
Chaos 32, 043116 (2022); https://doi.org/10.1063/5.0085560 32, 043116

© 2022 Author(s).

Stochastic switches of eutrophication
and oligotrophication: Modeling extreme
weather via non-Gaussian Lévy noise
Cite as: Chaos 32, 043116 (2022); https://doi.org/10.1063/5.0085560
Submitted: 18 January 2022 • Accepted: 29 March 2022 • Published Online: 13 April 2022

 Anji Yang,  Hao Wang,  Tonghua Zhang, et al.

https://images.scitation.org/redirect.spark?MID=176720&plid=1757166&setID=405123&channelID=0&CID=645035&banID=520640774&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=069027fb33bda3639cb3ff6d34d163b3c7ec5875&location=
https://doi.org/10.1063/5.0085560
https://doi.org/10.1063/5.0085560
http://orcid.org/0000-0003-2778-9972
https://aip.scitation.org/author/Yang%2C+Anji
http://orcid.org/0000-0002-4132-6109
https://aip.scitation.org/author/Wang%2C+Hao
http://orcid.org/0000-0003-0510-1428
https://aip.scitation.org/author/Zhang%2C+Tonghua
https://doi.org/10.1063/5.0085560
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0085560
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0085560&domain=aip.scitation.org&date_stamp=2022-04-13


Chaos ARTICLE scitation.org/journal/cha

Stochastic switches of eutrophication and
oligotrophication: Modeling extreme weather via
non-Gaussian Lévy noise

Cite as: Chaos 32, 043116 (2022); doi: 10.1063/5.0085560

Submitted: 18 January 2022 · Accepted: 29March 2022 ·

Published Online: 13 April 2022 View Online Export Citation CrossMark

Anji Yang,1 Hao Wang,2 Tonghua Zhang,3 and Sanling Yuan1,a)

AFFILIATIONS

1College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
2Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada
3Department of Mathematics, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia

a)Author to whom correspondence should be addressed: sanling@usst.edu.cn

ABSTRACT

Disturbances related to extreme weather events, such as hurricanes, heavy precipitation events, and droughts, are important drivers of evolu-
tion processes of a shallow lake ecosystem. A non-Gaussian α-stable Lévy process is esteemed to be the most suitable model to describe such
extreme events. This paper incorporates extreme weather via α-stable Lévy noise into a parameterized lake model for phosphorus dynamics.
We obtain the stationary probability density function of phosphorus concentration and examine the pivotal roles of α-stable Lévy noise on
phosphorus dynamics. The switches between the oligotrophic state and the eutrophic state can be induced by the noise intensity σ , skewness
parameter β , or stability index α. We calculate the mean first passage time, also referred to as the mean switching time, from the oligotrophic
state to the eutrophic state. We observe that the increased noise intensity, skewness parameter, or stability index makes the mean switching
time shorter and thus accelerates the switching process and facilitates lake eutrophication. When the frequency of extreme weather events
exceeds a critical value, the intensity of extreme events becomes the most key factor for promoting lake eutrophication. As an application,
we analyze the available data of Lake Taihu (2014–2018) for monthly precipitation, phosphorus, and chlorophyll-a concentrations and quan-
tify the linkage among them using the Lévy-stable distribution. This study provides a fundamental framework to uncover the impact of any
extreme climate event on aquatic nutrient status.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0085560

It is predicted that the frequency and intensity of extreme weather
events will continue to increase in the near future. Therefore, it is
necessary to investigate the effects of extreme weather on nutri-
ent dynamics in shallow lakes. In this paper, we argue that such
a transition from the oligotrophic state to the eutrophic state
could be triggered by extreme weather events. Thus, we extend
the previous research to the framework of non-Gaussian α-stable
Lévy noise, which can characterize unpredictable jump changes
of the random environment. The environmental noise-induced
switch behaviors have been investigated by considering the sta-
tionary probability density function of the phosphorus concen-
tration. Furthermore, we characterize basic features of these tran-
sitions with simulations of stochastic tools (mean first passage
time, MFPT). The results clearly indicate that the non-Gaussian
α-stable Lévy noise can better cause the switches between
different nutritional levels, and the switching process is

significantly accelerated compared with Gaussian noise. We
also analyzed monthly precipitation, P concentration, and
chlorophyll-a (Chl-a) concentration data of Lake Taihu
(2014–2018) and quantify the linkage among them using the
Lévy-stable distribution. This method is novel in describing the
nutrient pulsing in shallow lakes by Lévy noise and can be widely
applied to the quantitative description of sudden weather events
in any ecological model.

I. INTRODUCTION

Lake Taihu is located in the Yangtze Delta, the most indus-
trialized area in China with high population density, urbanization,
and economic development.1 It is the third largest freshwater lake
in China and provides vital drinking water for roughly 10 × 106
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residents in neighboring cities. In 2007, however, a serious drink-
ing water crisis took place in Wuxi, Jiangsu Province, in China.
About 2 × 106 residents had no water to drink for at least a
week because of algal blooms that have gathered at drinking water
intakes.2 Increased evidence suggested that the primary cause of the
crisis was the accumulation of nutrient-rich sewage and agricultural
runoff in Lake Taihu, which contributed to severe eutrophication.
Moreover, the abnormally hot and dry weather condition in early
summer might be the culprit for the bloom during 2007.2–4

In general, in an oligotrophic lake, the nutrient concentra-
tion is mainly affected by inputs from the watershed, whereas in
a eutrophic lake, it is controlled by recycling within the lake and
inputs simultaneously.5 Some studies show that there are fluctu-
ations in both the internal nutrient circulation process and the
external nutrient input process of a lake.6,7 On the one hand, in
a shallow lake, the process of nutrient recycling within the lake is
easily disturbed by wind, which causes sediment resuspension and
leads to the release of nutrients from the lake bottom.8 For example,
Sφndergaard et al.9 performed laboratory experiments to observe
that the internal phosphorus loading induced by resuspension is
estimated to be 20–30 times greater than the release from undis-
turbed sediments. On the other hand, nonpoint sources of nutrients,
such as runoff from agricultural or urban lands, are also one of the
pivotal factors driving lake eutrophication.10 Analyses of historical
data show that major rainfall events can interact with manure and
fertilizer in agricultural watersheds to increase erosion and nutrient
transport to surface waters.11 As a summary, extreme weather events
such as heavy rains, typhoons, prolonged droughts, and extreme
heat, which occur rarely, unforeseeable, and fiercely, can signifi-
cantly impact the nutrient level in a lake. Therefore, it is necessary to
investigate the effects of extreme weather on phosphorus dynamics
in shallow lakes.

In a natural lake, the disturbance to the ecosystem caused
by random factors such as extreme weather is inevitable. Extreme

weather events exacerbate physical, chemical, and biological
disturbances in water columns.12 In Fig. 1, we show the monthly
chlorophyll-a biomass in Lake Taihu from 2005 to 2012. Solid green
circles represent the biomass of chlorophyll-a in September of every
year, and the names and dates of five typhoons passed Taihu are
marked with arrows during these eight years. This figure illustrates
that after each typhoon passage, the concentration of chlorophyll-
a rises to a larger value. Table I shows the changes of phosphorus
concentration in Lake Taihu before and after the typhoons passed.
During the most severe algal bloom season of each year (August and
September), phosphorus concentrations showed similar trends with
chlorophyll-a. The pulses in nutrient status during extreme weather
disturbances played a key role in the formation of algal blooms.

In the perspective of stochastic modeling methodology, Gaus-
sian white noise is often used to describe the sum of low-intensity
and independent random interference in the environment, whereas
non-Gaussian noise often characterizes pulsing random interference
with low frequency and large amplitude. Many studies in recent
years have been devoted to exploring the effects of stochastic fluctua-
tions on phosphorus concentrations under the Gaussian white noise
framework. For instance, Ma et al.14 considered a parameterized
lake eutrophication model with Gaussian white noise and periodic
force and calculated the mean first passage time (MFPT) and the
mean velocity (MV) of the first right-crossing process (from the olig-
otrophic state to the eutrophic state). In addition, their another work
proposed two early warning indicators to predict noise-induced
critical transitions for this lake eutrophication model under dis-
turbance characterized by Gaussian white noise.15 Carpenter and
Brock16 incorporated input noise and recycling noise into the deter-
ministic model in Ref. 10, and numerical simulations showed that
rising standard deviation could predict imminent critical transitions
about a decade in advance. However, high-frequency data17 sug-
gested that extreme weather conditions would cause heavy-tailed
distribution of daily phosphorus loading. Therefore, in order to

FIG. 1. Monthly chlorophyll-a biomass in Lake Taihu from 2005 to 2012. Solid green circles represent chlorophyll-a biomass in September of every year. Five typhoons that
passed Lake Taihu are marked with names and dates by arrows.13
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TABLE I. Phosphorus concentration in water of the entire lake before and after

“August typhoon” from 2005 to 2012.13

Typhoons in August Month Total phosphorus (mg/l)

Haikui (2012) August 0.171
September 0.251

Muifa (2011) August 0.256
September 0.298

Morakot (2009) August 0.115
September 0.207

Pabuk (2007) August 0.169
September 0.209

Matsa (2005) August 0.143
September 0.152

simulate the burst-like events, non-Gaussian noise seems more
suitable. We introduce α-stable Lévy process to model such non-
Gaussian noise with unpredictable jumps and heavy tail. So far,
Lévy noise has been frequently encountered in complex systems
and applied in many other fields. For example, La Cognata et al.18

investigated a Lotka–Volterra competition model subject to α-stable
Lévy noise and find quasi-periodic oscillations and a stochastic res-
onance phenomenon in the dynamics. Zhang et al.19 considered the
transition behavior of the high vegetation biomass in the Grazing
Ecosystem subject to Gaussian noise and Lévy noise, respectively.
Chechkin et al.20,21 investigated the particle escape problem driven
by Lévy noise and obtained the result in which the probability
density function (PDF) of escape time decays exponentially. More-
over, there exist many interesting results on the Lévy noise-induced
state transitions between domains of attraction of two determinis-
tic attractors; one can see Refs. 22, 24 and the references therein for
more details. However, to the best of our knowledge, no research
has been done on the transition behavior of lake eutrophication
via the method of non-Gaussian Lévy noise. Furthermore, nonlin-
ear dynamical systems disturbed by noise can evoke unexpected
events, which do not occur in the deterministic version, such as
stochastic resonance,25,26 noise-induced state transitions,15,19,27 and
noise-induced chaos.28 Therefore, exploring the influence of external
environmental disturbances on the evolution of phosphorus con-
centration is of great significance to clarify the dynamic mechanism
behind the eutrophication of shallow lakes.

This paper mainly focuses on the switching behavior of a
parameterized lake eutrophication model subject to α-stable Lévy
noise and uncover the influence of Lévy noise parameters on the
switching behavior. We organize the remaining sections of this
paper as follows. In Sec. II, we first introduce the deterministic phos-
phorus dynamical model and α-stable Lévy distribution and then
present the details of the stochastic phosphorus dynamical model
driven by α-stable Lévy noise. Section III A provides our numerical
method to simulate stochastic system (2) and examine the effects
of Lévy noise parameters on phosphorus dynamics. In Sec. III B,
we obtain the expected time that the solution of model (2) takes to
switch from the low phosphorus state to the high phosphorus state.
In Sec. III C, we analyze the real data of Lake Taihu and use the
Lévy-stable distribution to quantify the relationship among extreme

monthly precipitation, Chl-a concentration, and P concentration.
Finally, we conclude and discuss our results in Sec. IV.

II. METHODS AND MODELS

A. The deterministic model

This section is to introduce the deterministic lake eutrophica-
tion model developed by Carpenter et al.29 describing the phospho-
rus dynamics in lakes. The model is defined as follows:

dP

dt
= a

︸︷︷︸

input

− bP
︸︷︷︸

loss

+
rPq

mq + Pq
︸ ︷︷ ︸

recycle

. (1)

The dynamic variable P is the phosphorus concentration in the lake
water at time t. All parameters are positive, and a is the rate of
phosphorus input from watershed. It is shown that the phospho-
rus input is a by-product of human activities such as agricultural
production, forestry, and urban development. We assume that a is
the control parameter. The loss caused by sedimentation and out-
flow is modeled by the linear term bP, where b is the phosphorus
loss rate. In addition, phosphorus can be recycled from sediments
or by consumers. The parameter r represents the maximum recy-
cling rate. The exponent q describes the recycling relationship to
phosphorus concentration. The phosphorus concentration at which
recycling reaches half of the maximum rate is m. The major fluxes
of phosphorus are charted in Fig. 2. In this paper, parameters in
model (1) are taken as b = 1, r = 1, m = 1, and q = 8 as in Ref. 30.
The bifurcation diagram of equilibria for deterministic model (1)
with respect to the phosphorus loading rate a is shown in Fig. 3(a).
For a ∈ (0.2, 0.388], model (1) has only one equilibrium, corre-
sponding to the oligotrophic state. For a given a ∈ (0.388, 0.659)
(in the tinted region), the system possesses two stable equilibria (the

FIG. 2. Phosphorus flows in model (1).

Chaos 32, 043116 (2022); doi: 10.1063/5.0085560 32, 043116-3

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 3. (a) Bifurcation diagram for deterministic model (1) with respect to the loading rate a. The dashed curve represents the unstable equilibrium and solid curves represent
the stable equilibria. (b) The potential function U(P).

oligotrophic state PS1 and the eutrophic state PS2) and one unstable
equilibrium PU. For a ∈ [0.659, 0.8), there is only one stable equilib-
rium, which is the eutrophic state. In the deterministic phosphorus
dynamical model, the evolution of model (1) relies on the choice
of the initial phosphorus concentration. Only under the interfer-
ence of a random environment, the switching behavior between the
two nutritional states will occur. Therefore, we focus on the values
of a ∈ (0.388, 0.659) leading to bistability of model (1) and investi-
gate how non-Gaussian Lévy noise affects the switching behavior.
Here, we fix a = 0.55 to exhibit bistability and then the potential
function U(P) of the deterministic model (1) is shown in Fig. 3(b),
whose local minima represent stable steady states of the phosphorus
concentration.

B. The stochastic model

Both phosphorus recycling within the lake and nutrient input
outside the lake are disturbed by environmental noise; thus, it is
necessary to incorporate environmental noise into the deterministic
model in an appropriate way. Figure 4 shows the time series of phos-
phorus concentration for different noise intensities. When the noise
intensity is weak, the concentration of phosphorus fluctuates around
the oligotrophic state. As the noise intensity increases, the stochastic
trajectories escape from the attraction basin of the oligotrophic state
into the attraction basin of the eutrophic state. Until the noise inten-
sity increases to a certain threshold, the stochastic trajectories will
frequently switch between the two attraction basins. Moreover, the
switching time varies with the change of noise intensity. This switch-
ing mechanism is highly important for lake managers to prevent or
mitigate an unwanted change; thus, it is meaningful to study the
switching behaviors in phosphorus dynamics under environmental
noise.

To investigate effects of stochastic fluctuations on the transi-
tions between the oligotrophic and eutrophic regions, our stochastic

bistable model is described as

dP

dt
= a − bP +

rPq

mq + Pq
+

dL(t)

dt
. (2)

Here, L(t) is a Lévy-stable motion with stationary and indepen-
dent increments on non-overlapping time intervals. The process
L(t) is a generalized Wiener process obeying Lévy distribution
L(ζ : α, β , c, µ). The formal time derivative of the Lévy process L(t)
denotes the Lévy noise, the general introduction of which is given in
Ref. 31.

FIG. 4. Evolution of phosphorus concentration with initial status P(0) = 0.55 for
α = 2 and β = 0 at different noise intensities. From top to bottom, the intensity
is σ = 0.005, σ = 0.01, and σ = 0.02.
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FIG. 5. (a) PDFs of L(ζ : α,β , c,µ) for different stability indices α (β = 0, c = 1, andµ = 0); (b) PDFs of L(ζ : α,β , c,µ) for different skewness parameters β (α = 1.5,
c = 1, and µ = 0).

The probability density function for a stable random variable
is generally not representable via elementary functions. The most
common and convenient way to introduce Lévy α-stable random
variables is to define their characteristic function in the following
form:32,33

ϕ(θ) =

{

exp
[

−cα|θ |α
[

1 − iβsgn(θ)tan απ

2

]

+ iµθ
]

, α 6= 1,

exp
[

−c|θ |
[

1 + iβsgn(θ) 2
π

ln |θ |
]

+ iµθ
]

, α = 1,

(3)
where parameter α ∈ (0, 2] is called the stability index, determin-
ing the thickness of the tail (the Gaussian distribution for α = 2).
The second parameter, which determines the skewness of the dis-
tribution, is designated β and lies in the range of [−1, 1]. The
scale parameter c characterizes the deviation of the distribution, and
σ = cα is the noise intensity. µ acts as the location parameter that
denotes the mean (or center) of the distribution.

Random variables ς corresponding to the characteristic func-
tion (3) can be generated by the Chambers–Mallows–Stuck (CMS)
algorithm33 below:

For α 6= 1,

X = Aα,β ×
sin(α(U + Bα,β))

(cos(U))
1
α

×

(
cos(U − α(U + Bα,β))

V

) 1−α
α

,

(4)

where

Aα,β =
[

1 + β2tan2
(απ

2

)] 1
2α

, Bα,β =
arctan

(

βtan
(

απ

2

))

α
. (5)

For α = 1,

X =
2

π
×

[
(π

2
+ βU

)

tan(U) − β log

(
πVcos(U)

2βU + π

)]

, (6)

where U is uniformly distributed on (− π

2
, π

2
) and V is exponentially

distributed with a unit mean, and U, V are independent random
variables. We thus obtain the α-stable Lévy random variable

ς =

{

cX + µ, α 6= 1,

cX + 2
π
βc log(c) + µ, α = 1.

(7)

Furthermore, we can generate the α-stable Lévy process by utilizing
the above random number generation algorithm.

Probability density functions (PDFs) of L(ζ : α, β , c, µ) for var-
ious stability indexes and skewness parameters are illustrated in
Fig. 5. As one can see, when skewness β = 0, the impulsiveness
strengthens and the tail of the distribution becomes heavier as the
stability index decreases. When α = 2, it becomes a Gaussian distri-
bution [see Fig. 5(a)]. Moreover, for fixed α = 1.5, the augment in
the absolute value of skewness leads to the more asymmetric distri-
bution [see Fig. 5(b)]. When β < 0, the distribution is left-skewed
and right-skewed for β > 0. The trajectories of the Lévy process and
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FIG. 6. (a) Lévy process and corresponding Lévy noise with α = 1.4, β = 0.2,
and σ = 0.1; (b) Gaussian process and corresponding Gaussian noise with
α = 2, β = 0, and σ = 0.1.

the corresponding Lévy noise are shown in Fig. 6. We can observe
the distinct jumps when α is relatively small [see Fig. 6(a)]. However,
the extreme jumps almost cannot occur when α = 2, i.e., Gaus-
sian noise [see Fig. 6(b)]. It is thus evident that the Lévy noise is

more suitable to characterize the pulsing changes of the stochastic
environment driven by sudden climate events.

III. RESULTS

A. Switches induced by Lévy noise

The stationary probability density (SPD) is one of the key tools
to explore the dynamical behaviors of a multistable model.34–36 In the
bistable phosphorus dynamical model, noise can induce the phos-
phorus concentration in lake water to jump frequently between the
two nutritional states (see Fig. 4); thus, the SPD of the phospho-
rus concentration may exhibit a bimodal distribution near the two
stable equilibrium points. Statistically, the higher possession proba-
bility determines the final level of phosphorus concentration in lake
water.

The Fokker–Planck equation (FPE) is an important deter-
ministic tool for quantifying the stochastic differential equation.
The equivalent FPE of model (2), which describes the evolution of
the transition probability density for a stochastic system, has the
following spatial fractional-order form:

∂

∂t
u(P, t) = −

∂

∂P

[

f(P)u(P, t)
]

+
1 + β

2
D(t)Dα

+u(P, t)

+
1 − β

2
D(t)Dα

−u(P, t), (8)

FIG. 7. SPDs of phosphorus concentration
(blue dotted curve) and corresponding effective
potential (red dotted curve) for different Lévy
noise parameters: (a) α = 1.1, β = −0.7,
and σ = 0.06; (b) α = 1.5, β = 0.2, and
σ = 0.02.
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FIG. 8. The stationary probability density function (blue dotted curve) and corresponding effective potential (red dotted curve) with different noise intensities and fixed
skewness β = −0.6 and stability index α = 1.5: (a) σ = 0.01, (b) σ = 0.03, and (c) σ = 0.05. (d) The average phosphorus concentration vs σ .

where f(P) = a − bP + rPq

mq+Pq , D(t) is the time-dependent coeffi-
cient of dispersion,

Dα
+u(P, t) =

1

0(2 − α)

∂2

∂P2

∫ P

L1

u(η, t)

(P − η)α−1
dη,

and

Dα
−u(P, t) =

1

0(2 − α)

∂2

∂P2

∫ L2

P

u(η, t)

(P − η)α−1
dη,

which represent the left and right Riemann–Liouville space frac-
tional derivatives of order α for u(P, t), P ∈ [L1, L2] with L1 and
L2 being the non-negative real numbers. In our paper, P denotes
phosphorus concentration and then the interval is constrained to
[0, +∞]. In general, it is difficult to solve Eq. (8); thus, we only
attempt to seek the numerical solution utilizing the fourth-order
Runge–Kutta algorithm as follows:

Pn+1 = Pn +
1

6
(k1 + 2k2 + 2k3 + k4) + 4t1/αςn, (9)

where













k1 = 4tf(Pn),

k2 = 4tf(Pn + k1/2),

k3 = 4tf(Pn + k2/2),

k4 = 4tf(Pn + k3),

(10)

with f(Pn) = a − bPn +
rP

q
n

mq+P
q
n
, and ςn is the α-stable Lévy dis-

tributed random number in the nth time interval. In order to facili-
tate our discussion, all simulations in this paper are performed with
the initial phosphorus concentration P(0) = PS1 = 0.55 and time
step 4t = 0.01. Using Eqs. (9) and (10), we acquire the stationary
probability density of phosphorus concentration.

Figure 7 shows the stationary probability density for different
Lévy noise parameters. We observe that the altering of noise param-
eters can lead to the change of SPD from unimodal [see Fig. 7(a)] to
bimodal [see Fig. 7(b)]. This implies that Lévy noise has a significant
effect on the switching mechanism in the phosphorus dynamics. We
will analyze the effects of Lévy noise on the switching dynamics of
model (1) by utilizing the qualitative changes of the SPD and the
MFPT.
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FIG. 9. The stationary probability density function (blue dotted curve) and corresponding effective potential (red dotted curve) with different skewness and fixed noise intensity
σ = 0.05 and stability index α = 1.2: (a) β = −0.8, (b) β = −0.3, and (c) β = 0.6. (d) The average phosphorus concentration vs β .

Fixing skewness β = −0.6 and stability index α = 1.5, we plot
the SPDs of phosphorus concentration for different noise intensi-
ties in Fig. 8. The results show that when the noise intensity σ is at
a smaller level (σ = 0.01), a curve of the probability density func-
tion has two peaks, and the peak near the lower equilibrium point is

much higher, which indicates that the random orbit is mainly con-

centrated in the low-concentration state. In this case, the nutrient

level of the lake is in an oligotrophic state. When the noise inten-

sity increases further, the height change process of the two peaks
is observed [see Figs. 8(b) and 8(c)]. The peak on the side of high
phosphorus concentration becomes higher while the peak corre-
sponding to low phosphorus concentration diminishes gradually.
When σ exceeds the threshold value that the two peaks share the
same heights, the state of high phosphorus concentration becomes
more dominant, and thus we can say that the oligotrophic state
to the eutrophic state switching occurs. This indicates that σ can
induce positive feedback to boost phosphorus concentration in lake.
According to the method in Ref. 37, we also depict the shape of
the effective potential corresponding to the stationary probability
density in Figs. 8(a)–8(c). Obviously, the phosphorus concentration
evolves toward the local minimum of the effective potential, anal-
ogous to a ball rolling toward the bottom of a cup. In Fig. 8(d),

we exhibit the variation of the average phosphorus concentration P

with noise intensity σ . Here, P =
∫ +∞

0
P · ust(P)dP, where ust(P) is

the stationary probability density function as time approaches infin-
ity. It is clear that P has the monotone increasing behavior with the
increasing of σ . All the facts indicate that noise intensity σ promotes
the transition from the oligotrophic state to the eutrophic state.

Next, we explore the impact of the skewness parameter β in
the Lévy noise on the transition. In Fig. 9, we depict the SPDs of
phosphorus concentration with three different values of skewness
parameter and fix the noise intensity σ = 0.05 and stability index
α = 1.2. When the skewness is small (β = −0.8), the stationary
occupation probability of the high phosphorus concentration state
is larger than the lower state. As the skewness increases, the left
peak of the SPD becomes higher gradually [see Fig. 9(b)]. When the
skewness is quite large, the SPD achieves a total reversal in height.
There is a high probability for a shift from the high phosphorus
concentration state to the low state. This observation discloses that
the skewness parameter can induce a transition from the eutrophic
state to the oligotrophic state. A dependence of the mean values of
phosphorus concentration on the skewness β is shown in Fig. 9(d).
Under increasing skewness parameter, the mean value P of phos-
phorus concentration monotone decreases. This result has a good
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FIG. 10. The stationary probability density function (blue dotted curve) and corresponding effective potential (red dotted curve) with different skewness and fixed noise
intensity σ = 0.03 and stability index α = 2 (in the Gaussian case): (a) β = 0.8, (b) β = 0.5, (c) β = 0.1, and (d) β = −0.2.

agreement with the analyses above. However, when α = 2, there are
no distinct variations in the height and location of higher and lower
peaks (see Fig. 10). In other words, in the Gaussian case, β loses its
role and becomes dispensable. Compared with Fig. 8, we uncover
in Fig. 9 that β significantly shifts the position of the two peaks.
In fact, as we mentioned earlier, when β > 0 Lévy distribution is
right-skewed, while for β < 0 it is left-skewed. When determin-
istic system (1) is disturbed by right-skewed (β > 0) Lévy noise,
the noise will make phosphorus concentration smaller in the mean
sense.

Finally, we explore the influence of the stability index α. Fix-
ing σ = 0.02 and β = −0.5, by numerical simulation of model (2),
the SPDs of the phosphorus concentration are shown in Fig. 11. Ini-
tially, the stationary occupation probability at high phosphorus state
is slightly higher than that at low phosphorus state. By strength-
ening the stability index, the peak height of the low phosphorus
state increases and finally surpasses the other peak as the stability
index exceeds a threshold [see Fig. 11(c)]. This process is analo-
gous to the variations of skewness parameters (see Fig. 9). However,
when the stability index reaches a certain value, the peak at the
high phosphorus concentration state becomes more populated again

[see Fig. 11(d)]. Figure 12 shows the average phosphorus concen-
tration vs α. Obviously, the behavior of the average phosphorus
concentration does not change monotonically; instead, the P first
decreases, reaches a minimum at α = 1.5, and then increases with
increasing stability index for σ = 0.02 and β = −0.5. This con-
clusion is in agreement with the analyses of SPDs. These results
imply that the stability index can push the system to shift from
high phosphorus concentration to low phosphorus concentration
and vice versa. Meanwhile, we could find an optimal stability index
to minimize the average phosphorus concentration when σ and β

are fixed.

B. Mean first passage time

An extensive number of studies disclose that the eutrophication
of freshwater and coastal marine ecosystems depends on the nutri-
ent levels,38–40 and how fast the transition between different nutrient
levels occur directly reflects the sensitivity of the ecosystem to the
variation of the environmental conditions. Therefore, it is necessary
to investigate the switching timing of the phosphorus concentra-
tion at the oligotrophic state crossing the unstable equilibrium state
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FIG. 11. The stationary probability density
function (blue dotted curve) and correspond-
ing effective potential (red dotted curve) with
different stability indices and fixed noise inten-
sity σ = 0.02 and skewness β = −0.5: (a) α
= 1.2, (b) α = 1.5, (c) α = 1.7, and (d) α

= 1.8.

to the eutrophic state. In general, this switching time is called the
first passage time (FPT), which is defined as the time taken for a
random trajectory to reach another regime for the first time.31 The
statistical average of FPT is referred to as the mean first passage time
(MFPT). Unlike the SPDs discussed in Sec. III A, which describe the

FIG. 12. The average phosphorus concentration vs α.

steady-state characteristics of the system, the mean first passage time
is one of the most suitable methods to capture the switching dynam-
ics of phosphorus concentration. Recently, Padash et al.41,42 have
given explicit analytical results of MFPT in certain special cases. In
this section, however, we will numerically calculate MFPT to discuss
the effect of Lévy noise on the switching behaviors of phosphorus
concentration. For lake managers, it is meaningful to monitor the
nutrient status of lakes and prevent them from becoming worse.
Therefore, here we only calculate the MFPT of model (2) from the
oligotrophic state to the eutrophic state. The initial value is set as
P(0) = PS1, and we define the FPT as

τ = inf {t : P(t) > PS2} . (11)

Taking an average on the FPT generates the MFPT,

MFPT = E[τ ]. (12)

Applying the Monte Carlo method for the numerical simulation, if
P(k1t) > PS2, then τ = k1t. Let the number of simulation times be
N, then

MFPT =

∑N
j=0 kj1t

N
. (13)

Here, we take N = 1000.
Figure 13 presents the MFPT vs σ , β , and α. In Fig. 13(a), it is

obvious that the MFPT decreases with the increases of σ . In other
words, when the initial phosphorus concentration is at the low level,
as the environmental disturbance gets stronger, the transition from
state PS1 to state PS2 becomes easier, and this declares that the noise
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FIG. 13. MFPT of phosphorus concentration transferring from the low phosphorus equilibrium state PS1 to the high phosphorus equilibrium state PS2. (a) The MFPT vs
noise intensity (β = 0.1); (b) the MFPT vs skewness (σ = 0.1); and (c) the MFPT vs stability index (β = 0.5). The simulated results are generated by averaging N = 1000
realizations.

intensity may accelerate lake eutrophication. In ecology, one can
deduce that the algal blooms will occur at earlier times for larger
environmental fluctuations. Next, we discuss the influence of the
skewness parameter on MFPT. Figure 13(b) shows how the MFPT
varies with the skewness parameter β for different stability indices
α = 1.5, α = 1.7, and α = 2. The transition process becomes eas-
ier with the decrease of the stability index α and the increase of the
skewness parameter β . It suggests that a small stability index and a
large skewness parameter can speed up lake eutrophication. In addi-
tion, in the case of Gaussian (α = 2), the skewness parameter has
little impact on the switching time. The relationship between α and
MFPT for different noise intensities σ is shown in Fig. 13(c). MFPT
shows a decreasing trend as α increases. For a relatively strong noise

intensity, after α exceeds a critical value, MFPT is insensitive to
changes in α. In stochastic model (2), the noise intensity σ and
the stability index α can be considered as the intensity and the fre-
quency of extreme weather events. Therefore, Fig. 13(c) illustrates
that the increased intensity and frequency of extreme climate events
have a positive effect on lake eutrophication, but when the frequency
exceeds a critical value, the intensity of extreme events becomes the
most key culprit for lake eutrophication.

C. Real data analysis

In this section, we will quantify the linkage among extreme
monthly precipitation, chlorophyll-a concentration, and P

FIG. 14. (a) Annual precipitation from 1955 to 2017 (data are from the Wuxi Meteorological Station); (b) probability density function of monthly precipitation fitted by Lévy
(red curve) and normal (blue curve) distributions.
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FIG. 15. Cumulative probabilities of Lévy distribution and normal distribution fit-
ting by McCulloch’s method44 to the monthly precipitation data from 1955 to
2017.

concentration for Lake Taihu, China, using the Lévy-stable distri-
bution. Real data used in this article are collected in Ref. 43. In
Fig. 14(a), the annual rainfall in the Lake Taihu area shows an
increasing trend since 1955 (Kendall-τ = 0.0311) and reaches the

highest value in 2016. We fit the Lévy distributions and the nor-
mal distributions to the monthly precipitation data [Fig. 14(b)] and
compare the tails of the cumulative distributions (Fig. 15). Here,
we use the quantile method proposed by McCulloch44 to estimate
the four parameters of the stable distribution. Obviously, the fit
of the Lévy distribution is much better than that of the normal
distribution. The tail of the Lévy distribution extends to greater
rainfall levels than the tail of the normal distribution. Parame-
ters of the best–fitting Lévy distribution are α̂ = 1.716 58, β̂ = 1,
ĉ = 44.0314, and µ̂ = 88.1762. The stability index α̂ < 2 indicates
that monthly rainfall has a thicker tail than the normal distribu-
tion. Figure 16 shows the time series of P load (kt), monthly mean
phosphorus concentration (mg/l), and monthly mean Chl-a con-
centration (g/l) in Lake Taihu from 2014 to 2018. Flooding in the
Taihu Lake basin in June 2016 resulted in higher external phos-
phorus input, and chlorophyll-a and phosphorus concentrations
increased rapidly in July of the same year (green shadows in Fig. 16).
For P concentration and Chl-a concentration of Lake Taihu, the
results of fitting the Lévy and normal distribution are shown in
Fig. 17. The Lévy distribution is more suitable for fitting data with

heavy tails, and the best fitting parameters are α̂1 = 1.703 91, β̂1 = 1,

ĉ1 = 0.032 382 6, µ̂1 = 0.149 993, and α̂2 = 2, β̂2 = 1, ĉ2 = 34.6381,
and µ̂2 = 31.7413.

In order to explore the impact of extreme rainfall events on P
and Chl-a concentrations in Lake Taihu, we divide the time series
data of P and Chl-a concentrations into two parts, 12 months (from
2015–6 to 2016–5) before and 12 months (from 2016–7 to 2017–6)
after extreme rainfall (2016–6), and use Lévy distribution to fit these

FIG. 16. Time series of (a) annual riverine P load (kt), (b) monthly mean P concentration (mg/l), and (c) monthly mean Chl-a concentration (µg/l) in Lake Taihu from 2014
to 2018.
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FIG. 17. Probability density functions of (a) monthly phosphorus and (b) chloro-
phyll-a concentrations are fitted by Lévy (red curve) and normal (blue curve)
distributions.

data. The stability index α of Chl-a concentration decreases after
heavy rainfall. Therefore, the tail of distribution for Chl-a concen-
tration after heavy rainfall is thicker than that before heavy rainfall
[Fig. 18(a)]. The scale parameter c of P and Chl-a concentrations
both increase after heavy rainfall [Figs. 18(a) and 18(b)], indicating
that heavy rainfall has a strong impact on extreme values of P and
Chl-a concentrations.

FIG. 18. Parameters of the Lévy distribution for P and Chl-a concentrations in
Lake Taihu before and after extreme precipitation events. (a) Stability index α. (b)
and (c) scale parameter c.

IV. CONCLUSIONS

Abrupt changes (regime shifts) in ecological systems refer to
the state of a system suddenly changing from its current state
to a completely different state (such as the shift from the olig-
otrophic state to the eutrophic state in a studied lake) when external
drivers exceed a tipping point. These regime shifts usually involve
the slow change of parameters of a system and the interference of
sudden stochastic events such as hurricanes and heavy precipita-
tion events. A growing number of empirical studies suggest that
climate extremes can force abrupt ecological changes. For exam-
ple, Carpenter et al.11 studied Lake Mendota, located in southern
Wisconsin, and found that the trend toward more frequent and
intense precipitation extremes will increase phosphorus loading and
intensify the eutrophication of the lake. Motew et al.45 obtained a
similar conclusion. Moreover, Carpenter et al. observed the phyco-
cyanin concentration of Lake Mendota during the ice-free seasons
from 2008 to 2018 through sensors, indicating that environmental
stochasticity can drive the sudden changes of phycocyanin concen-
tration between high and low states.7,46 It is worthy to remark that
environmental stochasticity in Refs. 7 and 46 was characterized by
Gaussian white noise instead of non-Gaussian Lévy noise.

It is predicted that the frequency and intensity of extreme
weather events will continue to increase in the near future,47 which
will intensify biological, chemical, and physical disturbances in shal-
low lakes.12 For a realistic ecosystem model, the idealized hypothesis
about the Gaussianity of environmental noise is unrealistic. In fact,
by collecting and analyzing decades-long time series data from 11
lakes, Batt et al.48 found that data of meteorological variables (e.g.,
rainfall), data of chemical variables (e.g., nutrients, pH), and data
of biological variables (e.g., population size) are mostly heavy-tailed
distributions. Hence, in order to gain insights into the phospho-
rus concentration variations in lakes disturbed by extreme weather
conditions, we proposed a parameterized lake eutrophication model
under the non-Gaussian α-stable Lévy noise.

First, we obtained the stationary probability density function
of model (2) based on the CMS algorithm and examined the effects
of Lévy noise parameters (noise intensity, skewness parameter, and
stability index) on the qualitative changes of SPD of phosphorus
concentration. The results show that the noise-induced switch is
significantly different for non-Gaussian α-stable Lévy noise com-
pared with the Gaussian white noise. In addition to noise intensity,
skewness parameter and stability index both play pivotal roles in the
switching behavior of phosphorus concentration.

Next, we quantified the impact of non-Gaussian Lévy noise on
the MFPT for phosphorus concentration to switch from initial value
P(0) = PS1 (the low phosphorus state) to the high phosphorus state
PS2. Numerical results show that σ , β , and α accelerate the transi-
tion of phosphorus in the water column from the low-concentration
state to the high-concentration state, which means that Lévy noise
parameters can facilitate the eutrophication of lakes by reducing the
switching time. We also find that β becomes inessential and has no
impact on the MFPT when α = 2 in the Gaussian case.

Finally, we applied the Lévy distribution to analyze the
extremes of precipitation, P concentration, and Chl-a concentration.
Our result shows that extreme rainfall is closely related to extreme
P and Chlorophyll-a concentrations. Therefore, during and after
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extreme rainfall events, reducing phosphorus runoff and transport
by policymakers is a key initiative to mitigate eutrophication.

As a summary, in order to understand the mechanism of abrupt
changes in lake nutrient levels affected by extreme climate events,
we proposed a new research method, based on the α-stable Lévy
distribution, to reveal the dependence of lake nutrient levels on the
intensity and frequency of extreme climate noise. Compared with
the work in Refs. 11 and 48, we not only used traditional statistical
methods to analyze the impact of extreme weather on lake nutri-
ent levels based on actual data but also employed dynamic tools to
explore the role of key noise parameters. However, we only con-
sidered a univariate model in this article. It is well known that P
is a necessary nutrient to promote the growth of algae. Therefore,
mathematical models used to analyze lake eutrophication and algae
outbreak normally consist of at least two variables: phosphorus and
algae. Our novel method here is the first step to mechanistically
model catastrophic weather events and will be extended to a phos-
phorus–algae model or even with herbivores in the near future.
Furthermore, real ecosystems often involve three “tipping” mecha-
nisms: bifurcation-induced tipping, rate-induced tipping, and noise-
induced tipping. Our work belongs to the noise-induced tipping and
has great potential to be applied in many different scenarios. For
bifurcation-induced tipping, near a bifurcation point, the resilience
of the system decreases. In other words, the disturbed system will
take more time to recover to its stable state. This property is called
“critical slowing down (CSD).” Recent research efforts aim to estab-
lish a set of suitable early warning signals (EWS) based on CSD, such
as variance and autocorrelation, which can help prevent adverse
events such as ecosystem collapse due to environmental changes. We
will study EWS for predicting and preventing severe algae blooms in
lake ecosystems.
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