviors [23–25]. For cholera, indi-
viduals aware of the transmission risk may prioritize personal hygiene and sanitation measures, such as
frequent handwashing, proper waste disposal, water sterilization, and vaccination or antibiotic prophylaxis
[11,26,27]. Recently, a few mathematical models have addressed human behavioral aspects associated with
cholera [28–33]. Wang et al. [28] integrated human behavior changes into a cholera model, demonstrating
that positive human behavior changes can mitigate infection risk, size, magnitude, and spatial dispersal
velocity of cholera. Al-Arydah et al. [29] showed that disease education proved more effective than water
chlorination in reducing cholera transmission. To our knowledge, few studies have simultaneously consid-
ered human behavior change and spatial heterogeneity in cholera dynamics, except for a few recent works
[19,20,33]. Nevertheless, existing models fall short in presenting the asymptotic profiles of the positive
steady state (PSS) and the basic reproduction number (�0) under different dispersal rates, and do not
incorporate numerical simulations to evaluate the effect of spatial heterogeneity, human mobility and
human behavior change on the final epidemic size.

This paper explores the roles of spatial heterogeneity, distinct human mobilities and human behavior
change in the cholera dynamics via a degenerate reaction-diffusion model. Our research is motivated by
previous works [18,22,34,35], and aims to address the following objectives:

(i) The introduction of a degenerate reaction-diffusion model for cholera, where the transmission rate
and shedding rate of pathogen depend on the density of the infected individuals, entails the estab-
lishment of the well-posedness of the model, particularly in light of distinct dispersal rates. Moreover,
demonstrating the existence of a global attractor involves tackling difficulties associated with the
ordinary differential equation presented in the model.

(ii) The basic reproduction number, denoted �0, is defined and analyzed for its monotonic dependence
on dispersal rates, coefficients related to indirect contact, and shedding rates. However, �0 is in-
dependent of the coefficients associated with human behavior change. We derive cholera extinction
or persistence based on �0: the infection-free steady state (IFSS) is globally asymptotically stable
when �0 < 1, while the system exhibits uniform persistence when �0 > 1.

(iii) We investigate the asymptotic profiles of positive steady states (PSS) and �0 as small or large
dispersal coefficients of susceptible individuals. The results provide deeper insights into the structure
of �0 and PSS, indicating that significant human behavior changes and prompt response rates of
media and individuals may mitigate certain asymptotic profiles of PSS. To our knowledge, this result
provides the first theoretical evidence that positive human behavior changes may reduce the final
asymptotic profiles of PSS under certain conditions.

(iv) Numerical simulations are employed to validate and supplement the theoretical conclusions. The
simulations demonstrate that mitigating spatial heterogeneity may effectively regulate the trans-
mission of cholera; Augmenting the mobility of infected individuals has the potential to diminish
the final epidemic size, while the optimal dispersal rate of susceptible individuals exists within an
intermediate range; Infection risk alone is insufficient for predicting the final epidemic size; Human
behavior change can significantly mitigate the final epidemic size.

This paper is structured as follows. Section 2 introduces a degenerate reaction-diffusion cholera model
that integrates considerations of human behavior change and spatial heterogeneity. Section 3 obtains the
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well-posedness of the cholera model, encompassing uniqueness, global existence, and boundedness of the
solution, and demonstrates the existence of a global attractor. Section 4 defines �0, and employs it to
obtain the threshold dynamics. Section 5 discusses the asymptotic profiles of �0 and PSS for small or
large dispersal coefficients. Section 6 provides numerical simulations to support and expand the theoretical
conclusions. Finally, a discussion concludes the paper.

2. The model

In this section, a degenerate reaction-diffusion model is formulated to delineate the dynamics of cholera
transmission. Pathogens in contaminated water are integrated into a disease model to establish a host-
pathogen model. Inspired by host-pathogen models [18,36–38], we hypothesize that individuals are mobile
only in habitat, and the V. cholerae is constrained within the polluted water environment in habitat, i.e.,
V. cholerae is immobile. Actually, public health officials may opt for isolation of infected individuals to
mitigate the outbreaks of disease [17]. Consequently, the mobility of susceptible individuals differ from
those of infected individuals. The typical duration of cholera immunity spans approximately three to five
years [39,40], and we consider the situation that recovered individuals do not experience loss of immunity
during the initial phase of an outbreak (within the first 12 months). Due to the fact that human behavior
change exerts an influence on the density of the fresh infections individuals and V. cholerae [19], the
contact rate and shedding rate of individuals are related to disease prevalence, location, and time. In
order to make things less complex (since non-uniformness of dispersal rates, spatial heterogeneity and
human behavior change have already made the issue extremely challengeable), we make a small concession
in the interaction term by ignoring human-to-human (direct) infection route. With these consideration,
we propose a hybrid model of two PDEs coupled with one ODE:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂S

∂t
= DSΔS + Λ(x) − β1(I, x)SB − d1(x)S,

∂I

∂t
= DIΔI + β1(I, x)SB − (γ(x) + d2(x) + d3(x))I,

∂B

∂t
= β2(I, x)I − δ(x)B

(2.1)

for (x, t) ∈ Ω × (0,∞), with the initial condition

S(x, 0) = S0(x) ≥ 0, I(x, 0) = I0(x) ≥ 0, B(x, 0) = B0(x) ≥ 0, x ∈ Ω (2.2)

and homogeneous Neumann boundary conditions

∂S

∂ϑ
=

∂I

∂ϑ
= 0, (x, t) ∈ ∂Ω × (0,∞). (2.3)

Here Ω ⊂ R
n, n ≥ 1 represents a bounded spatial habitat with sufficiently smooth boundary ∂Ω. Let

S = S(x, t) and I = I(x, t) describe the population densities of susceptible and infected individuals at
location x and time t, respectively. Denote B = B(x, t) as the density of V. cholerae in the polluted
water at location x and time t. Constants DS > 0 and DI > 0 denote the dispersal rates of S and I,
separately. The parameter Λ(x) describes the influx rate of susceptible individuals, d1(x), d2(x) and δ(x)
stand for the rates of natural mortality of susceptible individuals, infected individuals and V. cholerae,
respectively. Let γ(x) be the rate at which infected individuals recover, d3(x) describes the disease-related
death rate of infected individuals. The functions β1(I, x) and β2(I, x) denote transmission rates from V.
cholerae to susceptible individuals and shedding rate of pathogen by infected individuals, respectively.
The boundary condition implies that no net mobility of individuals crosses the boundary ∂Ω with ∂

∂ϑ
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being the derivative in the direction of the unit outward normal ν. More precisely, we assume

βi(I, x) =
(

ai − bi
I

I + Mi

)

β̂i(x), i = 1, 2,

where a1 (resp. a2) represents the indirect contact rate without human behavior (resp. shedding rate),
b1 and b2 describe the associated largest reduced rates caused by human behavior changes, M1 and M2

represent the response rates of media and individuals to cholera [41], and ai > bi ≥ 0, i = 1, 2. Here
β̂1(x) denotes the indirect transmission rate related to spatial heterogeneity. Similarly, β̂2(x) denotes
the shedding rate for V. cholerae from infected individuals. We proceed to establish the subsequent
biologically inspired hypotheses:

(H1) Initial conditions S0, I0, B0 ∈ C(Ω̄; R+) and (I0, B0) �≡ 0 on Ω̄;
(H2) Functions λ(x), di(x)(i = 1, 2, 3), γ(x), δ(x) and β̂i(x) > 0(i = 1, 2) depend on location x, and

Hölder continuous.

3. Well-posedness

In this section, various mathematical techniques, including the comparison principle, the strong maxi-
mum principle, Sobolev embedding theorem, Gronwall’s inequality, Young’s inequality and interpolation
inequality, are employed to establish the existence, uniqueness, nonnegativity, boundedness of solution.
Furthermore, the proof of the existence of a global attractor is presented by introducing Kuratowski
measure of non-compactness for model (2.1)–(2.3).

For convenience, we always set u := (S, I,B)T, d(x) := d2(x) + γ(x) + d3(x) and

[R̃]M := max
x∈Ω̄

{R̃(x)} and [R̃]m := min
x∈Ω̄

{R̃(x)},

where R̃ ∈ {Λ, di, d, δ, β̂i (i = 1, 2)}. Consider the Banach space X := C(Ω̄, R3), which represents
continuous functions equipped with the supremum norm ‖φ‖X := max(‖φ1‖∞, ‖φ2‖∞, ‖φ3‖∞), where φ =
(φ1, φ2, φ3)T ∈ X, T represents the transpose of a vector and ‖ψ‖∞ := supx∈Ω̄ |ψ(x)|, ∀ψ ∈ C(Ω̄, R). Let
X

+ := C(Ω̄, R3
+) be the positive cone of X. For any φ∗ ∈ C(Ω̄, R) and t ≥ 0, denote by T1(t), T2(t), T3(t) :

C(Ω̄, R) → C(Ω̄, R) the semigroups related to the operators DSΔ−d1(x),DIΔ−d(x),−δ(x), respectively,
then

T1(t)φ∗ =
∫

Ω

G1(t, x, y)φ∗(y)dy,

T2(t)φ∗ =
∫

Ω

G2(t, x, y)φ∗(y)dy

and

T3(t)φ∗ = e−δ(x)tφ∗,

where G1 and G2 are the Green functions corresponding to DSΔ−d1(x) and DIΔ−d(x) associated with
(2.3), respectively. According to [42, Corollary 7.2.3], we obtain that T1 and T2 are strongly positive and
compact. Moreover, T (t) := (T1(t), T2(t), T3(t))

T : X → X, t ≥ 0 is a strongly continuous semigroup.

Lemma 3.1. For any u0 = (S0, I0, B0)T ∈ X
+ and a given τmax = τmax(u0) ∈ [0,∞], then (2.1)–(2.3)

exists a unique solution u(·, t) = u(·, t;u0) on [0, τmax) for u(·, 0;u0) = u0. If τmax ∈ [0,∞), then
lim

t→τ−
max

sup ‖u(·, t)‖X = ∞. Moreover, u(·, t;u0) ∈ X
+ is a classical solution for t ∈ [0, τmax).
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Proof. Obviously, u(t) =: u(·, t) = (S, I,B)T fulfills

u(t) = T (t)u0 +

t∫

0

T (t − s)F(u(s))ds, u0 = (S0, I0, B0)T ∈ X
+,

where F : X
+ → X satisfies

F(φ)(·) :=

⎛

⎝
F1(φ)(·)
F2(φ)(·)
F3(φ)(·)

⎞

⎠ =

⎛

⎝
Λ(·) − β1(φ2, ·)φ1φ3

β1(φ2, ·)φ1φ3

β2(φ2, ·)φ2

⎞

⎠ ,

and φ = (φ1, φ2, φ3)T ∈ X
+. Note that F is Lipschitz continuous. Then

φ + �F(φ) =

⎛

⎝
φ1 + �[Λ(·) − β1(φ2, ·)φ1φ3]

φ2 + �β1(φ2, ·)φ1φ3

φ3 + �β2(φ2, ·)φ2

⎞

⎠ ≥

⎛

⎝
φ1[1 − �a1[β̂1]Mφ3]

φ2

φ3

⎞

⎠

for all φ ∈ X
+ and � ≥ 0, which implies that

lim
�→0+

1
�
dist(φ + �F(φ), X+) = 0

for all φ ∈ X
+. By [43, Theorem 2 and Corollary 4], we can obtain Lemma 3.1. �

Consider a constant D > 0. For any positive continuous functions α̂(x) and β̂(x),
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂h

∂t
= DΔh + α̂(x) − β̂(x)h, (x, t) ∈ Ω × (0,∞),

∂h

∂ϑ
= 0, (x, t) ∈ ∂Ω × (0,∞),

h(x, 0) = h0(x), x ∈ Ω.

(3.1)

An application of the results in [44, Lemma 1] yields the following observation.

Lemma 3.2. System (3.1) exists a unique PSS hP (x), which is globally asymptotically stable in C(Ω̄, R).
Furthermore, when α̂(x) ≡ α̂ and β̂(x) ≡ β̂ are constants, then hP (x) = α̂

β̂
is independent of x.

The global solution of model (2.1)–(2.3) on X
+ is described below.

Lemma 3.3. For u0 = (S0, I0, B0)T ∈ X
+, problem (2.1)–(2.3) exists a unique solution

u(·, t;u0) = (S, I,B)T ∈ X
+

on [0,∞) with u(·, 0;u0) = u0. Moreover, u(·, t;u0) is ultimately bounded and uniformly bounded.

Proof. Step 1. The solution u(·, t;u0) exists globally. Consider the problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂S̃

∂t
= DSΔS̃ + Λ(x) − d1(x)S̃, (x, t) ∈ Ω × (0,∞),

∂S̃

∂ϑ
= 0, (x, t) ∈ ∂Ω × (0,∞),

S̃(x, 0) = S0(x), x ∈ Ω.

(3.2)

According to Lemmas 3.1 and 3.2, and the standard comparison principle, one gets

0 ≤ S ≤ S̃ ≤ M0 := max
{

[Λ]M
[d1]m

, ‖S0‖∞
}

(3.3)
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for (x, t) ∈ Ω̄ × [0, τmax). Choosing K1 > 0 large enough satisfying ‖T2(t)‖∞ < K1e
−[d]mt. Let K2 =

K1a1[β̂1]MM0. For t ∈ [0, τmax),

‖I‖∞ =

∥
∥
∥
∥
∥
∥
T2(t)I0 +

t∫

0

T2(t − s)β1(I(·, s), ·)S(·, s)B(·, s)ds

∥
∥
∥
∥
∥
∥

∞

≤K1e
−[d]mt‖I0‖∞ + K1a1[β̂1]MM0

t∫

0

e−[d]m(t−s)‖B(·, s)‖∞ds

≤K1‖I0‖∞ + K2

t∫

0

e−[d]m(t−s)‖B(·, s)‖∞ds.

By B-equation of (2.1), ∂B
∂t ≤ a2β̂2(·)I − δ(·)B, t ∈ [0, τmax). Let δ0 = min{[d]m, [δ]m}, K3 = a2[β̂2]M ,

the standard comparison principle implies that

‖B‖∞ ≤e−[δ]mt‖B0‖∞ + a2[β̂2]M

t∫

0

e−[δ]m(t−s)‖I(·, s)‖∞ds

≤e−δ0t‖B0‖∞ + K3

t∫

0

e−δ0(t−s)‖I(·, s)‖∞ds

for t ∈ [0, τmax). Consequently,

‖I‖∞ ≤K1‖I0‖∞ + K2

t∫

0

e−[d]m(t−s)(e−δ0s‖B0‖∞ + K3

s∫

0

e−δ0(s−r)‖I(·, r)‖∞dr)ds

≤K1‖I0‖∞ + K2‖B0‖∞

t∫

0

e−δ0sds + K2K3e
−[d]mt

t∫

0

eδ0r‖I(·, r)‖∞

t∫

r

e([d]m−δ0)sdsdr

≤C1 + C2e
−δ0t

t∫

0

eδ0r‖I(·, r)‖∞dr,

where C1 = K1‖I0‖∞ +K2‖B0‖∞/δ0, C2 = K2K3/([d]m − δ0) and t ∈ [0, τmax). As Gronwall’s inequality,
one has

‖I‖∞ ≤ C1e
C2t, t ∈ [0, τmax). (3.4)

Hence,

‖B‖∞ ≤ ‖B0‖∞ + C1e
C2tK3/δ0, t ∈ [0, τmax). (3.5)

The above results and Lemma 3.1 imply the global existence of u(·, t;u0).
Step 2. The boundedness of lim sup

t→∞
‖I(·, t)‖1 and lim sup

t→∞
‖B‖1. Combining with (3.3), one can get

‖S‖∞ ≤ M0, ∀ t ≥ 0. (3.6)

Let |Ω| be the volume of Ω. We integrate and add the first two formulas of (2.1) to obtain

∂

∂t

∫

Ω

(S + I)dx =
∫

Ω

Λ(x)dx −
∫

Ω

d1(x)Sdx −
∫

Ω

d(x)Idx
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≤ [Λ]M |Ω| − d4

∫

Ω

(S + I)dx,

where d4 = min{[d1]m, [d]m} > 0. Let ‖ · ‖p (1 ≤ p < ∞) be the Lp-norm, then

lim sup
t→∞

‖I‖1 ≤ lim sup
t→∞

(‖S(·, t)‖1 + ‖I(·, t)‖1) ≤ M1 := [Λ]M |Ω|/d4. (3.7)

We can choose t1 > 0 satisfying ‖I(·, t)‖1 ≤ M1 + 1 for t ≥ t1, then

∂

∂t

∫

Ω

Bdx ≤ a2[β̂2]M
∫

Ω

Idx − [δ]m
∫

Ω

Bdx ≤ K3(M1 + 1) − [δ]m
∫

Ω

Bdx, t ≥ t1. (3.8)

Hence

lim sup
t→∞

‖B‖1 ≤ K3(M1 + 1)/[δ]m. (3.9)

Step 3. For a given M2k > 0, then

lim sup
t→∞

(‖I‖2k + ‖B(·, t)‖2k) ≤ M2k , (3.10)

where k represents a nonnegative integer.
Based on the idea of [18, Lemma 2.4], we shall verify (3.10) by mathematical induction. It can be

inferred from (3.9) that the case of k = 0 holds obviously. Assuming that (3.10) holds for k − 1 ≥ 0, we
can choose M2k−1 > 0 satisfying

lim sup
t→∞

(‖I‖2k−1 + ‖B‖2k−1) ≤ M2k−1 . (3.11)

We multiply the I-equation of (2.1) by I2k−1 and integrate over Ω to yield

1
2k

∂

∂t

∫

Ω

I2k

dx = DI

∫

Ω

I2k−1ΔIdx +
∫

Ω

β1(I, x)SBI2k−1dx −
∫

Ω

d(x)I2k

dx. (3.12)

Note that

DI

∫

Ω

I2k−1ΔIdx ≤ −DI

∫

Ω

∇I · ∇I2k−1dx = − (2k − 1)DI

∫

Ω

(∇I · ∇I)I2k−2dx

= − 2k − 1
22k−2

DI

∫

Ω

|∇I2k−1 |2dx.

With (3.6), we know
∫

Ω

β1(I, x)SBI2k−1dx ≤ a1[β̂1]M (M0 + 1)
∫

Ω

BI2k−1dx.

Now, we use the Young’s inequality ãb̃ ≤ εãp + Cεb̃
q, where ã, b̃, ε, q > 0, p > 1, Cε = (εp)−q/pq−1 and

p−1 + q−1 = 1.
We can choose ε1 = [δ]m

4a1[β̂1]M (M0+1)
, p = 2k and q = 2k/(2k − 1) satisfying

∫

Ω

BI2k−1dx ≤ [δ]m
4a1[β̂1]M (M0 + 1)

∫

Ω

B2k

dx + Cε1

∫

Ω

I2k

dx.
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Let Ek = 2k−1
22k−2 DI , Ck = a1[β̂1]M (M0 + 1)Cε1 , then

1
2k

∂

∂t

∫

Ω

I2k

dx ≤ −Ek

∫

Ω

|∇I2k−1 |2dx +
[δ]m
4

∫

Ω

B2k

dx + Ck

∫

Ω

I2k

dx. (3.13)

Then we conduct the multiplication of the B-equation in (2.1) by B2k−1 and perform an integration over
Ω to get

1
2k

∂

∂t

∫

Ω

B2k

dx =
∫

Ω

β2(I, x)IB2k−1dx −
∫

Ω

δ(x)B2k

dx

≤ K3

∫

Ω

IB2k−1dx − [δ]m
∫

Ω

B2k

dx.

Again, applying Young’s inequality with ε2 = [δ]m
4K3

, p = 2k/(2k − 1) and q = 2k, we get
∫

Ω

IB2k−1dx ≤ [δ]m
4K3

∫

Ω

B2k

dx + Cε2

∫

Ω

I2k

dx,

then
1
2k

∂

∂t

∫

Ω

B2k

dx ≤ K3Cε2

∫

Ω

I2k

dx − 3[δ]m
4

∫

Ω

B2k

dx. (3.14)

This, together with (3.13), implies that

1
2k

∂

∂t

∫

Ω

(I2k

+ B2k

)dx ≤ −Ek

∫

Ω

|∇I2k−1 |2dx − [δ]m
2

∫

Ω

B2k

dx + C̃k

∫

Ω

I2k

dx, (3.15)

where C̃k = Ck + K3Cε2 .
Next, we apply the interpolation inequality, i.e., ∀ ε∗ > 0, we can choose Cε∗ > 0 satisfying

‖ζ‖2
2 ≤ ε∗‖∇ζ‖2

2 + Cε∗‖ζ‖2
1, ∀ zeta ∈ W 1,2(Ω).

Let ζ = I2k−1
and ε∗ = Ek/(2C̃k), we have

−Ek

∫

Ω

|∇I2k−1 |2dx ≤ −2C̃k

∫

Ω

I2k

dx + 2C̃kCε∗

⎛

⎝

∫

Ω

I2k−1
dx

⎞

⎠

2

.

Take δ∗ = min{C̃k, [δ]m/2}, then (3.15) fulfills

1
2k

∂

∂t

∫

Ω

(I2k

+ B2k

)dx ≤ − C̃k

∫

Ω

I2k

dx + 2C̃kCε∗

⎛

⎝

∫

Ω

I2k−1
dx

⎞

⎠

2

− [δ]m
2

∫

Ω

B2k

dx

≤ − δ∗
∫

Ω

(I2k

+ B2k

)dx + 2C̃kCε∗

⎛

⎝

∫

Ω

I2k−1
dx

⎞

⎠

2

. (3.16)

In view of (3.11), we obtain

lim sup
t→∞

∫

Ω

I2k−1
dx ≤ M2k−1

2k−1 ,
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then

lim sup
t→∞

(‖I‖2k + ‖B‖2k) ≤ 2k

√

2C̃kCε∗

δ∗
M2k−1 =: M2k .

Therefore, (3.10) holds for any nonnegative integer k.
Step 4. The ultimately boundedness of u(·, t) in X

+. Inspired by [18, Claim 4 of Lemma 2.4], we denote
by T2(t) the analytic semigroup with respect to A2 := DIΔ − d(·) in Y = Lp(Ω), where D(A2) = {u ∈
W 2,p and ∂u

∂ϑ = 0 in ∂Ω}. Denoted by Ya, 0 ≤ a ≤ 1, the fractional power space equipped with the graph
norm. We can find p > n/2 and a > n/(2p) satisfying Ya ⊂ C(Ω̄). On the other hand, the continuous
embedding Ls(Ω) ⊂ Lr(Ω) holds for s ≥ r ≥ 1.

For any n ≥ 1, we can find p and k satisfying 2k ≥ p > n/2. By (3.10), one can get

lim sup
t→∞

(‖I‖p + ‖B‖p) ≤ Mp, (3.17)

where Mp is a positive constant. With the help of [18, Claim 4 of Lemma 2.4], we can choose Ma > 0
satisfying ‖Aa

2T2(t)‖∞ ≤ Ma/ta,∀ t > 0. According to (3.6) and (3.17), there is a t2 > 1 satisfying

‖S‖∞ ≤ M0, ‖I‖p ≤ Mp + 1 and ‖B‖p ≤ Mp + 1, ∀ t > t2 − 1.

Then

‖Aa
2I‖p ≤ ‖Aa

2T2(1)I(·, t − 1)‖p +

t∫

t−1

‖Aa
2T2(t − s)β1(I(·, s), ·)S(·, s)B(·, s)‖pds

≤ Ma‖I(·, t − 1)‖p + a1[β̂1]MM0(Mp + 1)

t∫

t−1

Ma

(t − s)a
ds

≤ Ma(Mp + 1) +
a1[β̂1]MM0(Mp + 1)Ma

1 − a

for any t > t2 − 1. By Ya ⊂ C(Ω̄), we obtain

lim sup
t→∞

‖I‖∞ ≤ M̄, (3.18)

where M̄ > 0 is a constant. Then we are able to select t3 > 0 satisfying ‖I(·, t)‖∞ ≤ M̄ + 1 for t ≥ t3.
According to the B-equation of (2.1), one obtains

lim sup
t→∞

‖B‖∞ ≤ K3(M̄ + 1)
[δ]m

.

Step 5. The uniformly boundedness of u(·, t;u0). For every given initial condition u0 ∈ X
+, we can

find a constant M∞ > 0 satisfying

‖S‖∞ + ‖I‖∞ + ‖B‖∞ ≤ M∞, ∀ t ∈ [0,∞). (3.19)

Lemma 3.3 is proved. �

According to [18], the subsequent result substantiates the existence of the global attractor.

Lemma 3.4. Model (2.1)–(2.3) exists a global attractor in X
+.

Proof. Denote by Υ(t) : X
+ → X

+ (t ≥ 0) the semiflow associated with (2.1)–(2.3). It follows from [42,
Theorem 3.1 (d) in Chapter 7] that Υ(t) : X

+ → X
+ (t ≥ 0) fulfills

Υ(t)u0 = (S(·, t;u0), I(·, t;u0), B(·, t;u0))T.
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Note that the non-compactness of Υ(t) is attributed to the absence of a dispersal term in B-equation of
(2.1). However, we will prove that Υ(t) is κ-contraction. It follows from [45, Lemma 2.3.4] that Kuratowski
measure of non-compactness represents

κ(B) := inf{r : B has a finite cover of diameter < r} (3.20)

for any bounded B ⊂ X
+. It can be readily observed that B is precompact if and only if κ(B) = 0.

According to the B-equations of (2.1), one can define

G(I,B) = β2(I, ·)I − δ(·)B.

Hence

∂G(I,B)
∂B

= −δ(·) ≤ −[δ]m.

According to [18, Lemma 2.6], one can decompose Υ(t) = Υ1(t) + Υ2(t), where

Υ1(t)u0 =

⎛

⎝S(·, t;u0), I(·, t;u0),

t∫

0

e−δ(·)(t−s)β2(I(·, s;u0), ·)I(·, s;u0)ds

⎞

⎠

T

and

Υ2(t)u0 =
(
0, 0, e−δ(·)tB0

)T

, ∀ t ≥ 0.

By similar arguments as [18, Lemma 2.5], we can obtain that

S1 =

⎧
⎨

⎩

t∫

0

e−δ(·)(t−s)β2(I(·, s;u0), ·)I(·, s;u0)ds

⎫
⎬

⎭

is precompact for all u0 ∈ B and t > 0. Hence κ(Υ1(t)B) = 0,∀ t > 0. On the other hand,

‖Υ2(t)‖op = sup
u0∈X,‖u0‖X �=0

‖Υ2(t)u0‖X
‖u0‖X

≤ sup
u0∈X,‖u0‖X �=0

‖u0‖X
‖u0‖X

· e−[δ]mt = e−[δ]mt,

where ‖ · ‖op represents the operator norm. Hence,

κ(Υ(t)B) ≤ κ(Υ1(t)B) + κ(Υ2(t)B) ≤ 0 + ‖Υ2(t)‖op κ(B) ≤ e−[δ]mtκ(B), t > 0.

Hence Υ(t) is κ-contraction. Moreover, it is deduced from [45, Lemma 2.3.4] that Υ(t) is asymptotically
smooth. According to Lemma 3.3, Υ(t) is point dissipative. In accordance with [45, Theorem 2.4.6],
Lemma 3.4 is proved. �

4. Threshold dynamics

In this section, we establish �0 by analyzing the correlative eigenvalue problem of system (2.1)–(2.3) at
the IFSS, where �0 denotes the anticipated count of secondary infections resulting from a single index
infection within an otherwise susceptible population [17]. Moreover, we also study how �0 responds to
changes in several model parameters. Then the global dynamics of system (2.1)–(2.3) is investigated
through the application of �0.
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4.1. Basic reproduction number

Let I = B = 0. Then model (2.1)–(2.3) has a unique IFSS E0 = (SP (x), 0, 0) by Lemma 3.2. Linearizing
model (2.1)–(2.3) at E0 and denoting

B =
(

DIΔ − d(x) a1β̂1(x)SP (x)
a2β̂2(x) −δ(x)

)

, (4.1)

we have
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ū

∂t
= Bū, (x, t) ∈ Ω × (0,∞),

∂I

∂ϑ
= 0, (x, t) ∈ ∂Ω × (0,∞),

ū(x, 0) = ū0(x) x ∈ Ω,

(4.2)

where ū = (I,B)T and ū0 = (I0, B0)T . Then we introduce linear operators

B =
(

DIΔ − d(x) 0
a2β̂2(x) −δ(x)

)

, F =
(

0 a1β̂1(x)SP (x)
0 0

)

.

Denote by Ῡ(t), Υ̃(t) : C(Ω̄, R2) → C(Ω̄, R2) the C0-semigroups corresponding to B and B, respectively,
where B = B + F . We assume that φ ∈ C(Ω̄, R2) represents the distribution of initial condition. Hence
Υ̃(t)φ signifies the distribution of infectious individuals as time evolves. Consequently, F Υ̃(t)φ represents
the distribution of fresh infections individuals at t. According to [34,47], we introduce the next generation
operator

Lφ =

∞∫

0

F Υ̃(t)φdt = F

∞∫

0

Υ̃(t)φdt, φ ∈ C(Ω̄, R2) (4.3)

and establish �0 to represent the spectral radius of L, namely,

�0 := r(L).

According to [47, Theorem 3.5] and [34, Theorem 3.1], we have the following result.

Lemma 4.1. Denoted by s(B) the spectral bound of B. Then �0 − 1 and s(B) have the same sign.

Theorem 4.2. (i) Let λ̃1 be the principal eigenvalue of
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−DIΔψ + d(x)ψ = λ̃
a1a2β̂1(x)β̂2(x)SP (x)

δ(x)
ψ, x ∈ Ω,

∂ψ

∂ϑ
= 0, x ∈ ∂Ω,

ψ ∈ C2(Ω, Rn) ∩ C1(Ω̄, Rn),

(4.4)

then

�0 =
1
λ̃1

= sup
ψ∈H1(Ω),ψ �=0

∫

Ω

a1a2β̂1(x)β̂2(x)SP (x)
δ(x)

ψ2dx

∫

Ω

[DI |∇ψ|2 + d(x)ψ2]dx

. (4.5)

Moreover, �0 is decreasing in DI ; �0 is increasing with respect to a1 or a2.
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(ii) For any DS > 0,

lim
DI→0

�0 = max
x∈Ω̄

{
a1a2β̂1(x)β̂2(x)SP (x)

δ(x)d(x)

}

(4.6)

and

lim
DI→∞

�0 =

∫

Ω

(
a1a2β̂1(x)β̂2(x)SP (x)

δ(x)

)

dx

∫

Ω

d(x)dx

. (4.7)

(iii) If
∫

Ω

(
a1a2β̂1(x)β̂2(x)SP (x)

δ(x)

)

dx >

∫

Ω

d(x)dx, then �0 > 1, ∀DI > 0.

(iv) If
∫

Ω

(
a1a2β̂1(x)β̂2(x)SP (x)

δ(x)

)

dx <

∫

Ω

d(x)dx and a1a2β̂1(x)β̂2(x)SP (x)
δ(x)d(x) > 1 for some x ∈ Ω, then

there exists a D̂I > 0 satisfying �0 < 1 if DI > D̂I , while �0 > 1 if DI < D̂I .

Proof. (i) According to [48, Remark 1.6], the eigenvalue λ̃1 > 0 is unique for (4.4) with a positive
eigenfunction. Using a similar approach in [34, Theorem 3.3], one can gain

�0 = r

(

−[DIΔ − d(x)]−1 a1a2β̂1(x)β̂2(x)SP (x)
δ(x)

)

.

Hence, for ψ ∈ C2(Ω, Rn) ∩ C1(Ω̄, Rn), �0 fulfills
(

−[DIΔ − d(x)]−1 a1a2β̂1(x)β̂2(x)SP (x)
δ(x)

)

ψ = �0ψ,

i.e.,

− DIΔψ + d(x)ψ =
a1a2β̂1(x)β̂2(x)SP (x)

δ(x)
1

�0
ψ. (4.8)

By a similar argument as [49], �0 = 1
λ̃1

can be written as (4.5). This proves (i). According to (4.5) and
[49, Theorem 2], one can gain (ii)-(iv). �

The variational characterization of �0 as outlined in Theorem 4.2 (i) establishes it as a monotoni-
cally decreasing function with respect to dispersal coefficient (DI) of infected individuals and depends
on dispersal coefficient (DS) of susceptible individuals through the influence of DS on SP . Furthermore,
augmenting the rates of indirect contact or shedding is anticipated to increase the infection risk. Nev-
ertheless, �0 dose not exhibit dependence on the parameters bi or Mi (i = 1, 2) associated with human
behavior change. Theorem 4.2 (ii) asserts that �0 converges to the maximum local reproduction number
as DI approaches infinitesimal value, and it tends to an average value as DI becomes arbitrarily large.
Theorem 4.2 (iii) and (iv) suggest that it is possible to regulate R0 in terms of DI in some cases.

To ascertain adequate conditions for the either extinction or persistence of cholera, ensuing the follow-
ing theorem examines the interplay between �0 and the eigenvalue problems linked with model (2.1)–(2.3).
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Theorem 4.3. (i) Denoted by η1 the principal eigenvalue of
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

DIΔϕ − d(x)ϕ +
a1a2β̂1(x)β̂2(x)SP (x)

δ(x)
ϕ = ηϕ, x ∈ Ω,

∂ϕ

∂ϑ
= 0, x ∈ ∂Ω,

ϕ ∈ C2(Ω, Rn) ∩ C1(Ω̄, Rn),

(4.9)

then �0 − 1, s(B) and η1 have the same sign;
(ii) If �0 ≥ 1 or δ(x) ≡ δ, then s(B) is the principal eigenvalue of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ

(
ψ2

ψ3

)

= B
(

ψ2

ψ3

)

, x ∈ Ω,

∂ψ2

∂ϑ
= 0, x ∈ ∂Ω,

ψ2 ∈ C2(Ω, R) ∩ C1(Ω̄, R), ψ3 ∈ C(Ω̄, R).

(4.10)

Proof. (i) By [48, Remark 1.6], let η1 be the principal eigenvalue of (4.9) with a positive eigenfunction
ϕ∗, then

DIΔϕ∗ − d(x)ϕ∗ +
a1a2β̂1(x)β̂2(x)SP (x)

δ(x)
ϕ∗ = η1ϕ

∗, for x ∈ Ω (4.11)

with homogeneous Neumann boundary condition. By multiplying (4.11) by ψ and (4.8) by ϕ∗,
respectively, then subtracting them and integrating the result, one can obtain

(

1 − 1
�0

)

a1a2

∫

Ω

β̂1(x)β̂2(x)SP (x)
δ(x)

ψϕ∗dx = η1

∫

Ω

ψϕ∗dx.

Obviously, 1 − 1
�0

have the same sign as η1.
(ii) Case. 1: �0 ≥ 1. Problem (4.2) implies

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

I(·, t;φ) = T2(t)φ2 +

t∫

0

T2(t − s)a1β̂1(·)SP (·)B(·, s;φ)ds,

B(·, t;φ) = T3(t)φ3 +

t∫

0

T3(t − s)a2β̂2(·)I(·, s;φ)ds,

with φ = (φ2, φ3)T ∈ C(Ω̄, R2). Obviously, Ῡ(t) = Ῡ2(t) + Ῡ3(t), where

Ῡ2(t)φ = (0, T3(t)φ3)T, φ = (φ2, φ3) ∈ C(Ω̄, R2), (4.12)

and

Ῡ3(t)φ =

⎛

⎝I(·, t;φ),

t∫

0

T3(t − s)a2β̂2(·)I(·, s;φ)ds

⎞

⎠

T

, φ = (φ2, φ3) ∈ C(Ω̄, R2).

Based on [18, Lemma 2.5], it can be deduced that Ῡ3(t) is compact. However, for every bounded
set B in C(Ω̄), Lemmas 3.4 and (4.12) imply that

κ(Ῡ(t)B) ≤ e−[δ]mtκ(B), t > 0. (4.13)

Let

α(L̃) := inf
B⊂X+ is bounded

{ε > 0 : κ(L̃B) ≤ εκ(B)}
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be the measure of non-compactness of operator on X
+. Denoted by ωess(Ῡ) := lim

t→∞
ln α(Ῡ(t))

t the

essential growth bound of Ῡ. According to (4.13), one can obtain that ωess(Ῡ) ≤ −[δ]m and

re(Ῡ(t)) ≤ e−[δ]mt < 1, t > 0,

where re(Ῡ(t)) is the essential spectral radius of Ῡ(t). The exponential growth bound of Ῡ is defined
as

ω(Ῡ) := inf
{

ω̃ ∈ R : there is a M̂ ≥ 1 such that ‖Ῡ(t)‖op ≤ M̂eω̃t, ∀ t ≥ 0
}

,

where ‖ · ‖op is defined in the proof of Lemma 3.4. Additionally,

ω(Ῡ) = max{s(B), ωess(Ῡ)}.

With the help of (i) of Theorem 4.3, we have s(B) ≥ 0 for �0 ≥ 1. Hence, r(Ῡ(t)) = es(B)t ≥ 1,
∀ t > 0, which implies that re(Ῡ(t)) < r(Ῡ(t)). By generalized Krein-Rutman theorem [50, lemma
2.2], one can obtain that s(B) is the principal eigenvalue of (4.10).

Case. 2: δ(x) ≡ δ. Define Lλ = DIΔ − d(x) + a1β̂1(x)SP (x)a2β̂2(x)/(λ + δ), λ > −δ with Neumann
boundary condition, which is usually called the one-parameter family of linear operators. Obviously, s(Lλ)
decreases as λ increases. Inspired by [49],

{
DIΔϕ − d(x)ϕ = ηϕ, x ∈ Ω,
∂ϕ

∂ϑ
= 0, x ∈ ∂Ω

exists a principle eigenvalue

η∗ = sup
{∫

Ω

[−DI |∇ϕ|2 − d(x)ϕ2]dx

∣
∣
∣
∣

∫

Ω

ϕ2dx = 1, ϕ ∈ H1(Ω)
}

with eigenfunction ϕ0 � 0.
Denote C := minx∈Ω̄{a1a2β̂1(x)SP (x)β̂2(x)}. Let λ̂ = 1

2 [(η∗ − δ) +
√

(η∗ + δ)2 + 4C] be the positive
solution of

λ2 + (δ − η∗)λ − (δη∗ + C) = 0.

Hence, λ̂ > −δ. For any ϕ0 > 0, we have

Lλ̂ϕ0 = DIΔϕ0 +
a1β̂1(·)SP (·)a2β̂2(·)

(λ + δ)
ϕ0 − d(·)ϕ0

≥ (η∗ +
C

λ̂ + δ
)ϕ0 = λ̂ϕ0.

It follows from [37, Lemma 2.6] and [34, Theorem 2.3] that (ii) holds. �

4.2. Dynamics for �0 < 1

This subsection will study the global stability of the IFSS E0 = (SP (x), 0, 0) when �0 < 1, which implies
that the disease dies out. According to [34, Theorem 3.1], one can obtain the local asymptotic stability
of E0. To obtain that E0 is globally asymptotically stable, we will confirm Theorem 4.4.

Theorem 4.4. For �0 < 1, E0 is globally asymptotically attractive.
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Proof. According to Lemma 3.3, fix ε0 > 0, there is t7 > 0 satisfying

0 ≤ S ≤ SP (x) + ε0, ∀ Ω̄ × [t7,∞).

Set

Bε0 =
(

DIΔ − d(x) a1β̂1(x)(SP (x) + ε0)
a2β̂2(x) −δ(x)

)

.

Let (Î , B̂)(x, t) satisfying
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
∂Î
∂t
∂B̂
∂t

)

= Bε0

(
Î

B̂

)

, (x, t) ∈ Ω × (t7,∞),

∂Î

∂ϑ
= 0, (x, t) ∈ ∂Ω × (t7,∞).

(4.14)

The comparison principle implies

(I,B) ≤ (Î , B̂) on Ω̄ × (t7,∞).

Denoted by Ῡε0(t) the C0 semigroup corresponding to Bε0 . By using a similar argument as in Lemma 3.4,
one can get ωess(Ῡε0) ≤ −[δ]m. Let ωε0 := ω(Ῡε0). Note that ωε0 = max{s(Bε0), ωess(Ῡε0)}. Consequently,
ωε0 and s(Bε0) possess the same sign. Moreover, Theorem 4.3 (i) implies that s(Bε0) and ηε0 possess the
same sign, where ηε0 represents the principal eigenvalue of

⎧
⎪⎨

⎪⎩

DIΔϕ − d(x)ϕ +
a1a2β̂1(x)β̂2(x)(SP (x) + ε0)

δ(x)
ϕ = ηϕ, x ∈ Ω,

∂ϕ

∂ϑ
= 0, x ∈ ∂Ω.

By Theorem 4.3 (i) and �0 < 1, one can get η1 < 0. By continuity of ηε0 in ε0, there is ε0 > 0 satisfying
ηε0 < 0. Thus ωε0 < 0. Further there is M̃ > 0 satisfying

‖Ῡε0(t)‖op ≤ M̃eωε0 t, ∀ t ≥ 0.

Then

lim
t→∞ (I,B) = (0, 0), ∀x ∈ Ω̄.

This result together with Lemma 3.2 implies that E0 is globally asymptotically attractive. �

4.3. Uniform persistence for �0 > 1

This subsection aims to explore the persistence of infection and the existence of PSS when �0 > 1,
which indicates the uniform persistence of cholera in the presence of infected human hosts or free-living
pathogens in the reservoir. First, we present three lemmas that will be used repeatedly in what follows.

Lemma 4.5. For u0 ∈ X
+ and (x, t) ∈ Ω̄ × (0,∞), we have

S(x, t;u0) > 0. (4.15)

Furthermore, there exists σ1 > 0 satisfying

lim inf
t→∞ S(x, t;u0) ≥ σ1, uniformly for x ∈ Ω̄. (4.16)
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Proof. For (x, t) ∈ Ω̄ × [0,∞), Lemma 3.3 implies S(x, t) ≥ 0. By contradiction, there exists (x4, t4) ∈
Ω̄ × (0,∞) satisfying S(x4, t4) = 0 and S(x, t) > 0 for t < t4, then S is minimum at (x4, t4). If x4 ∈ ∂Ω,
the Hopf boundary lemma implies ∂S

∂ϑ (x4, t4) < 0, which is impossible. If x4 ∈ Ω, the strong maximum
principle implies S(x, t) ≡ 0, ∀ (x, t) ∈ Ω × (0, t4], and hence, Λ(x) ≡ 0, which is impossible. This proves
(4.15).

The S-equation of (2.1) and (3.19) imply ∂S
∂t ≥ DSΔS + [Λ]m − (a1[β̂1]MM∞ + [d1]M )S. According

to Lemma 3.2 and comparison principle, one can obtain (4.16). �

Lemma 4.6. Let u0 = (S0, I0, B0)T ∈ X
+. If I0 �≡ 0 or B0 �≡ 0, then

I(x, t;u0) > 0 and B(x, t;u0) > 0, ∀ (x, t) ∈ Ω̄ × (0,∞). (4.17)

Proof. If I0(x) �≡ 0, we consider
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂Ī

∂t
= DIΔĪ − d(x)Ī , (x, t) ∈ Ω × (0,∞),

∂Ī

∂ϑ
= 0, (x, t) ∈ ∂Ω × (0,∞),

Ī(x, 0) = I(x, 0) = I0, x ∈ Ω.

It follows from [46, Lemma 1.26] that Ī > 0, ∀ (x, t) ∈ Ω̄ × (0,∞). By the comparison principle, I(x, t) ≥
Ī(x, t) > 0, ∀ (x, t) ∈ Ω̄ × (0,∞). By the B-equation of (2.1),

B = B0(x)e−δ(x)t +

t∫

0

β2(I(x, s), x)I(x, s)e−δ(x)(t−s)ds. (4.18)

Hence, B > 0, ∀ (x, t) ∈ Ω̄ × (0,∞). Thus, (4.17) holds.
If B0 �≡ 0, we can obtain B ≥ (�≡)0,∀ t > 0 by using (4.18). Then β1(I, x)SB ≥ (�≡)0. According to

I = T2(t)I0(x) +

t∫

0

T2(t − s)β1(I, x)SBds,

one gets I(x, t) > 0 for (x, t) ∈ Ω̄ × (0,∞). With proof similar to (4.18), one can obtain B(x, t) > 0 for
(x, t) ∈ Ω̄ × (0,∞). This proves (4.17). �

Lemma 4.7. Let the initial condition u0 ∈ X
+, and σ1 is defined in (4.16). If there exists a σ2 > 0 such

that either lim inf
t→∞ I(x, t;u0) ≥ σ2 or lim inf

t→∞ B(x, t;u0) ≥ σ2 uniformly for x ∈ Ω̄, then there is a positive
constant σ̃2 satisfying

lim inf
t→∞ (S, I,B)(x, t;u0) ≥ (σ̃2, σ̃2, σ̃2), uniformly for x ∈ Ω̄. (4.19)

Proof. For the case of lim inf
t→∞ I(x, t;u0) ≥ σ2. As established in Lemma 4.5, (4.19) holds for S. We can

choose t5 > 0 satisfying I(x, t) ≥ σ2 for (x, t) ∈ Ω̄ × [t5,∞). According to the B-equation of (2.1), one
can obtain

∂B

∂t
≥ σ2(a2 − b2)[β̂2]m − [δ]MB, (x, t) ∈ Ω̄ × [t5,∞).

The comparison principle implies

lim inf
t→∞ B(x, t) ≥ σ2(a2−b2)[β̂2]m

[δ]M
, uniformly for x ∈ Ω̄. (4.20)

For the case of lim inf
t→∞ B(x, t;u0) ≥ σ2. By Lemma 4.5, there exists t6 > 0 satisfying

S(x, t) ≥ σ1 and B(x, t) ≥ σ2, ∀ (x, t) ∈ Ω̄ × [t6,∞).
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Therefore, I-equation of (2.1) fulfills
⎧
⎪⎨

⎪⎩

∂I

∂t
≥ DIΔI + σ1σ2(a1 − b1)[β̂1]m − [d]MI, (x, t) ∈ Ω × [t6,∞),

∂ϑ

∂t
= 0, (x, t) ∈ ∂Ω × [t6,∞).

Then Lemma 3.2 together with the comparison principle implies

lim inf
t→∞ I(x, t) ≥ σ1σ2(a1−b1)[β̂1]m

[d]M
, uniformly for x ∈ Ω̄.

Take σ̃2 = min
{

σ1, σ2,
σ2(a2−b2)[β̂2]m

[δ]M
, σ1σ2(a1−b1)[β̂1]m

[d]M

}
, then the proof is completed. �

We apply the similar proof as in [51, Theorem 3] to define

X0 :=
{
φ = (φ1, φ2, φ3)T ∈ X

+ : φ2 �≡ 0
}

,

∂X0 :=
{
φ = (φ1, φ2, φ3)T ∈ X

+ : φ2 ≡ 0
}

and

M∂ := {φ = (φ1, φ2, φ3)T ∈ ∂X0 : Υ(t)φ ∈ ∂X0, ∀ t ≥ 0},

where Υ(t) : X
+ → X

+ represents the semiflow of model (2.1)–(2.3).

Theorem 4.8. For �0 > 1 and u0 = (S0, I0, B0)T ∈ X
+ with I0 �≡ 0 or B0 �≡ 0, there is σ > 0 satisfying

lim inf
t→∞ (S, I,B)(x, t;u0) ≥ (σ, σ, σ), uniformly for all x ∈ Ω. (4.21)

Furthermore, model (2.1)–(2.3) exists at least one PSS in X
+.

Proof. We only demonstrate Theorem 4.8 for I0 �≡ 0. By using the similar argument, we can obtain
Theorem 4.8 for B0 �≡ 0. Lemmas 4.5 and 4.6 imply that Υ(t)X0 ⊆ X0, ∀ t ≥ 0. Then we will elucidate
the subsequent two claims.

Claim 1. Denoted by ω(u0) the ω-limit set for orbit {Υ(t)u0 : t ≥ 0}, u0 ∈ X
+. Then ω(u0) = {E0}

for all u0 ∈ M∂ .
As for u0 ∈ M∂ , one can get Υ(s)u0 ∈ M∂ , hence I ≡ 0, ∀ t ≥ 0. By I-equation in (2.1), Lemma 4.5

and a1 > b1 ≥ 0 imply

β1(I, x)SB ≡ 0, x ∈ Ω,

then B ≡ 0. Further Lemma 3.2 implies S → SP (x) as t → ∞ uniformly for x ∈ Ω̄. Thus, ∪u0∈M∂
ω(u0) =

{E0}.
Claim 2. There is σ̂ > 0 satisfying

lim sup
t→∞

‖Υ(t)u0 − E0‖X ≥ σ̂, ∀u0 ∈ X0.

Suppose to the contrary that for any given σ̂ > 0, there is u0 ∈ X0 satisfying

lim sup
t→∞

‖Υ(t)u0 − E0‖X < σ̂.

Thus, we can choose a sufficiently large t̃ > 0 such that

SP (x) − σ̂ < S(x, t;u0), I(x, t;u0) < σ̂ and B(x, t;u0) < σ̂, ∀ (x, t) ∈ Ω̄ × [t̃,∞).

The comparison principle implies

(I,B) ≥ (Ǐ , B̌) on Ω̄ × [t̃,∞),
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where (Ǐ , B̌) satisfies

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
∂Ǐ
∂t
∂B̌
∂t

)

= Bσ̂

(
Ǐ
B̌

)

, (x, t) ∈ Ω × [t̃,∞),

∂Ǐ

∂ϑ
= 0, (x, t) ∈ ∂Ω × [t̃,∞),

Ǐ(x, 0) = I(x, 0) = I0, B̌(x, 0) = B(x, 0) = B0, x ∈ Ω

(4.22)

and

Bσ̂ =
(

DIΔ − d(x) β1(σ̂, x)(SP (x) − σ̂)
β2(σ̂, x) −δ1(x)

)

.

Hence (I,B) represents an upper solution of (4.22). It follows from �0 > 1 and Lemma 4.1 that s(B) > 0.
According to (ii) of Theorem 4.3, one can get that s(B) is the principal eigenvalue of (4.10). Let s(Bσ̂)
be the principal eigenvalue of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ

(
ψ2

ψ3

)

= Bσ̂

(
ψ2

ψ3

)

, x ∈ Ω,

∂ψ2

∂ϑ
= 0, x ∈ ∂Ω,

ψ2 ∈ C2(Ω, R) ∩ C1(Ω̄, R), ψ3 ∈ C(Ω̄, R)

(4.23)

with a strongly positive eigenfunction ψσ̂ = (ψσ̂
2 (x), ψσ̂

3 (x)). By continuity of s(Bσ̂) in σ̂ > 0, we can
select small enough σ̂ > 0 satisfying s(Bσ̂) > 0. With the help of Lemma 4.6, one can select small enough
ζ̃ > 0 satisfying (I,B)(x, t̃;u0) ≥ ζ̃ψσ̂. It follows from the comparison principle that

(I,B)(x, t;u0) ≥ ζ̃es(Bσ̂)(t−t̃)ψσ̂, (x, t) ∈ Ω̄ × [t̃,∞).

By s(Bσ̂) > 0, the above result implies that I(x, t;u0) and B(x, t;u0) are unbounded, a contradiction.
Hence Claim 2 is proved.

Let ρ : X
+ → R+ be a continuous function and such that ρ(u0) = minx∈Ω̄{I0}, u0 ∈ X

+. For u0 ∈ X0

and t > 0, lemma 4.6 implies that if ρ(u0) > 0 or ρ(u0) = 0, then ρ(Υ(t)u0) > 0. Therefore, it follows
from [51,52] that ρ represents a generalized distance function associated with Υ(t) : X

+ → X
+. Let

W s(E0) :=
{

u0 ∈ X
+ : lim

t→∞ ‖Υ(t)u0 − E0‖X = 0
}

be the stable set of E0. The above results imply that W s(E0) ∩ ρ−1(0,∞) = ∅. Moreover, there exists no
cycle in ∂X0 from E0 to E0. Lemma 3.4 implies that Υ(t) has a global compact attractor. According to
[52, Theorem 1.3.2], we can choose a σ3 > 0 satisfying

min
v0∈ω(u0)

ρ(v0) > σ3, ∀u0 ∈ X0.

Hence,

lim inf
t→∞ I(x, t;u0) ≥ σ3, ∀u0 ∈ X0, x ∈ Ω̄.

Moreover, Lemma 4.7 implies that there is a σ satisfying (4.21). It follows from [53, Theorem 3.7 and
Remark 3.10] that Υ(t) : X

+ → X
+ possesses a global attractor. By [53, Theorem 4.7], Lemmas 4.5 and

4.6, model (2.1)–(2.3) possesses at least a PSS in X0. �
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5. The impact of dispersal rates

In this section, the emphasis is placed on examining the dependency of the PSS and �0 of model (2.1)–
(2.3) on the dispersal rates of subpopulations (susceptible/infected) in scenarios where cholera persists
uniformly. We examine the extreme cases of human mobility, where the dispersal rates of subpopulations
either sufficiently small or large. On the other hand, these conclusions also reveal the pivotal role of
human behavior change in influencing the characteristics of the PSS.

It follows from Theorem 4.8 that if �0 > 1, then model (2.1)–(2.3) exists a PSS which fulfills
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

DSΔS + Λ(x) − β1(I, x)SB − d1(x)S = 0, x ∈ Ω,
DIΔI + β1(I, x)SB − d(x)I = 0, x ∈ Ω,
β2(I, x)I − δ(x)B = 0, x ∈ Ω,
∂S

∂ϑ
=

∂I

∂ϑ
= 0, x ∈ ∂Ω.

(5.1)

Obviously,

B =
β2(I, x)I

δ(x)
, (5.2)

then (5.1) fulfills
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

DSΔS + Λ(x) − β1(I, x)β2(I, x)
δ(x)

SI − d1(x)S = 0, x ∈ Ω,

DIΔI +
β1(I, x)β2(I, x)

δ(x)
SI − d(x)I = 0, x ∈ Ω,

∂S

∂ϑ
=

∂I

∂ϑ
= 0, x ∈ ∂Ω.

(5.3)

For convenience, we denoted �� =
∫

Ω

�(x)dx/|Ω|, �(x) ∈ C(Ω̄).

Lemma 5.1. (see [49]) For h ∈ L∞(Ω) and D > 0, let the principal eigenvalue of
{

DΔϕ + hϕ = ηϕ, x ∈ Ω,
∂ϕ

∂ϑ
= 0, x ∈ ∂Ω

(5.4)

be η1(D,h(x)). Then

(i) η1(D,h) = sup
{∫

Ω

(−D|∇ϕ|2 + hϕ2)dx : ϕ ∈ H1(Ω) with
∫

Ω

ϕ2dx = 1
}

, which is a continuous

function of D and h(x);
(ii) η1(D,h) is increase as h;
(iii) η1(D,h) is decrease as D and satisfies

lim
D→0

η1(D,h) = max{h(x) : x ∈ Ω̄} and lim
D→∞

η1(D,h) = h�.

Applying the methods in [35,54], the subsequent two lemmas hold.

Lemma 5.2. For
⎧
⎪⎪⎨

⎪⎪⎩

DIΔI − d(x)I +
β1(I, x)β2(I, x)

δ(x)
Λ(x)

β1(I,x)β2(I,x)I
δ(x) + d1(x)

I = 0, x ∈ Ω,

∂I

∂ϑ
= 0, x ∈ ∂Ω,

(5.5)

the following results are valid:
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(i) When �(DI) := η1(DI ,
a1a2β̂1(x)β̂2(x)Λ(x)

d1(x)δ(x) − d(x)) ≤ 0, (5.5) possesses no positive solution;

(ii) When �(DI) := η1(DI ,
a1a2β̂1(x)β̂2(x)Λ(x)

d1(x)δ(x) − d(x)) > 0, (5.5) possesses a unique positive solution.

Proof. (i) We apply the converse assumption that (5.5) possesses a positive solution I. We multiply
(5.5) by I and integrate over Ω, resulting in

−DI

∫

Ω

|∇I|2dx +
∫

Ω

⎛

⎝
β1(I, x)β2(I, x)

δ(x)
Λ(x)

β1(I,x)β2(I,x)I
δ(x) + d1(x)

− d(x)

⎞

⎠ I2dx = 0,

which implies

−DI

∫

Ω

|∇I|2dx +
∫

Ω

(
a1a2β̂1(x)β̂2(x)Λ(x)

δ(x)d1(x)
− d(x)

)

I2dx > 0. (5.6)

By the variational formula and (5.6), we get

�(DI) ≥

⎛

⎝−DI

∫

Ω

|∇I|2dx +
∫

Ω

(
a1a2β̂1(x)β̂2(x)Λ(x)

δ(x)d1(x)
− d(x)

)

I2dx

⎞

⎠
/∫

Ω

I2dx > 0,

a contradiction. Therefore (5.5) does not possess positive solution when �(DI) ≤ 0.
(ii) For �(DI) > 0, define φ as a positive eigenvector of (5.4) associated with �(DI). Let

f(I) = DIΔI +
(

β1(I,x)β2(I,x)
δ(x)

Λ(x)
β1(I,x)β2(I,x)I

δ(x) +d1(x)
− d(x)

)

I.

Let Ǐ = εφ and ε > 0 be small enough, we get

f(Ǐ) = ε

⎛

⎝DIΔφ +

⎛

⎝
β1(εφ, x)β2(εφ, x)

δ(x)
Λ(x)

β1(εφ,x)β2(εφ,x)εφ
δ(x) + d1(x)

− d(x)

⎞

⎠φ

⎞

⎠

= ε

⎛

⎝�(DI) + Λ(x)

⎛

⎝
β1(εφ, x)β2(εφ, x)

δ(x)
1

β1(εφ,x)β2(εφ,x)εφ
δ(x) + d1(x)

− a1a2β̂1(x)β̂2(x)
d1(x)δ(x)

⎞

⎠

⎞

⎠φ > 0.

Therefore Ǐ represents a lower solution of (5.5) for ε > 0. Suppose Î = M̂ and M̂ > 0 be a constant.
According to βi(I, x) = (ai − bi(1 − Mi

I+Mi
))β̂i(x), i = 1, 2, we have f(Î) < 0 when M̂ is large.

Therefore Î represents an upper solution of (5.5). Then it follows from the method of upper/lower
solution that (5.5) possesses a positive solution in [Ǐ , Î].

The following goal is to verify the uniqueness of the positive solution. We apply the converse as-
sumption that (5.5) exists two positive solutions, denoted by I1 and I2, fulfilling I1 �≡ I2. By selecting ε

sufficiently small and M̂ sufficiently large, one can ensure Ii ∈ [Ǐ , Î], i = 1, 2. We can identify a minimal
solution Im and a maximal solution IM of (5.5) fulfilling Im �≡ IM within [Ǐ , Î]. Due to I1 �≡ I2, Im ≤ IM

with Im �≡ IM . According to the method of upper/lower solution, Im < IM . On the other hand, by
multiplying (5.5) with I = IM by Im and (5.5) with I = Im by IM , respectively, then subtracting the
results, one can get

0 =
∫

Ω

ImIMΛ(x) (g(IM ) − g(Im)) dx,

where

g(I) = β1(I,x)β2(I,x)
δ(x)

1
β1(I,x)β2(I,x)I

δ(x) +d1(x)
.
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It then follows from ai > bi ≥ 0, i = 1, 2 that g(I) decreases strictly as I > 0. This implies IM = Im,
which is a contraction. Hence, I1 = I2. �

Lemma 5.3. For
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

DIΔI − d(x)I +
β1(I, x)β2(I, x)I

δ(x)
Λ�

(
β1(I)β2(I)I

δ

)�

+ d�
1

= 0, x ∈ Ω,

∂I

∂ϑ
= 0, x ∈ ∂Ω,

(5.7)

the following results are valid:

(i) When �̂(DI) := η1(DI ,
a1a2β̂1(x)β̂2(x)Λ�

δ(x)d�
1

− d(x)) ≤ 0, (5.7) possesses no positive solution;

(ii) When �̂(DI) := η1(DI ,
a1a2β̂1(x)β̂2(x)Λ�

δ(x)d�
1

− d(x)) > 0, (5.7) possesses a positive solution.

Proof. (i) For �̂(DI) ≤ 0, we apply the converse assumption that (5.7) possesses a positive solution I.
We multiply (5.7) by I and integrate over Ω, resulting in

−DI

∫

Ω

|∇I|2dx +
∫

Ω

⎛

⎜
⎝

β1(I, x)β2(I, x)
δ(x)

Λ�

(
β1(I)β2(I)I

δ

)�

+ d�
1

− d(x)

⎞

⎟
⎠ I2dx = 0,

which implies

−DI

∫

Ω

|∇I|2dx +
∫

Ω

(
a1a2β̂1(x)β̂2(x)Λ�

δ(x)d�
1

− d(x)

)

I2dx > 0. (5.8)

By the variational formula and (5.8), we get

�̂(DI) ≥

⎛

⎝−DI

∫

Ω

|∇I|2dx +
∫

Ω

(
a1a2β̂1(x)β̂2(x)Λ�

δ(x)d�
1

− d(x)

)

I2dx

⎞

⎠
/
∫

Ω

I2dx > 0,

a contradiction. Therefore (5.7) does not possess positive solution when �̂(DI) ≤ 0.
(ii) For �̂(DI) > 0, define φ as a positive eigenvector of (5.4) associated with �̂(DI). Let

f1(I) = DIΔI +

(

β1(I,x)β2(I,x)
δ(x)

Λ�

(
β1(I)β2(I)I

δ

)�
+d�

1

− d(x)

)

I.

Let Ǐ = εφ and ε > 0 be small enough, we get

f1(Ǐ) = ε

⎛

⎜
⎝DIΔφ +

⎛

⎜
⎝

β1(εφ, x)β2(εφ, x)
δ(x)

Λ�

(
β1(εφ)β2(εφ)εφ

δ

)�

+ d�
1

− d(x)

⎞

⎟
⎠φ

⎞

⎟
⎠

= ε

⎛

⎜
⎝�̂(DI) + Λ�

⎛

⎜
⎝

β1(εφ, x)β2(εφ, x)
δ(x)

1
(

β1(εφ)β2(εφ)εφ
δ

)�

+ d�
1

− a1a2β̂1(x)β̂2(x)

δ(x)d�
1

⎞

⎟
⎠φ

⎞

⎟
⎠ > 0.

Therefore Ǐ represents a lower solution of (5.7) for ε > 0. Suppose Î = M̂ and M̂ > 0 be a positive
constant. According to βi(I, x) = (ai − bi(1 − Mi

I+Mi
))β̂i(x), i = 1, 2, we have f1(Î) < 0 when

M̂ is large. Therefore Î represents an upper solution of (5.7). Then it follows from the method of
upper/lower solution that (5.7) possesses a positive solution in [Ǐ , Î]. �
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5.1. Asymptotic profiles of the positive steady states and human behavior change

In certain scenarios, disease control strategies be designed to selectively target a particular subgroup
within the population, leaving the other subgroup to move either unrestrictedly, or slowly, or rapidly. This
underscores that a comprehensive understanding of the asymptotic profiles of the PSS would contribute
to obtaining more precise information regarding the dynamics of cholera transmission. In this subsection,
we set DI > 0 as a constant and examine the behavior of the PSS as DS toward small or large values.

Theorem 5.4. For fixed DI > 0, the following results are valid:

(i) When �(DI) < 0, then there exists D1 > 0 such that (5.1) does not possess positive solution other
than (SP (x), 0, 0) for DS < D1;

(ii) When �(DI) > 0, then there exists D2 > 0 such that (5.1) possesses a positive solution (S, I,B) for
DS < D2. Furthermore,

(S, I,B) → (S∗∗, I∗∗, B∗∗) =
(

Λ(x)
β1(I∗∗,x)β2(I∗∗,x)I∗∗

δ(x) +d1(x)
, I∗∗, β2(I

∗∗,x)I∗∗

δ(x)

)

, as DS → 0, (5.9)

where I∗∗ be the unique positive solution of model (5.5). Moreover, If a = ai, b = bi and M = Mi

for i = 1, 2, I∗∗ is decreasing in b and increasing in M .

Proof. (i) Obviously, (SP (x), 0, 0) is the positive solution of (5.1). If DS → 0, it follows that SP (x) →
Λ(x)
d1(x) . Thus,

η1(DI ,
a1a2β̂1(x)β̂2(x)SP (x)

δ(x) − d(x)) → η1(DI ,
a1a2β̂1(x)β̂2(x)Λ(x)

d1(x)δ(x) − d(x)) = �(DI). (5.10)

By Theorem 4.3 (i), �0 − 1 has the same sign as η1. If �(DI) < 0, we can choose a D1 > 0 such that
�0 < 1 for DS < D1. It follows from (5.2) and I equation of (5.3) that neither I nor B-equation of
(5.3) possesses a positive solution when DS < D1.

(ii) When �(DI) > 0, according Theorem 4.3 (i), we can choose a D2 > 0 such that �0 > 1 for DS < D2.
Therefore, Theorem 4.8 implies that (5.3) possesses a positive solution (S, I,B) for DS < D2.

The next goal is to verify the convergence of (S, I,B). According to (5.3), we get
{−DSΔS ≤ Λ(x) − d1(x)S, x ∈ Ω,

∂S

∂ϑ
= 0, x ∈ ∂Ω.

(5.11)

It follows from the maximum principle that

‖S‖∞ ≤ C̄1 := [Λ]M
[d1]m

, ∀x ∈ Ω̄, DS > 0.

By the elliptic estimate, one can obtain

‖I‖W 2,p(Ω) ≤ C̄2, ∀x ∈ Ω, DS > 0.

Combining methods from [18, Theorem 4.2], for p > n, we can select a sequence DSk
with DSk

→ 0 such
that the positive solution (Sk, Ik) of (5.3) fulfills (Sk, Ik) → (S∗∗, I∗∗) weakly in (Lp(Ω),W 2,p(Ω)) and
Ik → I∗∗ strongly in C(Ω̄) when k → ∞. Then (5.3) implies that

S∗∗ = Λ(x)
β1(I∗∗,x)β2(I∗∗,x)I∗∗

δ(x) +d1(x)
. (5.12)

Therefore, S∗∗(x) > 0. It follows from Lemma 5.2 that I∗∗(x) = 0 or I∗∗(x) > 0. Next, we claim that
I∗∗(x) > 0. In fact, if I∗∗(x) = 0, then S∗∗(x) = Λ(x)

d1(x) . Let Īk = Ik

‖Ik‖∞
for all k. Then ‖Īk‖∞ = 1 and Īk
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fulfills
⎧
⎪⎪⎨

⎪⎪⎩

DIΔĪk − d(x)Īk +
β1(Ik, x)β2(Ik, x)Īk

δ(x)
Λ(x)

β1(Ik,x)β2(Ik,x)Ik

δ(x) + d1(x)
= 0, x ∈ Ω,

∂Īk

∂ϑ
= 0, x ∈ ∂Ω.

(5.13)

According to Lp theory of elliptic equations, Īk is uniformly bounded in W 2,p(Ω). Therefore, we can select
a subsequence satisfying Īk → Ī∗∗ weakly in W 2,p(Ω) as k → ∞, where Ī∗∗ fulfills

⎧
⎪⎪⎨

⎪⎪⎩

DIΔĪ∗∗ − d(x)Ī∗∗ +
a1a2β̂1(x)β̂2(x)Ī∗∗

δ(x)
Λ(x)
d1(x)

= 0, x ∈ Ω,

∂Ī∗∗
k

∂ϑ
= 0, x ∈ ∂Ω.

(5.14)

Recall that Īk > 0 and ‖Īk‖∞ = 1, thus,

�(DI) = η1

(
DI ,

a1a2β̂1(x)β̂2(x)Λ(x)
d1(x)δ(x) − d(x)

)
= 0, (5.15)

a contradiction with �(DI) > 0. Therefore, we obtain I∗∗(·) �= 0. Then (5.2) implies

B → B∗∗ = β2(I
∗∗,x)I∗∗

δ(x) as DS → 0. (5.16)

To prove the monotonicity of I∗∗ with respect to b and M , we rewrite (5.5) as follows:
{−DIΔI∗∗ + d(x)I∗∗ = g(x, b,M, I∗∗)I∗∗, x ∈ Ω,

∂I∗∗

∂ϑ
= 0, x ∈ ∂Ω,

(5.17)

where

g(x, b,M, I∗∗) =
(a − b I∗∗

I∗∗+M )2β̂1(x)β̂2(x)Λ(x)

(a − b I∗∗
I∗∗+M )2β̂1(x)β̂2(x)I∗∗ + d1(x)δ(x)

.

It is easy to obtain that g(x, b,M, I∗∗) is decreasing in b. Suppose b̄ > b, then I∗∗
b̄

satisfies:
⎧
⎨

⎩

−DIΔI∗∗
b̄ + d(x)I∗∗

b̄ = g(x, b̄,M, I∗∗
b̄ )I∗∗

b̄ < g(x, b,M, I∗∗
b̄ )I∗∗

b̄ , x ∈ Ω,
∂I∗∗

b̄

∂ϑ
= 0, x ∈ ∂Ω,

which implies that I∗∗
b̄

is a lower solution of (5.17). According to the proof of Lemma 5.2 (ii), one can get
that the constant M̂ > 0 be a upper solution of (5.17) and I∗∗ ≥ I∗∗

b̄
.

It is easy to obtain that g(x, b,M, I∗∗) is increasing in M . Suppose M > M̄ , then I∗∗̄
M

satisfies:
⎧
⎨

⎩

−DIΔI∗∗̄
M + d(x)I∗∗̄

M = g(x, b, M̄ , I∗∗̄
M )I∗∗̄

M < g(x, b,M, I∗∗̄
M )I∗∗̄

M , x ∈ Ω,
∂I∗∗̄

M

∂ϑ
= 0, x ∈ ∂Ω,

which implies that I∗∗̄
M

is a lower solution of (5.17). According to the proof of Lemma 5.2 (ii), one can get
that the constant M̂ > 0 be a upper solution of (5.17) and I∗∗ ≥ I∗∗̄

M
. Theorem 5.4 holds. �

For fixed DI , we also investigate the behavior of the PSS when DS becomes sufficiently large.

Theorem 5.5. For fixed DI > 0, the following results are valid:

(i) When �̂(DI) < 0, then there exists D3 > 0 such that (5.1) does not possess positive solution other
than (SP (x), 0, 0) for DS > D3;
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(ii) When �̂(DI) > 0, then there exists D4 > 0 such that (5.1) possesses a positive solution (S, I,B) for
DS > D4. Moreover,

(S, I,B) → (S∞, I∞, B∞) =

(

Λ�

(
β1(I∞)β2(I∞)I∞

δ

)�
+d�

1

, I∞, β2(I
∞,x)I∞

δ(x)

)

, as DS → ∞, (5.18)

where I∞ be the positive solution of (5.7).

Proof. (i) Apparently, (SP (x), 0, 0) is the positive solution of (5.1). If DS → ∞, it follows that SP (x) →
Λ�

d�
1
. Thus,

η1(DI ,
a1a2β̂1(x)β̂2(x)SP (x)

δ(x) − d(x)) → η1(DI ,
a1a2β̂1(x)β̂2(x)Λ�

d�
1δ(x)

− d(x)) = �̂(DI). (5.19)

By (i) of Theorem 4.3, �0−1 has the same sign as η1. If �̂(DI) < 0, there is a D3 > 0 such that �0 < 1 for
DS > D3. By a similar argument as (i) of Theorem 5.4, Lemma 5.3 implies that neither I nor B-equation
of (5.3) possesses a positive solution when DS > D3.

(ii) when �̂(DI) > 0, according to Theorem 4.3 (i), we can choose a D4 > 0 such that �0 > 1 for
DS > D4. Therefore, Theorem 4.8 implies that (5.3) possesses a positive solution (S, I,B) for DS > D4.

The next goal is to verify the convergence of (S, I,B). By the similar processes in Theorem 5.4 (ii),
we can select a sequence DSk

with DSk
→ ∞ such that the positive solution (Sk, Ik) of (5.3) fulfills

(Sk, Ik) → (S∞, I∞) weakly in (W 2,p(Ω),W 2,p(Ω)) as k → ∞. If DSk → ∞, one can obtain ΔS∞ = 0.
Thus, S∞ is a constant. Then we integrate the S-equation of (5.3) to get

S∞ = Λ�

(
β1(I∞)β2(I∞)I∞

δ

)�
+d�

1

. (5.20)

By the similar processes in Theorem 5.4, one can obtain I∞ �= 0 and

B → B∞ = β2(I
∞,x)I∞

δ(x) as DS → ∞. (5.21)

This proof is completed. �

5.2. Asymptotic profiles of the basic reproduction number

This subsection will examine the impact of the human mobility on infection risk by discussing the as-
ymptotic profiles of �0 with small or large dispersal rates.

With the help of a singular perturbation argument as in the proof of [55, Lemma 3.2], we obtain
SP (x) → Λ(x)

d1(x) when DS → 0. By applying 4.2 (i) , one can establish the local basic reproduction number
�l

0(x):

�l
0(x) = a1a2β̂1(x)β̂2(x)Λ(x)

d1(x)d(x)δ(x) , x ∈ Ω. (5.22)

Inspired by [49], one can get the low-risk region and the high-risk location: Ω̄ represents a low-risk region
when �l

0(x) < 1,∀x ∈ Ω̄; x represents a high-risk location when x ∈ Ω̄ satisfies �l
0(x) > 1.

Case 1.(DS ,DI) → (0, 0). By (4.6), we have

�1 := lim
(DS ,DI)→(0,0)

�0 = maxx∈Ω̄

{
a1a2β̂1(x)β̂2(x)Λ(x)

δ(x)d1(x)d(x)

}
= max

x∈Ω̄
{�l

0(x)}. (5.23)

If Ω̄ is a low-risk region, DI > 0 and DS → 0, then Theorem 4.2 (i) and (5.23) imply �0 < 1. Thus,
within the low-risk region Ω̄, our result indicates that cholera may potentially be eradicated by merely
restricting the mobility of susceptible individuals.

If there exists high-risk location, then (5.23) implies �1 > 1. Consequently, our result indicates that
limiting human mobility alone is not sufficient to eliminate cholera if Ω̄ has high-risk location.
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Case 2.(DS ,DI) → (0,∞). By (4.7), we have

�2 := lim
(DS ,DI)→(0,∞)

�0 =

∫

Ω

(
a1a2β̂1(x)β̂2(x)Λ(x)

δ(x)d1(x)

)

dx

∫

Ω

d(x)dx
. (5.24)

If Ω̄ is a low-risk region, it follows from Theorem 4.2 (i) that �2 < 1. By a similar arguments in Case
1, within the low-risk region Ω̄, the result implies that cholera may potentially be eradicated by merely
restricting the mobility of susceptible individuals.

If there exists high-risk location, and (d(�l
0 − 1))� < 0, then Theorem 4.2 (iv) implies that we can

select a D̂I > 0 satisfying �0 > 1 for DI < D̂I and �0 < 1 for DI > D̂I . Obviously, (d(�l
0 − 1))� < 0

implies �2 < 1. Consequently, our result indicates that even though Ω̄ has high-risk locations, at the
same time, the average infection risk is small enough ((d(�l

0 − 1))� < 0), we can decrease the infection
risk via accelerating the mobility of infected individuals when the mobility of susceptible individuals is
small enough.

Apparently, �2 < �1, which suggests that when imposing restrictions the mobility of susceptible
individuals, the rapid mobility of infected individuals reduces infection risk. This aligns with Theorem
4.2 (i).

On the other hand, recall that SP (x) → Λ�

d�
1

when DS → ∞. By applying Theorem 4.2 (i), one can

establish the local basic reproduction number �L
0 (x):

�L
0 (x) = a1a2β̂1(x)β̂2(x)Λ�

d�
1d(x)δ(x)

, x ∈ Ω̄. (5.25)

Similarly, we can get the low-risk region and the high-risk location with respect to �L
0 (x): Ω̄ represents a

low-risk region when �L
0 (x) < 1,∀x ∈ Ω̄; x represents a high-risk location when x ∈ Ω̄ satisfies �L

0 (x) > 1.
Case 3. (DS ,DI) → (∞, 0). By (4.6), we have

�3 := lim
(DS ,DI)→(∞,0)

�0 = maxx∈Ω̄

{
a1a2β̂1(x)β̂2(x)Λ�

δ(x)d�
1d(x)

}
= max

x∈Ω̄
{�L

0 (x)}. (5.26)

If Ω̄ is a low-risk region, then (5.26) and Theorem 4.2 (i) imply �0 < 1. Hence, within the low-risk
region Ω̄, the result indicates that cholera may potentially be eradicated when the susceptible individuals
move at a rapid pace.

If there exists high-risk location, then (5.26) implies that �3 > 1. Consequently, our result suggests
that when Ω̄ has high-risk location, increasing the mobility of the susceptible individuals may enhance
the cholera risk.

According to Case 1 and Case 3, we obtain that accelerating the mobility of susceptible individuals will
enhance the risk of transmission for cholera when �1 < �3, while speeding up the mobility of susceptible
individuals will decrease the infection risk when �1 > �3.

Case 4. (DS ,DI) → (∞,∞). By (4.7), we have

�4 := lim
(DS ,DI)→(∞,∞)

�0 =

∫

Ω

(
a1a2β̂1(x)β̂2(x)Λ�

δ(x)d�
1

)

dx

∫

Ω

d(x)dx
. (5.27)

If Ω̄ is a low-risk region, then (5.27) implies that �4 < 1. By a similar arguments in Case 3, within
the low-risk region Ω̄, the result indicates that cholera may potentially be eradicated if the susceptible
individuals move at a rapid pace.
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If there exists high-risk location, and (d(�L
0 − 1))� < 0, then Theorem 4.2 (iv) implies that we can

select a D̂I > 0 satisfying �0 > 1 for DI < D̂I and �0 < 1 for DI > D̂I . Obviously, (d(�L
0 − 1))� < 0

implies �4 < 1. Consequently, our result suggests that even though Ω̄ exists high-risk location, at the
same time, the average infection risk is small enough ((d(�L

0 − 1))� < 0) , we can decrease the disease via
accelerating the mobility of infected individuals when the mobility of susceptible individuals is sufficiently
large.

According to Case 1 and Case 4, we obtain that accelerating the mobility of individuals will enhance
the risk of transmission for cholera when �1 < �4, while accelerating the mobility of individuals will
decrease the risk of transmission for cholera when �1 > �4.

6. Numerical simulations

This section aims to employ numerical simulations to examine the impact of environmental heterogeneity
and human behavior changes on the transmission of cholera. Specifically, our investigation focuses on
understanding how alterations in human behavior, human mobility, and spatial heterogeneity influence
both the risk of disease and the final epidemic size.

Within the field of epidemiology, considerable attention is given to the concepts of infection risk and the
final epidemic size. The infection risk is directly linked to the basic reproduction number (�0). Generally,
an epidemic is expected to die out when �0 < 1, while it becomes endemic when �0 > 1. However, it is
worth noting that for endemic situations where �0 > 1, the computation of the total infection becomes
unfeasible as it tends toward infinity.

To address this issue, we introduce the notation

HI :=
∫

Ω

Ĩdx

to quantify the final epidemic size, where Ĩ ≥ 0 denotes the steady state solution of I-equation of (5.1).
The definition given here is inspired by population size in ecology aspects [17,24,56].

The conclusions of this section are summarized as follows:

(P1) Mitigating the spatial heterogeneity has the potential to eradicate cholera.
(P2) Enhancing the mobility of infected individuals may make cholera extinct. For infection risk, the

optimal dispersal rate of susceptible individuals lies in an intermediate range. Nevertheless, a re-
duction in the mobility of susceptible individuals may result in a decrease in the final epidemic size.
Hence reliance solely on infection risk proves inadequate for predicting the final epidemic size.

(P3) Human behavior changes have the capacity not only to precipitate a significant reduction in the
final density of infected individuals, but also to forestall the escalation in the density of infected
individuals over time in specific locations. Within a specific range, the expeditious response of media
and individuals to cholera may prove more efficacious in controlling the final epidemic size than the
associated largest reduced rates caused by human behavior changes.

Throughout this section, we vary specific parameter values to investigate the risk of disease and
the final epidemic size for cholera. Inspired by Wang et al. [6], we set Ω = (0, 1) ⊂ R, and assume
DS = 1, DI = 0.01 to represent the impact of the disease on human mobility. Particularly, we set
Λ(x) = 1 + cos πx

100 and β̂1(x) = β̂2(x) = 1 + 0.5 cos(5πx) for x ∈ [0, 1] to reflect the spatial heterogeneity
arising from differing geographical locations.
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Fig. 1. Time evolution of a S, b I and c B of model (2.1)–(2.3) (�0 = 1.2479 > 1)

Fig. 2. Time evolution of a S, b I and c B of model (2.1)–(2.3) (�0 = 0.8320 < 1)

6.1. �0 and long-term behaviors

This subsection focuses on the simulations of model (2.1)–(2.3) for disease persistence and extinction,
which align with Theorems 4.8 and 4.4. With

d1 = 1, d = 5, δ = 4, a1 = 8.72, a2 = 1.80, b1 = 0.8a1, b2 = 0.8a2,M1 = M2 = 10

and

S0(x) = 0.999, I0(x) = 0.001, B0(x) = 0, x ∈ [0, 1],

we have �0 = 1.2479 > 1, and Fig. 1 illustrates the uniform persistence of (2.1)–(2.3) and existence of
the PSS. This result aligns with Theorem 4.8.

In fact, the control of cholera heavily relies on water sanitation and hygiene measures, as discussed
by [57], ensuring access to safe water sources is particularly crucial in this regard. For instance, if we can
enhance the mortality rate of V. cholerae in water reservoirs from the current value of δ = 4 to δ = 6
through methods like boiling water or treating it with chlorine-based products or household bleach, we
find that �0 = 0.8320 < 1. As shown in Fig. 2, the solution converges to the infection-free steady state
(IFSS) over time. This finding aligns with the conclusion of Theorem 4.4.
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Fig. 3. a Sensitivity of �0 to spatial heterogeneity v. b The final epidemic size HI of system (2.1)–(2.3) with respect to v

6.2. Effects of spatial heterogeneity and dispersal rates

Let v ∈ (0, 1) represent the spatial heterogeneity of the transmission rate from the environment to
individuals and the shedding rate of the pathogen by infected individuals. By altering v, we can elucidate
the effect of spatial heterogeneity on both the infection risk and the final epidemic size. Set

β̂1(x) = β̂2(x) = 1 + v cos(5πx), x ∈ [0, 1],

and the values of other parameters are consistent with Fig. 1. Figure 3a shows that �0 increases mono-
tonically with the increase of v. Figure 3b illustrates that HI increases monotonically as v increases when
endemic is established. These findings suggest that spatial heterogeneity may potentiate the infection risk
and the final epidemic size.

On the other hand, let DI ∈ (0, 0.1) denote the dispersal rate of infected individuals, and the values of
other parameters are consistent with Fig. 1. We investigate the impact of the dispersal rate of infected in-
dividuals on cholera by varying DI . Figure 4a illustrates that �0 increases monotonically with the increase
of DI . Figure 4b shows that HI decreases monotonically as DI increases when endemic is established.
Thus, the mobility of infected individuals may decrease the infection risk and the final epidemic size.

Moreover, let DS ∈ (0, 10) denote the dispersal rate of susceptible individuals, the values of other
parameters are consistent with Fig. 1. We investigate the impact of the dispersal rate of susceptible
individuals on cholera by varying DS . Figure 5a illustrates that �0 decreases and subsequently increases
as DS increases. Thus, the effect of the mobility of susceptible individuals on the infection risk �0 is
complex, and the proper dispersal rate of susceptible individuals may minimize the risk of infection.
Figure 5b shows that HI monotonically increases as DS increases. Therefore, decreasing the mobility of
susceptible individuals may decrease the final epidemic size. Furthermore, by combining Fig. 5, we find
that as DS increases, the portion corresponding to the monotonic decrease of �0 is accompanied by
a monotonic increase in HI . This indicates that infection risk alone is insufficient to predict the final
epidemic size.

Remark 6.1. In fact, for the SIS model established in [24], numerical simulations exist to show that larger
�0 may not imply larger HI . The corresponding theoretical result for a similar problem can be found in
[56,58]. However, we note that these numerical examples may not represent general results.
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Fig. 4. a Sensitivity of �0 to the dispersal rate of infected individuals DI . b The final epidemic size HI of system (2.1)–(2.3)
with respect to DI

Fig. 5. a Sensitivity of �0 to the dispersal rate of susceptible individuals DS . b The final epidemic size HI of system
(2.1)–(2.3) with respect to DS

6.3. Effect of human behavior changes

Now we study the influence of human behavior changes on the spread of cholera by varying locations (x),
the associated largest reduced rates (b1, b2) caused by human behavior changes, or the response rates
(M1, M2) of media and individuals to cholera. Specifically, we consider the locations x = 0.2, x = 0.4 and
x = 0.6, respectively. Figure 6 illustrates how human behavior changes affect the transmission of cholera
by analyzing the population density of infected individuals at different locations. The curves in blue, red,
and green represent the densities of infected individuals under different scenarios: no behavior changes
(b1 = b2 = 0), minor behavior changes (bi = 0.8ai,Mi = 10, 1 ≤ i ≤ 2), and significant behavior changes
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Fig. 6. Impacts of human behavior on cholera transmission at location a x = 0.2, b x = 0.4 and c x = 0.6

(bi = 0.8ai,Mi = 5, 1 ≤ i ≤ 2), respectively. Moreover, Fig. 6b shows that the blue curve increases as time
progresses, while the green curve decreases. These findings suggest that introducing human behavioral
changes can be an effective strategy for controlling cholera transmission. Such changes can not only
prevent the increase in the density of infected individuals over time in certain locations but also lead to
a substantial decrease in the overall density of infected individuals. However, it is important to note that
cholera cannot be eradicated solely by changing human behavior.

Furthermore, we investigate the influence of the associated largest reduced rates (b1, b2) caused by
human behavior changes and the response rates (M1, M2) of media and individuals to cholera on the
final epidemic size by varying bi, Mi (i = 1, 2). Notice from (4.5) that these parameters do not impact
�0. We set M1 = M2 := M and vary M within the range of [0, 20]. The other parameters are the same
as those in Fig. 1. Figure 7a demonstrates that for �0 > 1, the epidemic size increases dramatically with
M within a specific range. However, beyond this range, further increases in M have minimal effect on
the final epidemic size. This suggests that the response rates of media and individuals to cholera can
obvious influence the outbreak of cholera at the early stage. Similarly, we set bi = bai, 1 ≤ i ≤ 2 for
b ∈ [0, 1] and keep the other parameters the same as in Fig. 1. Figure 7b shows that for �0 > 1, the final
epidemic size decreases with b. This indicates that the associated largest reduced rates caused by human
behavior changes may have an inverse relationship with the final epidemic size. Moreover, our results
reveal that the effect of M on the final epidemic size HI is greater than the effect of b within a specific
range, suggesting that the rapid response of media and individuals to cholera may be more effective in
controlling the final epidemic size within that range.

7. Discussion

Cholera possesses the capacity for swift spread over vast geographical regions, resulting in considerable
mortality rates. There exists the potential for mathematical modeling to unravel the dynamics of cholera
transmission and provide pragmatic recommendations for disease prevention. Several cholera models
incorporating factors relevant to the disease have been formulated [6,9,21,22,38,59]. However, the con-
current investigation of human behavior change, distinct human mobilities and spatial heterogeneity
within a degenerate cholera model seems to be lacking in previous studies. In this paper, we extend the
degenerate reaction-diffusion model [18] by incorporating the influence of human behavior change, i.e.,
the transmission rate and shedding rate of pathogen depend on the density of the infected individuals.
The principal theoretical results presented in Sect. 3 include the well-posedness of the model by employing
some estimates to address challenges associated with different dispersal rates and establish the existence
of a global attractor for the degenerate equation by employing the κ-contraction condition.
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Fig. 7. The final epidemic size HI of system (2.1)–(2.3) with respect to a the media and individuals respond to the epidemics
M , b the largest reduced rate associated with behavior change in human hosts b

The basic reproduction number (�0) is introduced in Sect. 4, and it is proven to serve as a threshold
parameter for the extinction and persistence of epidemic. Specifically, when �0 < 1, the infection-free
steady state (IFSS) is globally asymptotically stable; while for �0 > 1, the system exhibits uniform
persistence and a positive steady state (PSS) exists. We observe that �0 is independent of the associated
largest reduced rates (b1, b2) caused by human behavior changes and the response rates (M1, M2) of
media and individuals to cholera, but correlates with the dispersal rates. This indicates that the human
behavior change does not influence the persistence of cholera, whereas human mobility does.

To conduct more information on the effects of human mobility, the asymptotic profiles of the PSS
and �0 are studied in Sect. 5. We derive the asymptotic profiles of the PSS for small or large dispersal
rates of susceptible individuals, demonstrating that positive human behavior changes may reduce the
final asymptotic profiles of PSS as small dispersal coefficients of susceptible individuals. It is noteworthy
to highlight that there are two unresolved issues: the monotonicity of the final asymptotic profiles of PSS
with respect to the coefficients associated with human behavior changes for large dispersal coefficients of
susceptible individuals; the asymptotic profiles of the PSS for small and large values of infected individ-
uals. Additionally, the asymptotic profiles of �0 in relation to the extreme cases of human mobility are
investigated. For regions with low cholera risk, it is found that cholera can potentially be eradicated by
restricting the mobility of susceptible individuals. However, for regions with high cholera risk, restricting
the mobility of infected individuals is not sufficient to eliminate cholera in certain cases. Instead, pro-
moting the mobility of infected individuals can lead to cholera eradication when the average infection
risk is sufficiently low. Furthermore, conditions are provided to demonstrate how human mobility can
reduce the risk of disease transmission. These theoretical conclusions partially expand the insights into
the asymptotic profiles of �0 and the PSS for the cholera models incorporating human behavior changes
[19,20,33].

Numerical simulations are conducted to further explore the influence of spatial heterogeneity, human
mobility, and human behavior change on cholera transmission in Sect. 6. The simulations validate the
theoretical conclusions and provide additional insights beyond the scope of the theoretical results. Spa-
tial heterogeneity enhances the likelihood of cholera persistence, as depicted in Fig. 3. This observation
implies that human behavior change and human mobility in spatially heterogeneous environments lead to
interdependencies in the disease dynamics across distinct regions. The prevention and control of cholera



  114 Page 32 of 35 W. Wu et al. ZAMP

require a comprehensive approach rather than being an isolated concern for individual regions. The mobil-
ity of infected individuals may mitigate the spread of cholera, as shown in Fig. 4. Conversely, the mobility
of susceptible individuals may exacerbate the transmission of cholera, as depicted in Fig. 5b. In epidemi-
ology, the spatially homogeneous ordinary differential epidemic model commonly asserts that a higher
basic reproduction number leads to a larger eventual infection size. Nevertheless, the applicability of �0

might be overemphasized. In the spatial epidemic model, the relationship between the basic reproduction
number and the final epidemic size is non-monotonic, as illustrated in Fig. 5. This observation suggests
that relying solely on the control of the basic reproduction number of cholera may not be efficacious.
Furthermore, we ascertain that human behavior changes exert a positive impact on diminishing the final
epidemic size, as depicted in Fig. 6. However, they fail to completely eradicate cholera alone. Furthermore,
it is observed that the response rates (M) of media and individuals to cholera is more effective than the
associated largest reduced rates (b) caused by human behavior changes in mitigating the final epidemic
size to some extent, as shown in Fig. 7. Our results are consistent with the studies conducted by Fig. 3 in
[19], Fig. 1 in [21] and further extend their contributions by studying the final epidemic size for cholera.
These findings can potentially prevent cholera outbreaks at an early stage by identifying regions with
heightened infection severity can optimize the allocation of available resources.

In this paper, we explore the transmission mechanism of cholera in the explicit incorporation of
human behavior change, human mobility and spatial heterogeneity. To achieve this, we introduced several
simplifying assumptions pertaining to the spread of cholera, such as the contact rate and shedding rate
of individuals related to human behavior change. Actually, in regions characterized by a high prevalence
of disease, susceptible individuals may actively seek to mitigate infection by leaving the area, thereby
potentially decelerating the transmission of the epidemic [60–62]. We have also assumed that the density of
V. cholerae in the polluted water is governed by the shedding rate of pathogen by infected individuals and
the rate of natural mortality of V. cholerae. In fact, bacteria and bacteriophages maintain a predator–prey
relationship. The ODE models [63,64] have been devised to integrate the interaction between bacteria
and phage. Moreover, simulations suggest that spatial heterogeneity has the potential to enhance the
epidemic risk and the final epidemic size. Future challenges include the development of theoretical results
to elucidate the significance of spatial heterogeneity on recurrent cholera outbreaks.
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