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RESOURCE-CONSUMER DYNAMICS\ast 
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Abstract. Spatial memory is key in animal movement modeling, but it has been challenging
to explicitly model learning to describe memory acquisition. In this paper, we study novel cognitive
consumer-resource models with different consumer learning mechanisms and investigate their dy-
namics. These models consist of two PDEs in composition with one ODE such that the spectrum of
the corresponding linearized operator at a constant steady state is unclear. We describe the spectra
of the linearized operators and analyze the eigenvalue problems to determine the stability of the
constant steady states. We then perform bifurcation analysis by taking the perceptual diffusion rate
as the bifurcation parameter. It is found that steady-state and Hopf bifurcations can both occur in
these systems, and the bifurcation points are given so that the stability region can be determined.
Moreover, rich spatial and spatiotemporal patterns can be generated in such systems via different
types of bifurcation. Our effort establishes a new approach to tackling a hybrid model of PDE-ODE
composition and provides a deeper understanding of cognitive movement-driven consumer-resource
dynamics.

Key words. perceptual diffusion, resource-consumer, PDE-ODE model, pattern formation, Hopf
bifurcation, steady-state bifurcation

MSC codes. 34K18, 92B05, 35B32, 35K57

DOI. 10.1137/23M1598593

1. Introduction. Since 1952, Turing instability [38] induced by random diffu-
sion has been highly esteemed as the mechanism for the spatial heterogeneous distri-
bution of species in nature. However, numerous pieces of evidence show that random
diffusion is insufficient to describe the animal movement as many factors may af-
fect the animals' decision for spatial movement. Some clever animals even exhibit
amazing cognition in choosing their favored habitat. Therefore, the cognition of ani-
mals should be taken into consideration in animal movement modeling [6, 9, 19]. Al-
though specific mechanisms are still in debate, most modelers believe that perception
(information acquisition) and memory (the retention of information) play dominant
roles in interpreting complicated animal movement behaviors. Generally speaking,
perception is the process by which animals acquire information, while memory is the
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LOCAL PERCEPTION AND LEARNING MECHANISMS 989

storage, encoding, and recalling of information. Spatial memory is the memory of
spatial locations in a living organism's landscape. A strong motivation for the sig-
nificance of spatial memory in animal movements is the empirical evidence of blue
whale migrations presented by [1] and discussed by [4]. Much progress has been made
in incorporating spatial cognition or memory implicitly, such as home range analysis
[17, 18], scent marks [12], taxis-driven pattern formation [21, 22], information gaining
through the last visit to locations [23], perceptual ranges [5], and delayed resource-
driven movement [8].

In [5], Fagan et al. proposed a resource-driven movement model for studying
perceptual ranges and foraging success, and the delay effect was later considered in
the resource-driven movement model in [8]. In [41], by assuming that the consumers
have knowledge of where the resources are, Wang and Salmaniw proposed the follow-
ing consumer-resource model with an additional term biasing the movement of the
consumer: \left\{         

ut = d1\Delta u+ u
\Bigl( 
1 - u

k

\Bigr) 
 - muv

1 + u
, x\in \Omega , t > 0,

vt = d2\Delta v - \chi \nabla \cdot (v\nabla \=q) +
muv

1 + u
 - dv, x\in \Omega , t > 0,

\partial \nu u= \partial \nu v= 0, x\in \partial \Omega , t > 0,

(1.1)

where u = u(x, t) and v = v(x, t) denote the density of resource and consumer, re-
spectively. In the model, it is assumed that the perceptual ability of the consumer
may not be uniform across varying distances, which can be reflected by a nonlocal
perception. The perceptual function \=q(x, t) incorporating both distance and quality
of detection is of the form

\=q(x, t) =

\int 
\Omega 

gR(x - y)q(y, t)dy,

where gR(x - y) is the perceptual kernel and depends on the perceptual range R. For
the biological meaning, gR(x) should satisfy the following hypotheses [41]:

(i) gR(x) is symmetric about the origin and nonincreasing from the origin;
(ii)

\int 
\Omega 
gR(x)dx= 1, and limR\rightarrow 0+ gR(x) = \delta (x).

A typical example that satisfies the above two hypotheses is the so-called top-hat
function:

gR(x) =

\left\{   
1

2R
,  - R<x<R,

0 otherwise.

Recently, there has been increasing interest and effort in studying the influence of the
perceptual range on population dynamics [33, 41, 45].

In this paper, we explore the limiting scenario when the perceptual range ap-
proaches zero, i.e., R \rightarrow 0+. For this local perception scenario, gR(x) = \delta (x) and
system (1.1) becomes\left\{         

ut = d1\Delta u+ u
\Bigl( 
1 - u

k

\Bigr) 
 - muv

1 + u
, x\in \Omega , t > 0,

vt = d2\Delta v - \chi \nabla \cdot (v\nabla q) + muv

1 + u
 - dv, x\in \Omega , t > 0,

\partial \nu u= \partial \nu v= 0, x\in \partial \Omega , t > 0.

(1.2)

The parameters in (1.2) are all positive constants except for \chi \in \BbbR : d1, d2 denote
the random diffusion rates for resource and consumer, respectively; k is the carrying
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990 QINGYAN SHI, YONGLI SONG, AND HAO WANG

capacity for resource; m is the predation rate; \chi > 0 (< 0) is the perceptual diffusion
rate which implies that the consumer follows an attractive (repulsive) movement to
the high-density area based on the perception of the population density; d is the
natural death rate of the consumer.

According to [41], the perceptual function q(x, t) is a cognitive map based on the
learning and memory waning of the consumer and satisfies either of the following two
ODEs:

H1 : qt = bu - \gamma q,

H2 : qt = buv - (\gamma + \xi v)q.

When the cognitive map q(x, t) satisfies (H1), then (1.2) becomes\left\{               

ut = d1\Delta u+ u
\Bigl( 
1 - u

k

\Bigr) 
 - muv

1 + u
, x\in \Omega , t > 0,

vt = d2\Delta v - \chi \nabla \cdot (v\nabla q) + muv

1 + u
 - dv, x\in \Omega , t > 0,

qt = bu - \gamma q, x\in \Omega , t > 0,

\partial \nu u= \partial \nu v= 0, x\in \partial \Omega , t > 0,

(1.3)

where the growth of q(x, t) follows a constant proportion b > 0 to resource density,
and q(x, t) has a linear decay rate \gamma > 0. The model reveals that consumers can detect
the local resource density and remember where they have previously found resources.
When q(x, t) satisfies (H2), (1.2) becomes the following system:\left\{               

ut = d1\Delta u+ u
\Bigl( 
1 - u

k

\Bigr) 
 - muv

1 + u
, x\in \Omega , t > 0,

vt = d2\Delta v - \chi \nabla \cdot (v\nabla q) + muv

1 + u
 - dv, x\in \Omega , t > 0,

qt = buv - (\gamma + \xi v)q, x\in \Omega , t > 0,

\partial \nu u= \partial \nu v= 0, x\in \partial \Omega , t > 0,

(1.4)

where the growth of q(x, t) is assumed to have an additional decay at rate \xi > 0
when consumers return to an area and find a low resource density. Also, consumers
may be able to share knowledge between individuals such that a location with high
resource density is more likely to be remembered by consumers at the rate bu(x, t).
The assumption in model (1.4) is more reasonable than (1.3) because spatial memory
is normally gained via interactive learning.

In model (1.3)/(1.4), the cognitive map is assumed to be a dynamically changing
quantity, which continuously updates as consumers move around throughout their
habitat and their memories are continuously formed and reformed over time. From
the mathematical perspective, a dynamic cognitive map increases the mathematical
complexity significantly as the description of movement for consumers may require a
second ordinary differential equation (ODE) (H1) or (H2). Furthermore, it is known
that diffusion has a regularizing effect, and thus the lack of diffusion in the equation
of q(x, t) brings more challenges to the analysis of system (1.3)/(1.4) than a classical
reaction-diffusion system.

To the best of our knowledge, it has been challenging and in most cases impossi-
ble to directly connect the study of animals' cognition and memory on their spatial
movement to biological data because the cognitive process should be described by in-
formation data in the brain of an organism. However, we find a handful of supporting
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LOCAL PERCEPTION AND LEARNING MECHANISMS 991

pieces of evidence from the works of experts in animal cognitive behavior; for exam-
ple, certain brain functions or some other proxy has been empirically observed in the
literature [7, 36, 37]. The main gap is how to build up a relation between these obser-
vations and the explicit cognitive behaviors (empirical data) of a species. Hypothesis
testing via theoretical modeling is almost the only approach so far. The proposed
models in this paper offer insightful qualitative movement behaviors and test key
hypotheses on cognitive animal movements. This work lays a foundation for future
theoretical studies and empirical data collection of cognitive movement mechanisms
in driving resource-consumer dynamics.

In systems (1.3) and (1.4), we find that steady-state bifurcation and Hopf bi-
furcation can both occur such that the constant steady state is stable for a weak
perceptual diffusion (either attractive or repulsive), while a strong perceptual diffu-
sion can destabilize the systems and induce rich spatial patterns. In addition, the
interaction between different modes of Hopf bifurcations in system (1.4) makes the
system have more complex dynamical behaviors than (1.3). Biologically, one may
expect a more diverse resource/consumer distribution if the consumers have a local
perception described by (H2).

This paper is organized as follows. We investigate the dynamics and bifurcation of
system (1.3) in section 2 with a description of the spectrum of the linearized operator
at the constant steady state. In section 3, system (1.4) is investigated similarly to
section 2. Finally, we conclude and discuss our work in section 4 and compare the two
models studied in sections 2 and 3. In the paper, the space of measurable functions
for which the pth power of the absolute value is Lebesgue integrable defined on a
bounded and smooth domain \Omega \subseteq \BbbR m is denoted by Lp(\Omega ). We use W k,p(\Omega ) to
denote the real-valued Sobolev space based on Lp(\Omega ) space. We denote by \BbbN the set
of all the positive integers and \BbbN 0 = \BbbN \cup \{ 0\} . Also, \lambda n satisfying 0 = \lambda 0 < \lambda 1 < \cdot \cdot \cdot <
\lambda n - 1 <\lambda n < \cdot \cdot \cdot <+\infty are the eigenvalues of the equation\Biggl\{ 

\Delta \phi (x) + \lambda \varphi (x) = 0, x\in \Omega ,

\partial \nu \phi (x) = 0, x\in \partial \Omega ,

with the corresponding eigenfunctions \phi n(x)> 0 satisfying
\int 
\Omega 
\phi 2n(x)dx= 1.

2. The dynamics of model (1.3). In this section, we study the dynamics of
system (1.2) with cognitive map q(x, t) satisfying (H1), i.e., model (1.3), which has a
constant equilibrium (u, v, q) = (\theta , v\theta , q\theta ) with

\theta =
d

m - d
, v\theta =

(k - \theta )(1 + \theta )

km
, q\theta =

b\theta 

\gamma 
,

provided that

m>d, k > \theta .(2.1)

By a standard calculation, the linearized Jacobian matrix of the kinetic system of
(1.3) at (\theta , v\theta , q\theta ) is

J =

\left(  \beta  - d 0
\alpha 0 0
b 0  - \gamma 

\right)  ,

where

\alpha =
k - \theta 

k(1 + \theta )
, \beta =

\theta (k - 1 - 2\theta )

k(1 + \theta )
.(2.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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992 QINGYAN SHI, YONGLI SONG, AND HAO WANG

One can easily verify that all the eigenvalues of J have negative real parts when
k < 1 + 2\theta such that (\theta , v\theta , q\theta ) is locally asymptotically stable concerning the kinetic
system. Note that k= 1+ 2\theta is the critical value for the kinetic system to undergo a
Hopf bifurcation near (\theta , v\theta , q\theta ). Together with (2.1), we always assume the following
conditions hold:

(A) m>d, \theta < k < 1 + 2\theta ,
such that (\theta , v\theta , q\theta ) is locally asymptotically stable concerning the kinetic system
of (1.3). In the following, we investigate the stability of the constant steady state
(\theta , v\theta , q\theta ) under assumption (A) and carry a bifurcation analysis for system (1.3).

2.1. Spectrum of the linearized operator. In this part, we perform a spec-
tral analysis of the linearized operator at the constant steady state (\theta , v\theta , q\theta ) via the
methods in [3, 14, 16]. Define

X =W 2,p
N (\Omega )\times W 2,p

N (\Omega )\times W 2,p(\Omega ), Y =Lp(\Omega )\times Lp(\Omega )\times W 2,p
N (\Omega ),(2.3)

where

W 2,p
N (\Omega ) = \{ u\in W 2,p(\Omega ) : \partial \nu u= 0 on \partial \Omega \} .

We linearize (1.3) at (\theta , v\theta , q\theta ) and obtain the linear operator

\scrL 

\left(  \phi 
\psi 
\varphi 

\right)  =

\left(  d1\Delta \phi + \beta \phi  - d\psi 
d2\Delta \psi  - \chi v\theta \Delta \varphi + \alpha \phi 

b\phi  - \gamma \varphi 

\right)  ,(2.4)

where \scrL is a closed linear operator with domain D(\scrL ) = X, which implies that
\phi \in W 2,p

N (\Omega ), \psi \in W 2,p
N (\Omega ), and \varphi \in W 2,p(\Omega ). In the following, we provide the results

about the spectrum of \scrL .
Theorem 2.1. Let \scrL :X\rightarrow Y be defined as in (2.4). Then the spectrum of \scrL is

\sigma (\scrL ) = \sigma p(\scrL ) = S \cup \{  - \gamma \} ,

where

S = \{ \mu (1)
n \} +\infty 

n=0 \cup \{ \mu (2)
n \} +\infty 

n=0 \cup \{ \mu (3)
n \} +\infty 

n=0.(2.5)

Here \mu 
(j)
n , j = 1,2,3, satisfying \scrR e

\bigl( 
\mu 
(1)
n

\bigr) 
<\scrR e

\bigl( 
\mu 
(2)
n

\bigr) 
<\scrR e

\bigl( 
\mu 
(3)
n

\bigr) 
are the roots of the

following characteristic equation:

\mu 3 +An\mu 
2 +Bn\mu +Cn = 0, n\in \BbbN 0,(2.6)

where

An = (d1 + d2)\lambda n  - \beta + \gamma ,

Bn = d2\lambda n(d1\lambda n  - \beta ) + \gamma (d1\lambda n + d2\lambda n  - \beta ) + d\alpha ,

Cn = \gamma d2\lambda n(d1\lambda n  - \beta ) + bd\chi v\theta \lambda n + \gamma d\alpha .

Proof. In order to analyze the spectrum of \scrL defined as in (2.4), we consider the
following nonhomogeneous problem:\left\{         

d1\Delta \phi + \beta \phi  - d\psi = \mu \phi + \tau 1,

d2\Delta \psi  - \chi v\theta \Delta \varphi + \alpha \phi = \mu \psi + \tau 2,

b\phi  - \gamma \varphi = \mu \varphi + \tau 3,

\partial \nu \phi = \partial \nu \psi = 0,

(2.7)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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LOCAL PERCEPTION AND LEARNING MECHANISMS 993

where \mu \in \BbbC and (\tau 1, \tau 2, \tau 3) \in Y . There are the following two cases according to the
solution of the third equation in (2.7).

Case 1: \mu \not =  - \gamma . From the third equation of (2.7), we obtain \varphi = b\phi  - \tau 3
\mu +\gamma and,

substituting it into the second equation, we have\left\{       
d1\Delta \phi + \beta \phi  - d\psi = \mu \phi + \tau 1,

d2\Delta \psi  - \chi v\theta 
\mu + \gamma 

(b\Delta \phi  - \Delta \tau 3) + \alpha \phi = \mu \psi + \tau 2,

\partial \nu \phi = \partial \nu \psi = 0,

which is equivalent to

\scrL 1

\biggl( 
\phi 
\psi 

\biggr) 
=

\left(  d1\Delta \phi + \beta \phi  - d\psi  - \mu \phi 

d2\Delta \psi  - b\chi v\theta 
\mu + \gamma 

\Delta \phi + \alpha \phi  - \mu \psi 

\right)  =

\Biggl( 
\tau 1

\tau 2  - 
\chi v\theta 
\mu + \gamma 

\Delta \tau 3

\Biggr) 
.(2.8)

As \phi , \psi \in W 2,p
N (\Omega ) from (2.4), and the eigenfunctions \{ \phi n\} +\infty 

n=0 of  - \Delta form a complete
and orthonormal basis for W 2,p

N (\Omega ), thus we set

\phi =

+\infty \sum 
n=0

an\phi n, \psi =

+\infty \sum 
n=0

bn\phi n.(2.9)

Substituting (2.9) into (2.8), multiplying the equation by \phi n, and integrating it over
\Omega , we obtain\left(   - d1\lambda n + \beta  - \mu  - d

b\chi v\theta \lambda n
\mu + \gamma 

+ \alpha  - d2\lambda n  - \mu 

\right)  \biggl( an
bn

\biggr) 
=

\left(    
\int 
\Omega 

\tau 1dx\int 
\Omega 

\biggl( 
\tau 2  - 

\chi v\theta 
\mu + \gamma 

\Delta \tau 3

\biggr) 
dx

\right)    .

By letting \tau 1 = \tau 2 = \tau 3 = 0, we obtain that Ker(\scrL 1) = \{ (0,0)T \} , which implies that
Ker(\scrL  - \mu I) = \{ (0,0,0)T \} and the operator \scrL  - \mu I is injective when the following
condition holds: \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

 - d1\lambda n + \beta  - \mu  - d

b\chi v\theta \lambda n
\mu + \gamma 

+ \alpha  - d2\lambda n  - \mu 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \not = 0,

which is equivalent to

(\mu + d1\lambda n  - \beta )(\mu + d2\lambda n)(\mu + \gamma ) + bd\chi v\theta \lambda n + d\alpha (\mu + \gamma ) \not = 0.(2.10)

From (2.7), we can obtain that Ran(\scrL  - \mu I) =Lp(\Omega )\times Lp(\Omega )\times W 2,p
N (\Omega ) = Y , which

implies that \scrL  - \mu I is surjective. By the open mapping theorem (Theorem 5.8 in [39])
and the fact that \scrL  - \mu I is bijective, we know that (\scrL  - \mu I) - 1 is bounded with

\| \phi \| W 2,p
N (\Omega ) + \| \psi \| W 2,p

N (\Omega )

\leq \| (\scrL  - \mu I) - 1\| 

\Biggl( 
\| d1\Delta \phi + \beta \phi  - d\psi \| Lp(\Omega ) +

\bigm\| \bigm\| \bigm\| \bigm\| d2\Delta \psi  - b\chi v\theta 
\mu + \gamma 

\Delta \phi + \alpha \phi 

\bigm\| \bigm\| \bigm\| \bigm\| 
Lp(\Omega )

\Biggr) 
,

which directly results from the boundedness of (\scrL  - \mu I) - 1. Therefore, we know that
\mu belongs to the resolvent set of \scrL and is not in the spectrum set when inequality
(2.10) holds.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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994 QINGYAN SHI, YONGLI SONG, AND HAO WANG

If (2.10) does not hold, then the dispersal relation in (2.6) holds and has three

roots, \mu 
(j)
n , j = 1,2,3, for each n \in \BbbN 0. For j = 1,2,3, we put \mu = \mu 

(j)
n into (2.7) and

set \tau 1 = \tau 2 = \tau 3 = 0. Then it can be obtained that

\left(  \phi 
\psi 
\varphi 

\right)  =

\left(  \phi (j)

\psi (j)

\varphi (j)

\right)  =

\left(     
1

1

d

\Bigl( 
 - d1\lambda n + \beta  - \mu 

(j)
n

\Bigr) 
b

\mu 
(j)
n + \gamma 

\right)     \phi n,

which implies that Ker(\scrL  - \mu 
(j)
n I) = Span

\bigl\{ \bigl( 
\phi (j),\psi (j),\varphi (j)

\bigr) T \bigr\} 
. Therefore, we know

that \mu 
(j)
n , j = 1,2,3, are the eigenvalues of \scrL and \mu 

(j)
n \in \sigma p(\scrL ), which denotes the set

of point spectrum of \scrL .
Case 2: \mu = - \gamma . In this case, (2.7) can be solved as\left\{     

\psi =
1

bd
(d1\Delta \tau 3 + \beta \tau 3 + \gamma \tau 3  - b\tau 1) ,

\Delta \varphi =
1

b\chi v\theta 
( - b\gamma \psi + \tau 2  - \alpha \tau 3  - bd2\Delta \psi ) .

By letting \tau 1 = \tau 2 = \tau 3 = 0, we obtain Ker (\scrL + \gamma I) = Span\{ (0,0, \~\varphi )T \} , with \~\varphi 
satisfying \Delta \~\varphi = 0, and thus  - \gamma \in \sigma p(\scrL ). This completes the proof.

Based on the spectrum analysis in Theorem 2.1, we obtain the following results
to determine the stability of the constant equilibrium for (1.3).

Corollary 2.2. The constant equilibrium (\theta , v\theta , q\theta ) of (1.3) is locally stable when
all the roots of the characteristic equation (2.6) have negative real parts; otherwise it
is unstable.

Proof. From Theorem 2.1, we see that the spectrum of the linearized operator \scrL 
corresponding to the linearized system of (1.3) at (\theta , v\theta , q\theta ) is \sigma (\scrL ) = \sigma p(\scrL ) = S\cup \{  - \gamma \} .
Note that the linear stability of (\theta , v\theta , q\theta ) implies its nonlinear stability according to
[10] as the spectral set is discrete. Since  - \gamma \in \BbbC  - , thus it can be inferred that the
stability of (\theta , v\theta , q\theta ) is determined by the set S, which consists of the roots of (2.6),
and we reach our conclusion.

2.2. Bifurcation analysis. From Theorem 2.1 and Corollary 2.2, we know that
the stability of the constant steady state (\theta , v\theta , q\theta ) of system (1.3) can be determined
by the characteristic equation (2.6). By the Routh--Hurwitz stability criterion, all the
eigenvalues of (2.6) have negative real parts if and only if

An > 0, Cn > 0, AnBn  - Cn > 0.

Under assumption (A), we have \alpha > 0, \beta < 0 with \alpha , \beta defined by (2.2), which will be
applied in the calculations throughout the whole section. From \beta < 0, we know that
An > 0 always holds and the real parts of the eigenvalues of (2.6) may change sign
either via Cn = 0 (which implies (2.6) has a zero root) or via AnBn  - Cn = 0 (which
implies (2.6) has a pair of purely imaginary roots). Also, we can observe that Bn > 0
always holds as \beta < 0, \alpha > 0, so Cn = 0 and AnBn - Cn = 0 cannot occur at the same
time.

Taking \chi and \gamma as the bifurcation parameters, we obtain the steady-state bifur-
cation points by solving Cn = 0,

\chi S
n(\gamma ) = - \gamma kd2\lambda n(d1\lambda n  - \beta ) + \gamma d\alpha 

bdv\theta \lambda n
,(2.11)
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LOCAL PERCEPTION AND LEARNING MECHANISMS 995

and the Hopf bifurcation points by solving AnBn  - Cn = 0,

\chi H
n (\gamma ) =

((d1 + d2)\lambda n  - \beta )
\bigl[ 
\gamma 2 + \gamma ((d1 + d2)\lambda n  - \beta ) + d2\lambda n(d1\lambda n  - \beta ) + d\alpha 

\bigr] 
bdv\theta \lambda n

.

(2.12)

Lemma 2.3. Let \chi S
n(\gamma ) and \chi 

H
n (\gamma ) be defined as in (2.11) and (2.12), respectively.

Then the following statements are true under assumption (A):
(i) For fixed n \in \BbbN , \chi S

n(\gamma ) is strictly decreasing with respect to \gamma and passes
through the origin, and it is also known that \chi S

n(0) = 0 and lim\gamma \rightarrow +\infty \chi S
n(\gamma ) =

 - \infty . Also, \chi H
n (\gamma ) is strictly increasing with respect to \gamma and \chi H

n (\gamma )> 0.
(ii) For fixed \gamma > 0, there exists N, M \in \BbbN such that \chi S

N (\gamma ) = maxn\in \BbbN \chi 
S
n(\gamma )< 0

and \chi H
M (\gamma ) =minn\in \BbbN \chi 

H
n (\gamma )> 0.

Proof. By the definition of \chi S
n(\gamma ) given in (2.11), it is easy to see that \chi S

n(\gamma ) is a
straight line passing through the origin with the slope

Kn = - 1

bdv\theta 

\biggl( 
d1d2\lambda n +

d\alpha 

\lambda n
 - d2\beta 

\biggr) 
< 0.

Then we immediately obtain the results about \chi S
n(\gamma ) in (i). Also, it is clear from

(2.12) that \chi H
n (\gamma ) is a quadratic function of \gamma and can be rewritten as \chi H

n (\gamma ) =
a2\gamma 

2 + a1\gamma + a0 with

a2 =
(d1 + d2)\lambda n  - \beta 

bdv\theta \lambda n
, a1 =

((d1 + d2)\lambda n  - \beta )2

bdv\theta \lambda n
,

a0 =
((d1 + d2)\lambda n  - \beta )d2\lambda n(d1\lambda n  - \beta ) + d\alpha 

bdv\theta \lambda n
.

Immediately, we obtain that a2 > 0, a1 > 0, a0 > 0 and the symmetrical axis \gamma =

 - a1
2a2

< 0. Thus, it can be inferred that \chi H
n (\gamma ) is increasing for \gamma > 0. By the fact

that \chi H
n (0) = a0 > 0, we know that \chi H

n (\gamma )> 0 for all \gamma > 0.
For (ii), we see that Kn is a hook function of \lambda n, and thus it can be known that

Kn reaches its maximum at \lambda n =

\sqrt{} 
d\alpha 

d1d2
. We may choose N such that \lambda N is the

closest eigenvalue to

\sqrt{} 
d\alpha 

d1d2
. From (i), we see that \chi S

n(\gamma )< 0 for any \gamma > 0; then it is

natural that \chi S
N (\gamma ) < 0. To prove the existence of \chi H

M (\gamma ), we first rewrite \chi H
n (\gamma ) as

the following form by replacing \lambda n by a continuous variable p:

\chi H
p (\gamma ) =

((d1 + d2)p - \beta )
\bigl[ 
\gamma 2 + \gamma (d1p+ d2p - \beta ) + d2p(d1p - \beta ) + d\alpha 

\bigr] 
bdv\theta p

.(2.13)

By differentiating \chi H
p (\gamma ) with respect to p, we have

d[\chi H
p (\gamma )]

dp
=

1

bdv\theta p2
\bigl[ 
2(d1 + d2)d1d2p

3 + ((d1 + d2)
2\gamma 

 - \beta (2d1d2 + d22))p
2 + \beta \gamma 2  - \beta 2\gamma + \beta d\alpha 

\bigr] 
.

Let

f(p) = 2(d1 + d2)d1d2p
3 + ((d1 + d2)

2\gamma  - \beta (2d1d2 + d22))p
2 + \beta \gamma 2  - \beta 2\gamma + \beta d\alpha .
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996 QINGYAN SHI, YONGLI SONG, AND HAO WANG

Then one can verify that f(p) has a unique positive zero p= p\ast as

f \prime (p) = 6(d1 + d2)d1d2p
2 + 2((d1 + d2)

2\gamma  - \beta (2d1d2 + d22))p > 0 for p > 0,

and f(0) = \beta \gamma 2  - \beta 2\gamma + \beta d\alpha < 0, limp\rightarrow +\infty f(p) = +\infty . Also we found that f(p)> 0

for p \in (p\ast ,+\infty ) and f(p) < 0 for p \in (0, p\ast ), which implies that
d[\chi H

p (\gamma )]

dp
> 0 for

p \in (p\ast ,+\infty ) and
d[\chi H

p (\gamma )]

dp
< 0 for p \in (0, p\ast ) and \chi H

p (\gamma ) reaches its minimum at

p = p\ast . By the relation that p = \lambda n, we know that there must exist an M \in \BbbN such
that \lambda M is the closest eigenvalue to p\ast and \chi H

M (\gamma ) =minn\in \BbbN \chi 
H
n (\gamma ).

Lemma 2.4. Let \chi S
N (\gamma ) and \chi H

M (\gamma ) be defined as in Lemma 2.3:
(i) When \chi S

N (\gamma ) < \chi < \chi H
M (\gamma ), all the eigenvalues of (2.6) have negative real

parts.
(ii) When \chi \geq \chi H

M (\gamma ), (2.6) has a pair of purely imaginary roots \mu = \pm i\omega n with
\omega n > 0 if \chi = \chi H

n (\gamma ).
(iii) When \chi \leq \chi S

N (\gamma ), (2.6) has a root \mu = 0 if \chi = \chi S
n(\gamma ).

Proof. From Lemma 2.3, when \chi S
N (\gamma )<\chi <\chi H

M (\gamma ), we have Cn > 0 and AnBn - 
Cn > 0 for all \lambda n > 0 so all the eigenvalues of (2.6) have negative real parts for all
n \in \BbbN 0. When \chi \leq \chi S

N (\gamma ), we have Cn < 0, so the characteristic equation (2.6) has
at least one eigenvalue with positive real part, and when \chi = \chi S

n(\gamma ), (2.6) has a zero
eigenvalue. When \chi \geq \chi H

M (\gamma ), we have An > 0, Cn > 0 but AnBn  - Cn < 0, so not
all the eigenvalues of (2.6) have negative real parts. In particular, when \chi = \chi H

n (\gamma ),
(2.6) has a pair of complex eigenvalues with zero real part.

From Lemma 2.4, we know that (2.6) has a pair of purely imaginary eigenvalues
\pm i\omega n (\omega n > 0) when \chi = \chi H

n (\gamma ). The following lemma shows that the transversality
condition holds at \chi = \chi H

n (\gamma ).

Lemma 2.5. Let \chi = \chi H
n (\gamma ) be defined as in (2.12). Then (2.6) has a pair of roots

in the form \mu = \eta (\chi ) \pm i\omega (\chi ) when \chi is near \chi H
n (\gamma ) such that \eta 

\bigl( 
\chi H
n (\gamma )

\bigr) 
= 0 and

\eta \prime 
\bigl( 
\chi H
n (\gamma )

\bigr) 
> 0.

Proof. We mainly prove that \eta \prime 
\bigl( 
\chi H
n (\gamma )

\bigr) 
> 0. Differentiating (2.6) with respect

to \chi , we have

3\mu 2 d\mu 

d\chi 
+
dAn

d\chi 
\mu 2 + 2An\mu 

d\mu 

d\chi 
+
dBn

d\chi 
\mu +Bn

d\mu 

d\chi 
+
dCn

d\chi 
= 0.(2.14)

From the expressions of An, Bn, Cn in (2.6), it is straightforward to see that

dAn

d\chi 
= 0,

dBn

d\chi 
= 0,

dCn

d\chi 
= bdv\theta \lambda n.(2.15)

Substituting (2.15), \mu = i\omega n, Bn = \omega 2
n, and \chi = \chi H

n (\gamma ) into (2.14), we obtain

d\mu 

d\chi 

\bigm| \bigm| \bigm| 
\chi =\chi H

n (\gamma )
=

bdv\theta \lambda n
2\omega 2

n  - 2i\omega nAn
,

and thus

\eta \prime (\chi ) =\scrR e
\biggl( 
d\mu 

d\chi 

\bigm| \bigm| \bigm| 
\chi =\chi H

n (\gamma )

\biggr) 
=

bdv\theta \lambda n
2(\omega 2

n +A2
n)
> 0.

By Lemmas 2.3, 2.4, and 2.5 and Hopf bifurcation theory for partial functional
differential equations, we obtain the following results on the stability and bifurcation
behaviors of the positive homogeneous steady state of (1.3).
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LOCAL PERCEPTION AND LEARNING MECHANISMS 997

Theorem 2.6. Assume that the conditions in (A) hold, and let \chi S
n(\gamma ), \chi 

H
n (\gamma )

be defined as in (2.11), (2.12) and \chi S
N (\gamma ), \chi H

M (\gamma ) in Lemma 2.3. Then we have the
following results for (1.3):

(i) A mode-n Turing bifurcation occurs at \chi = \chi S
n(\gamma ) for \gamma > 0 and n \in \BbbN ; thus

a mode-n spatially nonhomogeneous steady state can arise near (\theta , v\theta , q\theta ).
(ii) A mode-n Hopf bifurcation occurs at \chi = \chi H

n (\gamma ) for \gamma > 0 and n\in \BbbN , and the
bifurcating periodic solutions are spatially nonhomogeneous.

(iii) For a fixed \gamma \in (0,+\infty ), the positive homogeneous steady state (\theta , v\theta , q\theta ) is
locally asymptotically stable for \chi S

N (\gamma ) < \chi < \chi H
M (\gamma ) and unstable for \chi \in \bigl( 

 - \infty , \chi S
N (\gamma )

\bigr] 
\cup 
\bigl[ 
\chi H
M (\gamma ),+\infty 

\bigr) 
.

Here ``a mode-n Turing/Hopf bifurcation"" implies that the corresponding bifur-
cation curve is associated with wave number n, which results from the eigenvalues
\lambda n of  - \Delta in the characteristic equation (2.6). On one-dimensional spatial domain
\Omega = (0, \pi ), the bifurcation diagram of (1.3) is illustrated in Figure 1 by taking the
parameters as d1 = 0.01, d2 = 0.03, m= 1, d= 0.1, k = 1, b= 0.15. In the following,
we perform some numerical simulations based on the following initial conditions:

(I1) u0(x) = \theta  - 0.01cos(x), v0(x) = v\theta  - 0.01cos(x), q0(x) = q\theta  - 0.1cos(x),
(I2) u0(x) = \theta  - 0.01cos(2x), v0(x) = v\theta  - 0.01cos(2x), q0(x) = q\theta  - 0.1cos(2x),
(I3) u0(x) = \theta  - 0.01cos(3x), v0(x) = v\theta  - 0.01cos(3x), q0(x) = q\theta  - 0.1cos(3x),
(I4) u0(x) = \theta  - 0.01cos(4x), v0(x) = v\theta  - 0.01cos(4x), q0(x) = q\theta  - 0.1cos(4x),

and we will indicate the initial conditions (IC) for each figure. Note that we only
demonstrate the distribution of resources in each figure as the consumers always follow
the resources and have similar spatial distribution.

Fig. 1. The bifurcation diagram of system (1.3) in the (\chi ,\gamma ) plane with d1 = 0.01, d2 =
0.03, m= 1, d= 0.1, k= 1, b= 0.15, \Omega = (0, \pi ), and the Turing bifurcation curves \chi = \chi S

n(\gamma ) defined
as in (2.11) can be identified by the dashed curves and the Hopf bifurcation curves \chi = \chi H

n (\gamma ) defined
as in (2.12) by the solid curves. The points are parameter values for the numerical simulations, and
they are P1 (0.5,0.28), P2 (0.5,0.18), P3 (0.5,0.15), P4 ( - 0.3,0.45), P5 ( - 0.3,0.42), P6 ( - 0.3,0.31),
and P7 ( - 0.3,0.25).
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998 QINGYAN SHI, YONGLI SONG, AND HAO WANG

(a) (χ, γ) =P1,IC=(I2) (b) (χ, γ) =P2,IC=(I2) (c) (χ, γ) =P3,IC=(I2)

Fig. 2. Periodic patterns arising near Hopf bifurcation curves in system (1.3) when parameters
are d1 = 0.01, d2 = 0.03, m = 1, d = 0.1, k = 1, b = 0.15, and \Omega = (0, \pi ). Here, P1, P2, P3 are
the parameter value points in the diagram plane in Figure 1. In each figure, the color indicates the
value of u(x, t) according to the color bar.

From Figure 1, we observe that the mode-2 Hopf curve is the first Hopf curve,
and then we choose some points near the Hopf bifurcation curves to observe periodic
patterns in system (1.3). In Figure 2, for fixed \chi = 0.5, we observe that the steady
state (\theta , v\theta , q\theta ) is stable when \gamma = 0.28 (corresponding to P1, which is in the stable
region). When we decrease \gamma to 0.18 (corresponding to P2, which is under the first
Hopf bifurcation curve), it is shown that a mode-2 spatially nonhomogeneous peri-
odic pattern arises. When \gamma = 0.15, the mode-2 spatially nonhomogeneous periodic
pattern remains stable as the mode-2 Hopf bifurcation curve is the dominant Hopf
bifurcation curve. In this situation, we see that the spatial distribution of resources
will periodically change over time.

In Figure 3, we demonstrate the spatially nonhomogeneous steady state and some
wandering periodic patterns when \chi = - 0.3. When we choose \gamma = 0.45 corresponding
to P4 in Figure 1, the constant steady state (\theta , v\theta , q\theta ) is stable, as shown in (a). If we
decrease \gamma to 0.42 corresponding to P5, which is below the mode-4 Turing curve, it
is shown that a mode-4 spatially nonhomogeneous steady state arises, as illustrated
in (b). This situation happens when the environment of the living habitat is steady
over time so that resources and consumers can keep their dynamic balance. When we
continue to decrease the \gamma value, we observe some ``wandering"" patterns with large
periods, as shown in (c) and (d), which demonstrate a distinguished distribution
of resources from the periodic patterns (see Figure 2) induced by Hopf bifurcation.
These patterns are also observed in previous work of the Keller--Segel chemotaxis
model with growth [20] and distributed spatial memory [28].

3. The dynamics of model (1.4). In this section, we investigate the dynamics
of system (1.4). Under assumption (A), (1.4) admits a positive equilibrium (\theta , v\theta , \~q\theta ),
where

\theta =
d

m - d
, v\theta =

(k - \theta )(1 + \theta )

km
, \~q\theta =

b\theta v\theta 
\gamma + \xi v\theta 

,

which is locally asymptotically stable concerning the kinetic system.
Linearizing (1.4) at (\theta , v\theta , \~q\theta ) leads to the linear operator

\~\scrL 

\left(  \phi 
\psi 
\varphi 

\right)  =

\left(   d1\Delta \phi + \beta \phi  - d\psi 
d2\Delta \psi  - \chi v\theta \Delta \varphi + \alpha \phi 

bv\theta \phi +
b\theta \gamma 

\gamma + \xi v\theta 
\psi  - (\gamma + \xi v\theta )\varphi 

\right)   ,(3.1)
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LOCAL PERCEPTION AND LEARNING MECHANISMS 999

(a) (χ, γ) =P4, IC=(I4) (b) (χ, γ) =P5, IC=(I4)

(c) (χ, γ) =P6, IC=(I4) (d) (χ, γ) =P7, IC=(I4)

Fig. 3. Spatial patterns arising near Turing bifurcation curves in system (1.3) when parameters
are d1 = 0.01, d2 = 0.03, m = 1, d = 0.1, k = 1, b = 0.15, and \Omega = (0, \pi ). In each figure, the color
indicates the value of u(x, t) according to the color bar.

where \alpha > 0, \beta < 0 are defined as in (2.2). Then we know that \~\scrL is a closed linear
operator in Y with domain D( \~\scrL ) =X with X, Y defined as in (2.3). In the following,
we provide the results about the spectrum of \~\scrL .

Theorem 3.1. Let \~\scrL :X\rightarrow Y be defined as in (3.1). Then the spectrum of \~\scrL is

\sigma 
\Bigl( 
\~\scrL 
\Bigr) 
= \sigma p

\Bigl( 
\~\scrL 
\Bigr) 
= \~S \cup \{  - \gamma  - \xi v\theta \} ,

where

\~S = \{ \~\mu (1)
n \} \infty n=0 \cup \{ \~\mu (2)

n \} \infty n=0 \cup \{ \~\mu (3)
n \} \infty n=0,(3.2)

where \~\mu 
(j)
n , j = 1,2,3, satisfying \scrR e

\bigl( 
\~\mu 
(1)
n

\bigr) 
<\scrR e

\bigl( 
\~\mu 
(2)
n

\bigr) 
<\scrR e

\bigl( 
\~\mu 
(3)
n

\bigr) 
are the roots of the

following characteristic equation:

\mu 3 + \~An\mu 
2 + \~Bn\mu + \~Cn = 0, n\in \BbbN 0,(3.3)

with

\~An = (d1 + d2)\lambda n  - \beta + \gamma + \xi v\theta ,

\~Bn = d2\lambda n(d1\lambda n  - \beta ) + (\gamma + \xi v\theta )(d1\lambda n + d2\lambda n  - \beta ) + \alpha  - \chi b\theta v\theta \gamma \lambda n
\gamma + \xi v\theta 

,

\~Cn = (\gamma + \xi v\theta )d2\lambda n(d1\lambda n  - \beta ) + b\theta v2\theta \chi \lambda n + d\alpha (\gamma + \xi v\theta ) - 
\chi b\theta v\theta \gamma \lambda n(d1\lambda n  - \beta )

\gamma + \xi v\theta 
.
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1000 QINGYAN SHI, YONGLI SONG, AND HAO WANG

The proof of Theorem 3.1 is tedious, and thus we put the details in Appendix A.
Similarly to the proof of Corollary 2.2, we obtain the following result.

Corollary 3.2. In system (1.4), the constant equilibrium (\theta , v\theta , \~q\theta ) is locally
stable when all the roots of the characteristic equation (3.3) have negative real parts;
otherwise it is unstable.

From Theorem 3.1 and Corollary 3.2, we know that the stability of the constant
steady state (\theta , v\theta , \~q\theta ) of system (1.4) can be determined by the characteristic equation
(3.3). The steady-state bifurcation points can be obtained by solving \~Cn = 0,

\~\chi S
n(\gamma ) = - (\gamma + \xi v\theta )(d2\lambda n(d1\lambda n  - \beta ) + d\alpha )

bdv2\theta \lambda n  - (d1\lambda n  - \beta ) b\theta \gamma v\theta \lambda n

\gamma +\xi v\theta 

,(3.4)

and the Hopf bifurcation points by solving \~An
\~Bn  - \~Cn = 0,

\~\chi H
n (\gamma ) =

((d1 + d2)\lambda n  - \beta )

bdv2\theta \lambda n + b\theta \gamma v\theta \lambda n +
d2b\theta \gamma v\theta \lambda 2

n

\gamma +\xi v\theta 

[d2\lambda n(d1\lambda n  - \beta )

+(\gamma + \xi v\theta )((d1 + d2)\lambda n  - \beta ) + (\gamma + \xi v\theta )
2 + d\alpha 

\bigr] 
.

(3.5)

In the following lemma, we give a detailed description of the properties of Turing
curves \chi = \~\chi S

n(\gamma ). For the convenience of writing, we define

Qn(\gamma ) = (\gamma + \xi v\theta )(d2\lambda n(d1\lambda n  - \beta ) + d\alpha ),

Pn(\gamma ) = bdv2\theta \lambda n  - (d1\lambda n  - \beta )
b\theta \gamma v\theta \lambda n
\gamma + \xi v\theta 

.
(3.6)

Lemma 3.3. Let \~\chi S
n(\gamma ) and \~\chi H

n (\gamma ) be defined as in (3.4) and (3.5), respectively.
Then the following statements are true:

(i) There exists n\ast \in \BbbN such that
(a) when n \leq n\ast , \~\chi S

n(\gamma ) < 0 and there exists N \in \BbbN such that \~\chi S
N (\gamma ) =

maxn\in \BbbN \~\chi S
n(\gamma ) for a fixed \gamma > 0;

(b) when n > n\ast , \~\chi S
n(\gamma ) < 0 for \gamma \in (0, \gamma \ast n) and \~\chi S

n(\gamma ) > 0 for \gamma \in (\gamma \ast n,+\infty )
with \gamma \ast n satisfying Pn(\gamma 

\ast 
n) = 0; for a fixed \gamma > 0, \~\chi S

n(\gamma ) is strictly decreas-
ing with respect to n and satisfies

\~\chi S
n(\gamma )> \~\chi S

\infty (\gamma ) =
d2(\gamma + \xi v\theta )

2

b\theta \gamma v\theta 
,(3.7)

where \~\chi S
\infty (\gamma ) is decreasing for \gamma \in (0, \gamma \ast ) and increasing for \gamma \in (\gamma \ast ,+\infty )

with \gamma \ast = \xi v\theta .
(ii) There exists M \in \BbbN such that \~\chi H

M (\gamma ) =minn\in \BbbN \~\chi H
n (\gamma ) for a fixed \gamma > 0.

One can find the proof for Lemma 3.3 in Appendix B. Similarly to Lemma 2.4,
we can also prove the properties of eigenvalues of (3.3) as follows.

Lemma 3.4. For a fixed \gamma > 0, let \~\chi S
n(\gamma ), \~\chi H

n (\gamma ), \~\chi S
\infty (\gamma ) be defined as in (3.4),

(3.5), (3.7), and \~\chi S
N (\gamma ), \~\chi H

M (\gamma ) in Lemma 3.3. We further define

\chi  - (\gamma ) = \~\chi S
N (\gamma ), \chi +(\gamma ) =min

\bigl\{ 
\~\chi H
M (\gamma ), \~\chi S

\infty (\gamma )
\bigr\} 
.(3.8)
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LOCAL PERCEPTION AND LEARNING MECHANISMS 1001

Then we have the following results:
(i) When \chi  - (\gamma )<\chi <\chi +(\gamma ), all the eigenvalues of (3.3) have negative real parts.
(ii) When \chi \geq \chi +(\gamma ), \mu = \pm i\omega n (\omega n > 0) is a pair of purely imaginary roots of

(2.6) if \chi = \~\chi H
n (\gamma ).

(iii) When \chi \leq \chi  - (\gamma ) or \chi \geq \chi +(\gamma ), \mu = 0 is a root of (2.6) if \chi = \~\chi S
n(\gamma ).

Remark 3.5. The boundary curve \chi = \chi +(\gamma ) for the constant steady state of
system (1.4) to lose stability consists of two types of bifurcation curve \chi = \~\chi H

M (\gamma )
and \chi = \~\chi S

\infty (\gamma ). When the constant steady state loses its stability via \chi = \~\chi S
\infty (\gamma ),

there will be infinitely many eigenvalues with positive real parts for the corresponding
linearized system. This situation also happens in an explicit spatial memory model
studied in [27].

Similarly to Lemma 2.5, we can verify that the following transversality condition
for Hopf bifurcation holds in system (1.4) and we omit the proof.

Lemma 3.6. Let \chi = \~\chi H
n (\gamma ) be defined as in (3.5). Then (3.3) has a pair of roots

in the form \mu = \eta (\chi ) \pm i\omega (\chi ) when \chi is near \~\chi H
n (\gamma ) such that \eta 

\bigl( 
\~\chi H
n (\gamma )

\bigr) 
= 0 and

\eta \prime 
\bigl( 
\~\chi H
n (\gamma )

\bigr) 
> 0.

By Lemmas 3.3, 3.4, and 3.6 and Hopf bifurcation theory for partial functional
differential equations, we obtain the following results on the stability and bifurcation
behaviors of the positive homogeneous steady state of (1.4).

Theorem 3.7. Assume that the conditions in (A) hold, and let \~\chi S
n(\gamma ), \~\chi H

n (\gamma ) be
defined as in (3.4), (3.5), and \chi  - (\gamma ), \chi +(\gamma ) in (3.8). We have the following results
for (1.4):

(i) A mode-n Turing bifurcation occurs at \chi = \~\chi S
n(\gamma ) for \gamma > 0 and n \in \BbbN , and

thus a mode-n spatially nonhomogeneous steady state can arise near (\theta , v\theta , \~q\theta ).
(ii) A mode-n Hopf bifurcation occurs at \chi = \~\chi H

n (\gamma ) for \gamma > 0 and n\in \BbbN , and the
bifurcating periodic solutions are spatially nonhomogeneous.

(iii) If we fix \gamma \in (0,+\infty ), the positive homogeneous steady state (\theta , v\theta , \~q\theta ) is
locally asymptotically stable for \chi  - (\gamma ) < \chi < \chi +(\gamma ) and unstable for \chi \in 
( - \infty , \chi  - (\gamma ))\cup (\chi +(\gamma ),+\infty ).

Fixing the parameters as d1 = 0.01, d2 = 0.02, m = 0.5, d = 0.1, k = 1, b =
0.2, \xi = 0.3, the bifurcation diagram of (1.4) is illustrated in Figure 4. We see
that the dynamics of (1.4) is different from that of (1.3): (i) there exists a limiting
Turing curve \chi = \~\chi S

\infty (\gamma ) corresponding to the infinite mode which destabilizes the
system when \chi > \~\chi S

\infty (\gamma ); (ii) different modes of Hopf bifurcation curves can intersect
with each other such that codimension-2 double Hopf bifurcation occurs. Near the
intersection point of mode-3 and mode-4 Hopf bifurcation curves, we choose proper
parameter values as presented in P2, P3, and P4 to perform simulations. When
the parameters are taken as (\chi ,\gamma ) = P2, which is extremely close to the mode-4
Hopf bifurcation curve, we observe that a mode-4 spatially nonhomogeneous periodic
pattern arises, as shown in Figure 5(b). When (\chi ,\gamma ) = P3, which is in between the
area enclosed by the two Hopf bifurcation curves and (\chi ,\gamma ) = P4, which is closest to
the mode-3 Hopf bifurcation curve, we observe a quasi-periodic pattern and a mode-3
periodic pattern, respectively, as illustrated in Figures 5(c) and (d). Compared to the
periodic patterns observed in system (1.3) (see Figure 2), the spatial distribution of
resources is more diverse, and even quasi-periodic distribution is possible due to the
impact of the consumption process on cognition and memory in system (1.4).
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1002 QINGYAN SHI, YONGLI SONG, AND HAO WANG

Fig. 4. The bifurcation diagram of system (1.4) in parameter plane (\chi ,\gamma ) with d1 = 0.01, d2 =
0.02, m = 0.5, d = 0.1, k = 1, b = 0.2, \xi = 0.3, \Omega = (0, \pi ), and the Turing bifurcation curves
\chi = \~\chi S

n(\gamma ) defined as in (3.4) can be identified by the dashed curves and the Hopf bifurcation curves
\chi = \~\chi H

n (\gamma ) defined as in (3.5) by the solid curves. In addition, the dotted curve denotes the limiting
Turing curve \chi = \~\chi S

\infty (\gamma ) defined as in (3.7). The parameter values for the numerical simulations
are P1 (0.52,1.05), P2 (0.50,0.42), P3 (0.48,0.35), P4 (0.45,0.27), P5 ( - 0.2,0.78), P6 ( - 0.2,0.63),
P7 ( - 0.2,0.40), and P8 ( - 0.2,0.10).

In Figure 6, we illustrate the spatially nonhomogeneous steady state and some
wandering periodic patterns when \chi = - 0.2. When we choose \gamma = 0.78 corresponding
to P5 in Figure 4, the constant steady state (\theta , v\theta , \~q\theta ) is stable, as shown in (a). If
we decrease \gamma to 0.63 corresponding to P5, which is under the mode-4 Turing curve,
a mode-4 spatially nonhomogeneous steady state arises, as shown in (b). When we
continue to decrease the \gamma value to 0.40, the mode-4 steady state is still stable, as
shown in (c). Similarly to model (1.3), we observe a ``wandering"" pattern with a large
period for \gamma = 0.10, as shown in (d).

4. Discussion. In [41], Wang and Salmaniw summarized three main categories
of cognitive processes in animal movement models: perception, memory, and learning.
Perception means the ability to see, hear, or otherwise become aware of something
through the senses, while memory is the ability to store, retain, and retrieve infor-
mation [6, 11]. Learning is the information acquisition from an individual experience
[11]. Spatial memory modeled by explicit time delay has received much attention:
(i) discrete delay [2, 13, 25, 26, 27, 30, 31, 32, 34, 40, 42, 43, 44, 46]; (ii) distributed
delay [15, 24, 28, 35, 47]; (iii) nonlocal delay [29].

Through these studies, we can gain some insight into the effect of explicit memory
in delayed form on animal movement. However, there is little analysis completed for
implicit memory that is described by a learning equation [33, 41]. In this paper, we
consider resource-consumer models with implicit spatial memory by incorporating an
additional biased diffusion term which shows an attractive movement of consumers to
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LOCAL PERCEPTION AND LEARNING MECHANISMS 1003

(a) (χ, γ) =P1, IC=(I4) (b) (χ, γ) =P2, IC=(I4)

(c) (χ, γ) =P3, IC=(I3.5) (d) (χ, γ) =P4, IC=(I3)

Fig. 5. Periodic patterns arising near Hopf bifurcation curves in system (1.4) when parameters
are d1 = 0.01, d2 = 0.02, m= 0.5, d= 0.1, k= 1, b= 0.2, \xi = 0.3, and \Omega = (0, \pi ). In each figure, the
color indicates the value of u(x, t) according to the color bar.

the resource. The difference between these two models lies in the cognitive potential
function q(x, t) satisfying two different learning ODEs. System (1.3)/(1.4) is a PDE-
ODE coupled system whose linearized system has a more complicated spectrum than a
classical reaction-diffusion system. We first perform a spectral analysis for each system
and found that the spectral set of the corresponding linear system for (1.3)/(1.4) is
discrete, which implies that the stability of the constant steady state is still determined
by the corresponding eigenvalue problem. Next, we take the perceptual diffusion
rate \chi \in \BbbR as a bifurcation parameter and perform a bifurcation analysis for system
(1.3)/(1.4).

In systems (1.3) and (1.4), steady-state bifurcation and Hopf bifurcation can both
occur. From the bifurcation diagram in Figures 1 and 4, we observe that the constant
steady states are stable for a small perceptual diffusion rate (either attractive or
repulsive), while a large perceptual diffusion can destabilize the systems and induce
rich spatial patterns. The outcome differences between these two models mainly lie
in the following two aspects:

1. All the steady-state bifurcation curves lie in the left half part of the \chi  - \gamma plane
in system (1.3). In system (1.4), there exists an n\ast defined as in Lemma 3.3
such that the steady-state bifurcation curves move to the right half plane
when n \geq n\ast . In particular, when n \rightarrow +\infty , we found a limiting Turing
curve \chi = \~\chi S

\infty such that the linearized system at the constant steady state
has infinitely many eigenvalues with positive real parts for \chi > \~\chi S

\infty .
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1004 QINGYAN SHI, YONGLI SONG, AND HAO WANG

(a) (χ, γ) =P5, IC=(I4) (b) (χ, γ) =P6, IC=(I4)

(c) (χ, γ) =P7, IC=(I3) (d) (χ, γ) =P8, IC=(I2)

Fig. 6. Spatially nonhomogeneous steady state arising near Turing bifurcation curves in system
(1.4) when parameters are d1 = 0.01, d2 = 0.02, m = 0.5, d = 0.1, k = 1, b = 0.2, \xi = 0.3, and
\Omega = (0, \pi ). In each figure, the color indicates the value of u(x, t) according to the color bar.

2. In system (1.3), the dominant mode for Hopf bifurcation will not vary with
different perceptual diffusion rates when the other parameters are fixed. For
example, we observed that the mode-2 Hopf bifurcation is stable when the
parameter values are taken as in Figure 1. However, it is shown that there
are different dominant modes for different perceptual diffusion rates in system
(1.4), even two different modes of Hopf bifurcation curve can intersect with
each other such that a codimension-2 double Hopf bifurcation occurs; see
Figure 4 and 5.

Based on the above theoretical reasons, the dynamics of system (1.4) are richer; for
instance, different modes of stable periodic patterns and quasi-periodic patterns can
be found in system (1.4). From a biological perspective, these results indicate that
the distribution of the resources/consumers seems to be more spatially diverse when
the cognitive map q(x, t) follows the more realistic learning equation (H2).

This paper considered local perception when the cognitive kernel g(x) is a delta
function, which is the limiting case when the perceptual range is extremely narrow.
However, the actual situation is that the animal has a restricted habitat and wide
perceptual range, and thus it is more realistic when the kernel function is taken as
a top-hat, Gaussian, or exponential form. Therefore, we will consider the effect of
nonlocal perception in consumer-resource models in the future.

Appendix A. The proof of Theorem 3.1. In order to analyze the spectrum
of \scrL defined as in (2.4), we consider the nonhomogeneous problem
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LOCAL PERCEPTION AND LEARNING MECHANISMS 1005\left\{             

d1\Delta \phi + \beta \phi  - d\psi = \mu \phi + \tau 1,

d2\Delta \psi  - \chi v\theta \Delta \varphi + \alpha \phi = \mu \psi + \tau 2,

bv\theta \phi +
b\theta \gamma 

\gamma + \xi v\theta 
\psi  - \gamma \varphi = \mu \varphi + \tau 3,

\partial \nu \phi = \partial \nu \psi = 0,

(A.1)

where \mu \in \BbbC and (\tau 1, \tau 2, \tau 3) \in Y . There are the following two cases according to the
solution of the third equation in (A.1).

Case 1: \mu \not =  - \gamma  - \xi v\theta . From the third equation of (A.1), we can obtain \varphi =
bv\theta \phi + b\theta \gamma 

\gamma +\xi v\theta 
\psi  - \tau 3 and, substituting it into the second equation, we have\left\{       
d1\Delta \phi + \beta \phi  - d\psi = \mu \phi + \tau 1,

d2\Delta \psi  - \chi v\theta 
\mu + \gamma + \xi v\theta 

\Delta 

\biggl( 
bv\theta \phi +

b\theta \gamma 

\gamma + \xi v\theta 
\psi  - \tau 3

\biggr) 
+ \alpha \phi = \mu \psi + \tau 2,

\partial \nu \phi = \partial \nu \psi = 0,

(A.2)

which is equivalent to

\~\scrL 1

\biggl( 
\phi 
\psi 

\biggr) 
=

\left(  d1\Delta \phi + \beta \phi  - d\psi  - \mu \phi 

d2\Delta \psi  - b\chi v\theta 
\mu + \gamma + \xi v\theta 

\Delta \phi + \alpha \phi  - \mu \psi 

\right)  =

\Biggl( 
\tau 1

\tau 2  - 
\chi v\theta 
\mu + \gamma 

\Delta \tau 3

\Biggr) 
.

By an argument similar to that in the proof of Theorem 2.1, we know that \~\scrL 1 has a
bounded inverse \~\scrL  - 1

1 with

\| \phi \| W 2,p
N (\Omega ) + \| \psi \| W 2,p

N (\Omega )

\leq \| \~\scrL  - 1
1 \| 

\Biggl( 
\| d1\Delta \phi + \beta \phi  - d\psi \| Lp(\Omega ) +

\bigm\| \bigm\| \bigm\| \bigm\| d2\Delta \psi  - b\chi v\theta 
\mu + \gamma + \xi v\theta 

\Delta \phi + \alpha \phi 

\bigm\| \bigm\| \bigm\| \bigm\| 
Lp(\Omega )

\Biggr) 
,

when \mu \in \BbbC satisfies the inequality

(\mu + d1\lambda n  - \beta )(\mu + \gamma + \xi v\theta )[(\mu + d2\lambda n)(\gamma + \xi v\theta ) - \xi v\theta b\theta \gamma ] + d\alpha (\mu + \gamma + \xi v\theta )

(A.3)

+ db\chi v2\theta \lambda n \not = 0.

Therefore, we know that \~\scrL  - (\mu + \xi v\theta )I has a bounded inverse
\bigl( 
\~\scrL  - (\mu + \xi v\theta )I

\bigr)  - 1
.

If (A.3) does not hold, then it can be inferred that \mu satisfies the dispersal relation

(3.3), which has three roots \~\mu 
(j)
n , j = 1,2,3, for each n \in \BbbN 0. For j = 1,2,3, we put

\mu = \~\mu 
(j)
n into (A.1), and one can check that \~\mu 

(j)
n are indeed eigenvalues of \~\scrL with

eigenfunctions being

\left(   \~\phi 
(j)
n

\~\psi 
(j)
n

\~\varphi 
(j)
n

\right)   =

\left(       
1

1

d

\Bigl( 
 - d1\lambda n + \beta  - \~\mu 

(j)
n

\Bigr) 
dbv\theta (\gamma + \xi v\theta ) - b\theta \gamma 

\Bigl( 
d1\lambda n + \~\mu 

(j)
n  - \beta 

\Bigr) 
\Bigl( 
\~\mu 
(j)
n + \gamma + \xi v\theta 

\Bigr) 
(\gamma + \xi v\theta )

\right)       \phi n,

which implies that Ker( \~\scrL  - \~\mu 
(j)
n ) = Span

\bigl\{ \bigl( 
\~\phi 
(j)
n , \~\psi 

(j)
n , \~\varphi 

(j)
n

\bigr) T\bigr\} 
.
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1006 QINGYAN SHI, YONGLI SONG, AND HAO WANG

Case 2: \mu = - \gamma  - \xi v\theta . In this case, (A.1) can be solved as\left\{             
d1\Delta \phi +

\biggl( 
\beta  - \gamma  - \xi v\theta +

bdv\theta (\gamma + \xi v\theta )

b\theta \gamma 

\biggr) 
\phi = \tau 1 +

d(\gamma + \xi v\theta )\tau 3
b\theta \gamma 

,

\psi =
(\gamma + \xi v\theta )(\tau 3  - bv\theta \phi )

b\theta \gamma 
,

\Delta \varphi =
1

\chi v\theta 
(d2\Delta \psi + \alpha \phi  - (\gamma + \xi v\theta )\psi  - \tau 2) .

By letting \tau 1 = \tau 2 = \tau 3 = 0, we know that the first equation only has trivial solution
\phi = 0 when \beta  - \gamma  - \xi v\theta + bdv\theta (\gamma +\xi v\theta )

b\theta \gamma \not \in \{ \lambda n\} \infty n=1. Also, we have \psi = 0 from the second

equation and \Delta \varphi = 0, which implies that Ker
\bigl( 
\~\scrL +(\gamma +\xi v\theta )I

\bigr) 
=Span\{ (0,0, \~\varphi )T \} with

\Delta \~\varphi = 0 and thus  - \gamma  - \xi v\theta \in \sigma p( \~\scrL ). If \beta  - \gamma  - \xi v\theta +
bdv\theta (\gamma +\xi v\theta )

b\theta \gamma = \lambda n holds for some
n\in \BbbN , then we have

\phi = \~\phi n = d1\phi n, \psi = \~\psi n = - d1v\theta (\gamma + \xi v\theta )\phi n
\theta \gamma 

,

\varphi = \~\varphi n =
1

\chi \theta v\theta \gamma 
d1d2v\theta (\gamma + \xi v\theta \lambda n + \alpha d1\theta \gamma + d1v\theta (\gamma + \xi v\theta )

2)\phi n.

Still, we have  - \gamma  - \xi v\theta \in \sigma p( \~\scrL ) with Ker
\bigl( 
\~\scrL + (\gamma + \xi v\theta )I

\bigr) 
= Span

\bigl\{ \bigl( 
\~\phi n, \~\psi n, \~\varphi n

\bigr) T\bigr\} 
.

This completes the proof.

Appendix B. The proof of Lemma 3.3. By the definition of \~\chi S
n(\gamma ) given in

(3.4), we see that \~\chi S
n(\gamma ) = Qn(\gamma )/Pn(\gamma ) with Qn(\gamma ) and Pn(\gamma ) defined as in (3.6).

It can be verified that Qn(\gamma ) > 0 for all \gamma > 0, and therefore the sign of \~\chi S
n(\gamma ) is

determined by the sign of Pn(\gamma ). By letting Pn(\gamma )> 0, we have

\lambda n <
dv\theta (\gamma + \xi v\theta )

d1\gamma \theta 
\in 
\biggl( 
dv\theta 
d1\theta 

,+\infty 
\biggr) 
,(B.1)

which implies that Pn(\gamma ) > 0 holds for all \gamma > 0 when \lambda n <
dv\theta 
d1\theta 

, and n\ast \in \BbbN is the

largest integer such that \lambda n\ast <
dv\theta 
d1\theta 

. When n \leq n\ast , \~\chi S
n(\gamma ) < 0 holds for all \gamma > 0.

When n> n\ast , we have

Pn(0) = bdv2\theta \lambda n > 0, lim
\gamma \rightarrow +\infty 

Pn(\gamma ) = - (d1\lambda n  - \beta )b\theta v\theta \lambda n < 0,

and

d[Pn(\gamma )]

d\gamma 
= - (d1\lambda n  - \beta )b\theta \xi \lambda nv

2
\theta 

(\gamma + \xi v\theta )2
< 0,

and thus there exists \gamma \ast n > 0 such that Pn(\gamma 
\ast 
n) = 0, and Pn(\gamma )> 0 for \gamma \in (0, \gamma \ast n) and

Pn(\gamma )< 0 for \gamma \in (\gamma \ast n,+\infty ).
Then we determine the monotonicity of \~\chi S

n(\gamma ) concerning n and rewrite \~\chi S
n(\gamma ) in

the following form by letting p= \lambda n:

\~\chi S
p (\gamma ) = - (\gamma + \xi v\theta )(d2p(d1p - \beta ) + d\alpha )

bdv2\theta p - (d1p - \beta ) b\theta \gamma v\theta p
\gamma +\xi v\theta 

.

Taking the derivative with respect to p, we have

d[ \~\chi S
p (\gamma )]

dp
= - \gamma + \xi v\theta 

P 2
n(\gamma )

\biggl[ 
d1d2bdv

2
\theta p

2 +
2d\alpha d1b\theta \gamma v\theta 
(\gamma + \xi v\theta )

p - d\alpha (bdv2\theta (\gamma + \xi v\theta ) + \beta b\theta \gamma v\theta )

(\gamma + \xi v\theta )

\biggr] 
.
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LOCAL PERCEPTION AND LEARNING MECHANISMS 1007

From the expression of
d[ \~\chi S

p (\gamma )]

dp , we see that
d[ \~\chi S

p (\gamma )]

dp is a quadratic function of p with
positive coefficients for quadratic and linear terms. However, the constant term is

negative as bdv2\theta (\gamma +\xi v\theta )+\beta b\theta \gamma v\theta > 0 when \~\chi S
n(\gamma )> 0, which implies that

d[ \~\chi S
p (\gamma )]

dp has

a unique zero p\ast such that
d[ \~\chi S

p (\gamma )]

dp > 0 for p\in (0, p\ast ) and
d[ \~\chi S

p (\gamma )]

dp < 0 for p\in (p\ast ,+\infty )

and \~\chi S
p (\gamma ) reaches its maximum at p\ast . Let N \in \BbbN be the integer such that \lambda n is the

closest eigenvalue to p\ast . Then we have \~\chi S
N (\gamma ) =maxn\in \BbbN \~\chi S

n(\gamma ) for a fixed \gamma > 0. This
proves (i)-a.

When \~\chi S
n(\gamma )> 0, the constant term in the expression of

d[ \~\chi S
p (\gamma )]

dp is positive, and

thus we know that
d[ \~\chi S

p (\gamma )]

dp < 0 from the discussion in the proof of (i)-a. Therefore,

\~\chi S
n(\gamma ) is strictly decreasing with respect to n and we have

min
n>n\ast 

\~\chi S
n(\gamma ) = lim

n\rightarrow +\infty 
\~\chi S
n(\gamma ) =

d2(\gamma + \xi v2\theta )

b\theta \gamma v\theta 
.(B.2)

Define the limiting Turing curve as \~\chi S
\infty in (3.7) by letting \lambda n \rightarrow +\infty in (3.4), and it

can be known that \~\chi S
\infty (\gamma ) is first a decreasing and then increasing function of \gamma and

reaches its minimum at \gamma = \gamma \ast . This proves the conclusions in (i)-b.
To prove (ii), we rewrite \~\chi H

n (\gamma ) as

\~\chi H
p (\gamma ) =

((d1 + d2)p - \beta )

bdv2\theta p+ b\theta \gamma v\theta p+
d2b\theta \gamma v\theta p2

\gamma +\xi v\theta 

[d2p(d1p - \beta )

+(\gamma + \xi v\theta )((d1 + d2)p - \beta ) + (\gamma + \xi v\theta )
2 + d\alpha 

\bigr] 
,

where \lambda n in \~\chi H
n (\gamma ) is replaced by p. Taking the derivative with respect to p, we obtain

d[ \~\chi H
p (\gamma )]

dp
=
Fp(\gamma )

H2
p (\gamma )

,

where

Fp(\gamma ) =Hp(\gamma )
\bigl\{ 
(d1 + d2)

\bigl[ 
d2p(d1p - \beta ) + (\gamma + \xi v\theta )((d1 + d2)p - \beta ) + (\gamma + \xi v\theta )

2

+d\alpha ] + ((d1 + d2)p - \beta )(2d1d2p - \beta + (d1 + d2)(\gamma + \xi v\theta ))\} 

 - Qp(\gamma )

\biggl( 
bdv2\theta + b\theta \gamma v\theta +

2d2b\theta \gamma v\theta p

\gamma + \xi v\theta 

\biggr) 
and

Qp(\gamma ) = ((d1 + d2)p - \beta ) [d2p(d1p - \beta ) + (\gamma + \xi v\theta )((d1 + d2)p - \beta )

+(\gamma + \xi v\theta )
2 + d\alpha 

\bigr] 
,

Hp(\gamma ) = bdv2\theta p+ b\theta \gamma v\theta p+
d2b\theta \gamma v\theta p

2

\gamma + \xi v\theta 
.

By a tedious calculation, one can verify that Fp(\gamma ) is a quartic polynomial of p, that
is,

Fp(\gamma ) = a4(\gamma )p
4 + a3(\gamma )p

3 + a2(\gamma )p
2 + a1(\gamma )p+ a0(\gamma ),

with

a4(\gamma ) =
(d1 + d2)d1d

2
2b\theta \gamma v\theta 

\gamma + \xi v\theta 
> 0,

a0(\gamma ) = \beta (bdv2\theta + b\theta \gamma v\theta )[\alpha + (\gamma + \xi v\theta )
2  - \beta (\gamma + \xi v\theta )]< 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Therefore, it can be inferred that there exists at least one positive zero p = p\ast \ast of
Fp(\gamma ) such that \~\chi H

p (\gamma ) reaches its minimum at p = p\ast \ast . Therefore, we may take
M \in \BbbN such that \lambda M is the closest eigenvalue to p\ast \ast . This completes the proof.
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improved the quality of our paper.
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