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Abstract
Algaecides utilizing bacteriolytic algae are considered as a promising approach for
algae control. These bacteria inhibit the continuous reproduction of algae cells in
various ways, including lysing the cells, which leads to the release of cellular contents
and affects the levels of nitrogen and phosphorus in the environment. In this paper, we
establish a novel mathematical model with algicidal activities and the reabsorption of
algal cell contents. The model exhibits complex dynamical phenomena: (i) backward
and forward bifurcations; (ii) transcritical bifurcation and saddle-node bifurcation
discussed via Sotomayor’s theorem; (iii) Hopf bifurcation; (iv) the codimension 2
bifurcations, exemplified by the Bogdanov-Takens bifurcation, via the methodologies
of normal form theory and the center manifold theorem. We also obtain an explicit
formula for the ultimate lower bound of algal bloom. Sensitivity analysis of the basic
ecological reproductive indices R0 is conducted, and the optimal control problem is
formulated by integrating environmental factors and physical algal control methods.
The analysis indicates that using algicidal bacteria to lyse algal cells can result in two
scenarios: algicidal dominance and nutrient supplementation dominance. The former
effectively curbs the sustained reproduction of algal cells and is more effective than
physical algal control methods.
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1 Introduction

Phytoplankton are ubiquitous photosynthetic organisms found in marine, coastal, and
inland water bodies. As the primary producers in the ocean, they play a crucial role
in maintaining the stability and health of marine ecosystems. Nitrogen and phospho-
rus serve as essential nutrients for algae growth and are present in aquatic systems
in various forms, including dissolved inorganic nutrients, dissolved organic nutrients,
granular organic nutrients, and biologically bound nutrients (Hu et al. 2010). The
development and expansion of the marine industry have led to a rapid increase in the
concentration of nitrogen and phosphorus resources in water. This excessive nutrient
content can adversely affect algae reproduction and trigger algal blooms. These toxic
microalgae blooms result in a decrease in dissolved oxygen and water transparency,
and they also release toxins that can cause massive deaths of fish, mollusks, and other
marine life (Kang et al. 2005). In recent years, the scale and frequency of harm-
ful algal blooms have been increasing, resulting in significant negative impacts on
aquatic environments, human health, and socio-economic development (Gobler 2019;
Griffin 2017). Harmful algal blooms represent a complex ecological phenomenon,
and managing these blooms necessitates a multifaceted approach that encompasses
chemical, physical, and biological methods. Research and governance efforts focus on
developing systems and strategies that specifically target pest species while minimiz-
ing harm to the environment and other aquatic organisms (Amin et al. 2012; Shannon
et al. 2008). Among these methods, biotechnological algae treatment has received
significant advancements due to its low environmental toxicity and biodegradability
(Hargraves 2008; Pichierri et al. 2017).

It is widely known that a unique microecological environment system can be
formed by algae and certain algicidal bacteria. Dakhama et al. discovered that
Pseudomonas aeruginosa exhibits a potent inhibitory effect on the growth of green
microalgae and cyanobacteria through the release of low molecular weight and heat-
resistant factors (Dakhama et al. 1993). Salomon et al. discovered 5 strains, isolated
from the Baltic Sea, that are associated with α and γ Proteobacteria and the Firmicutes
phylum, and these strains demonstrate inhibitory effects on the growth of cyanobac-
teria. Furthermore, 8 other strains isolated showed either positive effects or no effects
on cyanobacterial growth (Salomon et al. 2003). Thus, the interaction between algae
and algicidal bacteria resembles algal symbiosis. It has been reported that numerous
algicidal bacteria have been isolated and exhibit high inhibition rates against harmful
algae. For example, Hare identified a bacterium called Shewanella IRI-160 that has
an inhibitory effect on the growth of a variety of dinoflagellates (Hare et al. 2005). The
crude ethyl acetate extract of marine bacteria HSB07 has certain inhibitory activity on
the red tide algaeGymnodinium sp. (Liu et al. 2013).Marine bacteriaT halassospira
ZR-2 and the benzoic acid produced by them have algicidal activity on harmful algal
bloom species Karenia mikimotoi (Lu et al. 2016). Algicidal bacteria are diverse
and widely distributed in soil and water environments. Yamamoto et al. isolated an
actinic strain with high algae-solubilizing ability from the bottom mud of a eutrophic
lake (Yamamoto et al. 1998). Zheng et al. isolated the O4-6 strain from sediments in
the Fujian Yunxiao National Mangrove Nature Reserve, which has been demonstrated
significant algicidal activity against harmful algal bloom species (Zheng et al. 2012).
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Fukami et al. isolated the bacterium 5N-3 from the Uragami Sea in Kochi Prefec-
ture, Japan, which significantly inhibits the growth of Gymnodinium nagasakiense
(Fukami et al. 1992). Imamura et al. isolated a strain of Sphingomonas with high effi-
ciency in degrading Microcystis aeruginosa from Lake Biwa in Japan Imamura et al.
(2001). Therefore, the interplay between algae and bacteria offers the potential for uti-
lizing algicidal bacteria as a biological control measure against harmful algal blooms.
The mechanism of inhibiting algal growth by algicidal bacteria can be divided into
direct action and indirect action. Li et al. found and verified for the first time that the
strain Altererythrobacter sp. LY02 has indirect algicidal activity against the toxic
algae Alexandrium tamarense, and the active substances secreted by the strain can
effectively control harmful algal blooms (Li et al. 2016). Besides, Bidle and Falkowski
found that heterotrophic bacteria can feed on resources secreted by phytoplankton
cells or released after algal cells die and lyse (Bidle and Falkowski 2004). Currently,
numerous biological studies have delved into the intricate interplay between algae and
bacteria, yet there remains a notable absence of scientific methodologies for quantify-
ing algal bloommanagement strategies. Consequently, mathematical modelling could
offer a novel analytical approach to investigate the dynamic mechanisms underlying
the interaction between algae and algicidal bacteria.

Nitrogen and phosphorus serve as vital nutrients for the growth of algal cells.
Phosphorus is a critical component of various biochemical substances in algal cells,
including nucleic acids, cell membranes, and ATP, and it plays a vital role in nitrogen
metabolism within these cells (Merchant and Helmann 2012; Orchard et al. 2009).
Furthermore, phosphorus participates in a multitude of metabolic processes within
algae, facilitating the synthesis, transformation, and transport of carbohydrates, ulti-
mately contributing to the optimal growth of the algae. The effect of phosphorus is
also related to nitrogen, and phosphorus can not achieve a good effect when nitrogen
is short (Orchard et al. 2009; Taiz and Zeiger 1998). Therefore, to achieve long-
term and effective management of harmful algal blooms, it is imperative to minimize
both phosphorus and nitrogen inputs (Havens et al. 2003; Paerl et al. 2001. In recent
decades, researches have primarily focused on controlling eutrophication, predict-
ing algae blooms, simulating algae dispersion trends, and formulating eutrophication
control strategies based on actual data. Malmaeus and Håkanson optimized existing
models for predicting phosphorus concentration and eutrophication effects in lake
ecosystems, providing significant differences and improving prediction capabilities
(Malmaeus and Håkanson 2004). Wang et al. studied the influence of environmental
factors on algal growth and nutrient threshold of harmful algal blooms, and pro-
posed the key role of nitrogen and phosphorus interaction and optimal nitrogen and
phosphorus mass ratio in algal reproduction (Wang et al. 2015). Zhang et al. devel-
oped a mathematical model linking surface and deep water layers in lakes to describe
phytoplankton competition for nutrients and light in stratified lakes. They analyzed
stability and critical thresholds, providing a theoretical basis for predicting phyto-
plankton competition and blooms (Zhang et al. 2021). Heggerud et al. investigated
the growth dynamics of cyanobacteria under nutrient limitation using a multiscale
analysis approach. They uncovered the driving mechanisms at different growth stages
and predicted the duration of cyanobacterial blooms, offering new insights into the
application of multiscale methods in nutrient ratio models (Heggerud et al. 2020).
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Cui and Lawson proposed a single-population model to explain the effects of resource
constraints on the growth of single-population organisms (Cui and Lawson 1982). The
application of mathematical models for estimating the progression of harmful algal
blooms and assessing the feasibility of algal control measures extends beyond the
solitary factor of nutrient intake control. Gazi et al. analyzed the structural stability of
a tropical bloom ecosystem by constructing a two-dimensional nonlinear differential
equation model (Gazi and Das 2010).

Furthermore, the creation and examination of mathematical models offer valuable
assistance in developing strategies for algae control across various domains (Heg-
gerud et al. 2024). In terms of physical algae removal, fishing stands as the most
prevalent method for controlling algae. Pankaj et al. introduced a mathematical model
encompassing 17 interactions between nutrients, algae, detritus, and bacteria, high-
lighting that consistent removal of detritus plays a crucial role in the revitalization
of lake ecosystems (Tiwari et al. 2019). Flocculants have also been suggested as a
means to manage and control algal blooms. In 1917, Smoluchowski introduced the
initial viable flocculation model, demonstrating its ability to accurately predict the
condensation behavior of colloidal solutions through rigorous theoretical deduction
and sophisticated mathematical modeling (Smoluchowski 1917). Additionally, some
researchers have developedmathematical models to simulate the algae control process
using microbial flocculants (Wang et al. 2018). From an economic perspective, both
fishing and physical flocculation require substantial human andmaterial resources, and
the recovery of the ecosystem is a lengthy process. Hence, finding a swift and effective
algal control method that poses minimal environmental harm is a pressing issue that
requires immediate attention. In the biological realm, numerous microorganisms have
been suggested as potential inhibitors of algal cell reproduction.

Microorganisms can achieve algae control through diverse methods, including dis-
rupting algal cell structure, inhibiting algal photosynthesis, interfering with algal
genetic expression, and flocculating algal cells (Gumbo and Cloete 2011; Shi et al.
2006; Sun et al. 2015; Xuan et al. 2017). These algicidal approaches alter the aquatic
environment to varying degrees, which in turn affects the efficacy of algae control.
Wang et al. constructed a bacteria-algae interaction model to explore the impact of
carbon and phosphorus limitations on their growth. They outlined three dynamic sce-
narios and demonstrated the competitive edge of bacteria with low nucleic acid content
under phosphorus-limited conditions (Wang et al. 2007). To the best of our knowledge,
very few existing mathematical models specifically address the algicidal mechanisms
of algicidal bacteria. We aim to propose a novel ordinary differential equation model
to investigate the indirect algicidal process, where we investigate how the contents of
algae cells, released after being lysed by algicidal bacterial secretions, affect the levels
of nitrogen and phosphorus in the environment. This approach allows us to understand
the sensitive and significant impacts of algae cell contents on environmental changes.
Furthermore, our model incorporates the nutrient recycling process, where the con-
tents of lysed algal cells replenish the aquatic system and are subsequently utilized
by surviving algal cells, enabling us to assess the algae-inhibiting efficacy of algicidal
bacteria that operate through such mechanisms.

The rest of this paper is organized as follows. Section 2 aims to formulate a
mathematical model of algae-algicidal which includes nitrogen, phosphorus and algi-
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Fig. 1.1 Schematic diagram of system (2.1)

cidal bacteria. Section 3 conducts dynamic analysis of the system, including the
existence of algae-free equilibrium and algae-present equilibrium, the existence of
backward and forward bifurcations, transcritical bifurcation, saddle-node bifurcation,
Hopf bifurcation, Bogdanov-Takens bifurcation and the persistence analysis. In Sec-
tion 4, numerical simulations are conducted. And in Section 5, an optimal control
problem is proposed, which includes two interventions. Some discussions are given
in Section 6. The proofs of our main results are given in Section 7.

2 Model formulation

In this section, based on the algicidal characteristics of algicidal bacteria, we have
developed an algae-nutrient-algicidal bacteria model that incorporates nutrient input
and the algicidal effect of algicidal bacteria. Our model encompasses four nonlinear
ordinary differential equations, including the densities of algae (A)(mg l−1 day−1),
nitrogen (N )(mg l−1 day−1), phosphorus (P)(mg l−1 day−1), and algicidal bac-
teria (F)(mg l−1 day−1). The model diagram is shown in Figure 1.1. Taking into
account the simultaneous introduction of nitrogen and phosphorus nutrients into the
water body resulting from sewage discharge and various other factors, we have estab-
lished the parameter π to measure the proportional distribution of these two elements.
Apart from the alterations in nutrient concentration induced by external environmental
factors, the release of cellular contents due to the lysis of algal cells by algolytic bac-
teria will further elevate the concentrations of nitrogen and phosphorus in the water.
Therefore, parameters k1, k2 are established to quantify the ratio of nitrogen to phos-
phorus within the cellular contents. The loss of nitrogen and phosphorus nutrients in
water is categorized into two distinct components: natural consumption processes and
the growth and absorption by algal cells. Therefore, the following two equations are
utilized to track the respective concentrations of nitrogen and phosphorus in water:
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dN

dt
= (1 − π)q

︸ ︷︷ ︸

Nitrogen input from different sources

+ k1βFA
︸ ︷︷ ︸

Derived from algal cell contents

− α0N
︸︷︷︸

Natural consumption

− μN A
︸ ︷︷ ︸

Consumption by algal growth

, (2.1a)

dP

dt
= πq

︸︷︷︸

Phosphorus input from different sources

+ k2βFA
︸ ︷︷ ︸

Derived from algal cell contents

− α1P
︸︷︷︸

Natural consumption

− mPA
︸ ︷︷ ︸

Consumption by algal growth

. (2.1b)

It is widely known that a significant influx of nutrients into the water leads to
eutrophication. Nitrogen and phosphorus nutrients serve as limiting factors for the
growth and reproduction of algae, and their increased availability is a crucial factor
contributing to the formation of harmful algal blooms. Some biological experiments
indicate that although nitrogen and phosphorus are both critical for algal growth, reduc-
ing phosphorus levels provides more effective algae control than reducing nitrogen
levels (Fastner et al. 2016; Schindler 1974). Therefore, whenmonitoring the growth of
algae stimulated by nitrogen and phosphorus, we assign distinct parameters λ1, λ2 to
represent the varying absorption efficiencies of these nutrients by algae, respectively.
Although algae can proliferate rapidly in a short period, the mortality caused by fac-
tors such as natural cell apoptosis cannot be overlooked. Moreover, multiple methods
are often employed in algae bloom control, including physical measures like harvest-
ing, which are used as complementary approaches. Considering these two factors,
we introduce the parameter α2 to represent the depletion rate of algal cells. Algicidal
bacteria are highly diverse, and different strains demonstrate markedly varying levels
of algicidal efficiency. Xuan et al. reported a Bacillus sp. strain, named AF-1, that
demonstrates an algicidal efficacy of 90% (Xuan et al. 2017). Zhang et al. introduced
a new strain of algicidal bacteria, Pseudomonas f ragi YB2, which demonstrates a
peak algicidal efficiency of 95.02% (Zhang et al. 2024). Furthermore, the algicidal
activity exhibits significant variation depending on the bacterial inoculation density
and the concentration of Microcystis aeruginosa (Park et al. 2022). Moreover, varia-
tions in environmental temperature andPH levels can differentially impact the algicidal
efficiency of the bacteria (Lu et al. 2021; Yu et al. 2019). Here, we set the parameter
β to represent the algicidal rate of algolytic bacteria. The population density of algal
cells is described by the following nonlinear differential equation:

d A

dt
= λ1μN A

︸ ︷︷ ︸

Nitrogen promotes growth

+ λ2mPA
︸ ︷︷ ︸

Phosphorus promotes growth

− α2A
︸︷︷︸

Algal cell consumption

− βFA
︸ ︷︷ ︸

Algal lytic bacteria lyse algal cells

. (2.1c)

The parameter ω represents the input quantity of algolytic bacteria. It is postu-
lated that the algicidal mechanism of algolytic bacteria is indirect, with some species
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consuming themselves after secreting algicidal substances. Therefore, we introduce
the parameter δ to quantify the self-consumption rate of algolytic bacteria, while the
parameter α3 is designated to represent the natural mortality rate of these bacteria.
The following nonlinear differential equation is utilized to track the concentration of
algicidal bacteria within aquatic systems:

dF

dt
= ω

︸︷︷︸

Total input of algaeclytic bacteria

− α3F
︸︷︷︸

Natural death of algae-lytic bacteria

− δFA
︸︷︷︸

Consumption of algae-lytic bacteria

. (2.1d)

According to the biological considerations, the initial condition of system (2.1) is
given as

N (0) > 0, P(0) > 0, A(0) > 0, F(0) > 0. (2.2)

We assume that all parameter values in system (2.1) are positive. By adopting the
basic theorems for ordinary differential equations, we easily show that the solution of
system (2.1) with (2.2) is existent, non-negative and unique for t ≥ 0.

3 Model analysis

In this section, we state the main results of this paper, whose proofs are given in
Section 7.

3.1 Algae-free equilibrium and its stability analysis

For system (2.1), there always exists a unique algae-free equilibrium E0 =
(N0, P0, A0, F0), where N0 = (1−π)q

α0
, P0 = πq

α1
, A0 = 0, F0 = ω

α3
. Through

the next generation matrix theory (Diekmann et al. 1990; van den Driessche and Wat-
mough 2002), the basic ecological reproductive indices associated with system (2.1)
can be defined as

R0 =
λ1μ(1−π)q

α0
+ λ2mπq

α1

α2 + βω
α3

= R1 + R2,

where

R1 = λ1μ(1 − π)q

α0

(

α2 + βω
α3

) , R2 = λ2mπq

α1

(

α2 + βω
α3

) .

The basic ecological reproductive indices R0 represents the reproductive capacity
of algae, and it describes the average number of new algal cells produced by per
cubic meter of algae in a aquatic system. The first term R1 can be interpreted as the
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contribution to the basic ecological reproductive indices on account of the average
number of new algal cells produced by per cubic meter of algae due to the nutrient
nitrogen. The second term R2 can be interpreted as the contribution to the basic
ecological reproductive indices on account of the average number of new algal cells
produced by per cubic meter of algae due to the nutrient phosphorus.

Theorem 3.1 The algae-free equilibrium E0 of system (2.1) is locally asymptotically
stable if R0 < 1 and unstable if R0 > 1.

3.2 Algae-present equilibrium and its stability analysis

For convenience, let us define the parameter

λ1
∗ = α0

μ(1 − π)q

(−λ2mπq

α1
+ α2 + βω

α3

)

.

From system (2.1), we obtain

N =
[

(1 − π)q + k1βωA

α3 + δA

]

1

α0 + μA
,

P =
(

πq + k2βωA

α3 + δA

)

1

α1 + mA
, F = ω

α3 + δA
.

After a simple calculation, we obtain

λ1μ

α0 + μA

[

(1 − π)q + k1βωA

α3 + δA

]

+ λ2m

α1 + mA

(

πq + k2βωA

α3 + δA

)

− α2 − ωβ

α3 + δA
= 0.

(3.1)

Eq. (3.1) can be reduced to

G(A) = A3 + p2A
2 + p1A + p0 = 0, (3.2)

where

p0 = −α0α1α3

α2δmμ

[

λ1μ(1 − π)q

α0

+λ2mπq

α1
− α2 − βω

α3

]

,

p1 = − 1

α2μδm
[−α0(α1α2δ + α2α3m) − α1βμω − α1α2α3μ

−α0βmω − α1δλ1μ(π − 1)q − α3λ1mμ(π − 1)q

+α0δλ2mπq + α3λ2mμπq + α0βk2λ2mω + α1βk1λ1μω],
p2 = − 1

α2μδm
[−μ(α1α2δ + α2α3m) − βmμω − α0α2δm − δλ1mμq(π − 1)
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+δλ2mμπq + βk1λ1mμω

+βk2λ2mμω].

If p22 ≤ 3p1, then G(A) is monotonically nondecreasing and it has exactly one real
root. If p22 > 3p1, the derivative function Ġ(A) = 3A2+2p2A+ p1 has two different
real zeros

A± : −p2 ±√p22 − 3p1
3

,

and G(A) achieves its local maximum at A− and local minimum at A+ with

G(A±) = −2(p22 − 3p2)A± + 9p0 − p1 p2
9

.

In addition, G(A±) ≥ 0 if and only if A± ≤ 9p0−p1 p2
2(p22−3p2)

. According to (Pan et al.
(2019), Lemma 4.2), the number of simple positive zeros of G(A) is discussed in the
following theorem.

Theorem 3.2 (H0) : System (2.1) does not have any algae-present equilibrium if and
only if one of the following conditions is satisfied

• p22 ≤ 3p1 and R0 ≤ 1;
• p22 > 3p1, R0 ≤ 1 and A+ ≤ 0;
• p22 > 3p1, R0 ≤ 1 and G(A+) > 0.

(H1) : System (2.1) has a unique algae-present equilibrium if and only if one of the
following conditions is satisfied

• p22 < 3p1, and R0 > 1;
• p22 = 3p1, R0 > 1 and p23 �= 27p0;
• p22 > 3p1, R0 > 1 and A− < 0;
• p22 > 3p1, R0 > 1 and G(A−)G(A+) > 0;
• p22 > 3p1, R0 = 1 and A− ≤ 0 < A+.
(H2) : System (2.1) has two algae-present equilibria if and only if one of the

following conditions is satisfied

• p22 > 3p1, R0 < 1, A+ > 0 and G(A+) < 0;
• p22 > 3p1, R0 = 1, A− > 0 and G(A+) < 0.

(H3) : System (2.1) has three algae-present equilibria if and only if

• p22 > 3p1, R0 > 1, A− > 0 and G(A−)G(A+) < 0.

The complete classifications for the existence of simple positive roots of (3.2) are
listed in Table 1.

To verify the conclusions of Theorem 3.2, we conducted numerical simulations
resulting in Figure 3.1. In Figure 3.1 (a), the curve does not intersect the positive
half-axis of A(t), indicating that G(A) = 0 has no positive roots, and thus system
(2.1) does not have any algae-present equilibrium. Similarly, Figure 3.1 (b), (c) and
(d), depict system (2.1) having 1, 2, and 3 algae-present equilibria, respectively.
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Table 1 Classifications of simple positive roots of (3.2)

Cases R0 Parameter conditions Simple positive roots

1 R0 ≤1 p2
2 ≤ 3p1 0

2 R0 ≤1 p2
2 > 3p1, A+ ≤ 0 0

3 R0 ≤1 p2
2 > 3p1, G(A+) > 0 0

4 R0 > 1 p2
2 < 3p1 1

5 R0 > 1 p2
2 = 3p1, p23 �= 27p0 1

6 R0 > 1 p2
2 > 3p1, A− < 0 1

7 R0 > 1 p2
2 > 3p1, G(A−)G(A+) > 0 1

8 R0 = 1 p2
2 > 3p1, A− ≤ 0 < A+ 1

9 R0 < 1 p2
2 > 3p1, A+ > 0, G(A+) < 0 2

10 R0 = 1 p2
2 > 3p1, A− > 0, G(A+) < 0 2

11 R0 > 1 p2
2 > 3p1, A− > 0, G(A−)G(A+) < 0 3

Fig. 3.1 Possible shapes of the graph of G(A) = 0
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Theorem 3.3 Assume that R0 > 1 and the following conditions (i)−(iv) are satisfied.
Then algae-present equilibrium E∗ = (N∗, P∗, A∗, F∗) of system (2.1) is locally
asymptotically stable.

(i) Ci > 0(i = 1, . . . , 4),
(ii) C1C2 − C3 > 0,
(iii) C1(C2C3 − C1C4) − C3

2 > 0,
(iv) C1(C2C3C4 − C1C4

2) − C3
2C4 + C1 > 0,

where Ci (i = 1, 2, 3, 4) are given in Appendix.

3.3 Backward and forward bifurcations

Theorem 3.4 The following statements are valid:

(i) If

λ1μk1βω

α0α3
+ λ2mk2βω

α1α3
+ δωβ

α3
2 >

λ1μ
2(1 − π)q

α0
2 + λ2m2πq

α1
2 ,

then system (2.1) undergoes a backward bifurcation at R0 = 1;
(ii) If

λ1μk1βω

α0α3
+ λ2mk2βω

α1α3
+ δωβ

α3
2 <

λ1μ
2(1 − π)q

α0
2 + λ2m2πq

α1
2 ,

then system (2.1) undergoes a forward bifurcation at R0 = 1.

In biology, the existence of backward bifurcation implies that stable algae-free
equilibrium and stable algae-present equilibrium may be coexistent. This means that
the basic ecological reproductive indices R0 is not the threshold value, which is used
to determine whether algae can be removed successfully or not. In this case, more
complicated dynamical behavior may occur. There may exist a new threshold value,
which is less than R0 and used to determinewhether algae can be removed successfully
or not.

3.4 Transcritical bifurcation and saddle-node bifurcation

Theorem 3.5 System (2.1) undergoes a transcritical bifurcation at E0(N0, P0, 0, F0)
with respect to bifurcation parameter λ1 = λ1

∗ if

λ1μ

(

k1βω

α0α3
− μ(1 − π)q

α0
2

)

+ λ2m

(

k1βω

α1α3
− mπq

α1
2

)

+ βδω

α3
2 �= 0.

Theorem 3.5 shows that an increase in the nitrogen uptake rate by algal cells leads
to a transition in the system from an algae-free equilibrium to one supporting algal
growth. This indicates that when the nitrogen uptake rate exceeds a critical level, algae
can establish themselves in the environment and resist removal.
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Theorem 3.6 System (2.1) undergoes a saddle-node bifurcation at E∗(N∗, P∗, A∗,
F∗) with respect to bifurcation parameter δ = δSN

∗ which satisfies

(i) C4 = 0, and C3 �= 0;
(ii) δSN

∗a2
a1

�= 0.

According to Theorem 3.6, the consumption rate δ of algicidal bacteria is crucial
in a codimension-one saddle-node bifurcation. At the critical value δSN

∗, two algae-
present equilibria merge into a single unique equilibrium E∗. As δ surpasses δSN

∗,
transitioning from left to right, the population of algal cells declines, ultimately causing
harmful algal blooms to disappear.

3.5 Hopf bifurcation

Theorem 3.7 System (2.1) exhibits a Hopf bifurcation at E∗(N∗, P∗, A∗, F∗) when
bifurcation parameter δ passes through the critical value δH

∗ which satisfies

(i) Ci (δH
∗) > 0, i = 1, 2, 3, 4;

(ii) C3(δH
∗)[C1(δH

∗)C2(δH
∗) − C3(δH

∗)] − C1(δH
∗)2C4(δH

∗) = 0;
(iii) d

dδ
[C1(δH

∗)C2(δH
∗)C3(δH

∗) − C3(δH
∗)2 − C1(δH

∗)2C4(δH
∗)] �= 0.

Theorem 3.7 emphasizes the pivotal role of the parameter δ in triggering a Hopf
bifurcation. Upon reaching its critical threshold δH

∗, δ induces periodic oscillations
near the equilibrium. As δ surpasses δH

∗ and the equilibrium becomes unstable, harm-
ful algal blooms display multiple peaks, with the algal population exhibiting a cyclical
pattern of increase and decrease over time.

3.6 Bogdanov-Takens bifurcation

In this subsection, we study the occurrence of codimension 2 Bogdanov-Takens bifur-
cation. Without loss of generality, we consider the following simper system

dP

dt
= πq + k2βFA − α1P − mPA,

d A

dt
= λ2mPA − α2A − βFA,

dF

dt
= ω − α3F − δFA.

(3.3)

Theorem 3.8 Choosing k2 and α1 as two bifurcation parameters, denoting ψ1 =
k2 − k2BT , ψ2 = α1 − α1BT , system (3.3) undergoes a Bogdanov-Takens bifurcation
in a small domain of (PBT

∗, ABT
∗, FBT

∗) as (k2, α1) varying near (k2BT , α1BT ) if
the conditions (BT1)-(BT4) are satisfied. The dynamics on the center manifold of (3.3)
is locally topologically equivalent to (3.3). The local representations of the bifurcation
curves are given as follows:

(i) The saddle-node bifurcation curve SN = {(ψ1, ψ2)|4ζ̄1 − ζ̄ 2
2 = 0};
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(ii) The Hopf bifurcation curve H = {(ψ1, ψ2)|ζ̄1 = 0, ζ̄2 < 0};
(iii)Thehomoclinic bifurcation curve HL = {(ψ1, ψ2)|ζ̄1 = − 6

25 ζ̄
2
2 +o(ζ̄ 2

2 ), ζ̄2 <

0}.
Theorem 3.8 indicates the combined impact of the ratio of phosphorus within the

cellular contents k2 and natural consumption rate α1 in the occurrence of codimension
2 Bogdanov-Takens bifurcation. When (k2, α1) attains the critical value (k2BT , α1BT ),
algae-present equilibrium becomes a cusp. The changes of parameters k2 and α1 in
the neighborhood of (k2BT , α1BT ), effect the algal dynamics due to the presence of
three different bifurcations including saddle-node bifurcation, Hopf bifurcation and
homoclinic bifurcation. Algae may or may not exist on the saddle-node bifurcation
curve. Algae blooms occur on the Hopf bifurcation curve. Algae blooms occur on the
homoclinic bifurcation curve depending on the initial algae size.

Example 3.9 The codimension 2 bifurcation is verified numerically at the Bogdanov-
Takens bifurcation point (k2, α1) = (k2BT , α1BT ) = (0.849190, 0.004696) when
remaining all parameters are fixed at α2 = 0.1, α3 = 0.4, π = 0.1, q = 0.3, m =
0.5, ω = 1, λ2 = 1.1, β = 1.5, δ = 0.1.

It can be caculated

U0 = (6.3684, 0.0112, 2.4930)T , ρ0 = (0.8492, 0.0047)T ,

T1 = (0,−1.6089, 1.0000)T , T2 = (−259.2488,−5.6201, 1.0000)T ,

T0 = (0, 1.0000, 24.2538)T ,

Z1 = (0.0329,−1.5089, 0.0622)T , Z2 = (−0.0039, 0, 0)T ,

Z0 = (−0.0012, 0.0622, 0.0387)T ,

a = 0.0079 �= 0, b = −8.1670 �= 0,

S1 = (−0.0002, 0.0246)T , S2 = (0.0238,−0.2538)T ,

and

S =
(−0.0002 0.0238

0.0246 −0.2538

)

, rank(S) = 2.

Thus, the conditions (BT1)-(BT4) are satisfied. Furthermore, we assume

{

ψ1 = k2 − 0.849190,

ψ2 = α1 − 0.004696,

then

{

ζ1 = ST1 (ρ̂ − ρ0) = 0.0245658ψ2 − 0.0001611ψ1,

ζ2 = ST2 (ρ̂ − ρ0) = 0.0238283ψ1 − 0.2537931ψ2.
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Therefore, the dynamics on the center manifold of system (3.3) near (U0, ρ0) is
topologically equivalent to the following system:

⎧

⎪
⎨

⎪
⎩

ẋ1 = x2,

ẋ2 = 0.0245658ψ2 − 0.0001611ψ1 + x1(0.0238283ψ1 − 0.2537931ψ2)

−8.1669562x1x2 + 0.0079057x12.
(3.4)

Then a new time t̄ and new variables X1 and X2 given by

t = 1033.0463657t̄, x1 = 0.000119X1, x2 = 0.0000001X2.

System (3.4) can be written as the following form

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

Ẋ1 = X2,

Ẋ2 = 221182176.5183669ψ2 − 1450372.2278895ψ1

−X1X2 + X1(25429.1489025ψ1 − 270844.1496669ψ2)

+X1
2.

In addition, det
(

∂(ζ̄1,ζ̄2)
∂(k2,α1)

)∣

∣

∣

(k2,α1)=(k2BT ,α1BT )
= −5231649668491.9062500 �= 0,

which ensures the smooth change of the parameters near (k2BT , α1BT ). The local
bifurcation curves are as follows:

(i) The saddle-node bifurcation curve

SN = {(ψ1, ψ2)| ψ2
1 − 21.3018651ψ1ψ2 + 0.0089717ψ1

+113.4423641ψ2
2 − 1.3681902ψ2 = 0};

(ii) The Hopf bifurcation curve H = {(ψ1, ψ2)|ψ1 = 152.5002839ψ2, ψ2 < 0};
(iii) The homoclinic bifurcation curve HL = {(ψ1, ψ2)|ψ1

2 −21.301865ψ1ψ2 −
0.009346ψ1 + 113.442364ψ2

2 + 1.425198ψ2 = o
(|(ψ1, ψ2)|2

)

,

ψ1 − 10.650933ψ2 < 0}.

3.7 Permanence

Theorem 3.10 If R0 > 1, then system (2.1) is permanent. Namely, each positive solu-
tion (N (t), P(t), A(t), F(t))T of system (2.1) with (2.2) satisfies

lim
t→∞ inf N (t) ≥ (1 − π)q

α0 + μγ
= υ1, lim

t→∞ inf P(t) ≥ πq

α1 + mγ
= υ2,

lim
t→∞ inf A(t) ≥ θ2e

−[α2+β( ω
α3

+ρ0)]d = υ3, lim
t→∞ inf F(t) ≥ ω

α3 + δ ω
α3

= υ4,
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where

T1 = − 1

α0 + μθ2
ln

μ(θ1 − θ2)

α0 + μθ1
, T2 = − 1

α1 + mθ2
ln

m(θ1 − θ2)

α1 + mθ1
, d = max{T1, T2}.

4 Numerical simulations and controlling strategies for algal bloom

In this section, we conduct numerical simulations to illustrate some interesting dynam-
ical phenomena and provide controlling strategies for algal bloom, in which all the
parameters are listed in Table 2.

4.1 Sensitivity analysis of R0

As shown in Figure 4.1, we specify the number of input samples as 10,000 and generate
these samples using Latin Hypercube Sampling (LHS) (Marino et al. 2008). The
sensitivity of the input parameters is evaluated using the Input/Output Correlation
method, which calculates the statistical correlation between the input parameters and
basic ecological reproductive indices R0. We observe that parameters α3, π, q,m and
λ2 have a strong positive influence on R0, in which q has the largest positive influence
on R0. From the numerical point of view, the sensitivity values of parameters μ and
λ1 related to nitrogen absorption by algae are 0.04529 and 0.02599, respectively,
while the sensitivity values of parameters π, q,m, λ2 related to nutrient phosphorus
absorption are 0.3633, 0.4293, 0.3851, 0.3605, respectively. In biology, the limiting
effect of phosphorus for algal cell reproduction is stronger than that of nitrogen, which
aligns with the experimental result in (Luo 2023; Zhang et al. 2024).

To achieve the purpose of controlling the continuous reproduction of algal cells,
we need to theoretically reduce the value of R0. Observing Figure 4.1, we see that the
parameters α1, β and ω have opposite effects on the growth of R0, with α1 having the
greatest effect. From the biological point of view, reducing the input of nutrient salt
phosphorus, selecting algal lytic bacteria with high algal killing rate and appropriately
increasing the input of algal lytic bacteria are effective to control algal reproduction.
The parameters α2 and α0 shown in Figure 4.1, which have little influence on the
reduction of R0 value, also indicate that it is not a reasonable and effective measure
to control the development of algal blooms only by the natural death of algae or the
control of nutrient nitrogen input.

4.2 Bifurcation analysis

4.2.1 Backward and forward bifurcations

Toexplore the existence of backward bifurcation for system (2.1),we calculate thata =
452.897 and b = 0.484 by choosing λ1 = 0.8. Note that a and b are non-negative, it
then follows fromTheorem3.4 that system (2.1) exists a backward bifurcation.Where-
after, we numerically calculate the R0 = 0.133 < 1 and obtain the possible equilibria
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Fig. 4.1 Sensitivity analysis of different parameters to R0

are: (1) E0 = (0.484, 0.031, 0, 1.250), (2) E∗
1 = (0.421, 0.146, 0.692, 0.418),

(3) E∗
2 = (0.444, 0.165, 0.430, 0.558), respectively. The corresponding eigenvalues

of JE∗
1
are listed as −36.616, −3.885 ± 2.345i , −5.051, which implies that JE∗

1
is a

stable equilibrium. The corresponding eigenvalues of JE∗
2
are displayed as −29.443,

2.583, −4.376, −6.724, which indicates that JE∗
2
is an unstable equilibrium. It is

clearly seen from Figure 4.2 that system (2.1) has two stable equilibria for R0 < 1.
The solid and black lines represent the stability of E∗

1 and E0, while dotted curve
describes the unstable E∗

2 and dotted black curve depicts the unstable E0.
The existence of backward bifurcations complicates the control of harmful algal

blooms, as reducing R0 below 1 does not guarantee the elimination of algae. Therefore,
we use numerical simulations to evaluate the impact of the parameters λ2, k2, ω, and
β on the phenomenon of backward bifurcation. We set the initial parameter values
λ2 = 5.3, k2 = 0.7, ω = 10, and β = 14, and observe changes in the backward
bifurcation by varying each of these four parameters individually. Figure 4.2 (a) and
(b) show the effects of changing λ2 and k2, respectively, while keeping the other
parameters constant. It is clear that as λ2 and k2 decrease, the bifurcation curve shifts
backward to the right, indicating a reduced likelihood of backward bifurcation, which
aids in controlling the sustained reproduction of algae. Figure 4.2 (c) and (d) simulate
changes in ω and β, with all other parameters hold constant. We observe that as ω

and β increase, the likelihood of backward bifurcation increases, which is detrimental
to algae control. This suggests that under such conditions, nutrient replenishment
within the system becomes dominant, and the threshold R0 = 1 is insufficient to
determine whether an algal bloom can be controlled. At this point, a lower threshold is
required to assess algae control effectiveness. Furthermore, it is observed that although
the expression for R0 is independent of k2, decreasing k2 reduces the likelihood of
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Fig. 4.2 The influence of some parameters λ2, k2, ω and β on backward bifurcation

backward bifurcation. Thus, we reasonably infer that this lower threshold for algae
control may be related to k2.

In a manner similar to investigating backward bifurcations, we fix the initial param-
eter values at λ2 = 0.1, k2 = 0.07, ω = 0.3, β = 0.01 and observe how changes
in these parameters affect forward bifurcations. The Figure 4.3 clearly shows that as
λ2 decreases and β and ω increase, the forward bifurcation curve shifts to the right,
indicating a gradual reduction in algal populations, which is beneficial for control-
ling algal blooms. Notably, altering the value of k2 does not influence the forward
bifurcation. This finding is consistent with the fact that, in scenarios where forward
bifurcations occurs, R0 = 1 acts as the threshold for algae control, and its expression
is unrelated to k2.

4.2.2 Transcritical bifurcation and saddle-node bifurcation

Figure 4.4 (a) displays a bifurcation diagram using the nitrogen uptake rate of algal
cells as the bifurcation parameter, which supports Theorem 3.5. Specifically, when
λ1 < λ1

∗, an overly lownitrogen absorption rate results in algal extinction,meaning no
algae-present equilibrium exists under these conditions. However, when λ1 > λ1

∗, the
algae-free equilibrium E0 becomes unstable, and algae-present equilibrium appears.
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Fig. 4.3 The influence of some parameters λ2, k2, ω and β on forward bifurcation

Fig. 4.4 Bifurcation diagrams under different bifurcation parameters

This suggests that a higher nitrogen uptake rate by algal cells supports their growth
and reproduction, enabling algae to persist in aquatic environments.

Figure 4.4 (b) presents the saddle-node bifurcation diagram around E∗ when δ is
chosen as the bifurcation parameter. For the algae-present equilibrium E∗, the critical
value δ = δSN

∗ = 17.808842 can be calculated. Using the defined parameter values,
it follows that C4 = 0.00000619 ≈ 0, C3 = 189.5792. The conditions for a saddle-
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node bifurcation, as stated in Theorem 3.6, are thus satisfied. Consequently, Figure 4.4
(b) illustrates that as δ increases within a small neighborhood of the critical value
δ = δSN

∗ = 17.808842, the number of algae-present equilibrium decreases from two
to one, and finally from one to zero, indicating that a saddle-node bifurcation occurs
near E∗.

4.2.3 Hopf bifurcation

At E∗, we have C3(δH
∗)[C1(δH

∗)C2(δH
∗) − C3(δH

∗)] − C1(δH
∗)2C4(δH

∗) =
8.6850 × 10−10 ≈ 0 when δ = δH

∗ = 0.54857271. The characteristic equation
at E∗ = (8.8193941, 0.42245707, 0.01351725, 9.3096699) becomes

ρ4 + 0.2458584ρ3 + 0.2737403ρ2 + 0.06365456ρ + 0.003.840316 = 0.

It is easy to calculate that C1 = 0.2459,C2 = 0.2737,C3 = 0.0637,C4 = 0.0038,
hence Ci (δH

∗) > 0, i = 1, 2, 3, 4. The corresponding eigenvalues of the charac-
teristic equation are −0.106232, −0.139627, ±0.508830i . It can be caculated that
d
dδ

[C1(δH
∗)C2(δH

∗)C3(δH
∗) − C3(δH

∗)2 − C1(δH
∗)2C4(δH

∗)] = −0.03216215 �=
0, all conditions of Theorem 3.7 as mentioned above are satisfied. Thus, for the value
of δ = δH

∗ = 0.54857271, there exists the Hopf bifurcation at E∗. As δ increases
beyond the critical value δH

∗, the algae-present equilibrium transitions from stable to
unstable, and a periodic solution emerges precisely when δ = δH

∗. The variation of
variable N , P, A, F over time t is depicted in Figure 4.5. Furthermore, Figure 4.6
presents the phase portraits corresponding to Figure 4.5. When the conditions of The-
orem 3.7 are not satisfied, a Hopf bifurcation may still occur.We set δ = 0.555 and the
other parameters are the same as Figure 4.6, then obtain the Figure 4.7 of N , P, A, F
over time t at E∗ = (8.8179, 0.04225, 0.0135, 9.3095). Figure 4.8 presents the phase
portraits corresponding to Figure 4.7.

4.3 Effects of nutrient supplementation levels in the system

The contents of algal cells include a certain quantity of nitrogen and phosphorus.When
algicidal bacteria act upon these cells, they cause the algal cells to rupture, releasing
their internal contents into the surrounding environment. This process alters the con-
centration of nitrogen and phosphorus within the system. To explore how changes in
nitrogen and phosphorus levels, resulting from this leakage, affect the efficacy of algae
control, we carried out a series of numerical simulation experiments. As illustrated
in Figure 4.9, the blue line signifies a lower rate of nutrient supplementation to the
system environment from lysed algal cells, while the red line denotes a higher rate.
The yellow line represents scenarios with no additional nutrient supplementation. In
Figure 4.9 (c), upon stabilization, the lines are ranked from top to bottom as follows:
red, blue, and yellow. This ordering suggests that, under an identical algicidal strategy,
varying degrees of nutrient supplementation within the system can always stimulate
the growth and reproduction of algae. Notably, increased levels of nutrient supple-
mentation correlate with diminished effectiveness in controlling algae populations.
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Fig. 4.5 The solution curves of system (2.1) with the initial value (8.8193941, 0.42245707,
0.01351725, 9.3096699), where δ = 0.54857271

Contrasting Figure 4.9 (a) and (b) reveals differing dynamics: in Figure 4.9 (a), the red
line stabilizes above the blue line, indicating greater nutrient supplementation leads to
higher algae proliferation. Conversely, in Figure 4.9 (b), the stable positions of these
lines are reversed. Comparing these two figures elucidates that algae exhibit a lesser
dependency on nitrogen compared to phosphorus for their growth, a finding consistent
with biological studies. Moreover, in Figure 4.9 (d), the red line settles below all oth-
ers, suggesting that more intensive efforts to eliminate algae result in a proportionally
higher consumption of algicidal bacteria. This observation, coupled with insights from
Figure 4.9 (c), underscores the complex relationship between algicidal efficacy and
nutrient management within the system.

5 Control strategies

5.1 Optimal control problem

In what follows, two bounded Lebesgue integrable controls u1(t) and u2(t) are intro-
duced into system (2.1):
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(a) (b)
Fig. 4.6 The phase trajectory of system (2.1) with the initial value (8.8193941, 0.42245707,
0.01351725, 9.3096699), where δ = 0.54857271

Fig. 4.7 The solution curves of system (2.1) with the initial value (8.8179, 0.04225, 0.0135, 9.3095), where
δ = 0.555
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Fig. 4.8 The phase trajectory of system (2.1) with the initial value (8.8179, 0.04225, 0.0135, 9.3095),
where δ = 0.555

Fig. 4.9 The impact of varying levels of nutrient replenishment in the system environment
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• u1(t) indicates improving the algicidal efficiency of algicidal bacteria through
methods such as controlling water temperature, adjusting PH levels, and increas-
ing light exposure time, or by choosing strains of algicidal bacteria with higher
algicidal efficiencies.

• u2(t) indicates enhancing the death rate of algal cells using physical methods like
mechanical algae removal, clay flocculation, and ultrasonic treatment.

It is rational to postulate that the control varialble pair u = (u1, u2) ∈ U is
Lebesgue measurable, where U = {(u1, u2)|0 ≤ ui ≤ 1, t ∈ [0, t f ], i = 1, 2} and
t f is the time period of integrated control strategy.

Based on the above hypotheses, one defines that β → β(1 + u1(t)) and α2 →
α2(1 + u2(t)), then system (2.1) with two control measures can be depicted by the
following form:

dN

dt
= (1 − π)q + k1(1 + u1)βFA − α0N − μN A,

dP

dt
= πq + k2(1 + u1)βFA − α1P − mPA,

d A

dt
= λ1μN A + λ2mPA − (1 + u2)α2A − (1 + u1)βFA,

dF

dt
= ω − α3F − δFA.

(5.1)

To minimize the cost of microcystis aeruginosa management by implementing two
control measures, an objective function

J (u) =
∫ t f

0

[

A1N + A2P + A3A + 1

2
B1(u1)

2 + 1

2
B2(u2)

2
]

dt, (5.2)

where Ai (i = 1, 2, 3) stand for the weight of nitrogen and phosphorus nutrients and
the number of algae, Bi (i = 1, 2) represent weight coefficients, which indicates the
cost per unit of production for different levels of controls. The term

∫ t f

0
(A1N + A2P + A3A)dt

depicts the total number of algae over time t f . The term

∫ t f

0

(

1

2
B1u

2
1 + 1

2
B2u

2
2

)

dt

shows the total cost of controlling the algae population. Certainly, we try to find out
an optimal control u∗ = (u∗

1, u
∗
2) such that J (u∗) = minU J (u).

Theorem 5.1 There exists an optimal control u∗ = (u∗
1, u

∗
2) such that J (u∗) =

minU J (u).
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We construct the Hamiltonian function from (5.1) and (5.2) to obtain the optimality
conditions. Define

H =
[

A1N + A2P + A3A +
2
∑

i=1

1

2
Biui (t)

2

]

+ ξ1[(1 − π)q + k1(1 + u1)βFA − α0N − μN A]
+ ξ2[πq + k2(1 + u1)βFA − α1P − mPA]
+ ξ3[λ1μN A + λ2mPA − α2(1 + u2)A − β(1 + u1)FA]
+ ξ4(ω − α3F − δFA),

where ξi (i = 1, 2, 3, 4) are the adjoint variables and satisfy the following equations

dξ1

dt
= −∂H

∂N
= − A1 + ξ1(α0 + μA) − ξ3λ1μA,

dξ2

dt
= −∂H

∂P
= − A2 + ξ2(α1 + mA) − ξ3λ2mA,

dξ3

dt
= −∂H

∂A
= − [A3 + ξ1(k1(1 + u1)βF − μN ) + ξ2(k2(1 + u1)βF − mP)

+ ξ3(λ1μN + λ2mP − α2(1 + u2) − β(1 + u1)F) − ξ4δF],
dξ4

dt
= −∂H

∂F
= − [ξ1k1(1 + u1)βA + ξ2k2(1 + u1)βA − ξ3β(1 + u1)A

− ξ4α3 − ξ4δA]

with the transversal conditions ξi (t f ) = 0(i = 1, 2, 3, 4). In light of Pontryagin’s
maximum principle (Pontryagin et al. 1962), u∗ = (u∗

1, u
∗
2) satisfies the condition

∂H

∂ui
= 0, (i = 1, 2).

Therefore, the optimal control u∗ = (u∗
1, u

∗
2) is subjected to

u∗
1 = min

{

max

{

− 1

B1
(ξ1k1βFA + ξ2k2βFA − ξ3βFA), 0

}

, u1max

}

,

u∗
2 = min

{

max

{

1

B2
ξ3α2A, 0

}

, u2max

}

.

Wedefine u1max as themaximumcontrol level achieved by adjusting environmental
conditions and choosing effective algicidal bacteria, and u2max as the highest control
level obtainable through changes in physical algae removal techniques.

123



Complex algal dynamics and optimal control with algicidal… Page 27 of 47    72 

5.2 Controlling strategies for algal bloom

In this section, we perform numerical simulations for the optimal control prob-
lem. The time step is set to 0.01, with an error tolerance of 0.001, and the control
terminal time is 20 days. Meanwhile, the initial values are chosen as follows:
(N0, P0, A0, F0) = (0.12, 0.2, 0.3, 0.2). Considering practical factors, the cost of
isolating and researching algicidal bacteria is higher than the cost of increasing the
natural mortality rate of algae. Therefore, it is reasonable to assume that B1 > B2,
with B1 = 20 and B2 = 17. To minimize the content of nitrogen, phosphorus, and
algal density in the system environment, we assume A1 = 10, A2 = 13 and A3 = 17.
Moreover, controlling environmental conditions allows us to sustain high levels of
algicidal activity in algicidal bacteria, or we can opt for strains that exhibit higher
algicidal efficiency. This leads us to set u1max = 0.8. While current algae removal
methods, like ultrasonic treatment (Ahn et al. 2003), can boost the loss rate of algal
cells, they do not provide a lasting resolution to algal bloom problems. Thus, for
physical control measures, we set u2max = 0.4.

As shown in Figure 5.1 (a), u1 maintains its maximum control level of 0.52 and
gradually decreases to 0 after 17 days, while the maximum control level for u2 is 0.34.
This indicates that under this control strategy, u1 requires a higher intensity of control.
Figure 5.1 (a)-(d) illustrate a gradual increase in control intensity, with u1 maintaining
its maximum control levels of 0.52, 0.75, 0.79, and 0.8, respectively, for durations
of 17.36, 18, 18.14, and 18.28 days. It is clear that as the control intensity increases,
the maximum control level required for u1 also rises, and the duration for which it
maintains this level gradually extends. In contrast, the duration for which u2 maintains
its maximum control level does not show a significant increase. This comprehensive
analysis indicates that u1 is the key factor in controlling the continuous reproduction
of algae.

Given the complexity of algae control processes, to further explore the effectiveness
of biological algae controlmethods,we setβ = 0 to simulate a scenariowhere algicidal
bacteria have no impact on the system. The simulation results are illustrated in Figure
5.2, with different conditions represented as follows: (i) The blue line represents the
total number of algal cells without any optimal control measures; (ii) The red line
indicates the number of algal cells when optimal control is applied; (iii) The yellow
line shows scenarios where neither optimal control measures nor algicidal bacteria
are effective; (iv) The green line depicts situations where optimal control is applied
but algicidal bacteria remain ineffective. In Figure 5.2 (a), the yellow line stabilizes
above the blue line, and the green line stabilizes above the red line. This reveals
that the total number of algal cells is consistently lower when algicidal bacteria are
effective compared to when they are not, indicating an algicidal dominance in this
scenario. Conversely, in Figure 5.2 (b), conditions are opposite to those in Figure
5.2 (a), suggesting that nutrient supplementation plays a dominant role in this case.
A comprehensive analysis of Figure 5.2 (a) and (b) demonstrates that the red line
remains consistently below the blue line, highlighting a significant reduction in overall
algal numbers after implementing control strategies. This outcome underscores the
effectiveness of the controls in managing algal populations. This analysis emphasizes
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Fig. 5.1 A schematic diagram of the control intensities u1 and u2 under control strategies (a)-(d)

Fig. 5.2 Time series of algae (A) with and without control measures

the crucial role of algicidal bacteria in controlling algal growth and highlights the
efficacy of the implemented control strategies in achieving better algae management
outcomes. This simulation result aligns with the findings reported in the literature
(Luo 2023; Zhang et al. 2024).
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6 Concluding remarks

Aquatic environments have long been plagued by the problem of harmful algal blooms
(HABs). Among the current approaches to managing HABs, methods that leverage
microbial activity to control algae have garnered significant attention. Utilizing algi-
cidal bacteria to lyse algal cells and induce their death represents a promising method
for controlling HABs. Few studies, however, have developed mathematical models
to describe this process. To the best of our knowledge, this paper is the first work to
construct a mathematical model to characterize the impact of nitrogen and phosphorus
nutrients on algal cell growth based on the algicidal mechanism of the LG3 strain and
the reabsorption of algal cell contents post-lysis.

Our mathematical model can exhibit complex dynamical phenomena. Through
bifurcation analysis, under specific parameter conditions, the system can exhibit both
backward and forward bifurcations. The existence of transcritical and saddle-node
bifurcations is demonstrated using Sotomayor’s theorem. Furthermore, we derive the
conditions for the existence ofHopf bifurcations and establish the transversality condi-
tions. Bogdanov-Takens bifurcation is explored utilizing the methodologies of normal
form theory and the center manifold theorem. By applying persistence theory, we
derive an explicit formula for the lower bound of harmful algal blooms. To explore the
algicidal efficacy of algicidal bacteria, we consider modifying environmental factors
or changing physical algae control strategies, which leads us to formulate an optimal
control problem.

Through numerical simulations,we investigate howchanges inλ2, k2,ω andβ influ-
ence backward and forward bifurcations. Our findings show that as ω and β increase,
the probability of backward bifurcation rises, suggesting that nutrient supplementa-
tion plays a dominant role. There may exist a threshold lower than R0 = 1 that can
better predict the effectiveness of algae control under these conditions. In the case
of forward bifurcation, our experiments demonstrate that increasing the phosphorus
utilization rate by algal cells, boosting the input of algicidal bacteria, and enhancing
their algicidal efficiency all aid in algae removal. Furthermore, we simulate trans-
critical and saddle-node bifurcations using λ1 and δ as bifurcation parameters. The
simulations reveal that increasing λ1, which represents the nitrogen utilization rate by
algal cells, hinders algae control efforts. On the other hand, when the consumption
rate of algicidal bacteria δ surpasses its critical value δSN

∗, harmful algal blooms are
eliminated.

To further explore how nutrient supplementation, caused by the lysis of algal cells,
affects algae control, we conduct some numerical simulations as illustrated in Fig-
ure 4.9. These experiments show that higher levels of nutrient supplementation within
the system result in less effective algae control. We also develop an optimal con-
trol strategy, which indicates that biological algae control methods are particularly
effective for long-term algae management. Ultimately, the simulations generate two
scenarios: one where algae control prevails and the other where nutrient supplemen-
tation dominates.

Mathematically, analyzing the global stability of the algae-free equilibrium E0
in case of backward bifurcations poses some challenges. From a practical standpoint,
studying the effects of environmental factors like temperature and light on the algicidal
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process seems to be more reasonable. Moreover, since the lysis of algal cells by
algicidal bacteria involves a time-dependent process, incorporating timedelays tomore
accurately model this phenomenon is an important area. We leave these challenging
problems for future investigation.

7 Proofs

The proof of Theorem 3.1 A simple computation yields that the Jacobian matrix of
system (2.1) at E0 is

J (E0) =

⎛

⎜

⎜

⎜

⎝

−α0 0 k1βω
α3

− μ(1−π)q
α0

0

0 −α1
k2βω
α3

− mπq
α1

0
0 0 J3 0
0 0 − δω

α3
−α3

⎞

⎟

⎟

⎟

⎠

, (7.1)

where

J3 = λ1μ
(1 − π)q

α0
+ λ2m

πq

α1
− α2 − βω

α3
.

The corresponding eigenvalues of characteristic equation of J (E0) are

η1 = −α0, η2 = −α1, η3 = −α3, η4 = λ1μ
(1 − π)q

α0
+ λ2m

πq

α1
− α2 − βω

α3
.

If R0 < 1, then η4 < 0. Thus, E0 is locally asymptotically stable and unstable if
R0 > 1. The proof is complete.

The proof of Theorem 3.3 The linearizing matrix of system (2.1) at any E∗ can
be written as

J (E∗) =

⎛

⎜

⎜

⎝

−α0 − μA∗ 0 k1βF∗ − μN∗ k1βA∗
0 −α1 − mA∗ k2βF∗ − mP∗ k2βA∗

λ1μA∗ λ2mA∗ λ1μN∗ + λ2mP∗ − α2 − βF∗ −βA∗
0 0 −δF∗ −α3 − δA∗

⎞

⎟

⎟

⎠

.

(7.2)
The characteristic equation of J (E∗) is

ρ4 + C1ρ
3 + C2ρ

2 + C3ρ + C4 = 0, (7.3)
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where

C1 =α0 + α1 + α2 + α3 + A∗δ + F∗β + A∗m + A∗μ − N∗λ1μ − P∗λ2m,

C2 =α0(α1 + α2 + α3) + α1α2 + α1α3

+ α2α3 + A∗(α0δ + α1δ + α2δ + α0m + α2m + α3m + α1μ + α2μ + α3μ)

+ F∗(α0β + α1β + α3β) + A∗2(δm + δμ + mμ)

+ N∗(−α0λ1μ − α1λ1μ − α3λ1μ) + P∗(−α0λ2m − α1λ2m

− α3λ2m) + A∗N∗(−δλ1μ − λ1mμ) + A∗P∗(−δλ2m − λ2mμ)

+ A∗F∗(−βk2λ2m − βk1λ1μ + βm + βμ),

C3 =α0α1α2 + α0α1α3 + α0α2α3 + α1α2α3

+ A∗2(α0δm + α2δm + α1δμ + α2δμ + α2mμ + α3mμ + βmμ)

+ A∗3δmμ + A∗(α0α1δ + α0α2δ + α1α2δ + α0α2m + α0α3m

+ α2α3m + α1α2μ + alpha1α3μ + α2α3μ)

+ F∗(α0α1β + α0α3β + α1α3β) + +N∗(−α0α1λ1μ − α0α3λ1μ − α1α3λ1μ)

+ P∗(−α0α1λ2m − α0α3λ2m

− α1α3λ2m) + A∗F∗(α3βm + α1βμ + α3βμ − α0βk2λ2m

− α3βk2λ2m − α1βk1λ1μ − α3βk1λ1μ + α0βm)

+ A∗N∗(−α0δλ1μ − α1δλ1μ − α0λ1mμ − α3λ1mμ)

+ A∗P∗(−α0δλ2m − α1δλ2m − α1λ2mμ − α3λ2mμ)

− A∗2N∗δλ1mμ − A∗2P∗δλ2mμ + A∗2F∗(−βk1λ1mμ − βk2λ2mμ),

C4 =α0α1α2α3 + A∗(α0α1α2δ + α0α2α3m + α1α2α3μ)

+ F∗α0α1α3β + A∗2(α0α2δm + α1α2δμ + α2α3mμ)

+ A∗3α2δmμ + A∗F∗(α0α3βm + α1α3βμ − α0α3βk2λ2m

− α1α3βk1λ1μ) − N∗α0α1α3λ1μ − P∗α0α1α3λ2m

− A∗2N∗α0δλ1mμ − A∗2P∗α1δλ2mμ + A∗N∗(−α0α1δλ1μ − α0α3λ1mμ)

+ A∗P∗(−α0α1δλ2m − α1α3λ2mμ)

+ A∗2F∗(−α3βk1λ1mμ − α3βk2λ2mμ + α3βmμ).

On the basis of the Routh-Hurwitz criterion, all roots of (7.3) have negative real
parts when the determinants |Mi | (i = 1, . . . , 4) are all positive, where

M1 = (C1), M2 =
(

C1 1
C3 C2

)

, M3 =
⎛

⎝

C1 1 0
C3 C2 C1
0 C4 C3

⎞

⎠ , M4 =

⎛

⎜

⎜

⎝

C1 1 0 0
C3 C2 C1 1
0 C4 C3 C2
0 0 0 C4

⎞

⎟

⎟

⎠

.

Therefore, condition (i) means that |M1| is positive; condition (ii) can make sure
that |M2| is positive; condition (iii) ensures that |M3| also is positive; and condition
(iv) pledges that |M4| is positive. The proof is complete.
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The proof of Theorem 3.4 Without loss of generality, we introduce the new vari-
ables x1 = N , x2 = P, x3 = A, x4 = F . System (2.1) is rewritten as the following
form:

f1 = (1 − π)q + k1βx3x4 − α0x1 − μx1x3,

f2 = πq + k2βx3x4 − α1x2 − mx2x3,

f3 = λ1μx1x3 + λ2mx2x3 − α2x3 − βx3x4,

f4 = ω − α3x4 − δx3x4.

(7.4)

Note that at R0 = 1, we have λ1 = λ1
∗ = α0

μ(1−π)q

(−λ2mπq
α1

+ α2 + βω
α3

)

. The

linearized matrix corresponding to system (7.4) around E0 at R0 = 1 is

J (E0, λ1
∗) =

⎛

⎜

⎜

⎜

⎝

−α0 0 k1βω
α3

− μ(1−π)q
α0

0

0 −α1
k2βω
α3

− mπq
α1

0
0 0 0 0
0 0 − δω

α3
−α3

⎞

⎟

⎟

⎟

⎠

, (7.5)

matrix (7.5) has a simple eigenvalue zero and all other eigenvalues are negative at
R0 = 1.

Let ω̄ = (ω1, ω2, ω3, ω4)
T be a right eigenvector of the zero eigenvalue at

(E0, λ1
∗), thus

ω1 = 1

α0

[

k1βω

α3
− μ(1 − π)q

α0

]

, ω2 = 1

α1

(

k2βω

α3
− mπq

α1

)

, ω3 = 1, ω4 = − δω

α3
2 .

Similarly, from the matrix J (E0, λ1
∗), we obtain a left eigenvector v̄ =

(v1, v2, v3, v4) (associated with the zero eigenvalue) with components as

v1 = 0, v2 = 0, v3 = 1, v4 = 0.

Now,we compute the following quantities

a =
4
∑

k,i, j=1

vkωiω j
∂2 fk

∂xi∂x j
(E0, λ1

∗), b =
4
∑

k,i=1

vkωi
∂2 fk

∂xi∂λ1
(E0, λ1

∗),

to get

a = 2

[

λ1μk1βω

α0α3
+ λ2mk2βω

α1α3
+ δωβ

α3
2

]

− 2

[

λ1μ
2(1 − π)q

α0
2 + λ2m2πq

α1
2

]

,

b = μ(1 − π)q

α0
> 0.

By (Castillo-Chavez and Song (2004), Theorem 4.1, p.373, and Remark 1, p.375), we
obtain the result. The proof is complete.
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The proof of Theorem 3.5 According to the Jacobian matrix (7.1), we can easily
know that η1,2,3 < 0. When λ1 = λ1

∗, there exists a unique zero eigenvalue: η4 = 0.
Let V ,W be the eigenvectors corresponding to the zero eigenvalue of J (E0) and
J (E0)

T respectively, namely:

V =

⎛

⎜

⎜

⎝

v1
v2
v3
v4

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

k1βω
α3α0

− μ(1−π)q
α02

k2βω
α3α1

− mπq
α12

1
− δω

α32

⎞

⎟

⎟

⎟

⎠

,W =

⎛

⎜

⎜

⎝

w1
w2
w3
w4

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

0
0
1
0

⎞

⎟

⎟

⎠

.

By using straightfrward calculations, we get

Fλ1(E0; λ1
∗) =

⎛

⎜

⎜

⎝

0
0
0
0

⎞

⎟

⎟

⎠

, DFλ1(E0; λ1
∗)V =

⎛

⎜

⎜

⎝

0
0

μ(1−π)q
α0
0

⎞

⎟

⎟

⎠

,

D2F(E0; λ1
∗)(V , V ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−2μ
(

k1βω
α3α0

− μ(1−π)q
α02

)

− 2k1βδω

α32

−2m
(

k2βω
α1α3

− mπq
α12

)

− 2k2βδω

α32

2λ1μ
(

k1βω
α0α3

− μ(1−π)q
α02

)

+ 2λ2m
(

k1βω
α1α3

− mπq
α12

)

+ 2βδω

α32

2δ2ω
α32

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

From the above calculation, we obtain as follows:

WT Fλ1(E0; λ1
∗) = 0,

WT DFλ1(E0; λ1
∗)V = μ(1 − π)q

α0
�= 0,

WT D2F(E0; λ1
∗)(V , V ) = 2λ1

∗μ
(

k1βω

α0α3
− μ(1 − π)q

α0
2

)

+ 2λ2m

(

k1βω

α1α3
− mπq

α1
2

)

+ 2βδω

α3
2 .

If WT D2F(E0; λ1
∗)(V , V ) �= 0, i.e., 2λ1∗μ

(

k1βω
α0α3

− μ(1−π)q
α02

)

+ 2λ2m
(

k1βω
α1α3

−mπq
α12

)

+ 2βδω

α32
�= 0, then from Sotomayor’s theorem (Perko 2013), system (2.1)

undergoes a transcritical bifurcation around E0 when λ1 = λ1
∗. The proof is com-

plete.
The proof of Theorem 3.6 From Jacobian matrix (7.2), when C4 = 0 and C3 �= 0,

we get the following equation

ρ4 + C1ρ
3 + C2ρ

2 + C3ρ = 0,

then there exists a unique zero eigenvalue ρ1 = 0 and ρ2,3,4 �= 0 if δ = δSN
∗.
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By using Sotomoyor’s theorem (Perko 2013), we obtain

V =

⎛

⎜

⎜

⎝

vSN1
vSN2
vSN3
vSN4

⎞

⎟

⎟

⎠

,W =

⎛

⎜

⎜

⎝

0
0
0
1

⎞

⎟

⎟

⎠

,

where vSN1 =
−a2a3
a1

+k2βA∗

α+mA∗ , vSN2 =
−a2a4
a1

+k1βA∗

α0+μA∗ , vSN3 = − a2
a1
, vSN4 = 1, and

a1 = k1βF∗ − μN∗

α0 + μA∗ λ1μA∗ + k2βF∗ − mP∗

α1 + mA∗ λ2mA∗,

a2 = −βA∗ + k1βA∗

α0 + μA∗ λ1μA∗ + k2βA∗

α1 + mA∗ λ2mA∗.

Then

Fδ(E
∗; δSN

∗) =

⎛

⎜

⎜

⎝

0
0
0

−F∗A∗

⎞

⎟

⎟

⎠

, D2Fδ(E
∗; δSN

∗)(V , V )

=

⎛

⎜

⎜

⎝

2k1βvSN3vSN4 − 2μvSN1vSN3
2k2βvSN3vSN4 − 2mvSN2vSN3

2λ1μvSN1vSN3 + 2λ2mvSN2vSN3 − 2βvSN3vSN4
−2δSN ∗vSN3vSN4

⎞

⎟

⎟

⎠

.

A simple computation yields

WT Fδ(E
∗; δSN

∗) = −F∗A∗ �= 0, WT [D2Fδ(E
∗; δSN

∗)(V , V )]
= −2δSN

∗vSN3vSN4 = 2δSN ∗a2
a1

.

If δSN
∗a2

a1
�= 0, then from Sotomayor’s theorem, system (2.1) undergoes a saddle-node

bifurcation around E∗ when δ = δSN
∗. The proof is complete.

The proof of Theorem 3.7 The Jacobian matrix at E∗ is (7.2) and the characteristic
equation is

ρ4 + C1(δ)ρ
3 + C2(δ)ρ

2 + C3(δ)ρ + C4(δ) = 0. (7.6)

If δ = δH
∗ satisfies

C3(δH
∗)[C1(δH

∗)C2(δH
∗) − C3(δH

∗)] − C1(δH
∗)2C4(δH

∗) = 0. (7.7)

Then

C2(δH
∗) = C1(δH

∗)2C4(δH
∗) + C3(δH

∗)2

C1(δH
∗)C3(δH

∗)
. (7.8)
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Substitute (7.8) into Eq. (7.6)

(

ρ2 + C3

C1

)(

ρ2 + C1ρ + C1C4

C3

)

= 0. (7.9)

It is evident that Eq. (7.9) has two purely imaginary roots ρ1,2 = ±w0i , where w0 =
√

C3
C1
. For the quadratic equation in ρ, let its roots be denoted by ρ3, ρ4, which satisfy

the following equalities:

ρ3 + ρ4 = −C1, (7.10)

w0
2 + ρ3ρ4 = C2, (7.11)

w0
2(ρ3 + ρ4) = −C3, (7.12)

w0
2ρ3ρ4 = C4. (7.13)

If ρ3, ρ4 are conjugate complex roots, then from Eq. (7.10), it can be computed that
2Re(ρ3) = −C1, indicating that both ρ3, ρ4 have negative real parts. If ρ3, ρ4 are
real roots, from Eqs. (7.10)-(7.13), it can be inferred that ρ3, ρ4 are negative numbers.
Therefore, all four roots of the characteristic equation (7.6) lie in the left half of the
complex plane.

The transversal conditions for generating Hopf bifurcation are further discussed.
For any δ ∈ (δH

∗ − ε, δH
∗ + ε), let ρ1,2 = α(δ) ± iβ(δ) be obtained by inserting

(7.6) and separating the real and imaginary parts

α4 + C1α
3 + C2α

2 + C3α + C4 + β4 − 6α2β2 − 3C1αβ2 − C2β
2 = 0,

4αβ(α2 − β2) − C1β
3 + 3C1α

2β + 2C2αβ + C3β = 0. (7.14)

Since β(δ) �= 0, we obtain

−(4α + C1)β
2 + 4α3 + 3C1α

2 + 2C2α + C3 = 0,

then

β2 = 4α3 + 3C1α
2 + 2C2α + C3

4α + C1
, (7.15)

substituting Eq. (7.15) into Eq. (7.14) gives

− 64α6 − 96C1α
5 − 16(3C1

2 + 2C2)α
4 − (C3(C1C2 − C3)

− C1
2C4) − 8(C1

3 + 4C1C2)α
3

− 4(C2
2 + 2C1

2C2 + C1C3 − 4C4)α
2 − 2C1(C1C3 + C2

2 − 4C4)α = 0.
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Noting that α(δH
∗) = 0 and C4(δH

∗) = C1(δH
∗)C2(δH

∗)C3(δH
∗)−C3(δH

∗)2
C1(δH

∗)2 is obtained

from (7.7), the differential of the above equation with respect to δ is sorted out

[

dα

dδ

]

δ=δH
∗

=
[

d
dδ

(C1C2C3 − C3
2 − C1

2C4)

−2C1(C1C3 + C2
2 − 4C4)

]

δ=δH
∗

=

⎡

⎢

⎢

⎣

d
dδ

(C1C2C3 − C3
2 − C1

2C4)

−2C1

[

C1C3 + C2
2 − 2

(

2C3
C1

)

C2 +
(

2C3
C1

)2
]

⎤

⎥

⎥

⎦

δ=δH
∗

=

⎡

⎢

⎢

⎣

d
dδ

(C1C2C3 − C3
2 − C1

2C4)

−2C1

[

C1C3 +
(

2C3
C1

− C2

)2
]

⎤

⎥

⎥

⎦

δ=δH
∗

.

If
[ dα
dδ

]

δ=δH
∗ �= 0, then we get

[ d
dδ

(C1C2C3 − C3
2 − C1

2C4)
]

δ=δH
∗ �= 0, which is

the transversal condition for generating Hopf bifurcation. The proof is complete.
The proof of Theorem 3.8 First, the Jacobianmatrix at EBT

∗(PBT
∗, ABT

∗, FBT
∗)

is

J (EBT
∗) =

⎛

⎝

−α1 − mABT
∗ k2βFBT

∗ − mPBT
∗ k2βABT

∗
λ2mABT

∗ λ2mPBT
∗ − α2 − βFBT

∗ −βABT
∗

0 −δFBT
∗ −α3 − δABT

∗

⎞

⎠ ,

we get the following equation

χ3 + CBT 2χ
2 + CBT 1χ + CBT 0 = 0

where

CBT 2 = ω

FBT
∗ + α1 + mABT

∗ > 0,

CBT 1 = −δβABT
∗FBT

∗ + α1ω

FBT
∗ + mωABT

∗

FBT
∗

+λ2m
2ABT

∗PBT
∗ − λ2mk2βFBT

∗ABT
∗,

CBT 0 = −α1δβABT
∗FBT

∗ − mδβABT
∗2FBT

∗ + λ2m2ωABT
∗PBT

∗

FBT
∗

−λ2mk2ωβABT
∗ + λ2mk2δβABT

∗2FBT
∗.

Then we have a zero eigenvalue of multiplicity 2 if CBT 2 �= 0, CBT 1 = 0 and
CBT 0 = 0. The eigenvalues are χ1 = 0, χ2 = 0 and χ3 = −CBT 2 �= 0.

For the sake of argument, let B replace the Jacobian matrix of EBT
∗ when

(k2, α1) = (k2BT , α1BT ). The conditions of Bogdanov-Takens bifurcation around
EBT

∗(PBT
∗, ABT

∗, FBT
∗) will be considered in the following discussions.
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System (2.1) is rewritten in a matrix form as

U̇ = F(U , ρ̂)

where

U =
⎛

⎝

P
A
F

⎞

⎠ , ρ̂ =
(

k2
α1

)

, F(U , ρ̂) �

⎛

⎝

F1
F2
F3

⎞

⎠ =
⎛

⎝

πq + k2βFA − α1P − mPA
λ2mPA − α2A − βFA

ω − α3F − δFA

⎞

⎠ .

Let

U0 =
⎛

⎝

PBT
∗

ABT
∗

FBT
∗

⎞

⎠ , ρ0 =
(

k2BT
α1BT

)

,

then consider the Taylor series around (U0, ρ0):

F(U , ρ̂) =DF(U0, ρ0)(U −U0) + Fρ̂ (U0, ρ0)(ρ̂ − ρ0)

+ 1

2
D2F(U0, ρ0)(U −U0,U −U0)

+ Fρ̂U (U0, ρ0)(U −U0, ρ̂ − ρ0) + · · · ,

where

B = DF(U0, ρ0) =
⎛

⎝

−α1BT − mABT
∗ k2BT βFBT

∗ − mPBT
∗ k2BT βABT

∗
λ2mABT

∗ λ2mPBT
∗ − α2 − βFBT

∗ −βABT
∗

0 −δFBT
∗ −α3 − δABT

∗

⎞

⎠ ,

Fρ̂ (U0, ρ0) =
⎛

⎝

βFBT
∗ABT

∗ −PBT
∗

0 0
0 0

⎞

⎠ .

Denote D2F(U0, ρ0) = {D2F1, D2F2, D2F3}, Fρ̂U (U0, ρ0) = {F1ρ̂U , F2ρ̂U ,

F3ρ̂U }, where

D2F1 =
⎛

⎝

0 −m 0
−m 0 k2BT β

0 k2BT β 0

⎞

⎠ , D2F2 =
⎛

⎝

0 λ2m 0
λ2m 0 −β

0 −β 0

⎞

⎠ , D2F3 =
⎛

⎝

0 0 0
0 0 −δ

0 −δ 0

⎞

⎠ ,

F1ρ̂U =
(

0 βFBT
∗ βABT

∗
−1 0 0

)

, F2ρ̂U = F3ρ̂U =
(

0 0 0
0 0 0

)

.

Let T1, T2 be generalized eigenvectors of B corresponding to the eigenvalue χ = 0:
BT1 = 0 and BT2 = T1.
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Then we get

T1 =
⎛

⎝

0
−α3+δABT

∗
δFBT

∗
1

⎞

⎠ , T2 =
⎛

⎜

⎝

β
λ2m

− α3+δABT
∗

δλ2mFBT
∗ABT

∗

−α3+δABT
∗+1

δFBT
∗

1

⎞

⎟

⎠ .

Let T = (T1, T2, T0), where T0 contains the generalized eigenvectors of (χ3)which
is a 1 × 1 matrix. It is known that

T0 =
⎛

⎝

0
1

− δFBT
∗

α3+δABT
∗−CBT 2

⎞

⎠ , T−1BT =
⎛

⎝

0 1 0
0 0 0
0 0 χ3

⎞

⎠ .

Then, T−1 = (ZT
1 , ZT

2 , ZT
0 )T , here ZT

2 B = 0, ZT
1 B = ZT

2 , i.e., Z1, Z2 are the
left generalized eigenvectors of B corresponding to the eigenvalue χ = 0 and Z0
contains the left generalized eigenvectors of the matrix (χ3) .

We get

Z1 �

⎛

⎝

Z11
Z12
Z13

⎞

⎠ =
⎛

⎜

⎝

− 1
L2

(1 + L4−L1L3L4
L1−L4

)

− L1L4
L1−L4
L1

L1−L4

⎞

⎟

⎠ , Z2 �

⎛

⎝

Z21
Z22
Z23

⎞

⎠ =
⎛

⎝

1
L2

0
0

⎞

⎠ ,

Z0 �

⎛

⎝

Z01
Z02
Z03

⎞

⎠ =
⎛

⎜

⎝

1−L1L3
L1L2−L2L4

L1
L1−L4

1
L4−L1

⎞

⎟

⎠ ,

where

L1 = −α3 + δABT
∗

δFBT
∗ , L2 = β

λ2m
− α3 + δABT

∗

δλ2mFBT
∗ABT

∗ , L3 = −α3 + δABT
∗ + 1

δFBT
∗ ,

L4 = − δFBT
∗

α3 + δABT
∗ − CBT 2

.

By using the notations in Carrillo et al. (2010), we have

a =1

2
T T
1 (Z2 · D2F(U0, ρ0))T1 = α3 + δABT

∗
δFBT ∗ (βZ22 + δZ23 − k2BT βZ21),

b =T T
1 (Z1 · D2F(U0, ρ0))T1 + T T

1 (Z2 · D2F(U0, ρ0))T2

=2(α3 + δABT
∗)

δFBT ∗ (βZ12 + δZ13 − k2BT βZ11) − L2
α3 + δABT

∗
δFBT ∗ (mZ21 − λ2mZ22)

− L3(βZ22 + δZ23 − k2BT βZ21) + α3 + δABT
∗

δFBT ∗ (βZ22 + δZ23 − k2BT βZ21),
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B0 =T0χ3
−1Z0 = − 1

CBT 2

⎛

⎝

0 0 0
Z01 Z02 Z03

L4Z01 L4Z02 L4Z03

⎞

⎠ , S1 = FT
ρ̂

(U0, ρ0)Z2 �
(

S11
S12

)

=
(

Z21βFBT
∗ABT

∗
−Z21PBT

∗
)

,

S2 =
[

2a

b
(T T

1 (Z1 · D2F(U0, ρ0))T2 + T T
2 (Z2 · D2F(U0, ρ0))T2)

−T T
1 (Z2 · D2F(U0, ρ0))T2

]

FT
ρ̂

(U0, ρ0)Z1

− 2a

b

2
∑

i=1

(Zi · (Fρ̂U (U0, ρ0) − (B0Fρ̂ (U0, ρ0))
T × D2F(U0, ρ0)))Ti

+ (Z2 · (Fρ̂U (U0, ρ0) − (B0Fρ̂ (U0, ρ0))
T × D2F(U0, ρ0)))T1

=2a

b
H

(

Z11βFBT
∗ABT

∗
−Z13PBT

∗
)

− 2a

b
Q + M �

(

S21
S22

)

,

where

H = − α3 + δABT
∗

δFBT ∗ (−mZ11 + λ2mZ12)L2 + (k2BT βZ11 − βZ12 − δZ13)L3

− α3 + δABT
∗

δFBT ∗ (k2BT βZ11

− βZ12 − δZ13) + 2(−mZ21 + λ2mZ22)L2L3 + (k2BT βZ21 − βZ22 − δZ23)L3

− α3 + δABT
∗

δFBT ∗ (−mZ21

+ λ2mZ22)L2 − α3 + δABT
∗

δFBT ∗ (k2BT βZ21 − βZ22 − δZ23),

Q = 1

CBT 2

(

L1Q12 + Q13 + L2q11 + L3q12 + q13
L1Q22 + Q23 + L2q21 + L3q22 + q23

)

, M = 1

CBT 2

(

L1q12 + q13
L1q22 + q23

)

,

Q12 = Z11(CBT 2βFBT
∗ + L4Z01β

2FBT
∗ABT

∗)
− L4Z12Z01β

2FBT
∗ABT

∗ − L4Z13Z01δβFBT
∗ABT

∗,
Q22 = −Z11Z01L4k2BTβPBT

∗ + Z12Z01L4βPBT
∗ + Z13Z01L4δPBT

∗,
Q13 = Z11(CBT 2βABT

∗ + Z01β
2k2BT FBT

∗ABT
∗) − Z12Z01β

2FBT
∗ABT

∗

− Z13Z01δβFBT
∗ABT

∗,
Q23 = −Z11Z01k2BTβPBT

∗ + Z12Z01βPBT
∗ + Z13Z01δPBT

∗,
q11 = −Z11Z01mβFBT

∗ABT
∗ + Z12Z01mλ2βFBT

∗ABT
∗,

q21 = Z11(Z01mPBT
∗ − CBT 2) − Z12Z01mλ2PBT

∗,
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q12 = Z21(CBT 2βFBT
∗ + L4Z01β

2FBT
∗ABT

∗) − L4Z22Z01β
2FBT

∗ABT
∗

− L4Z23Z01δβFBT
∗ABT

∗,
q22 = −Z21Z01L4k2BTβPBT

∗ + Z22Z01L4βPBT
∗ + Z23Z01L4δPBT

∗,
q13 = Z21(CBT 2βABT

∗ + Z01β
2k2BT FBT

∗ABT
∗) − Z22Z01β

2FBT
∗ABT

∗

− Z23Z01δβFBT
∗ABT

∗,
q23 = −Z21Z01k2BTβPBT

∗ + Z22Z01βPBT
∗ + Z23Z01δPBT

∗.

Assume that

{

ψ1 = k2 − k2BT ,

ψ2 = α1 − α1BT .

Then

{

ζ1 = ST1 (ρ̂ − ρ0) = S11ψ1 + S12ψ2,

ζ2 = ST2 (ρ̂ − ρ0) = S21ψ1 + S22ψ2.

According to Carrillo et al. (2010), for given nonlinear system (3.3), there exists
(U0, ρ0) which satisfies the conditions:

(BT1) F(U0, ρ0) = 0;
(BT2) σ [DF(U0, ρ0)] = {χ1,2 = 0;Re(χ3) �= 0} (non-hyperbolicity);
(BT3) ab �= 0 (non-degeneracy);
(BT4) S1 and S2 are linearly independent (transversality).

The topological behavior of the trajectories on the central manifold of system (3.3)
near the Bogdanov-Takens bifurcation point (U0, ρ0) is locally topologically equiva-
lent to the trajectory structure of the following system:

⎧

⎪
⎨

⎪
⎩

ẋ1 = x2,

ẋ2 = ζ1 + ζ2x1 + ax21 + bx1x2 = (S11ψ1 + S12ψ2) + (S21ψ1 + S22ψ2)x1
+ax21 + bx1x2.

(7.16)
Then we introduce a new time t̄ and new variables X1 and X2 given by

t = −b

a
t̄, x1 = a

b2
X1, x2 = −a2

b3
X2.

System (7.16) can be rewritten as the following form

{

Ẋ1 = X2,

Ẋ2 = ζ̄1 + ζ̄2X1 + X2
1 − X1X2,
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where

ζ̄1 = b4

a3
(S11ψ1 + S12ψ2), ζ̄2 = b2

a2
(S21ψ1 + S22ψ2).

If det
(

∂(ζ̄1,ζ̄2)
∂(k2,α1)

)∣

∣

∣

(k2,α1)=(k2BT ,α1BT )
�= 0, then the parameter transformation is an

invertible smooth change of parameters near the (PBT
∗, ABT

∗, FBT
∗). Based on the

discussions above and the results in Carrillo et al. (2010), we obtain the results stated
in Theorem 3.8. The proof is complete.

The proof of Theorem 3.10 Let us consider a positive solution (N (t), P(t), A(t),
F(t))T of system (2.1) with (2.2). For all t > 0, denote

M(t) = λ1N (t) + λ2P(t) + A(t) + (λ1k1 + λ2k2)β

δ
F(t),

and δm = min{α0, α1, α2, α3}. Then

lim
t→∞ supM(t) ≤ λ1(1 − π)q + λ2πq + (λ1k1+λ2k2)βω

δ

δm
:= γ.

From (2.1b) and (2.1d), we obtain

lim
t→∞ inf P(t) ≥ πq

α1 + mγ
= υ2, lim

t→∞ inf F(t) ≥ ω

α3 + δ ω
α3

= υ4.

If R0 > 1, there is only a θ > 0 such that λ1μ
(1−π)q
α0+μθ

+λ2m
πq

α1+mθ
= α2 +β ω

α3
. Thus,

if 0 < θ2 < θ1 < θ , there exists a ρ0 > 0 such that

κ = λ1μ
(1 − π)q

α0 + μθ1
+ λ2m

πq

α1 + mθ1
− α2 −

(

β
ω

α3
+ ρ0

)

> 0.

Next, let us show that

lim
t→∞ inf A(t) ≥ θ2e

−[α2+β( ω
α3

+ρ0)]d = υ3.

Define

V̇ = λ1μN A + λ2mPA − α2A − βFA.

Claim: For any t0 > 0, it is impossible to satisfy A(t) ≤ θ2 for all t ≥ t0.
By way of contradiction, there exists a t0 > 0 such that A(t) ≤ θ2 for any t ≥ t0.

From the first and second equations of system (2.1), one gets Ṅ ≥ (1− π)q − (α0 +
μθ2)N , Ṗ ≥ πq − (α1 + mθ2)P. Thus we get

lim
t→∞ inf N (t) ≥ (1 − π)q

α0 + μθ2
>

(1 − π)q

α0 + μθ1
, lim
t→∞ inf P(t) ≥ πq

α1 + mθ2
>

πq

α1 + mθ1
.
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Hence, there exists a T1 > 0 such that

N (t) ≥ (1 − π)q

α0 + μθ1
, for all t ≥ t0 + T1.

Similarly, there is a T2 > 0 satisfying

P(t) ≥ πq

α1 + mθ1
, for all t ≥ t0 + T2.

In addition, from the fourth equation of system (2.1), we get limt→∞ sup F(t) ≤ ω
α3

.

Then there exists a T3 > 0 such that F(t) ≤ ω
α3

+ ρ0, for all t ≥ t0 + T3. Set

A = A(t0 + d) > 0.

Now verify A(t) ≥ A > 0 for all t ≥ t0 + max{T1, T2, T3} := σ̂ . In fact, if there
exists T > 0 such that for σ̂ ≤ t ≤ σ̂ + T , there is

A(t) ≥ A, A(σ̂ + T ) = A, Ȧ(σ̂ + T ) ≤ 0,

it follows from the third equation of system (2.1) that

Ȧ(σ̂ + T ) = (λ1μN + λ2mP − α2 − βF)A(σ̂ + T )

≥
[

λ1μ
(1 − π)q

α0 + μθ1
+ λ2m

πq

α1 + mθ1
− α2 − β

(

ω

α3
+ ρ0

)]

A = κA > 0.

This is a contradiction to Ȧ(σ̂ + T ) ≤ 0. Therefore, A(t) ≥ A for all t ≥ σ̂ + T .
Hence, for all t ≥ σ̂ + T , it follows from

V̇ (σ̂ + T ) ≥
[

λ1μ
(1 − π)q

α0 + μθ1
+ λ2m

πq

α1 + mθ1
− α2 − β

(

ω

α3
+ ρ0

)]

A = κA > 0

that V (t) → ∞ as t → ∞, which also leads to a contradiction. The claim is proved.
Next, we consider the following two cases:

• A(t) ≥ θ2 holds for all sufficiently t ;
• A(t) oscillates about θ2 for all sufficiently t .

Clearly, we only need to consider the second case. Let t1, t2 be large enough such
that t∗ < t1 < t2 and A(t1) = A(t2) = θ2, A(t) < θ2(t1 < t < t2).

Consider that t1, t2 are sufficiently large, so F(t) ≤ ω
α3

+ ρ0 for all t1 < t < t2.

From the first and second equations of system (2.1), we get Ṅ (t) ≥ (1−π)q−α0N −
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μNθ2, Ṗ(t) ≥ πq − α1P − mPθ2, which implies that

N (t) ≥ (1 − π)q

α0 + μθ2
+
[

N (t1) − (1 − π)q

α0 + μθ2

]

e−(α0+μθ2)(t−t1)

≥ [1 − e−(α0+μθ2)(t−t1)] (1 − π)q

α0 + μθ2
,

P(t) ≥ πq

α1 + mθ2
+
[

P(t1) − πq

α1 + mθ2

]

e−(α1+mθ2)(t−t1)

≥ [1 − e−(α1+mθ2)(t−t1)] πq

α1 + mθ2
, for all t1 < t < t2.

If t2 − t1 ≤ d := max{T1, T2}, it follows from system (2.1) that

Ȧ(t) ≥ −α2A − β

(

ω

α3
+ ρ0

)

A,

which implies that

A(t) ≥ A(t1)e
−[α2+β( ω

α3
+ρ0)](t−t1) ≥ θ2e

−[α2+β( ω
α3

+ρ0)]d .

It is obvious that

lim
t→∞ inf A(t) ≥ θ2e

−[α2+β( ω
α3

+ρ0)]d = υ3, for t ∈ (t1, t2).

If t2 − t1 > d, it is easily to get A(t) ≥ υ3 for t ∈ [t1, t1 + d]. Then, as the proof of
the above claim, we can show that A(t) ≥ υ3 for t1 + d ≤ t ≤ t2. In fact, if not, there
exists a T ∗ ≥ 0, such that A(t) ≥ υ3 for t1+d ≤ t ≤ t1+d+T ∗, A(t1+d+T ∗) = υ3
and Ȧ(t1 + d + T ∗) ≤ 0. From the first and second equations of system (2.1), for
t1+d ≤ t ≤ t1+d+T ∗ ≤ t2, it follows Ṅ (t) ≥ (1−π)q− (α0+μθ2)N (t), Ṗ(t) ≥
πq − (α1 + mθ2)P(t), which implies

N (t) ≥ [1 − e−(α0+μθ2)d ] (1 − π)q

α0 + μθ2

≥ [1 − e−(α0+μθ2)T1 ] (1 − π)q

α0 + μθ2

= (1 − π)q

α0 + μθ1
,

P(t) ≥ [1 − e−(α1+mθ2)d ] πq

α1 + mθ2

≥ [1 − e−(α1+mθ2)T2 ] πq

α1 + mθ2

= πq

α1 + mθ1
,
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for t1 + d ≤ t ≤ t1 + d + T ∗ ≤ t2. From the third equation of system (2.1), it follows

Ȧ(t1 + d + T ∗) ≥
[

λ1μ
(1 − π)q

α0 + μθ1

+λ2m
πq

α1 + mθ1
− α2 − β(

ω

α3
+ ρ0)

]

A(t1 + d + T ∗) = κυ3 > 0.

This is a contradiction to Ȧ(t1 + d + T ∗) ≤ 0. Therefore, we have that A(t) ≥ υ3
for t ∈ [t1, t2]. Consider the interval [t1, t2] is chosen in an arbitrary way, then we can
conclude that A(t) ≥ υ3 for all large t for the second case. Hence, limt→∞ inf A(t) ≥
υ3. The proof is complete.

The proof of Theorem 5.1 Let r ∈ (0, 1), x(t) = (Ṅ , Ṗ, Ȧ, Ḟ) and u, v ∈ U ,
one denotes the integrand

J (t, x(t), u) = A1N + A2P + A3A + 1

2
B1u

2
1 + 1

2
B2u

2
2,

and obtains

J (t, x(t), (1 − r)u + rv) − (1 − r)J (t, x(t), u) − r J (t, x(t), v)

= r(r − 1)

[

1

2
B1(u1 − v1)

2 + 1

2
B2(u2 − v2)

2
]

≤ 0

so the integrand J is convex on the control set U . We easily seek out some positive
numbers ω1, ω2 and ξ such that the integrand of the objective function J (u) means

J (u) ≥ ω1|u|ξ − ω2

(

ω1 = Bi
2

, ξ = 2

)

.

The proof is complete.

Acknowledgements We thankSanyi Tang at ShanxiUniversity for his valuable advice on numerical simula-
tions.WeiWang gratefully acknowledges support from Shandong Provincial Natural Science Foundation of
China (ZR2024QA006) and the National Natural Science Foundation of China (No. 12271308, 11901360).
Hao Wang gratefully acknowledges support from the Natural Sciences and Engineering Research Council
of Canada (Discovery Grant RGPIN-2020-03911 and Discovery Accelerator Grant RGPAS-2020-00090)
and the Canada Research Chairs program (Tier 1 Canada Research Chair Award).

Data Availability Statement This manuscript has no associated data.

References

Ahn CY, Park MH, Joung SH et al (2003) Growth inhibition of cyanobacteria byultrasonic radiation:
laboratory and enclosure studies. Environmental Science & Technology 37:3031–3037

Amin SA, Parker MS, Armbrust EV (2012) Interactions between diatoms and bacteria. Microbiology and
Molecular Biology Reviews 76:667–684

Bidle KD, Falkowski PG (2004) Cell death in planktonic, photosynthetic microorganisms. Nature Reviews
Microbiology 2:643–655

123



Complex algal dynamics and optimal control with algicidal… Page 45 of 47    72 

Carrillo FA,VerduzcoF,Delgado J (2010)Analysis of theTakens-Bogdanovbifurcation onm-parameterized
vector fields. International Journal of Bifurcation and Chaos 20:995–1005

Castillo-Chavez C, Song B (2004) Dynamical models of tuberculosis and their applications. Mathematical
Biosciences and Engineering 1:361–404

Cui QW, Lawson GJ (1982) Study on models of single populations: an expansion of the logistic and
exponential equations. Journal of Theoretical Biology 98:645–659

Dakhama A, Lavoie M, Noüe J (1993) Isolation and identification of antialgal substances produced by
Pseudomonasaeruginosa. Journal of Applied Phycology 5:297–306

Diekmann O, Heesterbeek J, Metz J (1990) On the definition and the computation of thebasic reproduction
ratio R0 in models for infectious diseases in heterogeneous populatons. Journal of Mathematical
Biology 28:365–382

Fastner J, Abella S, Litt A et al (2016) Combating cyanobacterial proliferation by avoiding or treating
inflows with high P load-experiences from eight case studies. Aquatic Ecology 50:367–383

Fukami K, Yuzawa A, Nishijima T et al (1992) Isolation and properties of a bacterium inhibiting the growth
of Gymnodiniumnagasakiense. Nippon Suisan Gakkaishi 58:1073–1077

Gazi NH, Das K (2010) Structural stability analysis of an algal bloom mathematical model in tropic inter-
action. Nonlinear Analysis: Real World Applications 11:2191–2206

Gobler CJ (2019) Climate change and harmful algal blooms: insights and perspective. Harmful Algae
91:101731

Griffin C (2017) Expanding toxic algal blooms. Science 356:713–714
Gumbo JR, Cloete TE (2011) The mechanism of Microcystisaeruginosa death upon exposure to

Bacillusmycoides. Physics & Chemistry of the Earth 36:881–886
Hare CE, Demir E, Coyne KJ et al (2005) A bacterium that inhibits the growth of P f iesteriapiscicida

and other dinoflagellates. Harmful Algae 4:221–234
Hargraves PE (2008) Allelopathy at the land/sea interface: microalgae and Brazilian pepper. Marine Envi-

ronmental Research 66:553–555
Havens KE, James RT, East TL et al (2003) N: P ratios, light limitation, and cyanobacterial dominance in a

subtropical lake impacted by non-point source nutrient pollution. Environmental Pollution 122:379–
390

Heggerud CM, Wang H, Lewis MA (2020) Transient dynamics of a stoichiometric cyanobacteria model
via multiple-scale analysis. SIAM Journal on Applied Mathematics 80(3):1223–1246

Heggerud CM, Xu JJ, Wang H et al (2024) Predicting imminent cyanobacterial blooms in lakes using
incomplete timely data. Water Resources Research 60:e2023WR035540

Hu ZX, Xu N, Duan SS (2010) The impact of different nitrogen sources on the growth of four marine
microalgae. Ecology and Environmental Sciences 19:2452–2457 ((in Chinese))

Imamura N, Motoike I, Shimada N (2001) An efficient screening approach for anti-microcystis cmpounds
based on knowledge of aquatic microbial ecosystem. The Journal of Antibiotics 54:582–587

KangYH, Kim JD, KimBH et al (2005) Isolation and characterization of a bio-agent antagonistic to diatom,
Stephanodiscushantzschii . Journal of Applied Microbiology 98:1030–1038

Li Y, Liu L, Xu YT et al (2016) First evidence of Altererythrobacter sp. LY02 with indirect algicidal
activity on the toxic dinoflagellate, Alexandriumtamarense. Current Microbiology 73:550–560

Liu J, Li FC, Liu L et al (2013) Inhibitory activity of an extract from a marine bacterium Halomonas sp.
HSB07 against the red-tide microalga Gymnodinium sp. (Pyrrophyta). Chinese Journal of Oceanol-
ogy and Limnology 31:1241–1247

Lu L, Niu XJ, Zhang DQ, et al. (2021) The algicidal efficacy and the mechanism of Enterobacter sp.
EA-1 on Oscillatoria dominating in aquaculture system. Environmental Research 197: 11105

Lu XH, Zhou B, Xu LL et al (2016) A marine algicidal thalassospira and its active substance against
the harmful algal bloom species kareniamikimotoi . Applied Microbiology and Biotechnology
100:5131–5139

LuoG (2023) Screening of algicidal bacteriumLG3, its algicidal properties, andmechanisms.Anhui Jianzhu
University, (in Chinese)

Marino S, Hogue IB, Ray CJ et al (2008) A methodology for performing global uncertainty and sensitivity
analysis in systems biology. Journal of Theoretical Biology 254:178–196

Malmaeus JM, Håkanson L (2004) Development of a lake eutrophication model. Ecological Modelling
171:35–63

Merchant SS, Helmann JD (2012) Elemental economy: microbial strategies for optimizing growthin the
face of nutrient limitation. Advances in Microbial Physiology 60:91–210

123



   72 Page 46 of 47 W. Wang et al.

Orchard ED, Webb EA, Dyhrman ST (2009) Molecular analysis of the phosphorus starvation response in
Trichodesmium spp. Environmental Microbiology 11:2400–2411

Paerl HW, Fulton RS, Moisander PH et al (2001) Harmful freshwater algal blooms, with an emphasis on
cyanobacteria. The Scientific World 1:76–113

Pan XJ, Chen YM, Shu HY (2019) Rich dynamics in a delayed HTLV-I infection model: stability switch,
multiple stable cycles, and torus. Journal of Mathematical Analysis and Applications 479:2214–2235

Park BS, Park CS, Shin Y et al (2022) Different algicidal modes of the two bacteria Aeromonasbestiarum
HYD0802-MK36 and Pseudomonassyringae KACC10292T against harmful cyanobacteria
Microcystisaeruginosa. Toxins 14:128

Perko L (2013) Differential Equations and Dynamical Systems. Springer Science & Business Media
Pichierri S, Accoroni S, Pezzolesi L et al (2017) Allelopathic effects of diatom filtrates on the toxic benthic

dinoflagellate Ostreopsis cf. ovata. Marine Environmental Research 131:116–122
Pontryagin LS, Boltyanskii VG, Gamkrelidze RV et al (1962) The Mathematical Theory of Optimal Pro-

cesses. Wiley, New Jersey
Salomon PS, Janson S, Graneli E (2003) Molecular identification of bacteria associated with filaments of

Nodulariaspumigena and their effect on the cyanobacterial growth. Harmful Algae 2:261–272
SchindlerDW(1974) Eutrophication and recovery in experimental lakes: implications for lakemanagement.

Science 184:897–899
Shannon MA, Bohn PW, Elimelech M (2008) Science and technology for water purification in the coming

decades. Nature 452:301–310
Shi SY, Liu YD, Shen YW et al (2006) Lysis of Aphanizomenon f los-aquae (Cyanobacterium) by a

bacterium Bacilluscereus. Biological Control 39:345–351
Smoluchowski M (1917) Grundriß der Koagulationskinetik kolloider Lösungen. Colloid and Polymer Sci-

ence 21:98–104
Sun PF, Hui C, Bai NL et al (2015) Revealing the characteristics of a novel bioflocculant and its flocculation

performance in Microcystisaeruginosa removal. Scientific Reports 5:1–12
Taiz L, Zeiger E (1998) Plant Physiology. Sinauer, Sunderland
Tiwari PK, Samanta S, Bona F et al (2019) The time delays influence on the dynamical complexity of algal

blooms in the presence of bacteria. Ecological Complexity 39:100769
van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for

compartmental models of disease transmission. Mathematical Biosciences 180:29–48
WangC,Wang ZY,Wang PF et al (2015)Multiple effects of environmental factors on algal growth and nutri-

ent thresholds for harmful algal blooms: application of response surface methodology. Environmental
Modeling 21:247–259

Wang H, Smith HL, Kuang Y, Elser JJ (2007) Dynamics of stoichiometric bacteria-algae interactions in the
epilimnion. SIAM Journal on Applied Mathematics 68(2):503–522

WangW, MaWB, Feng ZS (2018) Chemotaxis effect on algae by inorganic polymer flocculants: backward
bifurcations and traveling wave solutions. International Journal of Bifurcation and Chaos 28:1850159

Xuan HL, Dai XZ, Li J et al (2017) A Bacillus sp. strain with antagonistic activity against
Fusariumgraminearum kills Microcystisaeruginosa selectively. Science of the Total Environ-
ment 583:214–221

Yamamoto Y, Kouchiwa T, Hodoki Y et al (1998) Distribution and identification of actinomycetes lysing
cyanobacteria in a eutrophic lake. Journal of Applied Phycology 10:391–397

Yu Y, Zeng YD, Li J et al (2019) An algicidal Streptomycesamritsarensis strain against
Microcystisaeruginosa strongly inhibits microcystin synthesis simultaneously. Science of the Total
Environment 650:34–43

Zhang YN, Wang XY, Sun Y (2024) A newly identified algicidal bacterium of Pseudomonas f ragi YB2:
algicidal compounds and effects. Journal of Hazardous Materials 478:135490

Zhang JM, Kong JD, Shi J, Wang H (2021) Phytoplankton competition for nutrients and light in a stratified
lake: a mathematical model connecting epilimnion and hypolimnion. Journal of Nonlinear Science
31:1–42

ZhengXW,ZhangBZ,Zhang JL et al (2012)Amarine algicidal actinomycete and its active substance against
the harmful algal bloom species Phaeocystisglobosa. Applied Microbiology and Biotechnology
97:9207–9215

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123



Complex algal dynamics and optimal control with algicidal… Page 47 of 47    72 

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Complex Algal Dynamics and Optimal Control with Algicidal Activity and Reabsorption of Algal Cell Contents
	Abstract
	1 Introduction
	2 Model formulation
	3 Model analysis
	3.1 Algae-free equilibrium and its stability analysis
	3.2 Algae-present equilibrium and its stability analysis
	3.3 Backward and forward bifurcations
	3.4 Transcritical bifurcation and saddle-node bifurcation
	3.5 Hopf bifurcation
	3.6 Bogdanov-Takens bifurcation
	3.7 Permanence

	4 Numerical simulations and controlling strategies for algal bloom
	4.1 Sensitivity analysis of R0
	4.2 Bifurcation analysis
	4.2.1 Backward and forward bifurcations
	4.2.2 Transcritical bifurcation and saddle-node bifurcation
	4.2.3 Hopf bifurcation

	4.3 Effects of nutrient supplementation levels in the system

	5 Control strategies
	5.1 Optimal control problem
	5.2 Controlling strategies for algal bloom

	6 Concluding remarks
	7 Proofs
	Acknowledgements
	References


