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A B S T R A C T

This paper focuses on a general Gause-Kolmogorov-Type predator–prey model with direct
predator-taxis and indirect prey-taxis. The global existence and boundedness of solutions to
the system are proved. Our approach is applicable to more general situation. Some measures of
success for the constant coexistence steady state are rigorously calculated, such as decreasing the
indirect prey-taxis sensitivity or the release rate of stimulus, and increasing the predator-taxis
sensitivity or the decay rate of stimulus. By choosing the indirect prey-taxis coefficient as the
bifurcation parameter, the existence of Hopf and double-Hopf bifurcations is established. We
find that both indirect prey-taxis and direct predator-taxis can promote the complexity of the
spatiotemporal pattern, e.g. spatially nonhomogeneous periodic patterns with different spatial
frequency, spatially nonhomogeneous quasi-periodic patterns. Finally, we apply our theoretical
analyses to a Rosenzweig–MacArthur model with indirect prey-taxis and direct predator-taxis,
spatially homogeneous periodic patterns.

. Introduction

Predator-prey interaction is a fundamental relationship between species in an ecosystem. To model this interaction with
ovement, random diffusion has been widely used to describe ‘‘drunk’’ animals’ movement, with the implicit assumption that the
ovements of predator and prey species move randomly like a particle. A simple derivation uses Fick’s law of diffusion. The long

erm dynamics of such models were fully investigated [1–5]. A variety of classical reaction–diffusion models [6,7] have been built
p to illustrate the spatial patchy structure of species even in a homogeneous environment. Cognitive movement is a key feature
f animals in contrast to chemical movement as extensively discussed in Wang and Salmaniw [8], and it provides an effective
echanism to interpret the spatiotemporal patchy distribution of species, for example, see the studies on memory-based diffusion

n single species [9–11] or predator–prey [12]. Prey-taxis (predators pursue prey) and predator-taxis (prey escape from predators)
re cognitive movement mechanisms in a predator–prey system. These taxis can be derived from a modified Fick’s law and strongly
egulate the spatiotemporal dynamics and patterns of predator–prey interaction [13–18].

∗ Corresponding author at: School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210003, China.
E-mail address: geng_dx@163.com (D. Geng).
vailable online 28 October 2023
007-5704/© 2023 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.cnsns.2023.107647
eceived 30 July 2023; Received in revised form 15 October 2023; Accepted 19 October 2023

https://www.elsevier.com/locate/cnsns
http://www.elsevier.com/locate/cnsns
mailto:geng_dx@163.com
https://doi.org/10.1016/j.cnsns.2023.107647
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cnsns.2023.107647&domain=pdf
https://doi.org/10.1016/j.cnsns.2023.107647


Communications in Nonlinear Science and Numerical Simulation 128 (2024) 107647D. Geng et al.

a

T
i
n
f
s
i
e
g
a
a
t

t
e
a
r

w
f
p
𝑑
d
t
s

o
w
w
d
g
m
t
h
R
H
a
b
w

d

w
n

The following predator–prey models with prey-taxis or predator-taxis have been extensively studied:
{

𝑁𝑡 = 𝑑𝑁 ▵ 𝑁 + 𝐹 (𝑁) − 𝜙(𝑁,𝑃 ), 𝑥 ∈ 𝛺, 𝑡 > 0,
𝑃𝑡 = 𝑑𝑃 ▵ 𝑃 − 𝜂∇ ⋅ (𝑃∇𝑁) + 𝑒𝜙(𝑁,𝑃 ) − 𝑔(𝑃 ), 𝑥 ∈ 𝛺, 𝑡 > 0,

(1.1)

nd
{

𝑁𝑡 = 𝑑𝑁 ▵ 𝑁 + 𝜉∇ ⋅ (𝑁∇𝑃 ) + 𝐹 (𝑁) − 𝜙(𝑁,𝑃 ), 𝑥 ∈ 𝛺, 𝑡 > 0,
𝑃𝑡 = 𝑑𝑃 ▵ 𝑃 + 𝑒𝜙(𝑁,𝑃 ) − 𝑔(𝑃 ), 𝑥 ∈ 𝛺, 𝑡 > 0.

(1.2)

he prey-taxis model (1.1) was first proposed by Karevia and Odell [16] based on some experimental observations, and further
nterpreted by Othmer and Stevens [19] stating ‘‘The purposes of taxis range from movement toward food and avoidance of
oxious substances to large-scale aggregations for survival’’. The necessary conditions of pattern formation for a variety of non-linear
unctional responses have been established in [15]. Considering a smooth bounded domain, the existence and uniqueness of classical
olutions of system(1.1) was obtained in [20]. The global bifurcation and pattern formations of system (1.1) were investigated
n [21]. For a more general form of system (1.1), the global existence and boundedness of solutions were proved in [17] with the
xistence of a global attractor, the uniform persistence, and the global stability of the positive equilibrium for some special prey
rowth and functional responses via a Lyapunov function. The predator-taxis model (1.2) was studied in [18] for the global existence
nd boundedness of solutions in bounded domains. The incorporation of predator-taxis can eliminate diffusion-induced instability
nd make the constant steady state regain its stability. A model with both prey-taxis and predator-taxis was explored in [22] for
he impact of these taxis on spatial patterns.

As noted in [23,24], direct prey-taxis cannot reproduce stable spatially heterogeneous dynamics. In some scenarios, indirect prey-
axis takes over, that is, the predator moves perceptually according to stimulus emitted by prey such as specific odor, pheromones,
xometabolites, scent marks [24,25]. Many predator–prey systems consist of tiny prey and large predators, such as army ants and
nteater, such that prey can directly judge the predator’s location while predators cannot easily see prey’s location. Therefore, it is
easonable to assume direct predator-taxis and indirect prey-taxis as follows:

⎧

⎪

⎨

⎪

⎩

𝑁𝑡 = 𝑑𝑁 ▵ 𝑁 + 𝜉∇ ⋅ (𝑁∇𝑃 ) +𝑁𝑓 (𝑁) − 𝑃𝑔(𝑁), 𝑥 ∈ 𝛺, 𝑡 > 0,
𝑃𝑡 = 𝑑𝑃 ▵ 𝑃 − 𝜂∇ ⋅ (𝑃∇𝑆) + 𝑒𝑃𝑔(𝑁) − 𝑚𝑃 , 𝑥 ∈ 𝛺, 𝑡 > 0,
𝑆𝑡 = 𝑑𝑆 ▵ 𝑆 + 𝛼𝑁 − 𝛽𝑆, 𝑥 ∈ 𝛺, 𝑡 > 0,

(1.3)

here 𝑁(𝑥, 𝑡), 𝑃 (𝑥, 𝑡) are the respective densities of prey and predator populations at space location 𝑥 and time 𝑡, 𝑔(𝑁) is the
unctional response function of predation and 𝑃𝑔(𝑁) measures the predation rate, 𝑓 (𝑁) represents the per-capita growth rate of
rey. The parameters 𝑚 and 𝑒 are the mortality rate and conversion efficiency of the predator, respectively, and the parameters
𝑁 , 𝑑𝑃 are corresponding diffusion coefficients of the prey and predator species. Moreover, the predator-taxis term 𝜉∇ ⋅ (𝑁∇𝑃 )
escribes the tendency of prey moving away from the predator with the rate 𝜉 ≥ 0. The indirect prey-taxis term −𝜂∇ ⋅ (𝑃∇𝑆) with
he rate 𝜂 ≥ 0 describes the tendency of the predator moving toward stimulus emitted by prey, where 𝑆(𝑥, 𝑡) represents the taxis
timulus concentration. All other parameters are assumed to be positive constants.

Given 𝜉 = 0, the system (1.3) only has indirect prey-taxis, which has been studied in the literature. Ignoring the self-dissipation
f stimulus, i.e. 𝛽 = 0, the critical bifurcation values of the taxis coefficient were determined by Routh–Hurwitz criterion in [26],
hich also explored pattern formation and chaos. A PDE of the predator with indirect prey-taxis coupled with an ODE of prey
as analyzed in [27]. Indirect prey-taxis can lead to interesting spatial patterns [28]. The authors generalized some existing results
erived for particular cases of taxis models. Moreover, the global existence and uniform boundedness of solutions was proved for
eneral functional responses in [29], which showed that prey-taxis plays an essential role in pattern formation. An indirect prey-taxis
odel with Allee effect in the predator population was considered in [30]. Their results suggested that the prey–taxis movement of

he predator can induce various spatially nonhomogeneous patterns via the destabilization of the constant steady state and spatially
omogeneous periodic solutions. In particular, indirect prey-taxis allows the predator overcoming the Allee effect for persistence.
ecently, the system (1.3) with 𝜉 = 0 was studied in [31], which determined the existence of Hopf, Turing, Turing–Hopf and double-
opf bifurcations. By calculating the normal form of double-Hopf bifurcation, the authors showed stable spatially homogeneous
nd nonhomogeneous periodic solutions, as well as stable spatially nonhomogeneous quasi-periodic solutions near the double-Hopf
ifurcation point. The results illustrated that spatially nonhomogeneous Hopf bifurcations can be induced by indirect prey-taxis,
hich is impossible to be generated by direct prey-taxis.

In this paper, we will investigate the system (1.3) with homogeneous Neumann boundary conditions on a smooth bounded spatial
omain:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑁𝑡 = 𝑑𝑁 ▵ 𝑁 + 𝜉∇ ⋅ (𝑁∇𝑃 ) +𝑁𝑓 (𝑁) − 𝑃𝑔(𝑁), 𝑥 ∈ 𝛺, 𝑡 > 0,
𝑃𝑡 = 𝑑𝑃 ▵ 𝑃 − 𝜂∇ ⋅ (𝑃∇𝑆) + 𝑒𝑃𝑔(𝑁) − 𝑚𝑃 , 𝑥 ∈ 𝛺, 𝑡 > 0,
𝑆𝑡 = 𝑑𝑆 ▵ 𝑆 + 𝛼𝑁 − 𝛽𝑆, 𝑥 ∈ 𝛺, 𝑡 > 0,
𝜕𝑁
𝜕𝜈 = 𝜕𝑃

𝜕𝜈 = 𝜕𝑆
𝜕𝜈 = 0, 𝑥 ∈ 𝜕𝛺, 𝑡 > 0,

𝑁(𝑥, 0) = 𝑁0(𝑥) ≥ 0, 𝑃 (𝑥, 0) = 𝑃0(𝑥) ≥ 0, 𝑆(𝑥, 0) = 𝑆0(𝑥) ≥ 0, 𝑥 ∈ 𝛺,

(1.4)

here 𝛺 is chosen as (0, 𝑙𝜋) with 𝑙 being a positive constant. In (1.4), 𝑁𝑓 (𝑁) represents the prey growth rate, which is typically
egative for large 𝑁 because of the crowding effect, for instance,

Logistic ∶ 𝑁𝑓 (𝑁) = 𝑎𝑁(1 − 𝑁 ), Allee ∶ 𝑁𝑓 (𝑁) = 𝑎𝑁(1 − 𝑁 )(𝑁 − 1), (1.5)
2

𝐾 𝐾 𝐺
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where 𝑎 > 0, 0 < 𝐺 < 𝐾. The functional response of predation 𝑔(𝑁) takes the following forms:

type II ∶ 𝑔(𝑁) =
𝛾𝑁
𝑏 +𝑁

, type III ∶ 𝑔(𝑁) =
𝛾𝑁𝑛

𝑏𝑛 +𝑁𝑛 . (1.6)

Reasonably we assume 𝑓 (𝑁) and 𝑔(𝑁) satisfy the following conditions:
(H1) 𝑓 ∶ [0,∞) → R is continuously differentiable and there exists positive constants 𝐶1

𝑓 , 𝐶2
𝑓 such that 𝑓 (𝑁) ≤ 𝐶1

𝑓 −𝐶
2
𝑓𝑁 for any

≥ 0;
(H2) 𝑔 ∶ [0,∞) → [0,∞) is continuously differentiable and there exist positive constants 𝐶𝑔 such that 𝑔(𝑁) ≤ 𝐶𝑔 for any 𝑁 ≥ 0.
For the systems with only direct prey-taxis or direct predator-taxis, the global existence and uniform boundedness of solutions

ave been well studied [17,18]. Global well-posedness and stability analyses for the systems with only indirect prey-taxis [29] or
ndirect predator-taxis [32] are discussed as well. However, little work was done for the global solvability of the system (1.3) with
oth direct predator-taxis and indirect prey-taxis. Recently, for the predator–prey system with prey taxis, repulsive chemotaxis and
redator evasion have been considered in [33] and blow up solutions in finite time have been found for the space dimension 𝑛 = 2
y numerical simulations. For a general reaction–diffusion predator–prey model with indirect prey-taxis and indirect predator-taxis,
he global existence and uniformly boundedness of the classical solution have been proved for spatial dimension 𝑛 ≤ 3 under some
onditions, see [34]. Therefore in this paper, we will first prove the global existence and uniform boundedness of solutions to (1.3)
or space dimension 𝑛 = 1, based on the literature [8], we will also study measures of success for the system (1.4) focusing on the
endencies between prey and predator, and the emission and decay of stimulus. In addition, we present thorough bifurcation analysis
ith details provided below. We find that Turing bifurcations cannot occur for the system (1.4) by considering the natural scenario
f attractive indirect prey-taxis. We establish the existence conditions of Hopf bifurcations and double-Hopf bifurcations, which can
nduce spatially homogeneous and spatially nonhomogeneous periodic solutions, and even spatially nonhomogeneous quasi-periodic
olutions through the secondary bifurcation of double-Hopf bifurcation. It is worth noting that double-Hopf bifurcation is impossible
o occur for the system with direct prey-taxis and predator-taxis, and only Hopf bifurcation of the spatially homogeneous periodic
olution can occur. Thus we can assert that indirect prey-taxis can promote complex spatiotemporal patterns.

The remaining paper is organized as follows. In Section 2, we prove the global existence and uniform boundedness of the solution
o (1.4) by combining semigroup estimates with Moser-Alikakos iteration method. Subsequently, some measures of success for
he constant coexistence steady state are presented in Section 3. In Section 4, thorough bifurcation analysis are provided with
roofs, including Hopf, Turing and double-Hopf bifurcations, and the stability of the positive constant steady state is determined. In
ection 5, we apply our theory to a Rosenzweig–MacArthur model with indirect prey-taxis and direct predator-taxis, and numerical
imulations illustrate and complement our theoretical results. Finally, we summarize our work in Section 6. To this end, we use
⋅ ‖𝑝 as the norm of the space 𝐿𝑝 for 𝑝 ∈ [1,∞], ‖ ⋅ ‖𝑘,𝑝 as the norm of the space 𝑊 𝑘,𝑝 for 𝑘 = 1, 2, 𝑝 ∈ [1,∞], and denote N the set
f all positive integers, and N0 ∶= N ∪ {0}.

. Global existence

.1. Local existence and preliminaries

In this section, we first show the local existence of solutions to system (1.3) such that the problem is well-posed at least locally.
ollowing the abstract theory of quasilinear parabolic systems in [35], we illustrate the local-in-time existence result of a classical
olution to (1.3).

emma 2.1. Assume that 𝛺 ⊂ R𝑛, is a smooth bounded domain, the conditions (H1) and (H2) hold, then for any initial data
𝑁0, 𝑃0, 𝑆0) ∈ (𝑊 1,𝑝(𝛺))3 for 𝑝 > 𝑛, 𝑁0 ≥ 0, 𝑃0 ≥ 0, 𝑆0 ≥ 0, the following statements hold:

(i) There exists a positive constant 𝑇𝑚𝑎𝑥 such that the system (1.4) has a unique non-negative classical solution(𝑁(𝑥, 𝑡), 𝑃 (𝑥, 𝑡), 𝑆(𝑥, 𝑡))
satisfying

(𝑁,𝑃 , 𝑆) ∈ (𝐶(0, 𝑇𝑚𝑎𝑥);𝑊 1,𝑝(𝛺)) ∩ 𝐶2,1(𝛺 × (0, 𝑇𝑚𝑎𝑥))3.

(ii) 𝑁,𝑃 , 𝑆 satisfy 𝑁(𝑥, 𝑡) ≥ 0, 𝑃 (𝑥, 𝑡) ≥ 0, 𝑆(𝑥, 𝑡) ≥ 0, and there exist positive constants 𝐶1, 𝐶2, 𝐶3 such that the total mass of 𝑁,𝑃 , 𝑆
satisfy

∫𝛺
𝑁(𝑥, 𝑡)𝑑𝑥 ≤ 𝐶1, ∫𝛺

𝑃 (𝑥, 𝑡)𝑑𝑥 ≤ 𝐶2, ∫𝛺
𝑆(𝑥, 𝑡)𝑑𝑥 ≤ 𝐶3, (2.1)

for all 𝑡 ∈ [0, 𝑇𝑚𝑎𝑥], where 𝐶1 ∶= max{‖𝑁0‖1,
𝐶1
𝑓 |𝛺|

𝐶2
𝑓

}, 𝐶2 ∶= max{𝑒‖𝑁0‖1 + ‖𝑃0‖1,
𝑒(𝑚+𝐶1

𝑓 )𝐶1
𝑚 }, 𝐶3 ∶= max{‖𝑆0‖1,

𝛼𝐶1
𝛽 }.

(iii) If for any 𝑇 > 0, there exists a constant 𝑀(𝑇 ) depending on 𝑇 such that

‖𝑁(⋅, 𝑡)‖∞ + ‖𝑃 (⋅, 𝑡)‖∞ + ‖𝑆(⋅, 𝑡)‖∞ < 𝑀(𝑇 ), 𝑡 ∈ [0, 𝑇 ],

then 𝑇 = +∞.
3

𝑚𝑎𝑥
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Proof. Let 𝑈 = (𝑁,𝑃 , 𝑆), then the system (1.3) can be rewritten as

⎧

⎪

⎨

⎪

⎩

𝑈𝑡 = ∇ ⋅ (𝑎(𝑈 )∇𝑈 ) +𝛷(𝑈 ), 𝑥 ∈ 𝛺, 𝑡 > 0,
𝜕𝑈
𝜕𝜈 = 0, 𝑥 ∈ 𝜕𝛺, 𝑡 > 0,
𝑈 (⋅, 0) = (𝑁0, 𝑃0, 𝑆0), 𝑥 ∈ 𝛺,

(2.2)

here

𝑎(𝑈 ) =
⎛

⎜

⎜

⎝

𝑑𝑁 𝜉𝑁 0
0 𝑑𝑃 −𝜂𝑃
0 0 𝑑𝑆

⎞

⎟

⎟

⎠

, 𝛷(𝑈 ) =
⎛

⎜

⎜

⎝

𝑁𝑓 (𝑁) − 𝑃𝑔(𝑁)
𝑒𝑃𝑔(𝑁) − 𝑚𝑃
𝛼𝑁 − 𝛽𝑆

⎞

⎟

⎟

⎠

.

Obviously, the system (2.2) is uniformly parabolic since real parts of all the eigenvalues are positive, thus the local existence
of (𝑁(𝑥, 𝑡), 𝑃 (𝑥, 𝑡), 𝑆(𝑥, 𝑡)) in part (i) can be derived directly by [35, Theorem 14.4, 14.6]. Obviously, 𝑎(𝑈 ) in (2.2) is a upper
riangular matrix, and it can be equivalent to a lower triangular by elementary transformations, then by [36, Theorem 15.5], we
ave 𝑇𝑚𝑎𝑥 = +∞, which completes the proof of the part (iii).

To prove part (ii), we rewrite the first equation of (1.3) as

⎧

⎪

⎨

⎪

⎩

𝑁𝑡 = 𝑑𝑁 ▵ 𝑁 + 𝜉∇𝑁∇𝑃 + 𝜉𝑁 ▵ 𝑃 +𝑁𝑓 (𝑁) − 𝑃𝑔(𝑁), 𝑥 ∈ 𝛺, 𝑡 > 0,
𝜕𝑁
𝜕𝜈 = 0, 𝑥 ∈ 𝜕𝛺, 𝑡 > 0,
𝑁(𝑥, 0) = 𝑁0(𝑥) ≥ 0, 𝑥 ∈ 𝛺.

(2.3)

The Eq. (2.3) can be treated as a scalar linear equation of 𝑁 , and it is obvious that 𝑁 = 0 is a lower solution to (2.3), then we
obtain 𝑁(𝑥, 𝑡) ≥ 0 by applying the maximum principle for parabolic equations. Similarly, we can prove 𝑃 (𝑥, 𝑡) ≥ 0 and 𝑆(𝑥, 𝑡) ≥ 0.
Next we will show that the solution (𝑁(𝑥, 𝑡), 𝑃 (𝑥, 𝑡), 𝑆(𝑥, 𝑡)) is 𝐿1-bounded. Let

∫𝛺
𝑁(𝑥, 𝑡)𝑑𝑥 = 𝑄1(𝑡), ∫𝛺

𝑃 (𝑥, 𝑡)𝑑𝑥 = 𝑄2(𝑡), ∫𝛺
𝑆(𝑥, 𝑡)𝑑𝑥 = 𝑄3(𝑡),

integrating the 𝑁-equation of (1.3), by the assumption (H1), we have
𝑑𝑄1(𝑡)
𝑑𝑡

= ∫𝛺
𝑁𝑓 (𝑁) − 𝑃𝑔(𝑁)𝑑𝑥 ≤ ∫𝛺

𝐶1
𝑓𝑁 − 𝐶2

𝑓𝑁
2𝑑𝑥, (2.4)

following Hölder’s inequality, we know that

∫𝛺
𝑁2𝑑𝑥 ≥ 1

|𝛺|

(

∫𝛺
𝑁𝑑𝑥

)2
. (2.5)

lugging (2.5) to (2.4) and treating (2.4) as a ODE of 𝑄1(𝑡), we obtain

∫𝛺
𝑁(𝑥, 𝑡)𝑑𝑥 = 𝑄1(𝑡) < 𝐶1, (2.6)

here 𝐶1 = max{‖𝑁0‖1,
𝐶1
𝑓 |𝛺|

𝐶2
𝑓

}.
Next, combining the first and second equations of (1.3) and integrating over 𝛺 leads to

(𝑒𝑄1(𝑡) +𝑄2(𝑡))𝑡 = 𝑒∫𝛺
𝑁𝑓 (𝑁)𝑑𝑥 − 𝑚∫𝛺

𝑃𝑑𝑥 ≤ 𝑒𝐶1
𝑓 ∫𝛺

𝑁𝑑𝑥 − 𝑚∫𝛺
𝑃𝑑𝑥

≤ −𝑚(𝑒𝑄1(𝑡) +𝑄2(𝑡)) + 𝑒(𝑚 + 𝐶1
𝑓 )𝐶1,

then in the similar manner to (2.4), we obtain

𝑒𝑄1(𝑡) +𝑄2(𝑡) ≤ max{𝑒‖𝑁0‖1 + ‖𝑃0‖1,
𝑒(𝑚 + 𝐶1

𝑓 )𝐶1

𝑚
} ∶= 𝐶2,

hich implies

∫𝛺
𝑃 (𝑥, 𝑡)𝑑𝑥 = 𝑄2(𝑡) ≤ 𝐶2.

inally, by (2.6) we obtain the boundedness of 𝑆 in 𝐿1(𝛺):

∫𝛺
𝑆(𝑥, 𝑡)𝑑𝑥 ≤ max{‖𝑆0‖1,

𝛼𝐶1
𝛽

} ∶= 𝐶3. □

Next, we will review some well-known results on preliminary estimates in [37], which will play a key role in our proof of global
olvability of (1.4).

According to [37,38], for 𝑝 ∈ (1,∞), we can define the sectorial operator 𝐴 by

𝐴𝑢 ∶= − ▵ 𝑢 for 𝑢 ∈ 𝐷(𝐴) ∶= {𝜑 ∈ 𝑊 2,𝑝(𝛺) ∶
𝜕𝜑
𝜕𝜈

= 0, on 𝜕𝛺}.

he operator 𝐴+1 is also sectorial in 𝐿𝑝(𝛺) and the fractional operator (𝐴+1)𝜃 , 0 < 𝜃 < 1 is defined on 𝐷((𝐴+1)𝜃) ⊂ 𝐿𝑝(𝛺) satisfying

‖𝑢‖ ∶= ‖(𝐴 + 1)𝜃𝑢‖ <∞,
4

𝐷((𝐴+1)𝜃 ) 𝐿𝑝(𝛺)
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and the domain has the embedding property:

𝐷((𝐴 + 1)𝜃) ↪ 𝑊 1,𝑝(𝛺),

imilarly, we can define 𝐴𝑑 given by 𝐴𝑑𝑢 = −𝑑 ▵ 𝑢, which satisfies the same properties as 𝐴, hence we only state the results on
here and 𝐴𝑑 follows a direct scaling. Now we recall some smoothing 𝐿𝑝 − 𝐿𝑞 type estimates for the diffusion semigroup with

homogeneous Neumann boundary conditions on a bounded, smooth domain, refer to [33,37,38].

Lemma 2.2.

(i) Assume that 𝑘 ∈ {0, 1}, 1 ≤ 𝑝 ≤ ∞, 1 < 𝑞 <∞. There exists a constant 𝑐1 > 0, such that

‖𝑢‖𝑘,𝑝 ≤ 𝑐1‖(𝐴 + 1)𝜃𝑢‖𝑞 , (2.7)

for any 𝑢 ∈ 𝐷((𝐴 + 1)𝜃) with 0 < 𝜃 < 1 satisfying

𝑘 − 𝑛
𝑝
< 2𝜃 − 𝑛

𝑞
.

If additionally for any 𝑢 ∈ 𝐿𝑞′ (𝛺), 𝑞 ≥ 𝑞′, then there exists 𝑐2 > 0, 𝑟 > 0 such that

‖(𝐴 + 1)𝜃𝑒−𝑡(𝐴+1)𝑢‖𝑞 ≤ 𝑐2(𝑡
−𝜃− 𝑛

2 (
1
𝑝−

1
𝑞 ))𝑒−𝑟𝑡‖𝑢‖𝑞′ , (2.8)

where 𝑒−𝑡(𝐴+1) maps 𝐿𝑞′ into 𝐷((𝐴 + 1)𝜃).
(ii) For 1 < 𝑝 <∞, there exist some positive constants 𝑐3, 𝜖 > 0 and 𝜇, such that

‖(𝐴 + 1)𝜃𝑒−𝑡𝐴∇ ⋅ 𝑢‖𝑝 ≤ 𝑐3(𝑡
−𝜃− 1

2−𝜖)𝑒−𝜇𝑡‖𝑢‖𝑝, (2.9)

for all 𝑢 ∈ 𝐿𝑝.

The following lemma states the Gagliardo–Nirenberg inequality,refer to [39–41], that will be applied to prove the boundedness
f 𝑁(𝑥, 𝑡), 𝑃 (𝑥, 𝑡) in the next subsection.

emma 2.3. There exists an constant 𝐶𝐺𝑁 > 0 such that

‖𝑢‖𝑝 ≤ 𝐶𝐺𝑁‖𝑢‖𝜎1,𝑞‖𝑢‖
1−𝜎
𝑘 , (2.10)

or 𝑢 ∈ 𝑊 1,𝑞(𝛺), where 𝑝 ≥ 𝑞 ≥ 1, 𝑝 ≥ 𝑘 satisfy
𝑛
𝑘 − 𝑛

𝑝

1 + 𝑛
𝑘 − 𝑛

𝑞

≤ 𝜎 ≤ 1

ith sharply inequality if 𝑘 = 1 or 𝑞 = 1.

Via direct applying the result in [37, Lemma 2.1] to the system (1.4), we can obtain the following conclusion which estimates
he 𝐿𝑝(𝛺) boundedness of 𝑆 by using corresponding 𝐿1(𝛺) bounds.

Lemma 2.4. Assume that there exist 𝜏 ∈ (0,min{1, 𝑇𝑚𝑎𝑥}) and a positive integer 𝛾 ∈ [1, 𝑛], such that

‖𝑁(𝑡)‖𝛾 ≤ 𝐶1, for all 𝑡 ∈ [𝜏, 𝑇𝑚𝑎𝑥).

Then for any 𝜂 ∈ (0, 𝑇𝑚𝑎𝑥 − 𝜏), the following estimation holds

‖𝑆(𝑡)‖1,𝑝 ≤ 𝑐(𝑝,max{‖𝑁0‖1, ‖𝑆0‖1}, 𝜏, 𝜂)(1 + 𝐶1) for all 𝑡 ∈ [𝜏 + 𝜂, 𝑇𝑚𝑎𝑥), (2.11)

for all 1 < 𝑝 < 𝑛𝛾
𝑛−𝛾 .

2.2. Global existence and uniform boundedness

In this section, we will prove the global existence and uniform boundedness of the solution to (1.4) for the spatial dimension
𝑛 = 1. It is noting that a series of standard semigroup arguments are well-established to prove the uniform boundedness of the
solution for the system with taxis in the literature, refer to [18,37,38,42,43]. Another approach is the iterative technique of Moser
and Alikakos [44,45], it also can be employed to obtain such 𝐿∞-boundedness. In the present paper, due to that 𝑁,𝑃 , 𝑆-equations
n the system (1.4) are coupled with each other, in order to simplify the proof process as much as possible, we have to combine the
bove two approaches to prove some expected results.

Firstly, we employ the semigroup argument to obtain 𝑆 ∈ 𝑊 1,𝑝(𝛺) for any 1 < 𝑝 < ∞, then combining with the embedding
theorem, the 𝐿∞-boundedness of 𝑆 can be derived.

Lemma 2.5. Let (𝑁,𝑃 , 𝑆) be a classical solution to the system (1.4) in (0, 𝑇𝑚𝑎𝑥), then there exists a positive constant 𝑀1 such that for
each 𝑝 ∈ (1,∞),
5

‖𝑆(⋅, 𝑡)‖1,𝑝 < 𝑀1, for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥). (2.12)



Communications in Nonlinear Science and Numerical Simulation 128 (2024) 107647D. Geng et al.

I

c

f

f
w

s

N
t

L

P

t

V

w

Proof. First, we prove there exists a 𝑀(𝜏) > 0 such that

‖𝑆(⋅, 𝑡)‖1,𝑝 < 𝑀(𝜏), for 𝑡 ∈ (𝜏, 𝑇𝑚𝑎𝑥).

t follows Lemma 2.1-(ii) that

‖𝑁(𝑡)‖1 ≤ 𝐶1,

hoose 𝜏 ∈ (0,min{1, 𝑇𝑚𝑎𝑥}), 𝑝 > 1 and 𝛾 = 1, then by Lemma 2.4, for any 𝜂 ∈ (0, 𝑇𝑚𝑎𝑥 − 𝜏), the following estimation holds

‖𝑆(𝑡)‖1,𝑝 ≤ 𝑐(𝑝, 𝜏, 𝜂,max{‖𝑁0‖1, ‖𝑆0‖1})(1 + 𝐶1) for all 𝑡 ∈ [𝜏 + 𝜀, 𝑇𝑚𝑎𝑥),

or all 1 < 𝑝 <∞, here 𝑐 is an constant depending on 𝑝, 𝜏, 𝜀, ‖𝑁0‖1, ‖𝑆0‖1.
Let 𝜀→ 0, we derive that for each 1 < 𝑝 <∞,

‖𝑆(⋅, 𝑡)‖1,𝑝 ≤𝑀(𝜏), (2.13)

or all (𝜏, 𝑇𝑚𝑎𝑥), here 𝑀(𝜏) is a constant that depends on 𝜏. Since (2.13) holds for any 𝜏 ∈ (0,min{1, 𝑇𝑚𝑎𝑥}), and 𝑆0 ∈ 𝑊 1,𝑝, hence
e infer that there exists a constant 𝑀1 independing of 𝑡, such that for 1 < 𝑝 <∞,

‖𝑆(⋅, 𝑡)‖1,𝑝 < 𝑀1, for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥). □

Since

𝑊 1,𝑝(𝛺) ↪ 𝐿∞(𝛺), for 1 < 𝑝 <∞,

o we also know

‖𝑆(⋅, 𝑡)‖∞ < 𝑀1, for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥). (2.14)

ext we will establish the uniform boundedness of 𝑃 (𝑥, 𝑡). To avoid the tedious process of proving 𝑃 ∈ 𝐿𝑘(𝛺) needed in semigroup
heory to obtain the uniform boundedness, we will employ Moser-Alikakos iterative technique here together with Lemma 2.5.

emma 2.6. Let (𝑁,𝑃 , 𝑆) be a classical solution to the system (1.4) in (0, 𝑇𝑚𝑎𝑥), then there exists a positive constant 𝑀2 such that for
each 1 < 𝑝 <∞,

‖𝑃 (⋅, 𝑡)‖1,𝑝 < 𝑀2, for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥). (2.15)

roof. By multiplying the 𝑃 -equation by 𝑃 (⋅, 𝑡) and integrating on 𝛺, Combining the assumption (H2) we obtain

1
2
𝑑
𝑑𝑡 ∫𝛺

𝑃 2𝑑𝑥 = ∫𝛺
𝑃𝑃𝑡𝑑𝑥

= 𝑑𝑃 ∫𝛺
𝑃 ▵ 𝑃𝑑𝑥 − 𝜂 ∫𝛺

𝑃∇ ⋅ (𝑃∇𝑆)𝑑𝑥 + ∫𝛺
𝑃 (𝑒𝑃𝑔(𝑁) − 𝑚𝑃 )𝑑𝑥

≤ −𝑑𝑃 ∫𝛺
|∇𝑃 |2𝑑𝑥 + 𝜂 ∫𝛺

𝑃∇𝑃∇𝑆𝑑𝑥 + 𝑒𝐶𝑔 ∫𝛺
𝑃 2𝑑𝑥 − 𝑚∫𝛺

𝑃 2𝑑𝑥,

hen we have
1
2
𝑑
𝑑𝑡 ∫𝛺

𝑃 2𝑑𝑥 + 𝑑𝑃 ∫𝛺
|∇𝑃 |2𝑑𝑥 + 𝑚∫𝛺

𝑃 2𝑑𝑥 ≤ 𝜂 ∫𝛺
𝑃∇𝑃∇𝑆𝑑𝑥 + 𝑒𝐶𝑔 ∫𝛺

𝑃 2𝑑𝑥, (2.16)

ia Young inequality and Hölder’s inequality, we know that

∫𝛺
𝑃∇𝑃∇𝑆𝑑𝑥 ≤ 𝜀0 ∫𝛺

|∇𝑃 |2𝑑𝑥 + 𝐶(𝜀0)∫𝛺
𝑃 2

|∇𝑆|2𝑑𝑥

≤ 𝜀0 ∫𝛺
|∇𝑃 |2𝑑𝑥 + 𝐶(𝜀0)

(

∫𝛺
𝑃 4

)
1
2
(

∫𝛺
|∇𝑆|4

)
1
2
𝑑𝑥

∶= 𝜀0 ∫𝛺
|∇𝑃 |2𝑑𝑥 + 𝐶(𝜀0)‖𝑃‖24‖∇𝑆‖

2
4.

(2.17)

here 𝜀0 > 0. According to Lemma 2.3, we derive Gagliardo–Nirenberg inequality for 𝑝 = 4, 𝑞 = 2, 𝑛 = 𝑘 = 1, 𝜎 = 1
2

‖𝑃‖24 < 𝐶
2
𝐺𝑁‖𝑃‖1,2‖𝑃‖1, (2.18)

Owing to (2.1), (2.12), (2.18) and Young inequality, that there exists a sufficiently small 𝜀1 > 0, such that

𝐶(𝜀0)‖𝑃‖24‖∇𝑆‖
2
4 ≤ 𝜀1(‖𝑃‖22 + ‖∇𝑃‖22) + 𝐶(𝜀1)

(

𝐶(𝜀0)𝐶2
𝐺𝑁‖𝑃‖1‖∇𝑆‖24

)2

≤ 𝜀1(‖𝑃‖22 + ‖∇𝑃‖22) +𝐾0,
(2.19)
6

here 𝐾0 is dependent of 𝜀0, 𝜀1, 𝐶𝐺𝑁 , 𝐶2 and 𝑀1.
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On the other hand, it follows Lemma 2.3 and Poincaré inequality that for any 𝜀2 > 0, such that

∫𝛺
𝑃 2𝑑𝑥 ≤ 𝜀2 ∫𝛺

|∇𝑃 |2𝑑𝑥 + 𝐶(𝜀2)
(

∫𝛺
𝑃𝑑𝑥

)2
. (2.20)

herefore following (2.17), (2.19) and (2.20), we have

𝜂 ∫𝛺
𝑃∇𝑃∇𝑆𝑑𝑥 + 𝑒𝐶𝑔 ∫𝛺

𝑃 2𝑑𝑥 ≤𝜀0𝜂 ∫𝛺
|∇𝑃 |2 + 𝜀1𝜂

(

∫𝛺
𝑃 2𝑑𝑥 + ∫𝛺

|∇𝑃 |2𝑑𝑥
)

+ 𝑒𝐶𝑔 ∫𝛺
𝑃 2𝑑𝑥

+ 𝜂𝐾0

≤(𝜀0 + 𝜀1)𝜂 ∫𝛺
|∇𝑃 |2𝑑𝑥 + 𝜂𝐾0

+ (𝑒𝐶𝑔 + 𝜀1𝜂)

(

𝜀2 ∫𝛺
|∇𝑃 |2𝑑𝑥 + 𝐶(𝜀2)

(

∫𝛺
𝑃𝑑𝑥

)2
)

.

(2.21)

hoose 𝜀0 = 𝜀1 =
𝑑𝑃
4𝜂 , 𝜀2 =

𝑑𝑃
2(𝜀1𝜂+𝑒𝐶𝑔 )

, then based on (2.16) we obtain the following inequality

𝑑
𝑑𝑡 ∫𝛺

𝑃 2𝑑𝑥 + 2𝑚∫𝛺
𝑃 2𝑑𝑥 ≤ 𝐾1,

here 𝐾1 is positive constant depending on 𝑒, 𝜂, 𝑑𝑃 , 𝐶𝑔 and 𝐾0. Then we get

‖𝑃 (⋅, 𝑡)‖2 ≤ max{‖𝑃0‖2,
𝐾1
2𝑚

}. (2.22)

By the variation of constants formula for the second equation of (1.4), we obtain

𝑃 (⋅, 𝑡) =𝑒−𝑡(𝐴𝑑𝑃 +1)𝑃0 − 𝜂 ∫

𝑡

0
𝑒−(𝑡−𝑠)(𝐴𝑑𝑃 +1)∇ ⋅ (𝑃 (⋅, 𝑡)∇𝑆(⋅, 𝑡))𝑑𝑠

+ ∫

𝑡

0
𝑒−(𝑡−𝑠)(𝐴𝑑𝑃 +1)𝜓(𝑁(⋅, 𝑡), 𝑃 (⋅, 𝑡), 𝑥)𝑑𝑠

∶= 𝐼1 + 𝐼2 + 𝐼3,

(2.23)

where 𝜓(𝑁(⋅, 𝑡), 𝑃 (⋅, 𝑡), 𝑥) ∶= 𝑒𝑃 (⋅, 𝑡)𝑔(𝑁(⋅, 𝑡)) + (1 − 𝑚)𝑃 (⋅, 𝑡). Taking a sufficiently small constant 𝜏 ∈ (0,min{1, 𝑇𝑚𝑎𝑥}), then we will
estimate 𝐼1, 𝐼2, 𝐼3 are 𝐿∞ bounded by applying Lemma 2.2 based on (2.22).

For 𝐼1, we fix 𝑘 = 0, 𝑝 = ∞ in (2.7), then

‖𝐼1‖∞ ≤ 𝑐1‖(𝐴𝑑𝑆 + 1)𝜃𝑒−𝑡(𝐴𝑑𝑆 +1)𝑃0‖𝑞 ≤ 𝐶5𝜏
−𝜃𝑒−𝑟𝑡‖𝑃0‖𝑞 ≤ 𝐶5‖𝑃0‖∞ ∶=𝑀1(𝜏), (2.24)

for all 𝑡 ∈ (𝜏, 𝑇𝑚𝑎𝑥), 𝜃 ∈ ( 1
2𝑞 , 1), where 𝐶5 is a positive constant.

For 𝐼2, according to (2.9), there additionally exists constants 𝜖 ∈ (0, 12 − 𝜃) and 𝐶6 > 0 such that for 𝑞 = 2, 𝜃 ∈ ( 1
2𝑞 ,

1
2 )

‖𝐼2‖∞ ≤ 𝑐1𝜂 ∫

𝑡

0
𝑒−(𝑡−𝑠)‖(𝐴𝑑𝑃 + 1)𝜃𝑒−(𝑡−𝑠)𝐴𝑑𝑃 ∇ ⋅ (𝑃 (⋅, 𝑡)∇𝑆(⋅, 𝑡))‖𝑞𝑑𝑠

≤ 𝐶6 ∫

𝑡

0
(𝑡 − 𝑠)−𝜃−

1
2−𝜖𝑒−(𝜇+1)(𝑡−𝑠)‖𝑃 (⋅, 𝑡)∇𝑆(⋅, 𝑡)‖𝑞𝑑𝑠,

(2.25)

for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥). By (2.12) and (2.22), we know that there exists a positive constant 𝐶7 such that

‖𝑃 (⋅, 𝑡)∇𝑆(⋅, 𝑡)‖2 < 𝐶7 for 𝑡 ∈ (𝜏, 𝑇𝑚𝑎𝑥), (2.26)

ence there exists a constant 𝐶8 > 0 such that

‖𝐼2‖∞ ≤ 𝐶6𝐶7 ∫

𝑡

0
(𝑡 − 𝑠)−𝜃−

1
2−𝜖𝑒−(𝜇+1)(𝑡−𝑠)𝑑𝑠

≤ 𝐶8𝛤 (
1
2
− 𝜃 − 𝜖), for 𝑡 ∈ (𝜏, 𝑇𝑚𝑎𝑥),

(2.27)

where 𝛤 (𝑥) represents Gamma function and since 1
2 − 𝜃 − 𝜖 > 0, then 𝛤 ( 12 − 𝜃 − 𝜖) > 0.

Finally for 𝐼3, we take 𝑞′ = 𝑞 = 2, 𝜃 ∈ ( 14 , 1)

‖𝐼3‖∞ ≤ 𝑐1𝑐2 ∫

𝑡

0
(𝑡 − 𝑠)−𝜃𝑒−𝑟(𝑡−𝑠)‖𝜓(𝑁(⋅, 𝑡), 𝑃 (⋅, 𝑡), 𝑥)‖𝑞𝑑𝑠

≤ 𝐶9 ∫

𝑡

0
(𝑡 − 𝑠)−𝜃𝑒−𝑟(𝑡−𝑠)‖(𝑒𝐶𝑔 + 1 − 𝑚)𝑃 (⋅, 𝑡)‖𝑞𝑑𝑠

≤ 𝐶 𝛤 (1 − 𝜃),

(2.28)
7

9
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where 𝐶9 is a constant that could be different between lines, 𝛤 (1 − 𝜃) > 0 for 1 − 𝜃 > 0. Therefore, by (2.24), (2.27), and (2.28), we
btain 𝑃 is uniformly bounded, i.e.

‖𝑃 (⋅, 𝑡)‖∞ ≤ 𝐶4 (2.29)

olds for any 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥) since ‖𝑃0‖ <∞.
Furthermore, we can prove the 𝑊 1,𝑝 boundedness of 𝑃 based on (2.12) and (2.29). Concretely, also taking 𝜏 ∈ (0,min{1, 𝑇𝑚𝑎𝑥}),

for 𝑘 = 1, 𝑛 = 1, 𝑞 = 𝑞′ > 𝑝 and 𝜃 ∈ ( 12 (1 − 𝑛
𝑝 + 𝑛

𝑞 ), 1). Then via utilizing the similar arguments to the proofs of (2.24), (2.27), and

2.28), the following consequence is derived

‖𝑃‖1,𝑝 ≤ ‖𝐼1‖1,𝑝 + ‖𝐼2‖1,𝑝 + ‖𝐼3‖1,𝑝 ≤ ∞, for all 𝑡 ∈ {𝜏, 𝑇𝑚𝑎𝑥}

ince 𝑃0 ∈ 𝑊 1,𝑝 for all 𝑝 > 𝑛, thus let 𝜏 → 0, we obtain there exists a constant 𝑀2, such that

‖𝑃‖1,𝑝 ≤𝑀2, for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥) □

orollary 2.7. Let (𝑁,𝑃 , 𝑆) be a classical solution to the system (1.4) in (0, 𝑇𝑚𝑎𝑥), then there exists a positive constant 𝑀3 such that

‖𝑁(⋅, 𝑡)‖∞ < 𝑀3, for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥). (2.30)

roof. For any 𝑘 ≥ 2, multiplying the 𝑁-equation by 𝑁(⋅, 𝑡), from the assumption (H1) we obtain

𝑑
𝑑𝑡 ∫𝛺

𝑁𝑘𝑑𝑥 = − 𝑑𝑁𝑘(𝑘 − 1)∫𝛺
𝑁𝑘−2

|∇𝑁|

2𝑑𝑥 − 𝜉𝑘(𝑘 − 1)∫𝛺
𝑁𝑘−1∇𝑁∇𝑃𝑑𝑥

+ 𝑘∫𝛺
𝑁𝑘−1(𝑁𝑓 (𝑁) − 𝑃𝑔(𝑁))𝑑𝑥

≤ − 𝑑𝑁
4(𝑘 − 1)

𝑘 ∫𝛺
|∇𝑁

𝑘
2
|

2
𝑑𝑥 + 2𝜉(𝑘 − 1)∫𝛺

𝑁
𝑘
2 ∇𝑁

𝑘
2 ∇𝑃𝑑𝑥

+ 𝑘𝐶1
𝑓 ∫𝛺

𝑁𝑘𝑑𝑥 − 𝑘𝐶2
𝑓 ∫𝛺

𝑁𝑘+1𝑑𝑥

(2.31)

Applying the Hölder’s inequality to the second term of (2.31), we arrive at

∫𝛺
𝑁

𝑘
2 ∇𝑁

𝑘
2 ∇𝑃𝑑𝑥 ≤

(

∫𝛺
𝑁𝑘+1𝑑𝑥

)
𝑘

2(𝑘+1)
(

∫𝛺
|∇𝑁

𝑘
2
|

2)
1
2
(

∫𝛺
|∇𝑃 |2(𝑘+1)

)
1

2(𝑘+1)
, (2.32)

lugging it into (2.31), and using (2.15) and Young inequality with 𝜖 = 2𝑑𝑁
𝜉𝑘 , we derive

𝑑
𝑑𝑡 ∫𝛺

𝑁𝑘𝑑𝑥 ≤ 𝐾
(

∫𝛺
𝑁𝑘+1𝑑𝑥

)
𝑘
𝑘+1

+ 𝑘𝐶1
𝑓 ∫𝛺

𝑁𝑘𝑑𝑥 − 𝑘𝐶2
𝑓 ∫𝛺

𝑁𝑘+1𝑑𝑥 (2.33)

ith 𝐾 depending on 𝑘,𝑀2. On the other hand, Young inequality leads to

𝐾
(

∫𝛺
𝑁𝑘+1𝑑𝑥

)
𝑘
𝑘+1

≤ 𝜖 ∫𝛺
𝑁𝑘+1𝑑𝑥 + 𝐶𝜖𝐾𝑘+1, (2.34)

nd Hölder’s inequality leads to
(

∫𝛺
𝑁𝑘𝑑𝑥

)
𝑘+1
𝑘

≤ 𝐾 ′
∫𝛺

𝑁𝑘+1𝑑𝑥. (2.35)

hrough taking 𝜖 =
𝑘𝐶2

𝑓
2 , and plugging (2.34) and (2.35) into (2.33), we have

𝑑
𝑑𝑡 ∫𝛺

𝑁(⋅, 𝑡)𝑘𝑑𝑥 ≤ 𝑘𝐶1
𝑓 ∫𝛺

𝑁(⋅, 𝑡)𝑘𝑑𝑥 + 𝐶𝜖𝐾𝑘+1 −
𝑘𝐶2

𝑓

2𝐾 ′

(

∫𝛺
𝑁(⋅, 𝑡)𝑘𝑑𝑥

)
𝑘+1
𝑘
.

Denoting the following differential equation
𝑑𝑦
𝑑𝑡

≤ −𝛼1𝑦𝜅 + 𝛼2𝑦 + 𝛼0.

here 𝑦(𝑡) ∶= ∫𝛺𝑁(⋅, 𝑡)𝑘𝑑𝑥, 𝜅 = 𝑘+1
𝑘 , 𝛼1 =

𝑘𝐶2
𝑓

2𝐾′ , 𝛼2 = 𝑘𝐶1
𝑓 , 𝛼0 = 𝐶𝜖𝐾𝑘+1. We know

𝑦(𝑡) ≤ max{𝑦(0), 𝑦̄}, (2.36)

ere 𝑦̄ is the solution of −𝛼1𝑦𝜅 + 𝛼2𝑦 + 𝛼0 = 0. Therefore, for any 𝑘 ≥ 2,
8

‖𝑁(⋅, 𝑡)‖𝑘 <∞. □ (2.37)
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Thus based on (2.15) and (2.37), by applying Lemma 2.2 again, the 𝑊 1,𝑝 boundedness of 𝑁 can be derived through the similar
argument as the proof of Lemma 2.6, furthermore, following embedding theorem, we have that there exists a constant 𝑀3, such
that

‖𝑁(⋅, 𝑡)‖∞ < 𝑀3, for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥).

As a consequence, the main results on the global existence of the classical solution to (1.3) can be derived by combining
Lemma 2.1-(iii) with Lemmas 2.5, 2.6 and Corollary 2.7.

Theorem 2.8. Let 𝛺 ∈ R be a bounded domain with smooth boundary. Assume that 𝑑𝑁 , 𝑑𝑃 , 𝑑𝑆 , 𝑒, 𝑚 > 0, 𝜉, 𝜂 ≥ 0, 𝑓 (𝑁) and 𝑔(𝑁) satisfy
he conditions (H1), (H2). Then for any initial data (𝑁0, 𝑃0, 𝑆0) ∈ (𝑊 1,𝑝(𝛺))3 for 𝑝 > 1, 𝑁0 ≥ 0, 𝑃0 ≥ 0, 𝑆0 ≥ 0, the system (1.4) possesses
unique global classical solution (𝑁,𝑃 , 𝑆) satisfying

(𝑁,𝑃 , 𝑆) ∈ (𝐶(0,∞);𝑊 1,𝑝(𝛺)) ∩ 𝐶2,1(𝛺 × (0,∞))3, (2.38)

hich is uniformly bounded in 𝛺 × (0,∞), i.e. there is a constant 𝑀(𝑁0, 𝑃0, 𝑆0) > 0 such that

‖𝑁(⋅, 𝑡)‖∞ + ‖𝑃 (⋅, 𝑡)‖∞ + ‖𝑆(⋅, 𝑡)‖∞ < 𝑀(𝑁0, 𝑃0, 𝑆0), for all 𝑡 ∈ (0,∞). (2.39)

. Measures of success

The direct taxis (simulated visually and acoustically) or indirect taxis (simulated by chemosensation) considered in the model
1.4) guide cognitive movement of animals. As illustrated in [8], one of the quantitative success measures for animal movement
odels with population dynamics combines growth rates and survival to determine the optimal diffusion and flow rate of the pattern.
successful strategy makes the population persisting the stability as 𝑡 → ∞ and an unsuccessful one drives the population to go

nstable. As a result, this section will seek the successful or unsuccessful strategy by analyzing the eigenvalue problem of (1.4) at
he constant coexistence state.

We propose the following hypotheses:
(H3) 𝑔(𝑁) satisfies 𝑔′(𝑁) > 0, 𝑔(0) = 0 and there a exist positive constant 𝑁∗ such that 𝑔(𝑁∗) = 𝑚

𝑒 .
Such hypotheses assure the system (1.4) possesses an unique positive equilibrium, denoted by 𝐸∗ = (𝑁∗, 𝑃 ∗, 𝑆∗), where

𝑁∗ ∶= 𝑔−1(𝑚
𝑒
), 𝑃 ∗ ∶= 𝑚

𝑒
𝑁∗𝑓 (𝑁∗), 𝑆∗ ∶= 𝛼

𝛽
𝑁∗. (3.1)

he linearized the system (1.4) at (𝑁∗, 𝑃 ∗, 𝑆∗) is given by
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑁𝑡 = 𝑑𝑁 ▵ 𝑁 + 𝜉𝑁∗ ▵ 𝑃 +𝑁(𝑓 (𝑁∗) +𝑁∗𝑓 ′(𝑁∗) − 𝑃 ∗𝑔′(𝑁∗)) − 𝑔(𝑁∗)𝑃 ,
𝑃𝑡 = 𝑑𝑃 ▵ 𝑃 − 𝜂𝑃 ∗ ▵ 𝑆 + 𝑒𝑃 ∗𝑔′(𝑁∗)𝑁 + 𝑃 (𝑒𝑔(𝑁∗) − 𝑚),
𝑆𝑡 = 𝑑𝑆 ▵ 𝑆 + 𝛼𝑁 − 𝛽𝑆,
𝜕𝑁
𝜕𝜈 = 𝜕𝑁

𝜕𝜈 = 𝜕𝑁
𝜕𝜈 = 0,

(3.2)

or 𝑥 ∈ (0, 𝑙𝜋), 𝑡 > 0. Denote that

𝐷 =
⎛

⎜

⎜

⎝

𝑑𝑁 𝜉𝑁∗ 0
0 𝑑𝑃 −𝜂𝑃 ∗

0 0 𝑑𝑆

⎞

⎟

⎟

⎠

, (3.3)

𝐽 =
⎛

⎜

⎜

⎝

𝑎11 −𝑔(𝑁∗) 0
𝑒𝑃 ∗𝑔′(𝑁∗) 0 0

𝛼 0 −𝛽

⎞

⎟

⎟

⎠

, (3.4)

here

𝑎11 = 𝑓 (𝑁∗) +𝑁∗𝑓 ′(𝑁∗) − 𝑃 ∗𝑔′(𝑁∗). (3.5)

hen we generalize the linearized system (3.2) to obtain
𝜕𝑈
𝜕𝑡

= 𝐷 ▵ 𝑈 + 𝐽 (𝑈 (𝑥, 𝑡)), (3.6)

here 𝑈 (𝑥, 𝑡) = (𝑁(𝑥, 𝑡), 𝑃 (𝑥, 𝑡), 𝑆(𝑥, 𝑡)), 𝑥 ∈ 𝛺, 𝑁∗, 𝑃 ∗, 𝑆∗ are defined in (3.1), 𝐷 and 𝐽 refer to (3.3) and (3.4), respectively.
Let 𝜇𝑘 = { 𝑘

2

𝑙2
}𝑘∈N0

be the eigenvalues of − ▵ with homogeneous Neumann boundary condition, {𝛽𝑘}𝑘∈N0
be the corresponding

igenfunctions, then the characteristic equations corresponding to (3.2) are given by

𝑘(𝜆, 𝜂) ∶= 𝐷𝑒𝑡(𝜆𝐼 −𝐷 − 𝐽 ) = 𝜆3 + 𝑃𝑘𝜆2 +𝑄𝑘𝜆 + 𝑅𝑘(𝜂) = 0, (3.7)

ith

𝑃𝑘 = (𝑑𝑁 + 𝑑𝑃 + 𝑑𝑆 )
𝑘2

𝑙2
+ 𝛽 − 𝑎11,

𝑄𝑘 = (𝑑𝑁𝑑𝑝 + 𝑑𝑃 𝑑𝑆 + 𝑑𝑁𝑑𝑆 )
𝑘4

𝑙4
+ [(𝑑𝑁 + 𝑑𝑃 )𝛽 − (𝑑𝑃 + 𝑑𝑆 )𝑎11 + 𝑒𝜉𝑁∗𝑃 ∗𝑔′(𝑁∗)] 𝑘

2

𝑙2
+ 𝑒𝑃 ∗𝑔(𝑁∗)𝑔′(𝑁∗) − 𝛽𝑎11,

𝑅𝑘(𝜂) = 𝑑𝑁𝑑𝑃 𝑑𝑆
𝑘6

𝑙6
+ (𝑑𝑁𝑑𝑃 𝛽 − 𝑑𝑃 𝑑𝑆𝑎11 + 𝑑𝑆𝑒𝜉𝑁∗𝑃 ∗𝑔′(𝑁∗) + 𝛼𝜉𝜂𝑁∗𝑃 ∗) 𝑘

4

𝑙4
∗ ∗ ′ ∗ ∗ ∗ ′ ∗ ∗ ∗ 𝑘2 ∗ ∗ ′ ∗

(3.8)
9

+(𝑑𝑆𝑒𝑃 𝑔(𝑁 )𝑔 (𝑁 ) + 𝑒𝛽𝜉𝑁 𝑃 𝑔 (𝑁 ) + 𝛼𝜂𝑃 𝑔(𝑁 ))
𝑙2

+ 𝑒𝛽𝑃 𝑔(𝑁 )𝑔 (𝑁 ).
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According to (3.7) and (3.8), the eigenvalue problem of (3.6) for 𝑘 = 0 is given by

0(𝜆) ∶= (𝜆 + 𝛽)
(

𝜆2 − 𝑎11𝜆 + 𝑒𝑃 ∗𝑔(𝑁∗)𝑔′(𝑁∗)
)

= 0,

hus we have that when 𝑎11 > 0, 0(𝜆, 𝜂) = 0 possesses the eigenvalue with positive real part, when 𝑎11 = 0, 0(𝜆, 𝜂) = 0 has a
negative root and a pair of purely imaginary roots, then the constant steady state (𝑁∗, 𝑃 ∗, 𝑆∗) will be unstable for 𝑎11 ≥ 0, then any
trategy will be unsuccessful for the system (1.4).

However, when 𝑎11 < 0, the successful measure should be further determined by the specific forms of 𝑓 (𝑁) and 𝑔(𝑁) and the
sign of other eigenvalues of (3.7), this is worth discussing in more details. Therefore, in this section, we only consider the situation
of 𝑎11 < 0, i.e. 𝑓 (𝑁∗) +𝑁∗𝑓 ′(𝑁∗) − 𝑃 ∗𝑔′(𝑁∗) < 0. Denote that for 𝑘 ∈ N0,

𝐻𝑘
1 = 𝑃𝑘, 𝐻𝑘

2 =
(

𝑃𝑘 1
𝑅𝑘(𝜂) 𝑄𝑘

)

, 𝐻𝑘
3 =

⎛

⎜

⎜

⎝

𝑃𝑘 1 0
𝑅𝑘(𝜂) 𝑄𝑘 𝑃𝑘
0 0 𝑅𝑘(𝜂)

⎞

⎟

⎟

⎠

. (3.9)

Next, we present the criteria to determine the stability of 𝐸∗ by applying to Routh–Hurwitz criterion.

Theorem 3.1. Suppose that the condition (H3) holds, 𝑓 (𝑁∗) + 𝑁∗𝑓 ′(𝑁∗) − 𝑃 ∗𝑔′(𝑁∗) < 0, 𝐻𝑘
𝑖 , 𝑖 = 1, 2, 3, are defined in (3.9), then

▵ +𝐽 is stable, i.e. 𝐸∗ is stable, if

𝐷𝑒𝑡(𝐻𝑘
2 ) > 0, for 𝑘 ∈ N,

ere 𝐷𝑒𝑡(𝐻𝑘
2 ), denoted as in (3.10), represents the determinant of the matrix 𝐻𝑘

2 .

roof. The assumption (H3) assure the unique positive equilibrium 𝐸∗ exists. By direct calculations, we obtain that

𝐷𝑒𝑡(𝐻𝑘
1 ) = 𝑃𝑘 = (𝑑𝑁 + 𝑑𝑃 + 𝑑𝑆 )

𝑘2

𝑙2
+ 𝛽 − 𝑎11,

𝐷𝑒𝑡(𝐻𝑘
2 ) = 𝑃𝑘𝑄𝑘 − 𝑅𝑘(𝜂) = 𝑎1

𝑘6

𝑙6
+ 𝑎2

𝑘4

𝑙4
+ 𝑎3

𝑘2

𝑙2
+ 𝑎4 − 𝜂𝛼𝑃 ∗(𝜉𝑁∗ 𝑘4

𝑙4
+ 𝑔(𝑁∗) 𝑘

2

𝑙2
),

𝐷𝑒𝑡(𝐻𝑘
3 ) = 𝑅𝑘(𝜂)𝐷𝑒𝑡(𝐻𝑘

2 ) = 𝑅𝑘(𝜂)(𝑃𝑘𝑄𝑘 − 𝑅𝑘(𝜂)),

(3.10)

where 𝑘 ∈ N0 and

𝑎1 = (𝑑𝑁 + 𝑑𝑝)(𝑑𝑁𝑑𝑝 + 𝑑𝑃 𝑑𝑆 + 𝑑𝑁𝑑𝑆 ) + 𝑑𝑆 (𝑑𝑁𝑑𝑆 + 𝑑𝑃 𝑑𝑆 ),
𝑎2 = (𝑑2𝑁 + 𝑑2𝑃 + 2(𝑑𝑁𝑑𝑝 + 𝑑𝑃 𝑑𝑆 + 𝑑𝑁𝑑𝑆 ))𝛽 − (𝑑2𝑃 + 𝑑2𝑆 + 2(𝑑𝑁𝑑𝑝 + 𝑑𝑃 𝑑𝑆 + 𝑑𝑁𝑑𝑆 ))𝑎11

+ (𝑑𝑁 + 𝑑𝑃 )𝑒𝜉𝑁∗𝑃 ∗𝑔′(𝑁∗),
𝑎3 = (𝑑𝑃 + 𝑑𝑆 )𝑎211 − 2(𝑑𝑁 + 𝑑𝑃 + 𝑑𝑆 )𝛽𝑎11 + (𝑑𝑁 + 𝑑𝑃 )(𝛽2 + 𝑒𝑃 ∗𝑔(𝑁∗)𝑔′(𝑁∗))

−𝑎11𝜉𝑒𝑁∗𝑃 ∗𝑔′(𝑁∗),
𝑎4 = 𝑎11(𝛽𝑎11 − 𝛽2 − 𝑒𝑃 ∗𝑔(𝑁∗)𝑔′(𝑁∗)).

(3.11)

In view of (3.8), it follows from 𝑓 (𝑁∗)+𝑁∗𝑓 ′(𝑁∗)−𝑃 ∗𝑔′(𝑁∗) < 0, i.e. 𝑎11 < 0 that 𝑃𝑘 > 0, 𝑄𝑘 > 0, 𝑅𝑘(𝜂) > 0, and 𝑎1, 𝑎2, 𝑎3, 𝑎4 > 0 in
3.11). Obviously, 𝐷𝑒𝑡(𝐻𝑘

1 ) > 0 for any 𝑘 ∈ N, combining with 𝑅𝑘(𝜂) > 0, we know 𝐷𝑒𝑡(𝐻𝑘
3 ) > 0 for any 𝑘 ∈ N. Therefore, based on

Routh–Hurwitz criterion, all eigenvalues of the matrix 𝐷 ▵ + 𝐽 have negative real parts if and only of 𝐷𝑒𝑡(𝐻𝑘
2 ) > 0 for any 𝑘 ∈ N,

that means 𝐷 ▵ + 𝐽 will be stable if 𝐷𝑒𝑡(𝐻𝑘
2 ) > 0 for any 𝑘 ∈ N. □

According to Theorem 3.1, the key to determine the stability of 𝐸∗ is to calculate the sign of 𝐷𝑒𝑡(𝐻𝑘
2 ). Taking the derivative of

𝑒𝑡(𝐻𝑘
2 ) with respect to 𝛼, 𝛽, 𝜉, 𝜂, then for 𝑘 ∈ N, we have

𝜕𝐷𝑒𝑡(𝐻𝑘
2 )

𝜕𝛼
= −𝜂𝑃 ∗(𝜉𝑁∗ 𝑘4

𝑙4
+ 𝑔(𝑁∗)𝑘

2

𝑙2
) < 0, (3.12)

𝜕𝐷𝑒𝑡(𝐻𝑘
2 )

𝜕𝜂
= −𝛼𝑃 ∗(𝜉𝑁∗ 𝑘4

𝑙4
+ 𝑔(𝑁∗)𝑘

2

𝑙2
) < 0, (3.13)

and for any 𝛽 > 0,

𝜕𝐷𝑒𝑡(𝐻𝑘
2 )

𝜕𝛽
=2

(

(𝑑𝑁 + 𝑑𝑃 )
𝑘2

𝑙2
− 𝑎11

)

𝛽 +
(

𝑑2𝑁 + 𝑑2𝑃 + 2(𝑑𝑁𝑑𝑝 + 𝑑𝑃 𝑑𝑆 + 𝑑𝑁𝑑𝑆 )
) 𝑘4

𝑙4

− 2(𝑑𝑁 + 𝑑𝑃 + 𝑑𝑆 )𝑎11
𝑘2

𝑙2
+ 𝑎211 > 0,

(3.14)

f (𝑑𝑁 + 𝑑𝑃 ) ≥
𝜂𝛼𝑃 ∗𝑁∗

𝑒𝑁∗𝑃 ∗𝑔′(𝑁∗) , then

𝜕𝐷𝑒𝑡(𝐻𝑘
2 )

𝜕𝜉
=
(

(𝑑𝑁 + 𝑑𝑃 )𝑒𝑁∗𝑃 ∗𝑔′(𝑁∗) − 𝜂𝛼𝑃 ∗𝑁∗) 𝑘4

𝑙4
− 𝑎11𝑒𝑁∗𝑃 ∗𝑔′(𝑁∗)𝑘

2

𝑙2
> 0. (3.15)

t is worth noting that
𝜕𝐷𝑒𝑡(𝐻𝑘

2 )
𝜕𝜉 > 0 for all 𝑘 ∈ N could hold only if (𝑑𝑁 +𝑑𝑃 ) ≥

𝜂𝛼𝑃 ∗𝑁∗

𝑒𝑁∗𝑃 ∗𝑔′(𝑁∗) with other parameters being positive and

ixed. If (𝑑𝑁 + 𝑑𝑃 ) <
𝜂𝛼𝑃 ∗𝑁∗

𝑒𝑁∗𝑃 ∗𝑔′(𝑁∗) , then there will exist a sufficiently large 𝑘0 ∈ N such that
𝜕𝐷𝑒𝑡(𝐻𝑘

2 )
𝜕𝜉 < 0, that indicates it is unclear

ow to determine the dependence of success on the prey-taxis sensitivity when the diffusion rates of prey and predator are small.
onsequently, based on Theorem 3.1 and above discussions, we present the following statements:
10
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(i) Decreasing the indirect prey-taxis sensitivity 𝜂 and the release rate of stimulus 𝛼 are beneficial measures of success.
(ii) Increasing the decay rate of stimulus 𝛽 is a beneficial measure of success.

(iii) If the diffusion rates of prey and predator are larger enough, then increasing predator-taxis sensitivity 𝜉 is beneficial to species
success.

4. Bifurcation analysis and pattern formation

In terms of the results in Section 3, the weak indirect prey-taxis sensitivity could be beneficial to the stability of system, then a
natural question raises that whether the strong indirect prey-taxis sensitivity will promote the emergence of patterns? In this section
we will choose the rate of indirect prey-taxis coefficient 𝜂 being a bifurcation parameter to study the existence of bifurcations for
the system (1.4), including Hopf and double-Hopf bifurcations, and also determine the stability of the positive constant steady state.

A 𝑘-mode Hopf bifurcation occurs if the characteristic equation 𝑘(𝜆) = 0 has a pair of purely imaginary eigenvalues, all other
roots of 𝑗 (𝜆) = 0, for 𝑗 ∈ N0 and 𝑗 ≠ 𝑘, have nonzero real parts, and the corresponding transversality condition is satisfied. As
n [46], we say that system undergoes (𝑘1, 𝑘2)-mode double-Hopf bifurcation if all roots of 𝑘(𝜆) = 0, for 𝑘 ∈ N0 and 𝑘 ≠ 𝑘1, 𝑘2, have

nonzero real parts, except a pair of purely imaginary eigenvalues for 𝑘𝑖 (𝜆) = 0, 𝑘𝑖 ∈ N0, 𝑖 = 1, 2, and the respective transversality
conditions are satisfied. Similarly, (𝑘1, 𝑘2, 𝑘3)-mode triple-Hopf bifurcation can be defined as well for 𝑘𝑖 ∈ N0, 𝑖 = 1, 2, 3.

As illustrated in Section 3, when 𝑓 (𝑁∗) +𝑁∗𝑓 ′(𝑁∗) −𝑃 ∗𝑔′(𝑁∗) = 0, the characteristic Eqs. (3.7) have a pair of purely imaginary
eigenvalues at least, this indicates 0-mode Hopf bifurcation may occur. To completely analyze the bifurcations distribution of (1.4),
so to this end, we posit the following hypothesis:

(H4) 𝑓 (𝑁∗) +𝑁∗𝑓 ′(𝑁∗) − 𝑃 ∗𝑔′(𝑁∗) ≤ 0.

Remark 4.1. The expression of (3.8) shows 𝑅𝑘(𝜂) > 0 for any 𝑎11 ≤ 0, then there is no simple zero eigenvalue for the characteristic
Eqs. (3.7), which means that if the assumption (H4) is satisfied, Turing bifurcation is impossible for the system (1.4).

If (3.7) possesses a pair of purely imaginary eigenvalues ±𝑖𝜔𝑘, then plugging 𝜆 = 𝑖𝜔𝑘 into (3.7), we gain the existence condition
of Hopf bifurcation

𝑃𝑘𝑄𝑘 − 𝑅𝑘(𝜂) = 0, (4.1)

to discuss the effect of indirect prey-taxis sensitivity on the dynamics of (1.4), we can establish the existence conditions of Hopf
bifurcations: For 𝑘 ∈ N,

𝜂 = 𝜂𝐻𝑘 ∶=
𝑎1

𝑘6

𝑙6
+ 𝑎2

𝑘4

𝑙4
+ 𝑎3

𝑘2

𝑙2
+ 𝑎4

𝛼𝑃 ∗(𝜉𝑁∗ 𝑘4
𝑙4

+ 𝑔(𝑁∗) 𝑘
2

𝑙2
)
> 0, (4.2)

here 𝑎1, 𝑎2, 𝑎3, 𝑎4 are given by (3.11). For 𝑘 = 0,

𝑓 (𝑁∗) +𝑁∗𝑓 ′(𝑁∗) − 𝑃 ∗𝑔′(𝑁∗) = 0,

nd

𝜔0 =
√

𝑒𝑃 ∗𝑔(𝑁∗)𝑔′(𝑁∗), 𝜔𝑘 =
√

𝑄𝑘, for 𝑘 ∈ N, (4.3)

where 𝑄𝑘(𝜂𝐻𝑘 ) > 0. Subsequently, we verify transversality conditions as follows:

emark 4.2. Via differentiating Eq. (3.7) with respect to 𝜂 at 𝜂 = 𝜂𝐻𝑘 , we derive that

𝑅𝑒
(

𝑑𝜆
𝑑𝜂

)−1
|

|

|

|

|𝜂=𝜂𝐻𝑘

= −
3𝜆2 + 2𝑃𝑘𝜆 +𝑄𝑘

𝛼𝑃 ∗(𝜉𝑁∗ 𝑘4
𝑙4

+ 𝑔(𝑁∗) 𝑘
2

𝑙2
)
=

2𝑄𝑘
𝛼𝑃 ∗(𝜉𝑁∗ 𝑘4

𝑙4
+ 𝑔(𝑁∗) 𝑘

2

𝑙2
)
> 0. (4.4)

ince the sign of 𝑑𝑅𝑒𝜆
𝑑𝜂 is equivalent to the sign of 𝑅𝑒

(

𝑑𝜆
𝑑𝜂

)−1
, hence 𝑑𝑅𝑒𝜆

𝑑𝜂
|

|

|𝜂=𝜂𝐻𝑘
> 0.

Next we can state the results on Hopf bifurcations of (1.4).

roposition 4.3. For 𝑑𝑁 , 𝑑𝑃 , 𝑑𝑆 , 𝑒, 𝑚, 𝛼, 𝛽, 𝜉 > 0, suppose that the condition (H3)-(H4) hold, 𝑎11, 𝜂𝐻𝑘 are defined as in (3.5) and (4.2).

(i) If 𝑎11 < 0, 𝜂𝐻𝑗 ≠ 𝜂𝐻𝑘 for any 𝑘, 𝑗 ∈ N, 𝑗 ≠ 𝑘, then the system (1.4) undergoes 𝑘-mode Hopf bifurcation near the positive constant
steady state 𝐸∗ at 𝜂 = 𝜂𝐻𝑘 , 𝑘 ∈ N, the bifurcating periodic solution is spatially nonhomogeneous.

(ii) If 𝑎11 = 0, then the system (1.4) undergoes 0-mode Hopf bifurcation near the positive constant steady state 𝐸∗, provided by
𝜂 ≠ 𝜂𝐻𝑘 , 𝑘 ∈ N, the bifurcating periodic solution is spatially homogeneous.

Proof. Via (3.10), we can derive the existence conditions of Hopf bifurcations by two situations, i.e. for 𝑘 ∈ N,
𝐻

11

𝜂 = 𝜂𝑘 ,



Communications in Nonlinear Science and Numerical Simulation 128 (2024) 107647D. Geng et al.

T

𝜂
i
h

i

w

I

e
t

t
s
b

s

o
o
s

T
s

L

here 𝜂𝐻𝑘 is defined in (4.2). For 𝑘 = 0,

𝑓 (𝑁∗) +𝑁∗𝑓 ′(𝑁∗) − 𝑃 ∗𝑔′(𝑁∗) = 0,

hen the rest proof is divided into two parts.
For the part (i), if 𝑓 (𝑁∗) +𝑁∗𝑓 ′(𝑁∗) − 𝑃 ∗𝑔′(𝑁∗) < 0, i.e. 𝑎11 < 0, we have that

0(𝜆) ∶= (𝜆 + 𝛽)
(

𝜆2 − 𝑎11𝜆 + 𝑒𝑃 ∗𝑔(𝑁∗)𝑔′(𝑁∗)
)

= 0,

then the characteristic equation 0(𝜆) = 0 has negative real eigenvalues. When 𝜂 = 𝜂𝐻𝑘 and 𝜂𝐻𝑗 ≠ 𝜂𝐻𝑘 for any 𝑘, 𝑗 ∈ N, 𝑗 ≠ 𝑘, since
= 𝜂𝐻𝑘 is the unique positive solution of (4.1), it is easy to know that the characteristic equation for each 𝑘 ∈ N has a pair of purely

maginary eigenvalues, and other characteristic equations have eigenvalues with nonzero real parts, and transversality condition
olds as in Remark 4.2. Therefore the system (1.4) undergoes 𝑘-mode Hopf bifurcation near the positive constant steady state 𝐸∗.

For the part (ii), if 𝑓 (𝑁∗) +𝑁∗𝑓 ′(𝑁∗) −𝑃 ∗𝑔′(𝑁∗) = 0, i.e. 𝑎11 = 0, then the characteristic equation 0(𝜆) = 0 has a pair of purely
maginary eigenvalues. When 𝜂 ≠ 𝜂𝐻𝑘 , 𝑘 ∈ N, there are no eigenvalues with zero real parts for all 𝑘(𝜆, 𝜂) = 0, 𝑘 ∈ N, thus the system

(1.4) undergoes 0-mode Hopf bifurcation near the positive constant steady state 𝐸∗. □

Theorem 4.4. For 𝑑𝑁 , 𝑑𝑃 , 𝑑𝑆 , 𝑒, 𝑚, 𝛼, 𝛽, 𝜉 > 0, 𝑎11, 𝜂𝐻𝑘 , 𝑘 ∈ N are defined as in (3.5) and (4.2), suppose that the condition (H3)-(H4)
hold, and 𝑎11 < 0. If there exist 𝑘𝑖, 𝑖 ∈ N, 𝑖 ≤ 4, such that 𝜂𝐻𝑘1 = ⋯ = 𝜂𝐻𝑘𝑖 , then the system (1.4) undergoes 𝑖-multiple Hopf bifurcation near
the positive constant steady state 𝐸∗. In particular, if 𝑖 ≤ 2, then (𝑘1, 𝑘2)-mode double-Hopf bifurcation. Moreover, the positive constant
steady state 𝐸∗ is locally asymptotically stable for 𝜂 < min𝑘∈N 𝜂𝐻𝑘 and unstable for 𝜂 > min𝑘∈N 𝜂𝐻𝑘 .

Proof. According to (4.2), denote

𝑟 ∶= 𝛼𝜉𝑁∗𝑃 ∗, 𝑞 ∶= 𝛼𝑃 ∗𝑔(𝑁∗), (4.5)

and

𝐺1(𝑥) ∶=
𝑎1𝑥3 + 𝑎2𝑥2 + 𝑎3𝑥 + 𝑎4

𝑟𝑥2 + 𝑞𝑥
, for 𝑥 > 0, (4.6)

ith 𝑎1, 𝑎2, 𝑎3, 𝑎4 are given in (3.11). By direct calculating, we obtain

𝐺′
1(𝑥) =

1
(𝑟𝑥2+𝑞𝑥)2

(

𝑎1𝑟𝑥4 + 2𝑎1𝑞𝑥3 + (𝑎2𝑞 − 𝑎3𝑟)𝑥2 − 𝑎4𝑞
)

, for 𝑥 > 0. (4.7)

t is obvious that the sign of 𝐺′
1(𝑥) is equivalent to the sign of the following function

ℎ(𝑥) ∶= 𝑎1𝑟𝑥
4 + 2𝑎1𝑞𝑥3 + (𝑎2𝑞 − 𝑎3𝑟)𝑥2 − 𝑎4𝑞, (4.8)

here 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑟, 𝑞 > 0. Since ℎ(𝑥) = 0 has at most four roots, ℎ(0) < 0, lim𝑥→−∞ ℎ(𝑥) = +∞, lim𝑥→+∞ ℎ(𝑥) = +∞ imply that there
xists at least one solution of ℎ(𝑥) = 0 for 𝑥 ∈ (0,+∞). Hence the possible real root distribution of ℎ(𝑥) = 0 may be divided into
hree cases:

(a) there exists only a simple real root of ℎ(𝑥) = 0 for 𝑥 ∈ (0,+∞);
(b) there exist a simple real root and a real double root of ℎ(𝑥) = 0 for 𝑥 ∈ (0,+∞);
(c) there exist three different real root of ℎ(𝑥) = 0 for 𝑥 ∈ (0,+∞). □

For case (a) and (b), there will exist a 𝑥1 > 0 such that 𝐺1(𝑥) is decreasing for 𝑥 ∈ (0, 𝑥1) and increasing for 𝑥 ∈ (𝑥1,+∞), so in
hese cases, there can only be at most two different 𝑘𝑖 ∈ N, 𝑖 = 1, 2, such that 𝜂𝑘1 = 𝜂𝑘2 . For the case (c), there will exist 𝑥1, 𝑥2, 𝑥3 > 0
uch that 𝐺1(𝑥) is decreasing for 𝑥 ∈ (0, 𝑥1) ∪ (𝑥2, 𝑥3) and increasing for 𝑥 ∈ (𝑥1, 𝑥2) ∪ (𝑥3,+∞), similarly, in these cases, there may
e at most four different 𝑘𝑖, 𝑖 ∈ N, 𝑖 ≤ 4, such that 𝜂𝐻𝑘1 = ⋯ = 𝜂𝐻𝑘𝑖 .

In addition, based on the above monotonicity of 𝐺(𝑥), we conclude that the minimum of 𝜂𝐻𝑘 is reachable, denoted by min𝑘∈N 𝜂𝐻𝑘 ,
o the positive equilibrium is locally asymptotically stable for 𝜂 < min𝑘∈N 𝜂𝐻𝑘 and unstable for 𝜂 > min𝑘∈N 𝜂𝐻𝑘 .

Moreover, if there exist some 𝑘𝑖 ∈ N, such that 𝜂𝐻𝑘1 = ⋯ = 𝜂𝐻𝑘𝑖 , then when 𝜂 = 𝜂𝐻𝑘𝑖 , the characteristic 𝑘𝑖 (𝜂) will possess a pair
f purely imaginary eigenvalues for such 𝑘𝑖 ∈ N, this indicates the system will have 𝑖 pairs of purely imaginary eigenvalues, and
ther eigenvalues have nonzero real parts, Remark 4.2 guarantees that corresponding transversality condition holds. Therefore, the
ystem (1.4) undergoes 𝑖-multiple Hopf bifurcation near the positive constant steady state 𝐸∗ at 𝜂 = 𝜂𝐻𝑘𝑖 .

If 𝑎11 = 0, it is easy to know 𝑎4 = 0. Review the expression (4.2) and (4.5), we denote

𝐺2(𝑥) ∶=
𝑎1𝑥2 + 𝑎2𝑥 + 𝑎3

𝑟𝑥 + 𝑞
, for 𝑥 > 0. (4.9)

o further establish the existence conditions of double-Hopf bifurcations for 𝑓 (𝑁∗) +𝑁∗𝑓 ′(𝑁∗) − 𝑃 ∗𝑔′(𝑁∗) = 0 and determine the
tability of the positive equilibrium, we first give the following results.

emma 4.5. For 𝑑𝑁 , 𝑑𝑃 , 𝑑𝑆 , 𝑒, 𝑚, 𝛼, 𝛽, 𝑎11, 𝜂𝐻𝑘 , 𝑘 ∈ N are defined as in (3.5) and (4.2), suppose 𝑎11 = 0, define

𝜉∗ =
(𝑑2𝑁 + 𝑑2𝑃 + 2(𝑑𝑁𝑑𝑃 + 𝑑𝑁𝑑𝑆 + 𝑑𝑃 𝑑𝑆 ))𝑔(𝑁∗)

. (4.10)
12

(𝑑𝑁 + 𝑑𝑃 )𝛽𝑁∗
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(i) If 𝜉 ≤ 𝜉∗, then 𝜂𝐻1 = min𝑘∈N 𝜂𝐻𝑘 .
(ii) If 𝜉 > 𝜉∗, then there exists 𝑘∗ ∈ N such that 𝜂𝐻𝑘∗ = min𝑘∈N 𝜂𝐻𝑘 , where

𝑘∗ =

⎧

⎪

⎨

⎪

⎩

⌊𝑙
√

𝑥∗⌋, for 𝜂𝐻
⌊𝑙
√

𝑥∗⌋
≤ 𝜂𝐻

⌊𝑙
√

𝑥∗⌋+1
,

⌊𝑙
√

𝑥∗⌋ + 1, for 𝜂𝐻
⌊𝑙
√

𝑥∗⌋
> 𝜂𝐻

⌊𝑙
√

𝑥∗⌋+1
,

(4.11)

with 𝑥∗ is the unique positive root of 𝑥2 + 2𝑞
𝑟 𝑥 +

𝑎2𝑞−𝑎3𝑟
𝑟 = 0. 𝑎2, 𝑎3 are defined as in (3.11). In particular, it is asserted 𝑘∗ = 1 when

𝑙
√

𝑥∗ < 1.

roof. Similar to the proof of Theorem 4.4, we can compute the derivative of 𝐺2(𝑥),

𝐺′
2(𝑥) =

1
(𝑟𝑥 + 𝑞)2

(

𝑎1𝑟𝑥
2 + 2𝑎1𝑞𝑥 + (𝑎2𝑞 − 𝑎3𝑟)

)

, for 𝑥 > 0.

By the views of 𝑎2, 𝑎3 in (3.11) and (4.5), when 𝜉 ≤ 𝜉∗, 𝑎2𝑞 − 𝑎3𝑟 ≥ 0, then 𝐺′
2(𝑥) > 0 for any 𝑥 ∈ (0,+∞), then 𝐺2(𝑥) is increasing

for 𝑥 ∈ (0,+∞), which means 𝜂𝐻𝑘 is increasing in 𝑘 ∈ N, thus 𝜂𝐻1 = min𝑘∈N 𝜂𝐻𝑘 .
When 𝜉 > 𝜉∗, 𝑎2𝑞 − 𝑎3𝑟 < 0, then there exists a 𝑥∗ ∈ (0,+∞) such that 𝐺′

2(𝑥) = 0. So 𝐺2(𝑥) is decreasing for 𝑥 ∈ (0, 𝑥∗) and
ncreasing for 𝑥 ∈ (𝑥∗,+∞), which implies that 𝜂𝐻𝑘 can attain the minimum at 𝑘∗ with 𝑘∗ defined as in (4.11). In addition, when
√

𝑥∗ < 1, we assert 𝑘∗ = 1. □

Combine the similar argument as the proof of Theorem 4.4 and Lemma 4.5, we derive the existence of double-Hopf bifurcation
nd the stability of the positive equilibrium for 𝑓 (𝑁∗) +𝑁∗𝑓 ′(𝑁∗) − 𝑃 ∗𝑔′(𝑁∗) = 0, stated as in the following theorem.

heorem 4.6. For 𝑑𝑁 , 𝑑𝑃 , 𝑑𝑆 , 𝑒, 𝑚, 𝛼, 𝛽 > 0, 𝑎11, 𝜂𝐻𝑘 , 𝜉
∗, 𝑘∗ are defined as in (3.5), (4.2), (4.10) and (4.11). Suppose the conditions

H3)-(H4) hold, If 𝑎11 = 0, 𝜂 = 𝜂𝐻𝑘 and 𝜂𝐻𝑗 ≠ 𝜂𝐻𝑘 for any 𝑘, 𝑗 ∈ N, 𝑗 ≠ 𝑘, then the system (1.4) undergoes (𝑘, 0)-mode double-Hopf
bifurcation near 𝐸∗. Moreover, the following statements hold:

(i) When 𝜉 ≤ 𝜉∗, the positive constant steady state 𝐸∗ destabilizes through (1, 0)-mode double-Hopf bifurcation.
(ii) When 𝜉 > 𝜉∗, the positive constant steady state 𝐸∗ destabilizes through (𝑘∗, 0)-mode double-Hopf bifurcation, provided by 𝜂𝐻𝑘∗ ≠ 𝜂𝐻𝑘∗+1,

𝜂𝐻𝑘∗ =
𝑎1

𝑘∗4

𝑙4
+ 𝑎2

𝑘∗2

𝑙2
+ 𝑎3

𝛼𝑃 ∗(𝜉𝑁∗ 𝑘∗2

𝑙2
+ 𝑔(𝑁∗))

, (4.12)

where 𝑎1, 𝑎2, 𝑎3 are defined as in (3.11) satisfying 𝑘 = 𝑘∗.

Otherwise, the positive constant steady state 𝐸∗ loses the stability through 0-mode Hopf bifurcation.

Remark 4.7. 𝑎11 = 0, i.e. 𝑓 (𝑁∗) +𝑁∗𝑓 ′(𝑁∗) − 𝑃 ∗𝑔′(𝑁∗) = 0 is the existence condition of Hopf bifurcation for 𝑘 = 0, Under this
condition, if additionally consider the prey-taxis sensitivity coefficient 𝜂 as a bifurcation parameter, then (𝑘, 0)-mode double-Hopf
bifurcations near the positive equilibrium for any 𝑘 ∈ N. In particular, as mentioned in Theorem 4.6, (1, 0) and (𝑘∗, 0)-mode double-
Hopf bifurcations are the corresponding first double-Hopf bifurcation which destablizes the positive equilibrium in some appropriate
conditions.

5. Application to Rosenzweig–MacArthur model with indirect prey-taxis and direct predator-taxis

5.1. Local stability and double-Hopf bifurcation

This subsection is devoted to applying the results derived in Section 2 to a classical diffusive Rosenzweig–MacArthur model. A
new finding is that the large indirect prey-taxis rate can induce the occurrence of spatially nonhomogeneous Hopf and double-Hopf
bifurcations, this will lead to complex spatiotemporal patterns emerging.

Corresponding to (1.4), by setting

𝑓 (𝑁) = 1 − 𝑁
𝐾
, 𝑔(𝑁) =

𝛾𝑁
1 +𝑁

, 𝑒 = 1, (5.1)

e derive the following predator–prey model with prey-taxis and predator-taxis:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

𝑁𝑡 = 𝑑𝑁 ▵ 𝑁 + 𝜉∇ ⋅ (𝑁∇𝑃 ) +𝑁
(

1 − 𝑁
𝐾

)

−
𝛾𝑁𝑃
1 +𝑁

, 𝑥 ∈ (0, 𝑙𝜋), 𝑡 > 0,

𝑃𝑡 = 𝑑𝑃 ▵ 𝑃 − 𝜂∇ ⋅ (𝑃∇𝑆) +
𝛾𝑁𝑃
1 +𝑁

− 𝑚𝑃 , 𝑥 ∈ (0, 𝑙𝜋), 𝑡 > 0,

𝑆𝑡 = 𝑑𝑆 ▵ 𝑆 + 𝛼𝑁 − 𝛽𝑆, 𝑥 ∈ (0, 𝑙𝜋), 𝑡 > 0,
𝜕𝑁
𝜕𝜈 = 𝜕𝑁

𝜕𝜈 = 𝜕𝑁
𝜕𝜈 = 0, 𝑥 = 0, 𝑙𝜋, 𝑡 > 0,

𝑁(𝑥, 0) = 𝑁0(𝑥) > 0, 𝑃 (𝑥, 0) = 𝑃0(𝑥) > 0, 𝑆(𝑥, 0) = 𝑆0(𝑥) > 0, 𝑥 ∈ (0, 𝑙𝜋).

(5.2)
13

⎩
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Assume that

𝛾 >
𝑚(1 +𝐾)

𝐾
,

hen the system (5.2) has a unique positive equilibrium, denoted by 𝐸∗ = (𝑁∗, 𝑃 ∗, 𝑆∗) with

𝑁∗ = 𝑚
𝛾 − 𝑚

, 𝑃 ∗ =
(𝐾 −𝑁∗)(1 +𝑁∗)

𝛾𝐾
, 𝑆∗ = 𝛼𝑚

𝛽(𝛾 − 𝑚)
.

Linearize the system (5.2) at the positive equilibrium 𝐸∗, we derive

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑁𝑡 = 𝑑𝑁 ▵ 𝑁 + 𝜉𝑁∗ ▵ 𝑃 +
𝑁∗(𝐾 − 2𝑁∗ − 1)

𝐾(1 +𝑁∗)
𝑁 −

𝛾𝑁∗

1 +𝑁∗ 𝑃 ,

𝑃𝑡 = 𝑑𝑃 ▵ 𝑃 − 𝜂(𝐾−𝑁∗)(1+𝑁∗)
𝐾𝛾 ▵ 𝑆 + 𝐾 −𝑁∗

𝐾(1 +𝑁∗)
𝑁,

𝑆𝑡 = 𝑑𝑆 ▵ 𝑆 + 𝛼𝑁 − 𝛽𝑆,

(5.3)

as in (3.3) and (3.4), we denote that

𝐷 =

⎛

⎜

⎜

⎜

⎝

𝑑𝑁 𝜉𝑁∗ 0
0 𝑑𝑃 − 𝜂(𝐾−𝑁∗)(1+𝑁∗)

𝐾𝛾
0 0 𝑑𝑆

⎞

⎟

⎟

⎟

⎠

, (5.4)

𝐽 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑁∗(𝐾−2𝑁∗−1)
𝐾(1+𝑁∗) 𝑚 0

− (𝐾−𝑁∗)
𝐾(1+𝑁∗) 0 0

𝛼 0 −𝛽

⎞

⎟

⎟

⎟

⎟

⎠

. (5.5)

enote that

𝑎11 =
𝑁∗(𝐾 − 2𝑁∗ − 1)

𝐾(1 +𝑁∗)
, (5.6)

e also have

𝜂𝐻𝑘 =
𝑎1

𝑘6

𝑙6
+ 𝑎2

𝑘4

𝑙4
+ 𝑎3

𝑘2

𝑙2
+ 𝑎4

𝛼𝑁∗𝑃 ∗ 𝑘2
𝑙2
(𝜉 𝑘

2

𝑙2
+ 𝛾

1+𝑁∗ )
, 𝑘 ∈ N, (5.7)

ere 𝑎1, 𝑎2, 𝑎3, 𝑎4 satisfy (3.11) and (5.1). Then based on the analyses in Section 4, we present the following conclusions for the
ynamics of (5.2).

roposition 5.1. Suppose that 𝜂𝐻𝑘 are given in (5.7), then the following statements hold:

(i) If 𝐾 ≤ 1 or 𝐾 > 1, 𝑚(𝐾+1)
𝐾 < 𝛾 < 𝑚(𝐾+1)

𝐾−1 , then the system (5.2) undergoes 𝑘-mode Hopf bifurcation near the positive constant steady
state 𝐸∗ at 𝜂 = 𝜂𝐻𝑘 , 𝑘 ∈ N, and bifurcating periodic solution is spatially nonhomogeneous.

(ii) If 𝐾 > 1, 𝛾 = 𝑚(𝐾+1)
𝐾−1 , then the system (5.2) undergoes 0-mode Hopf bifurcation near the positive constant steady state 𝐸∗, provided

by 𝜂 ≠ 𝜂𝐻𝑘 (𝑚(𝐾+1)
𝐾−1 ), 𝑘 ∈ N, and bifurcating periodic solution is spatially homogeneous.

roof. Choose 𝛾 being a bifurcation parameter, then when 𝐾 ≤ 1, 𝑎11 < 0 is always true. when 𝐾 > 1,

𝑎11

⎧

⎪

⎪

⎨

⎪

⎪

⎩

< 0, for 𝛾 < 𝑚(𝐾+1)
𝐾−1 ,

= 0, for 𝛾 = 𝑚(𝐾+1)
𝐾−1 ,

> 0, for 𝛾 > 𝑚(𝐾+1)
𝐾−1 .

Combining the basic assumption 𝑚(𝐾+1)
𝐾 < 𝛾 and Proposition 4.3-(i), the part (i) is proved.

When 𝐾 > 1 and 𝛾 = 𝑚(𝐾+1)
𝐾−1

0(𝜆) ∶= 𝜆3 + (𝛽 − 𝑎11)𝜆2 +
(

𝛾𝑁∗(𝐾 −𝑁∗)
𝐾(1 +𝑁∗)

∗
− 𝛽𝑎11

)

𝜆 +
𝛽𝛾𝑁∗(𝐾 −𝑁∗)
𝐾(1 +𝑁∗)∗

= 0,

e can calculate the transversality condition by taking the derivative of 0(𝜆) = 0 as follows
(

3𝜆3 + 2(𝛽 − 𝑎11)𝜆 +
𝛾𝑁∗(𝐾 −𝑁∗)
𝐾(1 +𝑁∗)∗

− (𝛽𝑎11)
)

𝑑𝜆
𝑑𝛾

|

|

|

|

|𝛾=𝑚(𝐾+1)
𝐾−1

= −𝛽 𝑑
𝑑𝛾

(

𝛾𝑁∗(𝐾 −𝑁∗)
𝐾(1 +𝑁∗)∗

)

|

|

|

|

|𝛾=𝑚(𝐾+1)
𝐾−1

,

hen

𝑅𝑒
(

𝑑𝜆
𝑑𝛾

)−1
|

|

| 𝑚(𝐾+1) =
2𝛾𝑁∗(𝐾 −𝑁∗)
𝛽𝐾(1 +𝑁∗)∗

𝑑
𝑑𝛾

(

𝛾𝑁∗(𝐾−𝑁∗)
𝐾(1+𝑁∗)∗

)

|

|

| 𝑚(𝐾+1) ,
14
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|𝛾= 𝐾−1



Communications in Nonlinear Science and Numerical Simulation 128 (2024) 107647D. Geng et al.

𝐻

s

P
t
t

P
𝑘

Fig. 1. For fixed parameters 𝑑𝑁 = 0.4, 𝑑𝑃 = 0.8, 𝑑𝑆 = 0.4, 𝛼 = 1, 𝛽 = 0.5, 𝑚 = 0.6, 𝐾 = 2, 𝑙 = 4, 𝜉∗ = 4.8, corresponding bifurcation graphs for 𝜉 ≤ 𝜉∗ and 𝜉 > 𝜉∗. Here
𝑖 , 𝑖 = 0, 1, 2, 3 represent Hopf critical curves, 𝐻01, 𝐻02, 𝐻12, 𝐻23 match with (0, 1), (0, 2), (1, 2), (2, 3)-mode double-Hopf bifurcation points, respectively.

which means that the sign of 𝑑𝑅𝑒𝜆
𝑑𝛾 is same as 𝑑

𝑑𝛾

(

𝛾𝑁∗(𝐾−𝑁∗)
𝐾(1+𝑁∗)∗

)

, and

𝑑
𝑑𝛾

(

𝛾𝑁∗(𝐾 −𝑁∗)
𝐾(1 +𝑁∗)∗

)

|

|

|

|

|𝛾=𝑚(𝐾+1)
𝐾−1

= 𝑚 > 0,

then the transversality condition holds. Therefore, by Proposition 4.3-(ii), the part (ii) is proved. □

Next following Theorems 4.4, 4.6 and Proposition 5.1, we establish the existence conditions of double-Hopf bifurcations and the
tability of the positive constant steady state is further determined.

roposition 5.2. Suppose that 𝐾 ≤ 1 or 𝐾 > 1, 𝑚(𝐾+1)
𝐾 < 𝛾 < 𝑚(𝐾+1)

𝐾−1 , 𝜂𝐻𝑘 , 𝑘 ∈ N are given in (5.7). If there exist 𝑖, 𝑗 ∈ N, 𝑖 ≠ 𝑗, such
hat 𝜂𝐻𝑖 = 𝜂𝐻𝑗 , then the system (5.2) undergoes (𝑖, 𝑗)-mode double-Hopf bifurcation, provided by 𝜂𝐻𝑘 ≠ 𝜂𝐻𝑖 for any 𝑘 ∈ N, 𝑘 ≠ 𝑖, 𝑗. Moreover,
he constant steady state 𝐸∗ of system (1.4) is locally asymptotically stable for 𝜂 < min𝑘∈N 𝜂𝐻𝑘 and unstable for 𝜂 > min𝑘∈N 𝜂𝐻𝑘 .

roposition 5.3. Suppose that 𝛾 = 𝑚(𝐾+1)
𝐾−1 for 𝐾 > 1, 𝜉∗, 𝜂𝐻𝑘 , 𝑘 ∈ N are given in (4.10), (5.7), If 𝜂 = 𝜂𝐻𝑘 and 𝜂𝐻𝑗 ≠ 𝜂𝐻𝑘 for any

, 𝑗 ∈ N, 𝑗 ≠ 𝑘, then the system (1.4) undergoes (𝑘, 0)-mode double-Hopf bifurcation near 𝐸∗. Moreover, the following statements hold:

(i) When 𝜉 ≤ 𝜉∗, the positive constant steady state 𝐸∗ destabilizes through (1, 0)-mode double-Hopf bifurcation.
15
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Fig. 2. For parameters 𝛾 = 1.6, 𝜂 = 1.5987, initial conditions 𝑁(𝑥, 0) = 𝑃 (𝑥, 0) = 𝑆(𝑥, 0) = 0.5 + 0.1cos( 𝑥
4
), the coexistence steady state 𝐸∗ ≈ (0.6, 0.7, 1.2) of (1.4).

The right graph shows corresponding projections of 𝑁(𝑥, 𝑡) on (𝑥, 𝑡)-plane. Graphs of 𝑃 , 𝑆 are similar to 𝑁 , we omit here.

Fig. 3. For parameters 𝛾 = 1.9, 𝜂 = 1.5987, initial conditions 𝑁(𝑥, 0) = 𝑃 (𝑥, 0) = 𝑆(𝑥, 0) = 0.5 + 0.3cos( 𝑥
4
), spatially homogeneous periodic solution of (1.4) and

corresponding projections of 𝑁(𝑥, 𝑡) on (𝑥, 𝑡)-plane. Graphs of 𝑃 , 𝑆 are similar to 𝑁 , we omit here.

Fig. 4. For parameters 𝛾 = 1.9, 𝜂 = 1.9987, initial conditions 𝑁(𝑥, 0) = 𝑃 (𝑥, 0) = 𝑆(𝑥, 0) = 0.5 + 0.3cos( 𝑥
4
), spatially nonhomogeneous periodic solution with one

spatial frequency of (1.4), and corresponding projections of 𝑁(𝑥, 𝑡) on (𝑥, 𝑡)-plane. Graphs of 𝑃 , 𝑆 are similar to 𝑁 , we omit here.
16
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Fig. 5. For parameters 𝛾 = 1.9, 𝜂 = 2.5987, initial conditions 𝑁(𝑥, 0) = 𝑃 (𝑥, 0) = 𝑆(𝑥, 0) = 0.5 + 0.3cos( 𝑥
2
), spatially nonhomogeneous periodic solutions with two

spatial frequencies of (1.4) and corresponding projections of 𝑁(𝑥, 𝑡) on (𝑥, 𝑡)-plane. Graphs of 𝑃 , 𝑆 are similar to 𝑁 , we omit here.

(ii) When 𝜉 > 𝜉∗, the positive constant steady state 𝐸∗ destabilizes through (𝑘∗, 0)-mode double-Hopf bifurcation, provided by 𝜂𝐻𝑘∗ ≠ 𝜂𝐻𝑘∗+1,

𝜂𝐻𝑘∗ =
𝑎1

𝑘∗4

𝑙4
+ 𝑎2

𝑘∗2

𝑙2
+ 𝑎3

𝛼𝑁∗𝑃 ∗(𝜉 𝑘
∗2

𝑙2
+ 𝛾

1+𝑁∗ )
, (5.8)

where
𝑎1 = (𝑑𝑁 + 𝑑𝑃 )(𝑑𝑁𝑑𝑃 + 𝑑𝑃 𝑑𝑆 + 𝑑𝑁𝑑𝑆 ) + 𝑑𝑆 (𝑑𝑁𝑑𝑆 + 𝑑𝑃 𝑑𝑆 ),

𝑎2 = (𝑑2𝑁 + 𝑑2𝑃 + 2(𝑑𝑁𝑑𝑃 + 𝑑𝑃 𝑑𝑆 + 𝑑𝑁𝑑𝑆 ))𝛽 +
(𝑑𝑁+𝑑𝑃 )𝛾𝜉𝑁∗𝑃 ∗

(1+𝑁∗)2 ,

𝑎3 = (𝑑𝑁 + 𝑑𝑃 )
(

𝛽2 + 𝛾2𝑁∗𝑃 ∗

(1+𝑁∗)3

)

.

(5.9)

Otherwise, the positive constant steady state 𝐸∗ loses the stability through 0-mode Hopf bifurcation.

Corollary 5.4. Suppose that 𝜉∗, 𝜂𝐻𝑘 for 𝑘 ∈ N are given in (4.10), (5.7), then the following statements hold:

(i) If 𝐾 ≤ 1 or 𝐾 > 1, 𝑚(𝐾+1)
𝐾 < 𝛾 < 𝑚(𝐾+1)

𝐾−1 ; then the positive constant steady state 𝐸∗ is locally asymptotically stable for 𝜂 < min𝑘∈N 𝜂𝐻𝑘
and unstable for 𝜂 > min𝑘∈N 𝜂𝐻𝑘 .

(ii) If 𝛾 = 𝑚(𝐾+1)
𝐾−1 for 𝐾 > 1, then the positive constant steady state 𝐸∗ is unstable for any 𝜂 > 0.

5.2. Pattern formation

In this section, some numerical simulations are performed to support the previous theoretical results. We fix parameter values
as follow:

𝑚 = 0.6, 𝐾 = 2, 𝛼 = 1, 𝛽 = 0.5, 𝑙 = 4, (5.10)

and

𝑑𝑁 = 0.4, 𝑑𝑃 = 0.8, 𝑑𝑆 = 0.4, (5.11)

then we can derive that 𝛾∗ = 1.8, when 𝛾 = 𝛾∗, we have

𝑓 (𝑁∗) +𝑁∗𝑓 ′(𝑁∗) − 𝑃 ∗𝑔′(𝑁∗) = 0,

that implies the system (1.4) will undergoes a 0-mode Hopf bifurcation and a spatially homogeneous periodic solution arises. Further,
we can determine that 𝜉∗ = 4.8 defined in (4.10), then following Lemma 4.5, we have that

min 𝜂𝐻𝑘 =

{

𝜂𝐻1 , for 𝜉 ≤ 𝜉∗,
𝐻 ∗ (5.12)
17

𝑘∈N 𝜂𝑘∗ , for 𝜉 > 𝜉 ,



Communications in Nonlinear Science and Numerical Simulation 128 (2024) 107647D. Geng et al.
Fig. 6. For parameters 𝛾 = 1.9, 𝜂 = 1.6222, initial conditions 𝑁(𝑥, 0) = 𝑃 (𝑥, 0) = 𝑆(𝑥, 0) = 0.5 + 0.1cos( 𝑥
4
), Spatially nonhomogeneous quasi-periodic solutions of

(1.4) and corresponding spatiotemporal patterns. The graph of 𝑆 is similar, we omit here.

where 𝑘∗ defined as in (4.11), and it can be calculated that 𝜂𝐻1 ≈ 1.8987 for 𝜉 = 1.5, Fig. 1-(a) exhibits concrete bifurcation graph.
For the case of 𝜉 > 4.8, for example, we choose 𝜉 = 10.5 here, one can find that 𝑘∗ = 2 and 𝜂𝐻2 ≈ 1.5222, corresponding bifurcation
is shown as in Fig. 1-(b). It is worth noting that the bifurcation graph for the situation in Proposition 5.2, i.e. 𝑎11 < 0, is analogous
except that there is no 𝐻0 in the graph, so we do not plot this case.

It follows Theorem 4.6 that we have the following statement for the dynamics of (5.2) under the given parameter conditions.

Proposition 5.5. If 𝑚 = 0.6, 𝐾 = 2, 𝑙 = 4, 𝛼 = 1, 𝛽 = 0.5, 𝑑𝑁 = 0.4, 𝑑𝑃 = 0.8, 𝑑𝑆 = 0.4, and 𝛾 = 𝛾∗ = 1.8, then

(i) when 𝜉 ≤ 4.8, the positive constant steady state 𝐸∗ of (5.2) is destabilized through (1, 0)-mode double-Hopf bifurcation near 𝐸∗ at
(𝛾, 𝜂) = (𝛾∗, 𝜂𝐻1 ) = (1.8, 1.8987).

(ii) when 𝜉 > 4.8, e.g. 𝜉 = 10.5, the positive constant steady state 𝐸∗ of (5.2) is destabilized through (2, 0)-mode double-Hopf bifurcation
near 𝐸∗ at (𝛾, 𝜂) = (𝛾∗, 𝜂𝐻2 ) = (1.8, 1.5222).

It is well known that Hopf bifurcation can be used to theoretically prove the existence of periodic solutions, and quasi-periodic or
multi-periodic solutions even chaos can be found near the double-Hopf singularity. Consequently, we will present some numerical
simulations to state the spatiotemporal dynamics of (5.2) based on Proposition 5.5.
18
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Fig. 7. Graphs of quasi-periodic solution in Fig. 6 for a fixed space location 𝑥 = 8.

For Fig. 2, since the shape of 𝑆 completely follows the shape of 𝑁 and 𝑃 , thus for the sake of simplification, we omit the graph
of 𝑆. Figs. 2–5 show the spatiotemporal patterns for 𝜉 ≤ 4.8, including coexistence steady state (see Fig. 2) given by

𝐸∗ ≈ (0.6, 0.7, 1.2),

spatially homogeneous periodic solution(see Fig. 3), and spatially homogeneous periodic solution with one spatial frequency (see
Fig. 4). By computations we obtain 𝜂𝐻2 ≈ 2.3253, and Fig. 5 shows the spatially nonhomogeneous pattern near (2, 0)-mode double-
Hopf singularity. Interestingly, we still find that the indirect prey-taxis promotes the complexity of spatiotemporal patterns of the
system, that is, when the sensitivity of the indirect prey-taxis increases, the spatiotemporal patterns of (1.4) will be more complicate.

If 𝜉 > 4.8, i.e the sensitivity of the predator-taxis is large, based on Proposition 5.5-(ii) and by choosing 𝜉 = 10.5, all other
parameter are fixed as (5.10) and (5.11), spatiotemporal nonhomogeneous quasi-periodic pattern emerges, see Fig. 6. For any a
fixes space location, we also simulate the evolution of the quasi-periodic solution over time, e.g. Fig. 7.

Finally, Figs. 8–9 exhibits the 3D phase trajectory in (𝑁,𝑃 , 𝑆)-plane with a fixed spatial location, including the constant steady
state, spatially homogeneous periodic solution with one spatial frequency, spatially nonhomogeneous periodic solution with two
spatial frequencies and spatially nonhomogeneous quasi-periodic solution of (1.4), which correspond to the solutions sketched in
Figs. 2–6, respectively.

6. Concluding remarks

We consider a general Gause–Kolmogorov-Type predator–prey model with direct predator-taxis and indirect prey-taxis. We prove
that solutions exist globally and are uniformly bounded for bounded domains with a one-dimension and any taxis coefficient.
Meanwhile, such results also hold under similar assumptions for the following more general predator–prey system in a one-dimension
spatial domain:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑁𝑡 = 𝑑𝑁 ▵ 𝑁 + 𝜉∇ ⋅ (𝑁∇𝑃 ) + 𝑓 (𝑁) − 𝜙(𝑁,𝑃 ), 𝑥 ∈ 𝛺, 𝑡 > 0,
𝑃𝑡 = 𝑑𝑃 ▵ 𝑃 − 𝜂∇ ⋅ (𝑃∇𝑆) + 𝑒𝜙(𝑁,𝑃 ) − 𝑔(𝑃 ), 𝑥 ∈ 𝛺, 𝑡 > 0,
𝑆𝑡 = 𝑑𝑆 ▵ 𝑆 + 𝛼𝑁 − 𝛽𝑆, 𝑥 ∈ 𝛺, 𝑡 > 0,
𝜕𝑁
𝜕𝜈 = 𝜕𝑁

𝜕𝜈 = 𝜕𝑁
𝜕𝜈 = 0, 𝑥 ∈ 𝜕𝛺, 𝑡 > 0,

𝑁(𝑥, 0) = 𝑁0(𝑥) ≥ 0, 𝑃 (𝑥, 0) = 𝑃0(𝑥) ≥ 0, 𝑆(𝑥, 0) = 𝑆0(𝑥) ≥ 0, 𝑥 ∈ 𝛺.

(6.1)

The global existence and uniformly boundedness for the cases of spatial dimension 𝑛 ≥ 2 perhaps can be proved as well if some
conditions are restricted, it will be studies in the future investigation.

Moreover, we investigate the dependence of species success via the positive constant coexistence state in the system (1.4). Our
results on success measures show that the species benefits from a decrease in the indirect prey-taxis sensitivity or the release rate
19
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Fig. 8. For the same parameters as Figs. 3–6, fix the space location 𝑥 = 0, graphs (a)–(d) show the 3D phase trajectory of Figs. 3–6, i.e. the solution of (1.4)
converges to the constant steady state, spatially homogeneous periodic solution, spatially nonhomogeneous periodic solution with one spatial frequencies and
spatially nonhomogeneous periodic solution with two spatial frequencies.

of stimulus, as well as an increase in the decay rate of stimulus. Increasing the direct predator-taxis sensitivity promotes the species
success only when both the predator and prey diffuse fast.

Based on the existing results, by employing linear stability analysis, we prove Turing instability will not occur in the system
(1.4) and establish the existence of Hopf and double-Hopf bifurcations, moreover, the stability of the constant steady state is further
characterized. As well known, if the taxis is absent in the system, the constant steady state only can be destabilized through spatially
homogeneous Hopf bifurcation, double-Hopf bifurcation cannot occur as well, this means complex spatialtemporal phenomena are
difficult to emerge. Through religious bifurcation analyses, we find that as the indirect prey-taxis sensitivity increases, more complex
and diverse spatiotemporal patterns can emerge in a system with indirect prey-taxis and direct predator-taxis, for example, spatially
nonhomogeneous periodic patterns with different spatial frequencies, even spatially nonhomogeneous quasi-periodic patterns, see
Figs. 2–6. It theoretically explains that the nonhomogeneous distribution of populations in the habitat, and the distribution changes
periodically. Furthermore, if the system adopts a strong sensitivity of direct predator-taxis, the spatiotemporal pattern becomes
more intricate, as shown in Fig. 6. This further illustrates that the cognitive movement between the predator and prey can cause
the spatially heterogeneous distributions, even with a certain periodicity.
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Fig. 9. For fixed space location 𝑥 = 0, graphs show the phase trajectory of the spatially nonhomogeneous quasi-periodic solution of (1.4) in Fig. 6.
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