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Abstract. Understanding the mechanisms that drive biodiversity and ecosystem resilience in a
rapidly changing world requires a deeper investigation into behavioral diversity among individuals.
Consistent individual differences in behavior, often referred to as animal personality, play a crucial
role in shaping ecological and evolutionary dynamics, particularly in foraging behavior. Traditional
approaches in behavioral and evolutionary ecology typically focus on average behavior, neglecting
the significance of individual variability. This study explores the influence of consumer personality
on ecological dynamics, specifically examining how variations in food availability affect behavioral
strategies and ecosystem functioning. We develop a consumer-resource model that incorporates
personality-dependent saturating attack rates based on the mean-field ratio of resources to consumers.
The well-posedness of the model is established, and we analyze the existence and stability of all
steady-state solutions. Through bifurcation analysis, we identify critical transition parameters and
describe the nonlinear phenomena induced by personality-dependent attack rates. Our findings
demonstrate that boldness in consumers enhances their persistence, particularly under low levels of
boldness, where populations can survive even with moderate or high food supply, which was not
captured in classical frameworks.

Key words. consumer-resource, behavioral plasticity, bold-shy, existence, stability analysis,
bifurcation analysis
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1. Introduction. Consistent individual differences in behavior, often described
as animal personality variation, play a pivotal role in the shaping of ecological and
evolutionary dynamics, particularly in the context of foraging [36, 48]. Bold individu-
als often engage in high-risk, high-reward scenarios, maximizing resource acquisition
but increasing predation exposure. In contrast, shy individuals exhibit risk-averse
strategies, prioritizing survival over immediate gain [47, 15, 34]. These behavioral
tendencies are not merely individual traits but have cascading effects on population
dynamics and evolutionary trajectories, influencing survival rates, reproduction, and
fitness on multiple scales [31, 13]. Temporal fluctuations in food availability and
predation risk further drive these behavioral responses, acting as key ecological pres-
sures shaping population-level outcomes [24, 33]. Although temporal fluctuations of
food availability are key drivers of behavioral responses, their effects in the context
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BEHAVIORAL PLASTICITY IN CONSUMER-RESOURCE MODELS 2191

of consumer risk-taking behavior have rarely been explored mathematically. Strong
selection pressures compel consumers to adapt their behavior to resource availabil-
ity, but individual consumers can exhibit consistent behavioral differences in their
responses, influenced by the specific context of predation [28, 46]. Despite the critical
role of these interactions, current ecological models often overlook the nuanced contri-
butions of personality-driven behaviors. Investigating how individual traits interact
with environmental heterogeneity is essential to understand the resilience of ecosys-
tems and inform conservation of biodiversity in changing environments [41, 3]. Some
empirical results suggest that behavioral types vary in a cost-benefit trade-off, with
bolder individuals gaining greater access to resources at the expense of increased risk
of predation [19, 35, 1]. However, explicitly linking individual behavior to predation
events in natural conditions remains challenging due to the difficulty of quantifying
behavior after predation, highlighting the need for theoretical studies.

Consumer-resource interactions are central to ecological modeling, providing es-
sential insights into population dynamics, community structure, and ecosystem func-
tioning. These interactions, encompassing consumer-resource, herbivore-plant, and
host-parasite relationships, form the foundation for understanding energy transfer
and nutrient cycling within ecosystems [42, 7]. The study of consumer-resource dy-
namics has significantly advanced theoretical ecology by offering predictive frame-
works for population responses to resource availability, environmental variability, and
interspecific interactions [27, 23]. Mathematical models have played a critical role
in quantifying these processes, with practical applications in conservation biology,
resource management, and climate impact assessments [18, 32].

Individual variation in animal behavior, such as boldness (propensity to take
risks), is widespread across taxa and significantly influences species distributions, pop-
ulation dynamics, species interactions, and ecological invasion potential [31, 17, 4, 37].
Despite this, empirical studies on the ecological forces maintaining such variation
remain limited [2, 26]. Predation risk has emerged as a key selection pressure bal-
ancing the trade-offs of risk-taking behaviors in natural environments [20, 39]. How-
ever, quantifying predation events involving individuals with known behavioral pheno-
types remains methodologically challenging [10, 26]. Theoretical and empirical models
incorporating personality traits have explored their effects on consumer-resource dy-
namics, resource partitioning, and habitat selection [30, 44]. These models offer valu-
able insights but often overlook feedback mechanisms between individual behaviors
and environmental variability, such as resource abundance or predation risk [33]. Tra-
ditional approaches in behavioral and evolutionary ecology tend to focus on average
behaviors, neglecting the functional significance of individual differences [22, 43]. This
work aims to develop an ecological model integrating consumer behavioral responses
under varying food availability. The model will be empirically validated and calibrated
using field data to better understand how individual variation influences consumer-
resource dynamics and ecological stability.

This research employs an integrated approach combining theoretical, computa-
tional, and empirical methods. First, differential equation-based models will be de-
veloped to describe the interactions between food availability and animal behavior, as
outlined in section 2. Empirical data from experimental studies will be used to param-
eterize and validate these models, ensuring their accuracy and relevance. In section 3,
we derive conditions for the existence of specified nonlinear phenomena and analyze
their implications for the dynamics of the model by studying equilibria. Section 4
focuses on investigating various bifurcations by identifying critical parameter values
and the conditions under which these bifurcations occur. Numerical simulations will

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2192 SHOHEL AHMED, XIAO HAN, AND HAO WANG

Table 1
Description of variables and parameters of the model (2.3).

Parameter list

Symbol Description Value Reference

k Resource carrying capacity (g) 1.2 [32]

r Maximal growth rate of resource (d - 1) 2.5 [32]

m Consumer loss rate (d - 1) 0.33 [32]
ey Consumer maximal production efficiency (no unit) 0.7(0.5-0.9) [16]

h Handling time (d) 0.25(0.2-1) [6]
b0 Minimum attack rate (g - 1d - 1) 0.2(0.01-1.2) Fitted

a Maximum increment of attack rate (g - 1d - 1) 1.5(0.2-3.5) Fitted

c Half-saturation constant (no unit) 1.2(0-2) Fitted
\beta R Attack rate for model (2.1) (g - 1d - 1) 1.2 [32]

then explore the model dynamics under diverse environmental change scenarios in
section 5. Finally, the study concludes with a discussion presented in section 6.

2. The model formulation. The Rosenzweig--MacArthur consumer-resource
model that incorporates density-dependent growth for the resource and a saturating
functional response for the consumer [32] is formulated as follows:\left\{     

dx

dt
= rx

\Bigl( 
1 - x

k

\Bigr) 
 - \beta Rxy

1 + \beta Rhx
,

dy

dt
= ey

\beta Rxy

1 + \beta Rhx
 - my,

(2.1)

where x and y are resource and consumer densities, and the parameter details are
provided in Table 1. The functional response term also known as feeding rate is given
by

fR(x) =
\beta Rx

1 + \beta Rhx
.(2.2)

This functional response fR(x) satisfies the fundamental properties of a functional
response [25].

1. fR(0) = 0, i.e., at zero resource population level, there will be no interaction
between resource and consumer.

2. f \prime 
R(x) =

\beta R

(1+\beta Rhx)2 , i.e., an increase in resource increases the feeding rate.

3. limx\rightarrow \infty fR = 1
h , i.e., for a higher resource population level, fR saturates.

In model (2.1), the consumer's foraging behavior via attack rate \beta R is considered
constant. While this formulation effectively captures the fundamental dynamics of
consumer-resource interactions, it neglects the potential influence of behavioral plas-
ticity. Risk-taking behaviors, for example, can significantly alter foraging strategies
based on the densities of both consumers and resources. To account for consumers
adopting risk-taking behaviors to maximize resource acquisition under fluctuating re-
source availability, the attack rate must be treated as a dynamic variable rather than
a fixed parameter. With this in mind, we propose the following personality-driven
consumer-resource model:\left\{       

dx

dt
= rx

\Bigl( 
1 - x

k

\Bigr) 
 - \beta (x, y)xy

1 + \beta (x, y)hx
,

dy

dt
= ey

\beta (x, y)xy

1 + \beta (x, y)hx
 - my.

(2.3)
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BEHAVIORAL PLASTICITY IN CONSUMER-RESOURCE MODELS 2193

All constant parameters in the above model are positive, and their details are pro-
vided in Table 1. Traditionally, the attack rate, \beta , also referred to as the foraging
rate, is modeled as a constant. However, to incorporate behavioral flexibility and
capture consumer personality, we extend the model by assuming that \beta is a func-
tion of both resource and consumer densities, \beta (x, y). We constructed \beta (x, y) based
on the mean-field ratio of resources to consumers, capturing the dynamic interplay
between resource and consumer availability. This formulation reflects the adaptive
nature of consumer behavior: when resources are scarce, consumers increase boldness
to improve foraging success; when competition among consumers intensifies, the bold-
ness function saturates as competitive costs outweigh foraging benefits. A plausible
candidate for this dynamic attack rate is defined as

\beta (x, y) = b0 +
a

c

\biggl( 
x

y

\biggr) 
+ 1

= b0 +
ay

cx+ y
,(2.4)

where the following notation is used:
\bullet \beta (x, y): the attack rate, which varies based on consumer boldness;
\bullet b0: the minimum attack rate, representing the baseline for a consumer ex-

hibiting extreme shyness;
\bullet a: the maximum possible increment to the attack rate, corresponding to a

consumer exhibiting extreme boldness;
\bullet c: the half-saturation constant governing the boldness-based increment of

the attack rate; a smaller c indicates a stronger influence of boldness, while
a larger c reflects a weaker influence.

The functional response (feeding rate) for the model (2.3) is given by

f(x, y) =
\beta (x, y)x

1 + \beta (x, y)hx
,(2.5)

which also satisfies all the basic properties of functional response like model (2.1).
Figure 1 shows the schematic diagram of attack rate \beta (x, y) and functional response
f(x, y).1

Model outcomes are highly sensitive to parameter values, making accurate esti-
mation crucial for reliable quantitative predictions within a finite time interval. A
systematic approach is essential for estimating multiple parameters, and various tech-
niques have been used in previous studies [38, 16, 40]. In this study, we applied the
nonlinear least-squares method (NLS), as described in Appendix A, to estimate pa-
rameters. However, empirical studies that determine feeding rates by varying resource
and consumer densities in the field remain limited, particularly in complex ecosystems
such as coral reefs. Using field experimental data on herbivorous fishes and their algal
resources from a near-pristine reef ecosystem [16], we fitted the feeding rate function
(2.5). The resulting fits are shown in Figure 1(d), with the corresponding parame-
ter estimates provided in Table 1. A detailed description of the fitting procedure is
presented in Appendix A.

By combining the generic model (2.3) with the attack function (2.4), we derive
the explicit form of our model as follows:

1The functions \beta (x, y) and f(x, y) are Lipschitz with respect to x and y in the open first quadrant,
respectively. Hence, their definitions can be extended to the closure of that set by letting them be
zero when either x= 0 or y= 0.
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2194 SHOHEL AHMED, XIAO HAN, AND HAO WANG

(a) (b)

(c)
(d)

Fig. 1. Schematic diagram for (a) attack rate \beta (x, y), (b) functional response f(x, y), (c) func-
tional response fR(x), and (d) fitted functional response results for model (2.3).

\left\{       
dx

dt
= rx

\Bigl( 
1 - x

k

\Bigr) 
 - xy (ay+ b0(cx+ y))

ahxy+ b0hx(cx+ y) + cx+ y
,

dy

dt
=

eyxy (ay+ b0(cx+ y))

ahxy+ b0hx(cx+ y) + cx+ y
 - m y.

(2.6)

3. Model analysis. In this section, we establish the conditions for the existence
of the specified nonlinear phenomena and examine their implications for the dynamics
of model (2.3).

3.1. Mathematical preliminaries. In Theorem 3.1, we demonstrate the non-
negativity and boundedness of solutions for model (2.3). The boundedness ensures
the system is biologically well-behaved, preventing unbounded growth of species pop-
ulations over time due to resource limitations.

Theorem 3.1 (positivity and boundeness). All solutions (x(t), y(t)) of the system
(2.3) which initiate in \BbbR 2\setminus (0,0) are positive and uniformly bounded.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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BEHAVIORAL PLASTICITY IN CONSUMER-RESOURCE MODELS 2195

Proof. The system of equations (2.3) is continuously differentiable in a neighbor-
hood of the first quadrant Q = \{ (x, y) : x, y > 0\} . As a result, solutions to initial
value problems with nonnegative initial conditions exist and are unique. Rewrite the
esystem (2.3) in the form

dx

dt
= x\prime = x\scrM (x, y), and

dy

dt
= y\prime = y\scrN (x, y).

Clearly, if (x(t), y(t)) is a solution of the system, then x\prime = xm(t) and y\prime = yn(t), where
m(t) = \scrM (x(t), y(t)) and n(t) = \scrM (x(t), y(t)). Hence, upon using the integration
factor trick, we get d

dt (e
 - 

\int t
0
m(s)dsx(t)) = d

dt (e
 - 

\int t
0
n(s)dsy(t)) = 0, which implies

x(t) = e
\int t
0
m(t)dtx(0), and y(t) = e

\int t
0
n(t)dty(0).(3.1)

From (3.1), we can see that if (x(0), y(0))\in Q, then (x(t), y(t))\in Q, proving invariance
in Q. The fundamental theorem of existence and uniqueness for differential equations
guarantees that a solution curve will lie inside the first quadrant and has no intersec-
tion with the coordinate axes. Thus, the nonnegative quadrant \BbbR 2\setminus (0,0) is invariant
for system (2.3).

We have seen that x(t) \geq 0 and y(t) \geq 0; hence, it suffices to prove that the
solutions do not cross the hypotenuse given by x+y= \eta . From the positivity property
of our solutions, we can see that

x\prime + y\prime \leq rx
\Bigl( 
1 - x

k

\Bigr) 
 - my= rx

\Bigl( 
1 - x

k

\Bigr) 
 - m(\eta  - x) =\scrF (x).

The maximum of the parabolic function \scrF (x) on 0 \leq x, obtained by setting its
derivative to zero, is at \=x= k

2r (r+m). Hence,

\scrF (x)\leq \scrF (\=x) = - m\eta + (m+ r)
k

2r
(r+m) - r

k

\biggl( 
k

2r
(r+m)

\biggr) 2

< 0

if \eta is chosen large enough.

3.2. Equilibria and their stability. For an autonomous system (2.3), equi-
librium points are steady state solutions. They can be determined as a solution of
\=F = 0, where \=F = [dxdt ,

dy
dt ]

T . The invariant nullclines of model (2.3) represent two key
scenarios: the exponential extinction of the consumer in the absence of the resource
and the logistic growth of the resource in the absence of the consumer, respectively.
The stability of the boundary equilibrium Ek = (k,0) is determined by the logistic
dynamics of the resource when consumers are absent. The co-existing or interior equi-
librium E\ast = (x\ast , y\ast ) points of the system (2.3) are the points of intersection of the
nullclines given by \left\{       

f1(x, y) = r
\Bigl( 
1 - x

k

\Bigr) 
 - \beta (x, y)y

1 + h\beta (x, y)x
= 0,

f2(x, y) = ey
\beta (x, y)x

1 + h\beta (x, y)x
 - m= 0.

(3.2)

The slope of the f2(x, y) = 0 nullcline is clearly negative ( dydx < 0), indicating that the
nullcline is a decreasing function of x in the first quadrant. The nullcline f1(x, y) = 0
intersects the coordinate axes at [k,0] and [0, y0], where y0 > 0 is the unique solution
of y= r

b0+a . In the first quadrant, the partial derivative

\partial f1
\partial y

(x, y) = - \beta (x, y) + hx\beta 2(x, y) + y\beta \prime (x, y)

(1 + h\beta (x, y)x)2
< 0

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2196 SHOHEL AHMED, XIAO HAN, AND HAO WANG

Fig. 2. Nullclines of the system (2.3) for different k values.

is negative, ensuring that the resource nullcline behaves as a continuous function.
By the implicit function theorem, the resource nullcline remains smooth and well-
defined in the first quadrant. The system (2.3) possesses an interior equilibrium point
at the intersection of the nullclines within the first quadrant. From the geometric
structure of the nullclines, it is evident that they either do not intersect (red curve
in Figure 2) or intersect twice (green curve in Figure 2); color images are available
online. Consequently, the model (2.3) either has no positive equilibrium or a pair
of positive equilibria. Additionally, a transient equilibrium point of multiplicity two
exists between these two system states, as illustrated by the cyan curve in Figure 2.
This behavior is a general characteristic of the nullclines. Figure 2 further highlights
the possible intersection patterns of the nullclines.

Letting x\ast \in (0, k) with k > 0, a coexistence equilibrium E\ast of system (2.3) has
to satisfy \left\{     

x\ast = k
L2

\beta (x\ast , y\ast )
= k

L2

\Lambda (y\ast )
,

y\ast =L1
\Lambda (y\ast ) - L2

\Lambda 2(y\ast )
,

(3.3)

where \Lambda (y\ast ) := \beta (x\ast \in (0, k), y\ast ), L1 =
eyr

ey - hm , and L2 = m
k(ey - hm) . If ey  - hm \leq 0,

no coexistence equilibrium exists. Therefore, ey  - hm > 0 is a valid assumption,
which also implies L1 > 0 and L2 > 0. That gives that the necessary condition for
the existence of the positive interior equilibrium E\ast = (x\ast , y\ast ) of the system (2.3) is
\Lambda (y\ast ) > L2. From the second equation of the explicit version of the model (2.6), we
have

y=
cx(m - b0x(ey  - hm))

x(a+ b0)(ey  - hm) - m
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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BEHAVIORAL PLASTICITY IN CONSUMER-RESOURCE MODELS 2197

That gives the same condition for the coexistence equilibrium ey  - hm > 0. Bio-
logically, if the mortality rate of a consumer is less than the ratio of a conversion
coefficient and handling time, then a coexistence equilibrium point becomes possible.
The component x\ast of the co-existing equilibrium point E\ast is a root of the quadratic
equation

a2x
2  - a1x+ a0 = 0.(3.4)

Here, a2 = r(a + b)(ey  - hm), a1 = kr(a + b)(ey  - hm) + bkm(ey  - hm) +mr, and
a0 = km2 + kmr. Since a1 > 0, the polynomial equation (3.4) can have at most
two positive solutions, which correspond to the two possible co-existing equilibrium
points.

Theorem 3.2. The consumer-only equilibrium Ek = (k,0) is locally asymptoti-
cally stable if C0 =

eyb0k
m(1+b0hk)

\leq 1.

Proof. The Jacobian matrix of the system (2.3) evaluated at E(x, y) is

J(E) =

\biggl[ 
a10 a01
b10 b01

\biggr] 
,

where

a10 = r - 2rx

k
 - ay3 + b0y(cx+ y)2

(ahxy+ b0hx(cx+ y) + cx+ y) 2
,

a01 =
x ( - b0(cx+ y) (2ahxy+ b0hx(cx+ y) + cx+ y) - ay(ahxy+ 2cx+ y))

(ahxy+ b0hx(cx+ y) + cx+ y) 2
,

b10 =
eyy

\bigl( 
ay2 + b0(cx+ y)2

\bigr) 
(ahxy+ b0hx(cx+ y) + cx+ y) 2

,

b01 =
eyx (b0(cx+ y) (2ahxy+ b0hx(cx+ y) + cx+ y) + ay(ahxy+ 2cx+ y))

(ahxy+ b0hx(cx+ y) + cx+ y) 2
 - m.

For stability, we show that all the eigenvalues of the Jacobian of the model (2.3)
evaluated at the Ek have the negative real part. The Jacobian Jk evaluated at the
Ek is given by

Jk =

\left(    - r  - b0ck
2

b0chk2 + ck

0
b0eyk

b0hk+ 1
 - m

\right)   .

The Jacobian Jk has the following eigenvalues:

\lambda 1 = - r, \lambda 2 =
b0eyk

b0hk+ 1
 - m.

Clearly, \lambda 1 < 0, and

\lambda 2 =
b0eyk

b0hk+ 1
 - m=m(C0  - 1).

This implies that \lambda 2 < 0 if C0 < 1. On the other hand, if C0 = 1, \lambda 1 = - r and \lambda 2 = 0.
This also indicates that Ek is stable. The above result implies that it is possible
for consumers to go extinct from the system (when C0 \leq 1) if the initial size of the
consumer population is in the basin of attraction of the equilibrium point Ek.

Now, we show the stability of the interior equilibrium E\ast of the system (2.3) in
the theorem below.
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D
ow

nl
oa

de
d 

09
/2

4/
25

 to
 1

29
.1

28
.2

16
.3

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



2198 SHOHEL AHMED, XIAO HAN, AND HAO WANG

Theorem 3.3. Consider the interior equilibrium points E\ast 
1 and E\ast 

2 of system
(2.3). The following statements describe their local stability properties:

1. The interior equilibrium point E\ast 
2 , whenever it exists, is always a saddle point.

2. The equilibrium E\ast 
1 is locally asymptotically stable if the following inequality

holds,

ky\ast 1  - hmx\ast 2
1

x\ast 
1

+
1 - (ey  - hm)x\ast 

1

(\alpha y\ast 1 + 1)x\ast 
1

< 0,

and unstable if the expression is positive.

Proof. (1) Since we do not have the explicit expressions for the positive equilibria,
we discuss their stability using the slope of nullclines at E\ast . The Jacobian matrix
evaluated at an interior equilibrium point E\ast (x\ast , y\ast ) is given by

J(E\ast ) =

\left[   x
\partial f1
\partial x

x
\partial f1
\partial y

y
\partial f2
\partial x

y
\partial f2
\partial y

\right]   =

\left[     - x
\partial f1
\partial y

dy(f1)

dx
x
\partial f1
\partial y

 - y
\partial f2
\partial y

dy(f2)

dx
y
\partial f2
\partial y

\right]    
(x\ast ,y\ast )

.

Here, dy(fi)

dx denotes the slope of the tangent line to the curve fi(x, y) = 0. Now, the
determinant of the Jacobian matrix evaluated at E\ast becomes

Det(J(E\ast )) =

\biggl( 
xy

\partial f1
\partial y

\partial f2
\partial y

\biggl( 
dy(f2)

dx
 - dy(f1)

dx

\biggr) \biggr) 
(x\ast ,y\ast )

.(3.5)

Note that

\partial f1(x
\ast , y\ast )

\partial y

= - 
\bigl( 
b0(cx+ y)(2ahxy+ cx+ y) + ay(ahxy+ 2cx+ y) + b20hx(cx+ y)2

\bigr) 
(y(ahx+ b0hx+ 1) + cx(b0hx+ 1))2

< 0,

\partial f2(x
\ast , y\ast )

\partial y

=
ey
\bigl( 
2cxy(a+ b0)(b0hx+ 1) + y2(a+ b0)(hx(a+ b0) + 1) + b0c

2x2(b0hx+ 1)
\bigr) 

(x(hy(a+ b0) + b0chx+ c) + y)2
> 0.

Suppose that \theta 1 and \theta 2 are the angles of inclination of the tangents to f1(x, y) = 0
and f2(x, y) = 0 at E\ast 

2 , respectively (see Figure 3). We observe that \pi 
2 < \theta 1 < \theta 2 < \pi 

holds whenever E\ast 
2 exists, which implies

dy(f2)

dx
(x\ast 

2, y
\ast 
2)>

dy(f1)

dx
(x\ast 

2, y
\ast 
2).

Hence, we find Det(J(E\ast 
2 ))< 0 from (3.5) and therefore E\ast 

2 is a saddle point.
(2) For co-existing equilibrium E\ast 

1 , we find

dy(f2)

dx
(x\ast 

1, y
\ast 
1)<

dy(f1)

dx
(x\ast 

1, y
\ast 
1).

Therefore, Det(J(E\ast 
1 ))> 0 and the stability of E\ast 

1 depends on the sign of the trace of
the Jacobian matrix J(E\ast 

1 ):

Tr(J(E\ast 
1 )) =

\biggl[ 
x
\partial f1
\partial x

+ y
\partial f2
\partial y

\biggr] 
(x\ast 

1 ,y
\ast 
1 )

=
ky\ast 1  - hmx\ast 2

1

x\ast 
1

+
1 - (ey  - hm)x\ast 

1

(\alpha y\ast 1 + 1)x\ast 
1

.
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BEHAVIORAL PLASTICITY IN CONSUMER-RESOURCE MODELS 2199

Fig. 3. Locations of various equlibria: orange and blue color curves denote the resource and
consumer nullclines, respectively.

Therefore, E\ast 
1 is asymptotically stable if the expression on the right-hand side is

negative and unstable if it is positive.

Remark 3.4. From (3.3) we get that the necessary condition for the existence of
the positive interior equilibrium E\ast = (x\ast , y\ast ) of the system (2.3) is \Lambda (y\ast )>L2, which
gives C0 > 1.

4. Bifurcation analysis. In this section, we examine the bifurcations of model
(2.3) by identifying the critical parameter values and the conditions under which
bifurcations occur. These bifurcations reveal how the system's dynamics change qual-
itatively in response to parameter variations, highlighting key transitions in behavior.

4.1. Fold bifurcation. From the y\ast condition in (3.3), we obtain the following
implicit function,

\scrF (y\ast ) := y\ast \Lambda 2(y\ast ) - L1(\Lambda (y
\ast ) - L2) = 0

,of the nonzero consumer equilibrium y\ast (having one-to-one correspondence to the
nonzero resource equilibrium x\ast via (3.3)). In a limit point related to merging and
disappearance of two equilibria on a fold of the equilibrium manifold, the value of y\ast 

satisfies \scrF \prime (y\ast ) = 0, which can be equivalently expressed as

\Lambda 3(y\ast ) - L1(2L2  - \Lambda (y\ast ))\Lambda \prime (y\ast ) = 0.(4.1)

Recall that \Lambda (y) is smooth. In Appendix B, we show that this condition is both nec-
essary and sufficient for vanishing of the Jacobian of the model (2.3) at a coexistence
equilibrium. It is obvious that for y\ast to be a limit point, it has to satisfy \Lambda (y\ast )< 2L2

since \Lambda \prime (y\ast )> 0 and (4.1) holds. For our specific family of functional responses (2.5)
we are most interested in how dynamics of the model (2.3) vary. Using the expres-
sion (2.4), the fold bifurcation manifolds can be written in polynomial form at the
coexistence equilibrium E\ast = (x\ast , y\ast ) (x\ast \in (0, k)) as

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2200 SHOHEL AHMED, XIAO HAN, AND HAO WANG

Fig. 4. Schematic diagram for the fold bifurcation condition (4.2).

(\Lambda  - L2)
2 = \alpha (\Lambda  - b0)

2(2L2  - \Lambda ),(4.2)

where \alpha = cm
aeyr

. The fold bifurcation can be interpreted as a catastrophe when it
leads to a sudden decline in the density of a threatened or exploited population, or as
a benefit when it results in a sudden increase in resource density. Conversely, it can
also represent a rapid population increase under certain conditions. Importantly, the
shape of the fold manifold (its roots) explicitly depends on the consumer minimum
attack rate (b0), while its overall structure is influenced by other key parameters. A
schematic diagram illustrating the fold bifurcation condition is provided in Figure 4.

4.2. Hopf bifurcation. The coexistence equilibrium can undergo a Hopf bifur-
cation, indicating a local qualitative change in the phase space. At this bifurcation
point, a periodic solution either emerges from or disappears at the equilibrium as
the bifurcation parameter crosses a critical value. This occurs when the real parts of
both eigenvalues of the Jacobian transversally cross zero, leading to the appearance of
two purely imaginary eigenvalues at the coexistence equilibrium. The necessary con-
dition for the occurrence of a Hopf bifurcation curve at the coexistence equilibrium
E\ast = (x\ast , y\ast ) is

\Lambda \prime =
(eyL2  - mh(\Lambda  - L2))\Lambda 

2

eym(\Lambda  - L2)
,(4.3)

and

\Lambda 3  - L1(2L2  - \Lambda )\Lambda \prime > 0,(4.4)

where \Lambda = \Lambda (y\ast ). The condition (4.3) ensures that the trace of the Jacobian of
model (2.3) vanishes at a coexistence equilibrium, and the condition (4.4) guarantees
the positivity of the Jacobian at this equilibrium. In Appendix C, we prove that
condition (4.3) is both necessary and sufficient for the vanishing trace of the Jacobian.
Substituting \Lambda \prime from (4.3) into (4.4), the condition (4.4) can be rewritten as

\Lambda 
\bigl( 
\Lambda  - L2

\bigr) 
> \eta 1

\bigl( 
\Lambda  - 2L2

\bigr) \biggl( 
\Lambda  - L2\eta 2

\biggr) 
,(4.5)
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BEHAVIORAL PLASTICITY IN CONSUMER-RESOURCE MODELS 2201

Fig. 5. Schematic diagram for the Hopf bifurcation condition (4.5).

where \eta 1 =
rh

ey - hm and \eta 2 =
ey+hm

hm . A graphical representation of the inequality (4.5)
is shown in Figure 5. In this figure, the convex parabolas correspond to the left-hand
and right-hand sides of expression (4.5), and \Lambda (y\ast Hopf ) is the unique point where
they intersect. Since we are specifically considering the case of consumer-resource
coexistence, where the condition \Lambda (y\ast )>L2 holds, it is clear that (4.5) remains valid
for all \Lambda (y\ast ) values lying between the roots of the right-hand side of expression (4.5).

We have seen that the stability of E\ast depends on the sign of Tr(J(E\ast )) through
condition (4.5). Here, we consider k as a bifurcation parameter. We have chosen k as
the bifurcation parameter of the Hopf bifurcation but any other parameter is a valid
choice. k has been chosen in order to respect traditions as the paradox of enrichment
was described with respect to k [32]. Now, E\ast loses its stability when the sign of
Tr(J(E\ast )) changes from negative to positive due to variation of k. The co-existing
equilibrium E\ast of the system (2.3) undergoes a Hopf bifurcation at k= kHopf if

Det(J(E\ast ;k= kHopf ))> 0 and
d

dk
(Tr(J(E\ast )))

\bigm| \bigm| \bigm| \bigm| 
k=kHopf

\not = 0.

To determine the stability and direction of Hopf bifurcations near the positive equi-
librium E\ast , we analyze the first Lyapunov coefficient l1 using the following theorem.

Theorem 4.1. Let the model (2.3) undergo a Hopf bifurcation at the equilibrium
point E\ast (x\ast 

1, y
\ast 
1) with respect to the parameter k at the bifurcation point k = kHopf .

If the First Lyapunov coefficient l1 \not = 0, the Hopf bifurcation is supercritical if l1 < 0,
and it is subcritical if l1 > 0, l1 is calculated in the proof of the theorem.

The detailed proof of this theorem is provided in [29], and in Appendix C we give
the explicit expression for l1. Due to the lack of an explicit expression for the coexis-
tence equilibrium E\ast , determining the sign of l1 analytically is not feasible. However,
numerical analysis shows that a Hopf bifurcation occurs around E\ast = (0.32,1.3) at
kHopf = 1.4 (see Figure 8(b)). The first Lyapunov coefficient is l1 =  - 5.453 < 0,
indicating a supercritical Hopf bifurcation. In consumer-resource systems, a Hopf bi-
furcation signals the transition from stable coexistence to periodic oscillations, where
population densities fluctuate with parameter changes. This behavior can drive popu-
lations to low levels, risking extinction. If resources vanish first, consumers collapse; if
consumers vanish, resources may recover or also disappear, depending on conditions.
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2202 SHOHEL AHMED, XIAO HAN, AND HAO WANG

4.3. Transcritical bifurcation. Due to the transcritical bifurcation, a coexis-
tence equilibrium E\ast merges with the resource-only equilibrium EK .

Theorem 4.2 (transcritical bifurcation for Ek). The necessary condition of tran-
scritical bifurcation of boundary equilibrium is Ek is \beta (x\ast ,0) =L2 with x\ast \in (0, k).

The above Theorem 4.2 gives the boundary for the k for a possible extinction of
Ek if

kT >
m

b0(ey  - hm)
.(4.6)

This phenomenon significantly impacts the consumer population. When k exceeds
the critical bifurcation value, the resource-only equilibrium Ek becomes the sole sta-
ble state, leading to consumer extinction. Additionally, condition (4.6) highlights
that factors like the consumer's minimum attack rate (b0), mortality rate (m), and
conversion efficiency (e) are crucial for the persistence and survival of the consumer
population.

5. Numerical results. In this section, we perform numerical simulations to cor-
roborate the theoretical results and explore key dynamical features of system (2.3).
Figures 6 and 7 present the sensitivity heat map (SHM) and parameter sensitivity
analysis (PSA) for the resource (x) and consumer (y) populations with respect to
various parameters. The SHM and PSA effectively assess model sensitivity, illus-
trating how perturbations in parameter space influence state variables. The SHM
groups parameter sensitivities for each state variable, while the PSA quantifies the
sensitivity of output state variables to individual parameters. These methods leverage
the property that perturbations in high-dimensional parameter space often produce
low-dimensional changes in output variables [14]. Figure 6 shows the SHM under sta-
ble and oscillatory coexistence conditions. Positive values indicate that the relative
change in the parameter leads to a rise in population density, while negative values

(a) (b)

Fig. 6. SHM for the model (2.3) (a) under a stable coexistence condition and (b) under an
oscillatory coexistence condition.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/2

4/
25

 to
 1

29
.1

28
.2

16
.3

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



BEHAVIORAL PLASTICITY IN CONSUMER-RESOURCE MODELS 2203

Fig. 7. Local sensitivity analysis of model (2.3).

suggest a decline. In the stable coexistence scenario (Figure 6(a)), parameter-induced
density changes occur primarily during the initial transient phase, after which the sys-
tem stabilizes and becomes less sensitive. In contrast, the oscillatory coexistence case
(Figure 6(b)) shows periodic fluctuations in sensitivity, corresponding to the cyclical
nature of the population dynamics. Overall, the consumer population demonstrates
greater sensitivity to parameter changes than the resource population, indicating a
stronger density response to perturbations. Figure 7 analyzes the sensitivity of out-
put state variables to individual parameters, highlighting their influence on resource
and consumer dynamics. The consumer population is particularly sensitive to the
minimum attack rate (b0), where small changes significantly affect its dynamics. The
carrying capacity (k) and predation rate (a) positively influence the consumer popu-
lation, with k also playing a key role in resource growth. Higher consumer mortality
rates (m) negatively impact the consumer population size. This analysis identifies b0,
k, a, and m as critical drivers of system behavior and stability.

To investigate the effect of the consumer mortality rate (m), we vary the parame-
ter m while keeping all other parameters fixed as in Table 1. For very low values of m,
the system exhibits an interior positive equilibrium E\ast , which corresponds to a stable
limit cycle, and a boundary equilibrium Ek, which behaves as a saddle point (see Fig-
ure 8(a)). As the mortality rate m increases, the amplitude of the limit cycle declines,
and at m = 0.35 (denoted as mHopf ), the limit cycle disappears. At this point, the
system transitions to a stable interior equilibrium E\ast 

1 . To confirm the occurrence of a

Hopf bifurcation at m=mHopf , we verify the condition: (dRe(\lambda )
dm )m=mHopf

= - 0.028.
This condition ensures that a limit cycle exists for m<mHopf . According to Theorem
4.1, the system undergoes a Hopf bifurcation at m=mHopf . The first Lyapunov coef-
ficient is calculated as l1 = - 0.39, indicating that the Hopf bifurcation is supercritical
and that the bifurcated limit cycle \Gamma 1 is stable. For m>mHopf , the system stabilizes
at the interior equilibrium E\ast . As m continues to increase, the system reaches a crit-
ical threshold mT = 0.45, where a bistable behavior emerges between the equilibria
E\ast and Ek. At m = mfold, the system undergoes a saddle-node bifurcation, leav-
ing Ek as the only remaining equilibrium, which becomes globally stable. From an
ecological perspective, at low mortality rates, the system supports coexistence, with
resource and consumer populations exhibiting oscillations (limit cycles). As mortality

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2204 SHOHEL AHMED, XIAO HAN, AND HAO WANG

(a)

(b)

Fig. 8. Bifurcation diagram of internal positive equilibrium (E\ast ) for the model (2.3) for b0 = 0.5:
(a) variation with mortality rate (m); (b) variation with carrying capacity (k). The corresponding
equilibrium labels shown in the right panels also apply to the left panels.

increases, the consumer population declines, and the system stabilizes at an interior
equilibrium. Further increases in mortality lead to the extinction of the consumer
population, leaving only a stable resource equilibrium.

To examine the effect of food supply through the carrying capacity (k) in our
model, we fix b0 = 0.5 and keep all other parameters the same as in Table 1. Figure
8(b) presents bifurcation diagrams for the consumer-resource system. For lower values
of k, the system exhibits a boundary equilibrium point Ek, which is asymptotically
stable, up to k = 1.2 (denoted as kfold), where a fold bifurcation occurs. Beyond
this point, both the boundary and interior equilibrium points coexist and remain
stable until they collide. For k > kT , the boundary equilibrium points disappear.
At k = 1.5 (denoted as kHopf ), the system undergoes a Hopf bifurcation, leading to

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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(a) (b)

Fig. 9. Two-parameter bifurcation diagram of model (2.3) showing the effects of resource car-
rying capacity (k) with (a) consumer mortality rate (m) at b0 = 0.5, (b) minimum attack rate (b0)
at m = 0.33. Regions are labeled as E: extinction, SC: stationary coexistence, and OC: oscillatory
coexistence.

the emergence of a stable limit cycle, and the interior equilibrium point E\ast 
1 becomes

unstable. The amplitude of the limit cycle grows as the carrying capacity increases.
To analyze the combined effects of mortality rate (m) and carrying capacity (k)

in our model, we vary m and k while keeping all other parameters fixed as in Table
1. The resulting behavior of the system allows the mk-plane to be partitioned into
distinct regions, separated by three bifurcation curves: the fold curve (red), the Hopf
curve (blue), and the transcritical curve (black) (see Figure 9(a)). (Color images are
available online.) In the top-left region labeled (OC), the system exhibits oscillatory
coexistence, where stable limit cycles emerge around the interior equilibrium E\ast ,
indicating periodic dynamics between the consumer and resource populations. The
corresponding phase portrait for m = 0.33, k = 2 is shown in Figure 10(e). Moving
downward and rightward, the (SC) region represents stable coexistence, where the
system stabilizes at an interior equilibrium E\ast . The phase portrait for m= 0.33, k =
1.2 is presented in Figure 10(c). The intermediate region labeled (SC or E) lies
between the fold and transcritical curves and represents bistability, where both a
stable interior equilibrium and a boundary equilibrium coexist. The corresponding
phase portrait for m = 0.33, k = 0.5 is shown in Figure 10(b). In the bottom-right
region labeled (E), higher mortality rates (m) and lower carrying capacities (k) cause
the consumer population to collapse, leaving only the resource population at the
boundary equilibrium Ek. The corresponding phase portrait for m = 0.33, k = 0.2
is presented in Figure 10(a). The Hopf curve marks the transition where oscillatory
dynamics emerge via a Hopf bifurcation, while the fold curve denotes the point where
equilibria collide and disappear. The transcritical curve signals the shift between
boundary and interior equilibria. Overall, this analysis demonstrates that increasing
food supply (through higher k) or reducing consumer mortality (m) can promote
coexistence, while higher mortality and limited food supply drive the system toward
extinction dynamics.
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(a) (b)

(c)
(d)

(e)

Fig. 10. Phase portrait in each of the regions R1  - R5 shown in Figure 9(b). Parameters
values are (a) R1: b0 = 0.2, k = 0.5, (b) R2: b0 = 0.1, k = 1.5, (c) R3: b0 = 0.8, k = 1.2, (d) R4:
b0 = 0.1, k= 2.2, (e) R5: b0 = 0.5, k= 2.

Figures 9(b) and 10 illustrate how the minimum attack rate b0 and resource
carrying capacity k shape the consumer-resource system dynamics. At low carry-
ing capacity, regardless of the attack rate, the system undergoes population collapse

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Table 2
Equilibrium dynamics across the regions shown in Figure 9(b).

Phase dynamics Ek E\ast 
1 E\ast 

2 Remarks

R1 [Figure 10(a)] Stable - - Ek is asymptotically stable.

R2 [Figure 10(b)] Stable Stable Saddle Ek and E\ast 
1 are asymptotically stable.

R3 [Figure 10(c)] Saddle Stable - E\ast 
1 is asymptotically stable.

R4 [Figure 10(d)] Stable Unstable Saddle Ek is asymptotically stable and

there is a stable limit cycle around E\ast 
1 .

R5 [Figure 10(e)] Saddle Unstable - There is a stable limit cycle around E\ast 
1 .

Fig. 11. Two parameter bifurcation diagram of Rosenzweig--MacArthur model (2.1) for con-
sumer carrying capacity (k) and attack rate (\beta R).

(Region I), where consumers fail to survive due to insufficient resources, leaving only
the resource population [12]. At moderate values of k and attack rates, the system
enters a bistable state (Region II), where the consumer population can coexist with
the resource at an interior equilibrium or collapse to a boundary equilibrium, de-
pending on initial conditions, where a minimum resource density is required to avoid
extinction [11]. The resource density at the coexistence equilibrium increases with
k, expanding the basin of attraction and promoting resource persistence. Crossing
the transcritical bifurcation manifold (Region III) leads to stable coexistence, where
resource growth and consumer consumption balance. At higher k and lower attack
rates, oscillatory coexistence emerges (Regions IV and V). Here, the system exhibits
periodic consumer-resource dynamics, where consumer populations rise with resource
abundance and decline as resources deplete. The amplitude of these cycles increases
with k, aligning with the paradox of enrichment. The fold, Hopf, and transcritical
bifurcation curves mark critical thresholds between collapse, stable coexistence, and
oscillations, providing insights into ecological balance and species persistence.

Table 2 summarizes the equilibria dynamics across regions R1 to R5, as illustrated
in the bifurcation structure.

To compare the bifurcation structures of models (2.1) and (2.3), we present
the bifurcation diagram of model (2.1) in Figure 11, illustrating how the resource

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2208 SHOHEL AHMED, XIAO HAN, AND HAO WANG

carrying capacity k and the attack rate parameter \beta R affect the system dynamics. In
the Rosenzweig--MacArthur model (2.1), the system exhibits three distinct regions:
population collapse (E), stable coexistence (SC), and oscillatory coexistence (OC).
At lower resource carrying capacities and higher attack rates, the system collapses
to extinction (E), while higher carrying capacities allow stable coexistence or oscil-
lations to emerge through a Hopf bifurcation. In contrast to model (2.3), which
introduces more complexity with five regions (I, II, III, IV, and V), separated by
fold, Hopf, and transcritical bifurcation curves. The additional dynamics include re-
gions of bistability (II), where stable coexistence and population collapse coexist, and
mixed oscillatory behavior (IV), where limit cycles or equilibrium points emerge de-
pending on system parameters. The inclusion of a minimum attack rate b0 further
refines the behavior of the system, leading to richer dynamical results compared to
the classical Rosenzweig--MacArthur model. Both models share similar fundamental
behaviors (collapse, coexistence, and oscillations), while the new model captures ad-
ditional ecological complexity, such as bistability and transitions influenced by both
resource carrying capacity and attack rate parameters.

6. Discussion. The relationship between consumers and resources is a funda-
mental interaction that shapes ecosystems and influences population dynamics. Tra-
ditional mathematical approaches in behavioral and evolutionary ecology often focus
on average behavior, neglecting individual differences and their functional signifi-
cance in consumer-resource systems. Several studies have highlighted the impact
of consumer behavior, particularly bold and shy strategies, on population dynamics
[47, 15, 34]. Observations and empirical evidence across different trophic levels have
provided valuable insights into behavioral interactions in real populations [26, 9, 21].
While empirical studies on animal behavior have garnered considerable attention, the
role of behavioral variability in mathematical models remains underexplored. To ad-
dress this gap, we propose a novel consumer-resource model (2.3) that incorporates
consumer behavioral responses based on the ratio of resource and consumer densi-
ties. This model provides a framework for understanding how behavioral strategies
influence population-level dynamics and resource consumption.

We examined the nonnegativity and boundedness of solutions for model (2.3),
where the solutions are unique and remain nonnegative within the invariant set. Our
analysis identified the conditions for different types of equilibria, showing that the
resource-only equilibrium exists when the consumer's threshold consumption (C0) is
less than 1. Furthermore, we demonstrated that if the consumer's mortality rate
exceeds the ratio of conversion efficiency to handling time, the interior equilibrium
becomes stable, leading to the extinction of the consumer population regardless of
its initial size. We derived conditions for the existence and nonexistence of positive
steady states and observed that the system can exhibit either two positive equilibria
or no positive equilibrium point.

In this study, we examined the core effects of boldness-mediated foraging behavior
on consumer-resource dynamics, without introducing additional confounding factors.
This simplification allowed us to focus on the behavioral feedback loop between food
availability (modeled via the carrying capacity k) and consumer effort (influenced by
the baseline boldness level b0). Our analysis focuses on the coexistence equilibria
and the bifurcations they undergo for specific parameter values, including fold, Hopf,
and transcritical bifurcations. We derived the necessary and sufficient conditions for
these bifurcations and provided formulae describing the bifurcation manifolds for a
system with a general encounter rate function, which, to the best of our knowledge,
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BEHAVIORAL PLASTICITY IN CONSUMER-RESOURCE MODELS 2209

Table 3
Survival status of the consumer at different levels of food and aggressiveness.

Food supply\rightarrow Low Moderate High
Aggressiveness \downarrow 

Low Model (2.1): E Model (2.1): E Model (2.1): E

Model (2.3): E Model (2.3): E/SE Model (2.3): E/OE

Moderate Model (2.1): E Model (2.1): E Model (2.1): SE

Model (2.3): E Model (2.3): E/SE Model (2.3): OE

High Model (2.1): E Model (2.1): SE Model (2.1): OE\ast 

Model (2.3): E Model (2.3): SE Model (2.3): OE

E: extinction; SE: stable existence; OE: oscillatory existence.
\ast Needs more food supply.

has not been studied before. The bifurcation analysis reveals that consumer foraging
aggressiveness is generally beneficial for the consumer population, which aligns with
empirical studies. However, we found that when resource densities are low, increased
foraging aggressiveness can lead to consumer extinction, with the critical resource
density threshold determined by the fold bifurcation manifold (4.2). This finding
aligns with previously published results [11], highlighting the risks of bold behavior
under resource scarcity.

The inclusion of behavioral dynamics enhances the system described by model
(2.3), producing richer and more complex dynamics compared to the Rosenzweig--
MacArthur model (2.1). Table 3 highlights the differences between the two models
in predicting consumer survival under varying food availability and aggressiveness.
Biologically, at low food supply, both models predict consumer extinction due to
insufficient resources. Under moderate food supply, model (2.1) still leads to extinc-
tion, while model (2.3) supports stable consumer survival or oscillatory dynamics at
higher levels of aggressiveness, showcasing the role of behavioral variation. At high
food supply, model (2.1) predicts oscillatory survival only when aggressiveness is high
and requires additional food input for persistence. In contrast, model (2.3) consis-
tently supports consumer survival through stable or oscillatory dynamics, even under
varying levels of aggressiveness. These findings indicate that model (2.3) better incor-
porates the influence of behavioral traits, such as boldness and aggressiveness, along
with resource availability on consumer persistence and population stability. Overall,
under moderate food supply, a higher rate of consumer boldness emerges as the most
advantageous and stable strategy for survival.

In this paper, we focused on a personality-driven consumer-resource model. How-
ever, consumer-resource interactions in natural communities are far more complex.
For example, intraspecific competition among consumers is frequently observed [8],
and intense competition can lead to the exclusion or extinction of weaker individu-
als or species. Additionally, studies have shown that consumer foraging behavior is
strongly influenced by the presence of predation risk [45, 5]. Furthermore, consumer
behavioral responses are also shaped by internal factors such as their fitness state, size,
and age [43]. Incorporating these additional factors into future research could provide
a more comprehensive and realistic understanding of consumer-resource dynamics and
highlight the role of animal personality in shaping ecological communities.

Appendix A. Details of the data fitting. In the NLS approach, we assume
that the x and y coordinates of the data are exact, but the corresponding functional
response values may contain noise or distortions. The goal is to fit a solution curve
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through the data such that the sum of the squares of the vertical distances between
the observed data points and the curve is minimized. This distance is referred to as
the least-squares error. Next, we illustrate how to use the NLS method to estimate
unknown parameters.
Step 1. Data collection. In particular, suppose we are fitting the functional response

f(x, y) with the given data points

\{ (x1, y1, \^f1), (x2, y2, \^f2), . . . , (xn, yn, \^fn)\} .

Step 2. NLS fitting. The basic problem is to determine the set of parameters \theta that
minimizes the following sum-of-squares error (SSE):

SSE(\theta ) =min
\theta 

n\sum 
i=1

\Bigl\{ 
f(xi, yi, \theta ) - \^f(xi, yi)

\Bigr\} 2

,(A.1)

where f(xi, yi, \theta ) represents the functional response at (xi, yi) with parameter
\theta and \^f(xi, yi) represents the data of functional response at (xi, yi).

Step 3. Solve the NLS problem numerically. We use a MATLAB function fminsearch

which takes the least-squares error function SSE(\theta ) and an initial guess of the
parameter value \theta 0 and uses a direct search routine to find a minimum value
of least-squares error.

Step 4. Compute confidence intervals. We compute the approximate 100(1  - \alpha )\%
confidence intervals for each parameter given by

\theta \pm t\alpha /2, n - p \cdot 

\sqrt{} 
SSE(\^\theta )

n - p
\cdot [(J\top J) - 1],(A.2)

where t\alpha /2, n - p is the critical value from the student's t-distribution with n - p
degrees of freedom, p is the number of parameters, and n is the number of
data points. J is the Jacobian matrix evaluated at \theta .

The parameters \theta = (b0, a, c, h) are estimated using field experiment data involving
herbivorous fish and their resource, algae, collected from a near-pristine reef ecosys-
tem [16]. Most of the initial parameter values are derived from existing literature
[32, 6], except for those related to (2.4). The estimated parameters for model (2.3)
are summarized in Table 1.

Appendix B. Details of the fold bifurcation. Here, we demonstrate that if
a coexistence equilibrium of model (2.3) exists, then the condition (4.1) is equivalent
to the Jacobian of the model having one zero eigenvalue when evaluated at this equi-
librium. To proceed, we define a function \scrG (x, y) such that f(x, y) = x\scrG (x, y), where
f(x, y) represents the consumer functional response given in (2.5). Additionally, let \scrA 
denote the Jacobian of model (2.3) and [x\ast , y\ast ] represent any coexistence equilibrium
of this system. By direct computation, we obtain

\scrA =

\Biggl( 
r - r

2x\ast 

k
 - y\ast \scrG  - y\ast x\ast \scrG x  - x\ast \scrG  - y\ast x\ast \scrG y

eyy
\ast \scrG + eyy

\ast x\ast \scrG x eyx
\ast \scrG + eyy

\ast x\ast \scrG y  - m

\Biggr) 
,(B.1)

where \scrG = \scrG (x\ast , y\ast ), \scrG x = \partial \scrG (x\ast , y\ast )/\partial x, and \scrG y = \partial \scrG (x\ast , y\ast )/\partial y. Since for the
coexistence equilibrium eyx

\ast \scrG =m, we get
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BEHAVIORAL PLASTICITY IN CONSUMER-RESOURCE MODELS 2211

Tr \scrA = r - r
2x\ast 

k
 - y\ast \scrG  - y\ast x\ast \scrG x + eyy

\ast x\ast \scrG y,(B.2)

Det\scrA = r

\biggl( 
1 - 2x\ast 

k

\biggr) 
eyy

\ast x\ast \scrG y +my\ast \scrG +
m2

ey
y\ast \scrG x.(B.3)

Since the functional response implies \scrG (x, y) = \beta (x,y)
1+h\beta (x,y)x , we have

\scrG x = - \scrG 2h and \scrG y =
\Lambda \scrG 2

\Lambda 2
,

where \Lambda (y\ast ) := \beta (x\ast \in (0, k), y\ast ) with x\ast \in (0, k) with k > 0. Substituting \scrG x, \scrG x, and
(3.3) into (B.3), we get

Det\scrA = y\ast \scrG m
\biggl( 
r

\biggl( 
1 - 2L2

\Lambda 

\biggr) 
\Lambda 

\Lambda 2
+

ey  - hm

ey

\biggr) 
.(B.4)

As a result, condition (4.1) is equivalent to the condition det\scrA = 0 at a coexistence
equilibrium [x\ast , y\ast ], which serves as a necessary condition for this equilibrium to be
a limit point.

Appendix C. Details of Hopf bifurcation. For a Hopf bifurcation to occur at
a parameter value in a two-dimensional system, real parts of the complex eigenvalues
of the Jacobian evaluated at the respective system equilibrium have to transversally
cross zero (i.e., change sign) when the parameter crosses that value. Denoting by
a the bifurcation parameter and by \lambda r(a) \pm i\lambda i(a) the respective pair of complex
eigenvalues, we require \lambda r(ac) = 0, \lambda i(ac) > 0, and \lambda \prime 

r(ac) \not = 0 at a bifurcation point
a= ac as necessary conditions for a Hopf bifurcation to occur. We note that

\lambda r(a) =
Tr \scrA (a)

2
and \lambda i(a) =Det \scrA (a),

where \scrA (a) denotes the Jacobian evaluated at the system equilibrium corresponding
to the parameter a.

Now we will prove that if a coexistence equilibrium of the model (2.3) exists, then
condition (4.3) is necessary and sufficient for vanishing of the trace of the Jacobian
of the model (2.3) at that equilibrium. Denoting \scrG (x, y) = f(x, y)/x, then at the
coexistence equilibrium, we have

y\ast \scrG = r

\biggl( 
1 - x\ast 

k

\biggr) 
.

Consequently, at this equilibrium, the trace (B.2) of the Jacobian of the model (2.3)
simplifies to

tr \scrA = - r
x\ast 

k
+ r

\biggl( 
1 - x\ast 

k

\biggr) 
x\ast \scrG 

\biggl( 
h+ ey

\Lambda \prime 

\Lambda 2

\biggr) 
.

Since r > 0 and according to (3.3) x\ast 

k = L2

\Lambda > 0 at the coexistence equilibrium, we
have

tr \scrA = - r
x\ast 

k

\biggl( 
1 + k

\biggl( 
L2

\Lambda 
 - 1

\biggr) 
g

\biggl( 
h+ ey

\Lambda \prime 

\Lambda 2

\biggr) \biggr) 
,
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2212 SHOHEL AHMED, XIAO HAN, AND HAO WANG

where L2 = m
k(ey - hm) . Since the model (2.3) implies \scrG = r\Lambda 

L1
, a necessary and suffi-

cient condition for vanishing of the trace of the Jacobian of the model (2.3) at the
coexistence equilibrium is

e\Lambda 2 = (k(ey  - hm)\Lambda  - m)(h\Lambda 2 + ey\Lambda 
\prime ),

which is equivalent to the condition (4.3). Similar manipulation with the expression
(B.4) and replacement of \Lambda \prime gives the second necessary condition (4.4).

The sign of the first Lyapunov coefficient determines the direction of the Hopf
bifurcation, which is given by

l1 =
1

16

\Biggl[ 
\partial 3H1

\partial z31
+

\partial 3H1

\partial z1\partial z22
+

\partial 3H2

\partial z21\partial z2
+

\partial 3H2

\partial z32

\Biggr] 

+
1

16\omega 

\Biggl[ 
\partial 2H1

\partial z1\partial z2

\biggl( 
\partial 2H1

\partial z21
+

\partial 2H1

\partial z22

\biggr) 
 - \partial 2H2

\partial z1\partial z2

\biggl( 
\partial 2H2

\partial z21
+

\partial 2H2

\partial z22

\biggr) 

 - \partial 2H1

\partial z1\partial z2

\partial 2H2

\partial z21
+

\partial 2H1

\partial z22

\partial 2H2

\partial z22

\Biggr] 
.

The higher-order terms H1(z1, z2) and H2(z1, z2) are given by

H1(z1, z2) =
1

a01

\bigl[ 
a20a01z

2
1  - a11a01z1z2 + a02(a10z1 + \omega z2)

2 + a03(a10z1 + \omega z2)
3
\bigr] 
,

H2(z1, z2) = - 1

a01\omega 
(a10(a20a01z

2
1 - a11a01z1z2+a02(a10z1+\omega z2)

2+a03(a10z1+\omega z2)
3)

+b20a01z
2
1 - b11a01z1z2+b02(a10z1+\omega z2)

2+b03(a10z1+\omega z2)
3).

Remark C.1. A similar analysis of Hopf bifurcation can be done for the other
parameters.

REFERENCES

[1] K. A. Adeli, S. J. Woods, S. J. Cooke, and C. K. Elvidge, Boldness and exploratory
behaviors differ between sunfish (Lepomis spp.) congeners in a standardized assay, Behav.
Ecol. Sociobiol., 78 (2024), 46, https://doi.org/10.1007/s00265-024-03464-5.

[2] B. Adriaenssens and J. I. Johnsson, Natural selection, plasticity and the emergence of
a behavioural syndrome in the wild , Ecol. Lett., 16 (2013), pp. 47--55, https://doi.
org/10.1111/ele.12011.

[3] P. A. Biro and J. A. Stamps, Are animal personality traits linked to life-history productivity? ,
Trends Ecol. Evol., 23 (2008), pp. 361--368, https://doi.org/10.1016/j.tree.2008.04.003.

[4] M. Briffa and A. Weiss, Animal personality, Curr. Biol., 20 (2010), pp. R912--R914,
https://doi.org/10.1016/j.cub.2010.09.019.

[5] D. A. Burkholder, M. R. Heithaus, and J. W. Fourqurean, Patterns of top-down con-
trol in a seagrass ecosystem: Could a roving apex predator induce a behavior-mediated
trophic cascade? , J. Anim. Ecol., 82 (2013), pp. 1192--1202, https://doi.org/10.1111/1365-
2656.12097.

[6] L. Capitani, N. Roos, G. O. Longo, R. Angelini, and L. Schenone, Resource-to-consumer
ratio determines the functional response of an herbivorous fish in a field experiment , Oikos,
130 (2021), pp. 2100--2110, https://doi.org/10.1111/oik.08784.

[7] P. Chesson, Mechanisms of maintenance of species diversity, Annu. Rev. Ecol. Syst., 31
(2000), pp. 343--366, https://doi.org/10.1146/annurev.ecolsys.31.1.343.

[8] M. E. Clark, T. G. Wolcott, D. L. Wolcott, and A. H. Hines, Intraspecific interfer-
ence among foraging blue crabs Callinectes sapidus: Interactive effects of predator density
and prey patch distribution, Mar. Ecol. Prog. Ser., 178 (1999), pp. 69--78, https://doi.
org/10.3354/meps178069.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/2

4/
25

 to
 1

29
.1

28
.2

16
.3

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1007/s00265-024-03464-5
https://doi.org/10.1111/ele.12011
https://doi.org/10.1111/ele.12011
https://doi.org/10.1016/j.tree.2008.04.003
https://doi.org/10.1016/j.cub.2010.09.019
https://doi.org/10.1111/1365-2656.12097
https://doi.org/10.1111/1365-2656.12097
https://doi.org/10.1111/oik.08784
https://doi.org/10.1146/annurev.ecolsys.31.1.343
https://doi.org/10.3354/meps178069
https://doi.org/10.3354/meps178069


BEHAVIORAL PLASTICITY IN CONSUMER-RESOURCE MODELS 2213

[9] E. F. Cole and J. L. Quinn, Shy birds play it safe: Personality in captivity predicts
risk responsiveness during reproduction in the wild , Biol. Lett., 10 (2014), 20140178,
https://doi.org/10.1098/rsbl.2014.0178.

[10] J. L. Conrad, K. L. Weinersmith, T. Brodin, J. B. Saltz, and A. Sih, Behavioural syn-
dromes in fishes: A review with implications for ecology and fisheries management , J. Fish
Biol., 78 (2011), pp. 395--435, https://doi.org/10.1111/j.1095-8649.2010.02874.x.

[11] F. Courchamp, L. Berec, and J. Gascoigne, Allee Effects in Ecology and Conservation,
Oxford University Press, Oxford, 2008.

[12] S. Creel and N. M. Creel, Communal hunting and pack size in African wild dogs, Lycaon
pictus, Anim. Behav., 50 (1995), pp. 1325--1339, https://doi.org/10.1016/0003-3472(95)
80048-4.

[13] S. R. X. Dall, A. I. Houston, and J. M. McNamara, The behavioural ecology of personality:
Consistent individual differences from an adaptive perspective, Ecol. Lett., 7 (2004), pp.
734--739, https://doi.org/10.1111/j.1461-0248.2004.00618.x.

[14] M. Domijan, P. E. Brown, B. V. Shulgin, and D. A. Rand, PeTTSy: A computational tool
for perturbation analysis of complex systems biology models, BMC Bioinform., 17 (2016),
124, https://doi.org/10.1186/s12859-016-0972-2.

[15] C. P. dos Santos, M. N. de Oliveira, P. F. Silva, and A. C. Luchiari, Relationship between
boldness and exploratory behavior in adult zebrafish, Behav. Process., 209 (2023), 104885,
https://doi.org/10.1016/j.beproc.2023.104885.

[16] M. A. Gil, M. L. Baskett, S. B. Munch, and A. M. Hein, Fast behavioral feedbacks
make ecosystems sensitive to pace and not just magnitude of anthropogenic environ-
mental change, Proc. Natl. Acad. Sci. USA, 117 (2020), pp. 25580--25589, https://doi.
org/10.1073/pnas.2003301117.

[17] S. D. Gosling, From mice to men: What can we learn about personality from animal research? ,
Psychol. Bull., 127 (2001), pp. 45--86, https://doi.org/10.1037/0033-2909.127.1.45.

[18] A. Hastings, Population Biology: Concepts and Models, Springer, New York, 1997.
[19] K. Hulth\'en, B. B. Chapman, P. A. Nilsson, J. Hollander, C. Br\"onmark, C. Skov, L.-A.

Hansson, and J. Brodersen, A predation cost to bold fish in the wild , Sci. Rep., 7 (2017),
1239, https://doi.org/10.1038/s41598-017-01270-w.

[20] R. Kortet, A. V. Hedrick, and A. Vainikka, Parasitism, predation and the evolution of
animal personalities, Ecol. Lett., 13 (2010), pp. 1449--1458, https://doi.org/10.1111/j.1461-
0248.2010.01536.x.

[21] R. H. J. M. Kurvers, V. M. A. P. Adamczyk, S. E. van Wieren, and H. H. T. Prins, The
effect of boldness on decision-making in barnacle geese is group-size-dependent , Proc. Roy.
Soc. B Biol. Sci., 278 (2011), pp. 2018--2024, https://doi.org/10.1098/rspb.2010.2266.

[22] S. L. Lima and L. M. Dill, Behavioral decisions made under the risk of predation: A review
and prospectus, Can. J. Zool., 68 (1990), pp. 619--640, https://doi.org/10.1139/z90-092.

[23] A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, MD, 1925.
[24] B. Luttbeg and A. Sih, Risk, resources, and state-dependent adaptive behavioural syndromes,

Philos. Trans. B, 365 (2010), pp. 3977--3990, https://doi.org/10.1098/rstb.2010.0207.
[25] J. Malard, J. Adamowski, J. B. Nassar, N. Anandaraja, H. Tuy, and H. Melgar-

Qui\~nonez, Modelling predation: Theoretical criteria and empirical evaluation of func-
tional form equations for predator-prey systems, Ecol. Model., 437 (2020), 109264,
https://doi.org/10.1016/j.ecolmodel.2020.109264.

[26] G. G. Mittelbach, N. G. Ballew, and M. K. Kjelvik, Fish behavioral types and their
ecological consequences, Can. J. Fish. Aquat. Sci., 71 (2014), pp. 927--944, https://doi.
org/10.1139/cjfas-2013-0558.

[27] W. W. Murdoch, C. J. Briggs, and R. M. Nisbet, Consumer-Resource Dynamics, Princeton
University Press, Princeton, NJ, 2003.

[28] R. T. Paine, Food web complexity and species diversity, Amer. Natural., 100 (1966), pp. 65--75,
https://doi.org/10.1086/282400.

[29] L. Perko, Differential Equations and Dynamical Systems, Springer, New York, 2013.
[30] J. N. Pruitt and A. P. Modlmeier, Animal personality in a foundation species drives com-

munity divergence and collapse in the wild , J. Anim. Ecol., 84 (2015), pp. 1461--1468,
https://doi.org/10.1111/1365-2656.12406.

[31] D. R\'eale, S. M. Reader, D. Sol, P. T. McDougall, and N. J. Dingemanse, Integrating
animal temperament within ecology and evolution, Biol. Rev., 82 (2007), pp. 291--318,
https://doi.org/10.1111/j.1469-185X.2007.00010.x.

[32] M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability condi-
tions of predator-prey interactions, Amer. Natural., 97 (1963), pp. 209--223, https://doi.
org/10.1086/282272.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/2

4/
25

 to
 1

29
.1

28
.2

16
.3

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1098/rsbl.2014.0178
https://doi.org/10.1111/j.1095-8649.2010.02874.x
https://doi.org/10.1016/0003-3472(95)80048-4
https://doi.org/10.1016/0003-3472(95)80048-4
https://doi.org/10.1111/j.1461-0248.2004.00618.x
https://doi.org/10.1186/s12859-016-0972-2
https://doi.org/10.1016/j.beproc.2023.104885
https://doi.org/10.1073/pnas.2003301117
https://doi.org/10.1073/pnas.2003301117
https://doi.org/10.1037/0033-2909.127.1.45
https://doi.org/10.1038/s41598-017-01270-w
https://doi.org/10.1111/j.1461-0248.2010.01536.x
https://doi.org/10.1111/j.1461-0248.2010.01536.x
https://doi.org/10.1098/rspb.2010.2266
https://doi.org/10.1139/z90-092
https://doi.org/10.1098/rstb.2010.0207
https://doi.org/10.1016/j.ecolmodel.2020.109264
https://doi.org/10.1139/cjfas-2013-0558
https://doi.org/10.1139/cjfas-2013-0558
https://doi.org/10.1086/282400
https://doi.org/10.1111/1365-2656.12406
https://doi.org/10.1111/j.1469-185X.2007.00010.x
https://doi.org/10.1086/282272
https://doi.org/10.1086/282272


2214 SHOHEL AHMED, XIAO HAN, AND HAO WANG

[33] P. C. de Ruiter, V. Wolters, J. C. Moore, and K. O. Winemiller, Food web ecology:
Playing Jenga and beyond , Science, 309 (2005), pp. 68--71, https://doi.org/10.1126/science.
1096112.

[34] E. Sales, L. Rogers, R. Freire, O. Luiz, and R. K. Kopf, Bold-shy personality traits of
globally invasive, native and hatchery-reared fish, Roy. Soc. Open Sci., 10 (2023), 231035,
https://doi.org/10.1098/rsos.231035.

[35] S. Shiratsuru, Y. N. Majchrzak, M. J. L. Peers, E. K. Studd, A. K. Menzies, R. Der-
byshire, M. M. Humphries, C. J. Krebs, D. L. Murray, and S. Boutin, Food availabil-
ity and long-term predation risk interactively affect antipredator response, Ecology, 102
(2021), e03456, https://doi.org/10.1002/ecy.3456.

[36] A. Sih, A. M. Bell, and J. C. Johnson, Behavioral syndromes: An ecological and
evolutionary overview , Trends Ecol. Evol., 19 (2004), pp. 372--378, https://doi.org/
10.1016/j.tree.2004.04.009.

[37] A. Sih, J. Cote, M. Evans, S. Fogarty, and J. Pruitt, Ecological implications of be-
havioural syndromes, Ecol. Lett., 15 (2012), pp. 278--289, https://doi.org/10.1111/j.1461-
0248.2011.01731.x.

[38] G. T. Skalski and J. F. Gilliam, Functional responses with predator interference: Viable
alternatives to the holling type II model , Ecology, 82 (2001), pp. 3083--3092, https://doi.
org/10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2.

[39] J. A. Stamps, Growth-mortality tradeoffs and personality traits in animals, Ecol. Lett., 10
(2007), pp. 355--363, https://doi.org/10.1111/j.1461-0248.2007.01034.x.

[40] D. B. Stouffer and M. Novak, Hidden layers of density dependence in consumer feeding
rates, Ecol. Lett., 24 (2021), pp. 520--532, https://doi.org/10.1111/ele.13670.

[41] W. J. Sutherland, L. V. Dicks, N. Ockendon, and R. K. Smith, eds., What Works in
Conservation?, Open Book Publishers, Cambridge, UK, 2013.

[42] D. Tilman, Resource Competition and Community Structure, Princeton University Press,
Princeton, NJ, 1982.

[43] C. N. Toms, D. J. Echevarria, and D. J. Jouandot, A methodological review of personality-
related studies in fish: Focus on the shy-bold axis of behavior , Int. J. Comparative Psychol.,
23 (2010), pp. 1--25, https://doi.org/10.46867/IJCP.2010.23.01.08.

[44] B. J. Toscano and B. D. Griffen, Trait-mediated functional responses: Predator behavioural
type mediates prey consumption, J. Anim. Ecol., 83 (2014), pp. 1469--1477, https://
doi.org/10.1111/1365-2656.12236.

[45] G. C. Trussell, P. J. Ewanchuk, and M. D. Bertness, Trophic cascades in rocky shore
pools: Distinguishing lethal and non-lethal effects, Oecologia, 139 (2004), pp. 427--432,
https://doi.org/10.1007/s00442-004-1512-8.

[46] T. M. Vignaud, C. G. Meyer, C. S\'eguigne, J. Bierwirth, and E. E. Clua, Exam-
ining individual behavioural variation in wild adult bull sharks (Carcharhinus leucas)
suggests divergent personalities, Behaviour, 160 (2023), pp. 1283--1301, https://doi.org/
10.1163/1568539X-bja10244.

[47] A. D. M. Wilson and E. D. Stevens, Consistency in context-specific measures of shyness
and boldness in rainbow trout, oncorhynchus mykiss, Ethology, 111 (2005), pp. 849--862,
https://doi.org/10.1111/j.1439-0310.2005.01110.x.

[48] M. Wolf and F. J. Weissing, Animal personalities: Consequences for ecology and evolution,
Trends Ecol. Evol., 27 (2012), pp. 452--461, https://doi.org/10.1016/j.tree.2012.05.001.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/2

4/
25

 to
 1

29
.1

28
.2

16
.3

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1126/science.1096112
https://doi.org/10.1126/science.1096112
https://doi.org/10.1098/rsos.231035
https://doi.org/10.1002/ecy.3456
https://doi.org/10.1016/j.tree.2004.04.009
https://doi.org/10.1016/j.tree.2004.04.009
https://doi.org/10.1111/j.1461-0248.2011.01731.x
https://doi.org/10.1111/j.1461-0248.2011.01731.x
https://doi.org/10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
https://doi.org/10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
https://doi.org/10.1111/j.1461-0248.2007.01034.x
https://doi.org/10.1111/ele.13670
https://doi.org/10.46867/IJCP.2010.23.01.08
https://doi.org/10.1111/1365-2656.12236
https://doi.org/10.1111/1365-2656.12236
https://doi.org/10.1007/s00442-004-1512-8
https://doi.org/10.1163/1568539X-bja10244
https://doi.org/10.1163/1568539X-bja10244
https://doi.org/10.1111/j.1439-0310.2005.01110.x
https://doi.org/10.1016/j.tree.2012.05.001

	Introduction
	The model formulation
	Model analysis
	Mathematical preliminaries
	Equilibria and their stability

	Bifurcation analysis
	Fold bifurcation
	Hopf bifurcation
	Transcritical bifurcation

	Numerical results
	Discussion
	References
	 Appendix A. Details of the data fitting
	 Appendix B. Details of the fold bifurcation
	 Appendix C. Details of Hopf bifurcation

