
ON THE GERSTEN CONJECTURE FOR HERMITIAN WITT

GROUPS

STEFAN GILLE AND IVAN PANIN

Abstract. We prove that the hermitian Gersten-Witt complex is exact for

Azumaya algebras with involution of the first- or second kind over a regular
local ring, which is essentially smooth over a field, or over a discrete valuation

ring.

1. Introdcution

Let R be a regular integral domain of finite Krull dimension with fraction field K
of characteristic not two, and (A, τ) an Azumaya algebra with involution of the
first- or second kind over R. In [10, 11, 12] the first named author has constructed
a complex, the so called ε-hermitian Gersten-Witt complex of (A, τ), ε ∈ {±1}:

0 −→Wε(A, τ) −→Wε(K ⊗R (A, τ)) −→
⊕

ht q=1

Wε(k(q)⊗R (A, τ)) −→ . . .

. . . −→
⊕

ht q=dimR

Wε(k(q)⊗R (A, τ)) −→ 0 ,

where k(q) denotes the residue field of q ∈ SpecR, and Wε(k(q)⊗R(A, τ)), ε ∈ {±1},
denotes the ε-hermitian Witt group of the central simple k(q)-algebra k(q) ⊗R A
with involution idk(q)⊗ τ . This construction is the natural generalization of the
one of Balmer and Walter [4] for Witt groups of symmetric forms.

The Gersten conjecture claims that if R is a regular local ring then this complex
is exact. In the symmetric case, i.e. (A, τ) = (R, idR), this conjecture has been
verified in many instances, e.g. for regular local rings of dimension ≤ 4 by Balmer
and Walter [4], or for regular local rings R which contain a field (of characteristic
not 2), by Balmer, Walter, and the authors [3]. In the hermitian case the first
named author has given a proof if R is regular local and essentially smooth over a
field, and (A, τ) is extended from the base field in [11, 12]. These papers claim the
conjecture also in the non constant case, i.e. if (A, τ) is not coming from the base
field, but the proof is flawed, see our Remark 9.7 (we fix this gap here). Recently
Bayer-Fluckiger, First, and Parimala [5] have verified the conjecture if dimR ≤ 2,
and if dimR ≤ 4 and A is of odd index.
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In this article we prove the conjecture for regular local rings, which are essential
smooth over a discrete valuation ring.

Theorem. Let R be a integral domain, which is smooth over a discrete valuation
ring, or over a field, R̃ a localization of R at a prime ideal, and (Ã, τ̃) an Azu-

maya algebra with involution of the first- or second kind over R̃. Then the Gersten
conjecture holds for (Ã, τ̃).

Note that this theorem is new even in the symmetric case, i.e. (Ã, τ̃) = (R̃, idR̃).
Using Popescu’s desingularization theorem [18, 19] our result implies the conjecture
also for Azumaya algebras with involution over a regular local ring, which either
contains a field, or which is geometrically regular over a discrete valuation ring.

We give now a short sketch of the proof of the main theorem, which is in its
essence an adaption of Quillen’s [20] proof of the Gersten conjecture in K-theory
to hermitian Witt groups.

By assumption we have R̃ = RP for some prime ideal P of R, and replacing R
by a localization we can assume that (Ã, τ̃) = R̃ ⊗R (A, τ) for some Azumaya

algebra with involution (A, τ) over R. Denote by Db
c(Mqc(Ã)) the bounded de-

rived category of complexes of Ã-modules with finitely generated homology mod-
ules, and by Db

c(Mqc(Ã))(p), p ≥ 0 an integer, the full subcategory consisting of

complexes M• with codimSpecR suppM• ≥ p. A finite injective resolution of R̃

considered as an element in the bounded derived category Db
c(Mqc(R̃)) is a dualiz-

ing complex and so induces a duality on Db
c(Mqc(Ã)) as well as on Db

c(Mqc(Ã))(p)

giving these categories the structure of triangulated categories with duality in the
sense of Balmer [1].

By construction the Gersten conjecture is equivalent to the assertion that the
natural functor Db

c(Mqc(A))(p+1) −→ Db
c(Mqc(A))(p) induces the zero map on the

associated triangular Witt groups for all p ≥ 0. In Section 8 we show that this
follows in turn from the following result (see Lemma 8.3 for a precise formulation
including in particular the involved dualizing complexes):

Let t ∈ R be a non zero divisor, such that R′ := R/Rt is flat over the base ring,

π : R −→ R′ the quotient map, and γ : R −→ R̃ = RP the localization morphism.
Then

γ∗ trπ(x) = 0 in W i(Db
c(Mqc(Ã))(p))

for all x ∈Wi(Db
c(Mqc(R

′ ⊗R A))(p)).

Here trπ stands for the transfer map along π and Wi for the ith triangular Witt
group.

As this is merely an outline of the idea of proof we do not mention for simplicity
here and in the following the involved dualities, see Section 9 for this.

The main geometric ingredient in the proof of above claim is the normalization
lemma of Quillen [20], respectively its generalization by Gillet and Levine [14] in
case the base ring is a discrete valuation ring. This result coupled with Zariski’s
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main theorem provides us with a commutative diagram

R′P

C ′

s

88

R′

γ′

OO

u
oo

D

α′
>>

R̃

δ

__

R ,

π

OO

γ
oo

where u is essentially smooth (and so C ′ is Gorenstein), γ′ is the localization mor-
phism, s a regular immersion of codimension one, δ finite, the by α′ induced mor-
phism SpecC ′ −→ SpecD an open immersion, and s ◦ α′ is surjective.

Set (A′, τ ′) := R′ ⊗ (A, τ). In general the Azumaya algebras with involution

u∗(A′, τ ′) and (α′◦δ)∗(Ã, τ̃) are not isomorphic. In particular, there are two transfer
maps along s : C ′ −→ R′P :

tr1
s : Wi(Db

c(Mqc(Ã/Ãt))
(p)) −→ Wi(Db

c(Mqc(u
∗(A)))(p))

and

tr2
s : Wi(Db

c(Mqc(Ã/Ãt))
(p)) −→ Wi(Db

c(Mqc((α
′ ◦ δ)∗(Ã)))(p)) .

Now by the zero theorem for the transfer [12, Thm. 6.3] we have tr1
s(γ
′∗(x)) = 0,

and using an excision lemma we show that

γ∗(trπ(x)) = trδ

[
(α′∗)−1

(
tr2
s(γ
′∗(x))

) ]
.

Hence if u∗(A′, τ ′) ' (α′ ◦ δ)∗(Ã, τ̃), which is for instance the case if (Ã, τ̃) is
extended from the base ring, this concludes the proof. However – as already men-
tioned – these algebras with involutions are in general not isomorphic. In this
case we remedy this obstruction using a construction of Ojanguren and the second
named author [17]: There exists a smooth morphism of relative dimension zero

κ : C ′ −→ C̃, such that

κ∗
(
u∗(A′, τ ′)

)
' κ∗

(
(α′ ◦ δ)∗(Ã, τ̃)

)
,

and satisfying another technical property, which is crucial since it implies that above
morphism s : C ′ −→ R′P factors via κ and a regular immersion β′ : C̃ −→ R′P .

This is done in the last Section 9 of the paper. The content of the rest of
the article is as follows. In Sections 2 and 3 we recall the basic definitions of
triangulated and derived (hermitian) Witt theory. Section 4 fixes some notations
and recalls dualizing complexes. The following Section 5 is a jog through coherent
hermitian Witt theory of algebras with involutions over (commutative) rings with
dualizing complexes.

In Section 6 we prove the above mentioned excision lemma for the transfer (for
simplicity only in the special situation we use it), and in Section 7 we recall the
construction of the hermitian Gersten-Witt complex as a well as the formulation of
the Gersten conjecture and two of its consequences.



4 STEFAN GILLE AND IVAN PANIN

2. Review of Witt theory of categories with duality

2.1. Exact categories with duality. Throughout this work we assume that the
Hom-groups of additive categories are uniquely 2-divisible. In particular we assume
that schemes have 1/2 in their global sections.

An exact category with duality is a triple (E ,∨, $), where ∨ : E −→ E is a

contravariant exact functor and $ a natural isomorphism idE
'−→ ∨ ◦ ∨ satisfying

$∨M = $−1
M∨ for all M ∈ E .

A ε-symmetric space, ε ∈ {±1}, is a pair (M,ϕ), where ϕ : M −→ M∨ is an
isomorphism in E , such that ϕ∨ ◦ $M = ε · ϕ. Two ε-symmetric spaces (M1, ϕ1)

and (M2, ϕ2) are called isometric if there exists an isomorphism θ : M1
'−→ M2,

such that ϕ1 = θ∨ ◦ ϕ2 ◦ θ. The associated Witt group of ε-symmetric spaces
will be denoted Wε(E ,∨). This is the Grothendieck group of the isometry classes
of ε-symmetric spaces with the orthogonal sum as addition modulo the so called
metabolic spaces.

2.2. Triangulated categories with duality. We refer to the works [1, 2] of
Balmer for details and more information.

A triangulated category with δ-exact duality, δ ∈ {±1}, is a triple (T ,∨, $)
consisting of a triangulated category T , a δ-exact duality ∨, and an isomorphism $
to the bidual satisfying the same axioms as the one for exact categories with duality.
If the isomorphism to the bidual $ is clear from the context we also say that the
pair (T ,∨), is a triangulated category with duality.

Denote by T the translation functor of T . Then T i ◦∨ is a (−1)iδ-exact duality,

and (T , T i ◦∨, (−1)
i(i+1)

2 $) is a triangulated category with duality. A i-symmetric

space is a symmetric space in (T , T i ◦∨, (−1)
i(i+1)

2 $). Isometry and the orthogonal
sum of spaces are defined as for exact categories with duality. The ith triangular
Witt group of (T ,∨, $), denoted Wi(T ,∨, $), i ∈ Z, or Wi(T ,∨), respectively, is
the Grothendieck-Witt group of the isometry classes of i-symmetric spaces with
orthogonal sum as addition modulo the so called neutral spaces. These groups are
4-periodic: Wi(T ,∨) 'Wi+4(T ,∨).

A duality preserving functor from T to another triangulated category with δ1-
exact duality (T1,∨1, $1) is a pair (F, η), where F : T −→ T1 is an exact functor

and η is a natural isomorphism F ◦ ∨ '−→ ∨1 ◦ F satisfying

ηM∨ ◦ F ($M ) = (ηM )∨1 ◦$1FM

and the equation T−1
1 (ηM ) = (δ1δ) · ηTM , where T1 denotes the translation functor

in T1. The duality preserving functor (F, η) induces a homomorphism of triangular
Witt groups, see [8, Thm. 2.7]: If (M,ϕ) is a i-symmetric space in T then

(F, η)∗(M,ϕ) := (F (M), (δδ1)i · T i1(ηM ) ◦ ϕ)

is a i-symmetric space in T1, which is neutral in (T1,∨1, $1) if (M,ϕ) is neutral in
the triangulated catgory with duality (T ,∨, $).

Duality preserving functors can be composed, see [9, Sect. 1]. Let (G, θ) :
(T1,∨1, $1) −→ (T2,∨2, $2) be another duality preserving functor. The compo-
sition of (F, η) and (G, θ) is defined as follows:

(G, θ) ◦ (F, η) :=
(
G ◦ F , θF ◦G(η)

)
: (T ,∨, $) −→ (T2,∨2, $2) . (1)
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We have then [
(G, θ) ◦ (F, η)

]
∗(M,ϕ) ' (G, θ)∗

(
(F, η)∗(M,ϕ)

)
for all i-symmetric spaces (M,ϕ) in (T ,∨, $) and all i ∈ Z.

Another important definition is the following: Two duality preserving functors

(F, η) , (G, θ) : (T ,∨, $) −→ (T1,∨1, $1)

are called isometric if there exists an isomorphism of functors s : F
'−→ G, called

isometry, which commutes with the respective translation functors and satisfies

(sM )∨1 ◦ θM ◦ sM∨ = ηM

for all M ∈ T . Then sM is an isometry (F, η)∗(M,ϕ) ' (G, θ)∗(M,ϕ).

2.3. Derived Witt groups. The main example of a triangulated category with
duality is the following. Let (E ,∨, $) be an exact category with duality. The the
derived functor of ∨, which we denote (by some abuse of notation) also by ∨, is a
duality on the bounded derived catgeory Db(E), giving this triangulated category
the structure of a triangulated category with duality. (The isomorphism to the
bidual is given in degree i by $Mi : Mi −→ M∨∨i for all M• ∈ Db(E).) The

associated triangular Witt groups are denote Wi(E ,∨), i ∈ Z, and called the derived
Witt groups of (E ,∨, $).

As usual in derived and coherent Witt theory we work with homological com-
plexes.

Note that by the main result of Balmer [2] we have an isomorphism

Wε(E ,∨)
'−−→ W1−ε(E ,∨)

for all ε ∈ {±1}.

3. Azumaya algebras with involutions and derived Witt groups

3.1. Notations and conventions. Let X be a noetherian scheme. We denote
the structure sheaf of X by OX , the local ring at x ∈ X by OX,x, the maximal
ideal of OX,x by mx, and set k(x) := OX,x/mx.

Given an OX -algebra A we use the following notations for categories of A-
modules, by which we mean – if not otherwise said – left A-modules: Mqc(A)
the category of quasi-coherent A-modules, and Mc(A) the category of coherent
A-modules. We use also affine notations: If X = SpecR we denote by A the
global sections of A and writeMc(A) andMqc(A) instead ofMc(A) andMqc(A),
respectively.

3.2. Azumaya algebras with involutions. By an involution of an OX -algebraA
we understand a OX -linear homomorphism τ : A −→ A satisfying (i) τ ◦ τ = idA,
and (ii) τU (a · b) = τU (b) · τU (a) for all a, b ∈ A(U) and all open U ⊆ X.

Given an involution τ on an OX -algebra A we can turn a right A-module F into
a left one as follows: a.x := x · τU (a) for all a ∈ A(U) and x ∈ F(U), U ⊆ X open.

We denoted this left A-module by F , or Fτ , if we have to specify the involution.
Analogous we can turn a left A-module into a right one.
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Let R be a commutative ring and (A, τ) an R-algebra with involution. We
say that the pair (A, τ) is an Azumaya algebra with involution over R if A is a
separable R-algebra, which is finitely generated and projective as R-module, and
the centre Z(A) of A is either R, in which case τ is called of the first kind, or Z(A)
is a quadratic étale extension of R and R is the fix ring of τ , in which case τ is said
to be of the second kind.

Given a scheme X and an OX -algebra A with involution τ we say that the pair
(A, τ) is an Azumaya algebra with involution of the first- or second kind over X if
it is locally an Azumaya algebra with involution of this kind.

3.3. Derived hermitian Witt groups. Let (A, τ) be an Azumaya algebra with
involution (of first- or second kind) over the scheme X, and P(A) the full sub-
category of Mc(A) consisting of coherent A-modules, which are locally free as
OX -modules. The contravariant functor

DA,τ : F 7−→ HomA(F ,A) = HomA(F ,A)
τ

is a duality on P(A) making this an exact category with duality. Associated with
this data we have the ’classical’ (skew-)hermitian Witt groups Wε(A, τ), ε = ±1,
and the derived Witt groups, denoted Wi(A, τ), i ∈ Z, called the derived hermitian
Witt groups of (A, τ).

Let f : Y −→ X be a morphism of schemes. The natural isomorphism of left

f∗A-modules f∗HomA(F ,A)
'−→ Homf∗A(f∗F , f∗A) makes the pull-back func-

tor f∗ : Db(P(A)) −→ Db(P(f∗A)) duality preserving and therefore we have a
homomorphism f∗ : Wi(A, τ) −→Wi(f∗(A, τ)) for all i ∈ Z.

There are also Witt groups with support. Recall first that the support suppF•
of a complex F• of OX -modules is the set of all x ∈ X with Hi(F• x) 6= 0 for at
least one i ∈ Z. Here Hi(F• x) denotes the ith homology group of the at x ∈ X
localized complex F• x.

Let Db
Z(P(A)) be the full triangulated subcategory of Db(P(A)) consisting of

complexes F• with support in the closed subscheme Z ⊆ X. The restriction of
DA,τ to this category makes Db

Z(P(A)) a triangulated category with duality. Its
associated triangular Witt groups are the so called derived hermitian Witt groups
of (A, τ) with support in Z, denoted Wi

Z(A, τ), i ∈ Z.

As usual if X = SpecR and Z is defined by an ideal a we set A := Γ(X,A)
and use affine notations Db

a(P(A)) instead of Db
Z(P(A)), and Wi

a(A, τ) instead of

Wi
Z(A, τ).

4. Derived categories and dualizing complexes

4.1. Some (derived) categories of modules. Let R be a commutative noe-
therian ring, a ⊂ R an ideal, and A an R-algebra. We denote by Mqc ,a(A) the
category of A-modules with support in the closed subscheme Spec(R/a) ⊆ SpecR,
and set Mc ,a(A) =Mc(A) ∩Mqc ,a(A).

We denote further by Db
c(Mqc(A)) the full subcategory of the bounded derived

category Db(Mqc(A)) consisting of complexes with coherent homology, and by
Db
c ,a(Mqc(A)) the full subcategory of Db

c(Mqc(A)) consisting of complexes with
support in Spec(R/a) ⊆ SpecR.
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For p ∈ Z we denote by Db
c(Mqc(A))(p) the full subcategory of Db

c(Mqc(A)) con-

sisting of complexes M• with codimSpecR suppM• ≥ p, and set Db
c ,a(Mqc(A))(p) :=

Db
c ,a(Mqc(A)) ∩Db

c(Mqc(A))(p).

We have the following well known equivalence of derived categories, which follows
from a result due to Grotendieck, which is proven in Verdier’s thesis [23, pp 169–
170], see [12, Sect. 4.2] for details.

4.2. Lemma. Let R be a commutative noetherian ring with ideal a and A a co-
herent R-algebra. Then the natural functor Db(Mc ,a(A)) −→ Db

c ,a(Mqc(A)) is an
equivalence.

4.3. Sign conventions. Let R and A be as above, and I• ∈ Db
c(Mqc(R)) a

bounded complex of injective R-modules.

IfM is a leftA-module andN an arbitraryR-module then HomR(M,N) becomes
a right A-module by setting (f · a)(m) := f(am) for f ∈ HomR(M,N), a ∈ A, and
m ∈M . Analogous if M is a right A-module then HomR(M,N) has a left A-module
structure: (a · f)(m) := f(ma).

For M• ∈ Db
c(Mqc(R)) the complex HomR(M•, I•) is given in degree l by

HomR(M•, I•)l =
⊕
r∈Z

HomR(M−l−r, I−r) ,

and the r-component of the differential HomR(M•, I•)l −→ HomR(M•, I•)l−1 maps
g ∈ HomR(M−l−r, I−r) onto g ◦dM−l−r+1 + (−1)l+1dI−r ◦ g, where dM• and dI• denote
the differentials of M• and I•, respectively.

The natural homomorphism $I
M : M• −→ HomR(HomR(M•, I•), I•) is defined

as follows: The (r, s)-component of

($I
M )l : Ml −→

⊕
r,s∈Z

HomR(HomR(Ml+s−r, I−r), I−s)

is 0 if r 6= s, and otherwise equal (−1)
s(s+1)

2 times the evaluation map Ml −→
HomR(HomR(Ml, I−s), I−s). Note that the evaluation map is (left-) A-linear if M•
is a complex of (left-) A-modules.

4.4. Definition. The complex I• is called a dualizing complex of R if $I
M is an

isomorphism in Db
c(Mqc(R)) for all M• ∈ Db

c(Mqc(R)).

4.5. Examples.

(i) Let R be a Gorenstein ring of finite Krull dimension. Then a finite injec-
tive resolution I0 −→ I−1 −→ . . . −→ I− dimR of an invertible R-module
considered as an element of Db

c(Mqc(R)) with Il in degree l is a dualizing
complex of R.

(ii) Let α : R −→ S be a finite morphism of noetherian rings and assume R
has a dualizing complex I•. Then

α\(I•) := HomR(S, I•) ∈ Db
c(Mqc(S))

is a dualizing complex of S. This can be seen as follows. The morphism of
complexes HomR(S, I•) −→ I• given in degree l by h 7→ (−1)lh(1), induces
a natural isomorphism in Db

c(Mqc(R))

ϑM : HomS(M•,HomR(S, I•))
'−−→ HomR(M•, I•) ,
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which implies that $
α\(I)
M : M• −→ HomS(HomS(M•, α

\(I•)), α
\(I•)) is

an isomorphism in Db
c(Mqc(S)) for all M• ∈ Db

c(Mqc(S)).

In case I• : I0 −→ I−1 −→ . . . is a finite injective resolution of the R-
module R, t ∈ R a non unit and non zero divisor, and α : R −→ S := R/Rt
the quotient morphism then α\(I•) is an injective resolution of R/Rt liv-
ing in degrees −1, . . . , 1 − dimR. This can be seen using the long exact

ExtR(− , R)-sequence associated with the short exact sequence 0 −→ R
·t−→

R −→ R/Rt −→ 0. (In this case R and S = R/Rt are necessarily Goren-
stein rings of finite Krull dimension.)

4.6. The codimension function of a dualizing complex. Let I• be a du-
alizing complex of the ring R. Then given P ∈ SpecR there exists precisely
one integer l = l(P ), such that Hd(HomRP

(k(P ), I•P )) = 0 for all d 6= l and
Hl(HomRP

(k(P ), I•P )) ' k(P ), where k(P ) is the residue field of P , see [16, Chap.
V, Prop. 3.4]. This integer will be denoted −µI(P ) (for the minus sign, note that
we use homological complexes). We get a function

µI : SpecR −→ Z , P 7−→ µI(P ) ,

the codimension function of the dualizing complex I•. For instance, if R is a Goren-
stein ring of finite Krull dimension and I• : I0 −→ I−1 −→ . . . is an injective reso-
lution of a rank one projective R-module with I0 in degree 0 then µI(P ) = dimRP
for all P ∈ SpecR, see e.g. [6, Sect. 3.3].

4.7. Lemma. Let R be a Gorenstein domain of finite Krull dimension and I• :
I0 −→ I−1 −→ . . . −→ I− dimR a injective resolution of an invertible R-module L
considered as an element of Db

c(Mqc(R)) with I0 in degree 0. If α : R −→ S is
a finite morphism of rings with dimS = dimR then µα\(I)(Q) = dimSQ for all
Q ∈ SpecS.

Proof. Since R and S have the same Krull dimension, and since dimR/J < dimR
for all non zero ideals J of R the morphism α is injective. Let Q be a prime ideal
of S and P = α−1(Q). Replacing R by RP we can assume that R is a local ring
with maximal ideal P , and so Q is a maximal ideal of S as well.

We have then dimSQ = dimR = µI(P ), and S/Q ' (R/P )⊕m for some inte-
ger m ≥ 1. As seen above, see Example 4.5 (ii), we have quasi-isomorphisms of
complexes of R-modules

HomS(S/Q,α\(I•)) ' HomR(S/Q, I•) ' HomR(R/P, I•)
⊕m .

Since Hl(HomR(R/P, I•)) 6= 0 if and only if l = −dimR it follows that µα\(I)(Q) =
dimR = dimSQ. We are done. �

5. Coherent hermitian Witt groups

5.1. Definition of coherent hermitian Witt groups. We refer to [10, 12] for
details and more information.

Let R be a commutative ring with dualizing complex I• ∈ Db
c(Mqc(R)), and

(A, τ) a coherent R-algebra with involution τ . The derived functor

DA,τ
I : M• 7−→ HomR(M•, I•) = HomR(M•, I•)

τ
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is a duality on Db
c(Mqc(A)) making this a triangulated category with duality. The

isomorphism to the bidual is given by $I , which is a quasi-isomorphism of com-
plexes of A-modules.

The associated triangular Witt groups are denoted W̃
i
(A, τ, I•), i ∈ Z, and called

coherent hermitian Witt groups of (A, τ). There are also Witt groups with support.
If a ⊆ R is an ideal then Db

c ,a(Mqc(A)) is also a triangulated category with duality

DA,τ
I . The associated triangular Witt groups W̃ i

a(A, τ, I•), i ∈ Z, are called coherent
hermitian Witt groups of (A, τ) with support in the ideal a.

5.2. Derived and coherent Witt groups. Assume now that (A, τ) is an Azu-
maya algebra with involution of first- or second kind, and that R is a regular ring
of finite Krull dimension. Then a (finite) injective resolution I• : I0 −→ I−1 −→
. . . −→ I− dimR of R considered as an element of Db

c(Mqc(R)) with I−i in de-
gree −i is a dualizing complex of R. Under these assumptions the natural functor
Db(P(A)) −→ Db

c(Mqc(A)) is an equivalence, which becomes duality preserving via

HomA(− , A)
'−−→ HomR(− , R)

'−−→ HomR(− , I•) ,

where the isomorphism of functors on the left hand side is induced by the reduced
trace composed with the standard trace of a quadratic étale extension if τ is of the

second kind, and the other one by a quasi-isomorphism R
'−→ I•. We refer to [11,

App.] for proofs and details.

In particular, we have then isomorphisms Wi(A, τ)
'−→ W̃

i
(A, τ, I•) for all i ∈ Z,

and analogous for the Witt groups with support.

5.3. The transfer map. Let α : R −→ S be a finite homomorphism of commu-
tative noetherian rings, and I• a dualizing complex of R. Let further (A, τ) be a
coherent R-algebra with involutions and (B, ν) a coherent S-algebra with involu-
tion. Assume that there exists a R-algebra homomorphism ξ : A −→ B, which is
compatible with the involutions, i.e. we have ξ◦τ = ν ◦ξ. We indicate this situation
by writing

(α, ξ) :
(
R, (A, τ)

)
−→

(
S, (B, ν)

)
. (2)

Then α\(I•) := HomR(S, I•) is a dualizing complex of S and the morphism of
functors η introduced in Example 4.5 (ii) induces a natural quasi-isomorphism of
complexes of R-modules:

ϑξM : α∗
(
DB,ν
α\(I)

(M•)
)

= HomS(M•, α\(I•)) −→ HomR(M•, I•) = DA,τ
I

(
α∗(M•)

)
.

Since ξ : A −→ B is R-linear and compatible with the involutions, the quasi-

isomorphism of complexes ϑξM is a morphism of complexes of A-modules, i.e. an
isomorphism in Db

c(Mqc(A)) for all M• ∈ Db
c(Mqc(B)).

A straightforward verification shows that ϑξ is a duality transformation for the
push-forward α∗ : Db

c(Mqc(B)) −→ Db
c(Mqc(A)). Therefore given a i-symmetric

space (M•, ϕ) in (Db
c(Mqc(B)),DB,ν

α\(I)
) then

tr(α,ξ)(M•, ϕ) := (α∗, ϑ
ξ)∗(M•, ϕ)

is a i-symmetric space in (Db
c(Mqc(A)),DA,τ

I ).
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Let now (β, ξ1) :
(
S, (B, ν)

)
−→

(
S1, (B1, ν1)

)
be another morphism, where β is

a finite morphism and (B1, ν1) is a coherent S1-algebra with involution. Then we
define

(β, ξ1) ◦ (α, ξ) := (β ◦ α, ξ1 ◦ ξ) :
(
R, (A, τ)

)
−→

(
S1, (B1, ν1)

)
.

Identifying (β ◦ α)\(I•) = α\
(
β\(I•)

)
the identity (β ◦ α)∗ = α∗ ◦ β∗ is an isometry

of duality preserving functors(
(β ◦ α)∗, ϑ

ξ1◦ξ
) '−−→ (α∗, ϑ

ξ) ◦ (β∗, ϑ
ξ1) ,

and so we have an isometry

tr(β◦α , ξ1◦ξ)(M•, ϕ) ' tr(α,ξ)

(
tr(β,ξ1)(M•, ϕ)

)
(3)

in (Db
c(Mqc(A)),DA,τ

I ) for all i-symmetric spaces (M•, ϕ) in the triangulated cate-

gory with duality (Db
c(Mqc(B1)),DB1,ν1

(β◦α)\(I)
).

Example. Let as above α : R −→ S be a finite homomorphism of noetherian
rings, where R has a dualizing complex I•, and (A, τ) a coherent R-algebra with
involution. Then (B, ν) := S ⊗R (A, τ) is a coherent S-algebra with involution and
we have a natural morphism of R-algebras

ξ : A −→ B , a 7−→ 1⊗ a ,
which is compatible with the involutions. We get a duality preserving functor
(α∗, ϑ

ξ) and a transfer map tr(α,ξ), which we denote also trα only as there is a
canonical choice for the duality transformation.

5.4. Dévissage. Let R be a Gorenstein ring of finite Krull dimension, I• : I0 −→
I−1 −→ . . . ∈ Db

c(Mqc(R)) a finite injective resolution of the R-module R living
in the indicated degrees and (A, τ) a coherent R-algebra with involution. Let fur-
ther t ∈ R be a non unit and non zero divisor, and π : R −→ R/Rt the quotient
morphism. We set (A′, τ ′) := R/Rt⊗R (A, τ).

Then it is shown in [10, Sect. 5] that mapping an i-symmetric space (M•, ϕ) in

(Db
c(Mqc(A

′))(p−1),DA′,τ ′

π\I
) onto trπ(M•, ϕ) induces an isomorphism

Wi(Db
c(Mqc(A

′))(p),DA′,τ ′

π\I
)
'−−→ Wi(Db

c ,Rt(Mqc(A))(p+1),DA,τ
I )

for all i ∈ Z and integers p ≥ 0. (Note here that in [10] the filtrations on the
bounded derived categories are defined using the codimension functions associated
with the respective dualizing complexes. But we have µπ\(I•)(P/Rt) = htP for all
prime ideals P ⊇ Rt, see Example 4.5 (ii).)

5.5. Pull-backs. Let α : R −→ S be a flat morphism of commutative noe-
therian rings with dualizing complexes I• ∈ Db

c(Mqc(R)) and J• ∈ Db
c(Mqc(S)),

respectively, and (A, τ) be a coherent R-algebra with involution. We set (B, ν) :=
S ⊗R (A, τ).

Assume that there exists a quasi-isomorphism of complexes of S-modules

ρ : S ⊗R I• −→ J• .

This quasi-isomorphism induces a natural (in M•) quasi-isomorphism cρM :

S ⊗R DA,τ
I (M•) = S ⊗R HomR(M•, I•)

'−→ HomS(S ⊗RM•, S ⊗R I•)
HomS(S⊗M,ρ)−−−−−−−−−−−−→ HomS(S ⊗RM•, J•) = DB,ν

J (S ⊗RM•)
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for all M• ∈ Db
c(Mqc(A)), which is a duality transformation for the pull-back α∗.

We get a duality preserving functor

(α∗, cρ) : (Db
c(Mqc(A)),DA,τ

I ) −→ (Db
c(Mqc(B)),DB,ν

J ) .

Example. Let R be a commutative noetherian ring, I• a dualizing complex of R,
(A, τ) a coherentR-algebra with involution, and α : R −→ S an open immersion, i.e.
the induced morphism of affine schemes SpecS −→ SpecR is an open immersion,
or a localization at some multiplicative closed subset of R.

Then α∗(I•) = S ⊗R I• is a dualizing complex of S, and we have a canonical
pull-back

(α∗, c idS⊗I
) : (Db

c(Mqc(A)),DA,τ
I ) −→ (Db

c(Mqc(S ⊗R A)),D
S⊗(A,τ)
S⊗I ) ,

which we denote by α∗ only.

The proof of the following result, which generalizes [12, Lem. 3.5], is straightfor-
ward.

5.6. Lemma. Let α : R −→ S be a flat morphism of commutative noetherian rings
with dualizing complexes I• ∈ Db

c(Mqc(R)) and J• ∈ Db
c(Mqc(S)), respectively,

πR : R −→ R̄ a finite morphism, and

R̄
ᾱ // S̄

R
α
//

πR

OO

S ,

πS

OO

the corresponding cartesian square, i.e. S̄ = R̄ ⊗R S. Let further (A, τ) be an
Azumaya algebra with involution over R.

If there exists a quasi-isomorphism of complexes of S-modules ρ : S⊗R I• −→ J•
then

(i) the morphism of complexes of S̄-modules ρ̄:

S̄ ⊗R̄ π
\
R(I•) = S ⊗R R̄⊗R̄ HomR(R̄, I•)

'−−→ HomS(S ⊗R R̄, S ⊗R I•)
HomS(S̄,ρ)−−−−−−−−−→ HomS(S̄, J•) = π\S(J•)

is a quasi-isomorphism, and

(ii) the natural isomorphism of functors α∗ ◦ πR ∗
'−→ πS ∗ ◦ ᾱ∗ is an isometry

of duality preserving functors

(α∗, cρ) ◦ (πR ∗, ϑ
ξR)

'−−→ (πS ∗, ϑ
ξS ) ◦ (ᾱ∗, cρ̄) ,

where ξR : A −→ R̄ ⊗R A and ξS : S ⊗R A −→ S̄ ⊗R A are the natural
morphisms of R- respectively S-algebras.

5.7. The zero theorem. Let

R̃

S

β

??

R
u
oo

γ

OO

be a commutative diagram of Gorenstein rings of finite Krull dimension, where u
is flat, γ a localization morphism, i.e. R̃ = U−1R for some multiplicative closed
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subset U of R, and β is a surjective morphism with kernel generated by a non zero
divisor y ∈ S. Let further (A, τ) be an Azumaya algebra with involution of the
first- or second kind over R, (B, ν) := u∗(A, τ), and R −→ I0 −→ I−1 −→ . . . and
S −→ J0 −→ J−1 −→ . . . finite injective resolutions of R and S, respectively, living
in the indicated degrees in Db

c(Mqc(R)) and Db
c(Mqc(S)), respectively.

With this notation we have the (so called) zero theorem:

Theorem ([12, Thm. 6.3]). Given a i-symmetric space (M•, ϕ) in the trian-

gulated category with duality (Db
c(Mqc(A))(p),DA,τ

T−1I), p ≥ 0, then the transfer

trβ
(
γ∗(M•, ϕ)

)
is neutral in (Db

c(Mqc(B))(p),DB,ν
J ).

6. A technical lemma

6.1. Let R be a commutative noetherian ring with dualizing complex I• and U ⊂
R a multiplicative closed subset. We denote α : R −→ U−1R the localization
morphism. Let further β : U−1R −→ S be a morphism, such that β ◦ α : R −→ S

is onto. Set J := Ker(β ◦ α). Then we have an isomorphism R/J
'−→ U−1(R/J) '

U−1R/U−1J ' S.

Let further A be a coherent R-algebra.

6.2. Lemma. Let M ∈Mqc ,J(A) and N ∈Mc ,U−1J(U−1A). Then:

(i) M is a U−1A-module and the localization homomorphism ιM : M −→
U−1M is an isomorphism of U−1A-modules.

(ii) N is finitely generated as A-module.

(iii) The pull-back α∗ : Mc ,J(A) −→ Mc ,U−1J(U−1) is an equivalence with
inverse the push-forward α∗.

Proof. (iii) is a consequence of (i) and (ii). To prove (i) we observe that every u ∈ U
is invertible modulo J and so also module Jm for all m ≥ 1. In fact, if ur + x = 1
for some r ∈ R and x ∈ J then 1 = (ur + x)m = u · s + xm for some s ∈ R
by the binomial formula. Hence given a A-module M with support in SpecR/J
then M is a U−1A-module and the natural homomorphism ιM : M −→ U−1M is
an isomorphism of U−1A-modules.

Finally, we prove (ii). By assumption there exists an integer l ≥ 1, such that
JlN = 0. If l = 1 then N is a finitely generated R/J-module and so also finitely
generated as A-module. If l ≥ 2 we conclude by induction using the exact sequence
0 −→ Jl−1N −→ N −→ N/Jl−1N −→ 0. �

By Lemma 4.2 this has the following implication.

Corollary. The pull-back

α∗ : Db
c ,J(Mqc(A)) −→ Db

c ,U−1J(Mqc(U
−1A))

is an equivalence with inverse the push-forward α∗.

6.3. Assume now that (A, τ) is an Azumaya algebra with involution over R.

The equivalence α∗ is duality preserving with duality transformation the natural
isomorphism

cidU−1I
: U−1HomR(− , I•)

'−−→ HomU−1R(U−1− , U−1I•) ,

see the example in 5.5.
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Therefore by Balmer and Walter [4, Lem. 4.3 (d)] the inverse equivalence α∗ is
duality preserving as well. A duality transformation for α∗

θ : HomU−1R(− , U−1I•)
'−−→ HomR(− , I•) ,

is defined as the inverse of the isomorphism of complexes of A-modules

ηN : HomR(N•, I•)
ιHomR(N,I)

−−−−−−−−→ U−1HomR(N•, I•)
cid

U−1I−−−−−−→
(4)

HomU−1R(U−1N•, U−1I•)
HomU−1R(ιN ,U−1I)
−−−−−−−−−−−−−−→ HomU−1R(N•, U−1I•) .

for all N• ∈ Db
c ,U−1J(Mqc(U

−1A)). Here A acts on the U−1A-module Ni, i ∈ Z,

via the natural homomorphism of R-algebras ξ : A −→ U−1A, and the first and
last morphism of complexes is an isomorphism by Lemma 6.2 (i) above.

We observe that the quasi-isomorphism ηN has in degree l the r-component

HomR(N−l−r, I−r) −→ HomU−1R(N−l−r, U−1I−r) , h 7−→ ιI−r ◦ h .

6.4. We have the two dualizing complexes (β ◦ α)\(I•) and β\(α∗) = β\(U−1I•)
on S. As seen above the natural S-linear morphism

(β ◦ α)\(I•) = HomR(S, I•) −→ HomU−1R(S,U−1I•) = β\(U−1I•) ,

given by h 7→ ιIl ◦h in degree l, is an isomorphism of S-modules. This isomorphism
induces an isomorphism of functors

γ̂(α, β) : D
S⊗(A,τ)

(β◦α)\(I)

'−−→ D
S⊗(A,τ)

β\(U−1I)
,

which is a duality transformation for the identity functor, i.e. we have a duality
preserving isomorphism

(idDb
c(Mqc(S⊗RA)), γ̂(α, β)):

(Db
c(Mqc(S ⊗R A)),D

S⊗(A,τ)

(β◦α)\(I)
) −→ (Db

c(Mqc(S ⊗R A)),D
S⊗(A,τ)

β\(U−1I)
) .

6.5. Lemma. Denote ξ : A −→ U−1A and ξ1 : U−1A −→ S⊗U−1RU
−1A ' S⊗RA

the natural R-algebra respectively U−1R-algebra morphisms. Then(
(β ◦ α)∗, ϑ

ξ1◦ξ
)

= (α∗, θ) ◦ (β∗, ϑ
ξ1) ◦ (idDb

c(Mqc(S⊗RA)), γ̂α,β) .

Proof. The duality preserving functor
(

(β ◦ α)∗, ϑ
ξ1◦ξ

)
on the left hand side maps

M• ∈ Db
c(Mqc(S ⊗R A)) onto

(β ◦ α)∗(M•) = α∗(β∗(M•)) ∈ Db
c ,J(Mqc(A)) ,

where the S ⊗R A-module Mi becomes an A-module via the homomorphism of
R-algebras ξ1 ◦ ξ : A −→ S ⊗R A for all i ∈ Z. The same holds for the duality
preserving functor on the right hand side.

Hence we are left to show that the duality transformation of both sides coincide
for all M• ∈ Db

c(Mqc(S ⊗R A)).

By the definition of the composition of duality preserving functors, see (1), the
duality transformation for the functor α∗ ◦ β∗ ◦ idDb

c(Mqc(S⊗A)) on the right hand
side is given by

θβ∗M ◦ α∗
(
ϑξ1M ◦ β∗(γ̂(α, β)M )

)
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for M• ∈ Db
c(Mqc(S ⊗R A)). We have to show that this is equal to ϑξ1◦ξM , or

equivalently since θ−1
β∗M

= ηβ∗M , that

ηβ∗M ◦ ϑ
ξ1◦ξ
M = α∗

(
ϑξ1M ◦ β∗(γ̂(α, β)M )

)
,

see (4). Now the duality transformation ϑξ1◦ξM has in degree l the r-component

HomS(M−l−r,HomR(S, I−r)) −→ HomR(M−l−r, I−r) ,

h 7−→
{
m 7→ (−1)rh(m)(1)

}
.

Composing this map with the r-component in degree l of ηβ∗M we get

HomS(M−l−r,HomR(S, I−r)) −→ HomU−1R(M−l−r, U−1I−r)

h 7−→
{
m 7→ (−1)rιI−r

(
h(m)(1)

)}
,

where ιI−r : I−r −→ U−1I−r is the localization morphism.

But this is the r-component in degree l of α∗
(
ϑξ1M ◦ β∗(γ̂(α, β)M )

)
. �

7. The hermitian Gersten-Witt complex

7.1. The codimension by support filtration. We refer to [10, 11, 12] for proofs,
details and more information on the hermitian Gersten-Witt spectral sequence.

Throughout this section X denotes a regular and noetherian scheme, and (A, τ)
an Azumaya algebra with involution of the first- or second kind over X.

On Db(P(A)) we have the filtration by codimension of support:

Db(P(A)) = Db(P(A))(0) ⊇ Db(P(A))(1) ⊇ Db(P(A))(2) ⊇ . . . ,

where

Db(P(A))(p) :=
{
F• ∈ Db(P(A))

∣∣ codimX suppF• ≥ p
}

for p ≥ 0. This is a thick saturated triangulated subcategory of Db(P(A)) and the
duality DA,τ maps it into itself. Balmer’s [1] localization sequence gives long exact
sequences of Witt groups:

. . . −→Wi(Dp
A) −→Wi(Dp

A/D
p+1
A )

∂−→Wi+1(Dp+1
A ) −→Wi+1(Dp

A) −→ . . . ,

where we have set Dp
A := Db(P(A))(p) for all p ≥ 0, and the triangular Witt

groups are with respect to the duality (induced by) DA,τ .

7.2. The hermitian spectral sequence. By Massey’s method of exact couples
we get from the exact sequences above a spectral sequence

Ep,q1 (A, τ) := Wp+q(Db(P(A))(p)/Db(P(A))(p+1)) ,

the hermitian Gersten-Witt spectral sequence of (A, τ), which converges to the de-
rived hermitian Witt theory of (A, τ) if dimX <∞.

In [10, 11] it is proven that the odd lines of the hermitian Gersten-Witt spectral

sequence are zero, the lines Ep,4m1 (A, τ), m ∈ Z, are all isomorphic to the hermitian
Gersten-Witt complex of (A, τ), denoted GW1(A, τ):⊕

x∈X(0)

W1(A(x), τ(x)) −→
⊕

x∈X(1)

W1(A(x), τ(x)) −→
⊕

x∈X(2)

W1(A(x), τ(x)) −→ . . . ,



ON THE GERSTEN CONJECTURE FOR HERMITIAN WITT GROUPS 15

and the lines Ep,4m+2
1 (A, τ), m ∈ Z, are all isomorphic to the skew-hermitian

Gersten-Witt complex of (A, τ), denoted GW−1(A, τ):⊕
x∈X(0)

W−1(A(x), τ(x)) −→
⊕

x∈X(1)

W−1(A(x), τ(x)) −→
⊕

x∈X(2)

W−1(A(x), τ(x)) −→ . . . .

Here X(p) ⊆ X denotes the set of points of codimension p for p ≥ 0, and we have set
(A(x), τ(x)) := k(x) ⊗OX,x

(Ax, τx). We consider GWε(A, τ) as a cohomological
complex with

⊕
x∈X(p)

Wε(A(x), τ(x)) in degree p and denote the pth cohomology

group of GWε(A, τ) by Hp
ε (A, τ), ε ∈ {±1}. As usual if X = SpecR we use ’affine’

notations.

7.3. The Gersten conjecture. Let now X = SpecR be an affine scheme as-
sociated with a regular integral domain R of finite Krull dimension with fraction
field K, and set A := Γ(X,A).

The pull-back along the embedding ι : R ↪→ K induces a homomorphism

ι∗ : Wε(A, τ) −→ Wε(K ⊗R (A, τ))

for ε = ±1. Extending the ε-hermitian Gersten-Witt complex by this map on the
left hand side we get the (so called) augmented ε-hermitian Gersten-Witt complex:

0 −→Wε(A, τ) −→Wε(K ⊗R (A, τ)) −→
⊕

ht q=1

Wε(k(q)⊗R (A, τ)) −→ . . .

. . . −→
⊕

ht q=dimR

Wε(k(q)⊗R (A, τ)) −→ 0 ,

ε = ±1. The Gersten conjecture claims that these complexes are exact if R is
a regular local ring. By construction this is equivalent to the assertion that the
homomorphism

W i(Db(P(A))(p+1),DA,τ ) −→ Wi(Db(P(A))(p),DA,τ )

is the zero map for all i ∈ Z and integers p ≥ 0.

7.4. A consequence of the Gersten conjecture. Given a regular scheme X
and Azumaya algebra (A, τ) with involution of the first- or second kind over X we
denote by Wε

A,τ , ε ∈ {±1}, the Zariski sheaf (on X) associated with the presheaf

U 7−→ Wε(A|U , τ |U ) ,

where U ⊆ X is an open subscheme. If the Gersten conjecture holds for the
Azumaya algebras with involution of the first- or second kind (Ax, τx) over OX,x
for all x ∈ X then the ε-hermitian Gersten-Witt complex is a flasque resolution of
Wε
A,τ . In particular, we have then Hi

Zar(X,Wε
A,τ ) ' Hi

ε(A, τ) for all integers i ≥ 0

and all ε ∈ {±1}.
Another consequence of the Gersten conjecture is the following lemma, see

e.g. [12, Proof of Cor. 7.5] for a proof.

7.5. Lemma. Let R be a regular local ring, t ∈ R, such that R/Rt is regular as
well, and (A, τ) an Azumaya algebra with involution of the first- or second kind
over R. Assume that the Gersten conjecture holds for (A, τ). Then

(i) W2i+1(A, τ) = 0 for all i ∈ Z; and

(ii) Hi
Zar(Rt,Wε

A,τ |SpecRt
) = 0 for all i ≥ 1 and ε ∈ {±1}, if the Gersten

conjecture holds also for R/Rt⊗R (A, τ).
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8. The main theorem

8.1. Let V be a field or a discrete valuation ring, V −→ R a smooth morphism
of relative dimension d with R an integral domain, and P a prime ideal of R.
Set R̃ := RP . This is a regular local ring essentially smooth over V . Denote by
γ : R −→ R̃ the localization morphism, and by ι : R̃ ↪→ K the embedding of R̃ into
its fraction field.

Let further (Ã, τ̃) be an Azumaya algebra with involution of the first- or second

kind over R̃. Replacing R by a localization we can assume that (Ã, τ̃) = R⊗R (A, τ)
for an Azumaya algebra with involution of the same kind (A, τ) over R.

We denote I• : I0 −→ I−1 −→ . . . −→ I− dimR ∈ Db
c(Mqc(R)) a minimal

injective resolution of R and set Ĩ• := I•P ∈ Db
c(Mqc(R̃)).

8.2. Theorem. The Gersten conjecture holds for the Azumaya algebra with invo-
lutions (Ã, τ̃) over R̃.

Using the desingularization theorem of Popescu [18, 19] we get the following more
general case of the Gersten conjecture.

Corollary. Let S be a regular local ring, which either contains a field, or which
is geometrically regular over a discrete valuation ring. Let further (B, ν) be an
Azumaya algebra with involution of the first- or second kind over S. Then the
Gersten conjecture holds for (B, ν).

Proof. In case S contains a field it is shown in [12, Sect. 7] that Theorem 8.2 implies
this corollary. Essentially the same arguments work if S is geometrically regular
over a discrete valuation ring V . We briefly recall the details.

Let f be an uniformizer of V . Then since S is geometrically regular over V the
quotient S/Sf is regular. It contains the residue field of V , and so the Gersten
conjecture holds for (B′, ν′) := S/Sf ⊗S (B, ν) by the already proven case that the
regular local ring contains a field. Analogous since the localization Sf contains the
fraction field of V the Gersten conjecture holds for (BQ, νQ) for all Q ∈ SpecSf .
Hence, see 7.4, we have

Hi
Zar(Sf ,Wε

Bf ,νf
) ' Hi

ε(Bf , νf ) (5)

for all integers i ≥ 0 and ε ∈ {±1}.
We use now a consequence of Popescu’s desingularization theorem, see [22, Cor.

1.3]: The ring S is a filtered colimit of regular local rings Sω, ω ∈ Ω, which are
essentially smooth over V : S = lim

−→
w ∈ Ω

Sω. By shrinking the index set Ω if necessary

we can assume that there exists Azumaya algebras with involution (Bω, νω) of the
same kind as (B, ν), such that (B, ν) = S ⊗Sω

(Bω, νω) for all ω ∈ Ω.

By our main result, Theorem 8.2, the Gersten conjecture holds for (Bω, νω),
SωQ ⊗Sω (Bω, νω) for all Q ∈ SpecSω, and also for Sω/Sωf ⊗Sω (Bω, νω) since
Sω/Sωf is essentially smooth over the residue field of V . Therefore by 7.4 and
Lemma 7.5 we have W2i+1(Bω, νω) = 0 for all i ∈ Z, and

Hi
ε((Bω)f , (νω)f ) ' Hi

Zar((Sω)f ,Wε
Bω,νω |SpecSω f

) = 0
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for all ω ∈ Ω, i ≥ 1, and ε ∈ {±1}. Now, see e.g. [12, Sect. 7.1], we have

lim
−→
w ∈ Ω

Hi
Zar((Sω)f ,Wε

Bω,νω |Spec(Sω)f ) ' Hi
Zar(Sf ,Wε

B,ν |SpecSf
) ,

for all integers i ≥ 0 and ε ∈ {±1}, and by [9, Thm. 1.7]

lim
−→
w ∈ Ω

Wj(Bω, νω) ' Wj(B, ν)

for all j ∈ Z. We conclude from these considerations taking (5) into account that

W2j+1(B, ν) = Hi
ε(Bf , νf ) = 0

for all j ∈ Z, integers i ≥ 1, and ε ∈ {±1}.
Since the Gersten conjecture holds for (B′, ν′) = S/Sf ⊗S (B, ν) we also have

Hi
ε(B
′, ν′) = 0 for all i ≥ 1 and ε ∈ {±1}

We apply this to the exact cohomology sequence associated with the short exact
sequence of complexes

0 −→ GWε(B
′, ν′)[−1] −→ GWε(B, ν) −→ GWε(Bf , νf ) −→ 0 ,

ε ∈ {±1}, where GWε(B
′, ν′, )[−1] is the complex GWε(B

′, ν′) shifted by one, i.e.
starting in degree 1, and get Hi

ε(B, ν) = 0 for all i ≥ 2 and ε ∈ {±1}.
Since Ep,q1 (B, ν) =⇒Wp+q(B, ν) and Ep,2m+1

1 (B, ν) = 0 for all m ∈ Z, see 7.2,

we deduce moreover H1
ε(B, ν) = 0, and that the natural homomorphism

W1−ε(B, ν) −→ H0
ε(B, ν)

is an isomorphism for all ε ∈ {±}. By the main result of Balmer [2] we have
Wε(B, ν) 'W1−ε(B, ν), and we are done. �

The proof of Theorem 8.2 will follow from the following technical result, which
we prove in Section 9.

8.3. Lemma. Let t ∈ R be a non zero divisor and non unit, such that R/Rt is flat
over V (which is automatic if V is a field). We denote by π : R −→ R/Rt =: R′

the quotient morphism, and set (A′, τ ′) := R′ ⊗R (A, τ).

Let p ≥ 0 be a natural number and (M•, ϕ) a i-symmetric space in the trian-

gulated category with duality (Db
c(Mqc(A

′))(p),DA′,τ ′

π\(I)
). Then γ∗

(
trπ(M•, ϕ)

)
is

neutral in (Db
c(Mqc(Ã))(p),DÃ,τ̃

Ĩ
).

Before showing that Theorem 8.2 follows from this lemma we record a conse-
quence of it.

8.4. Corollary. Let t ∈ R̃, such that R̃/R̃t is flat over V . Then

Wi(Ã, τ̃) −→ Wi(Ãt, τ̃t)

is injective for all i ∈ Z.

Proof. By Balmer’s [1] localization sequence we have an exact sequence

Wi
R̃t

(Ã, τ̃) −→ Wi(Ã, τ̃) −→ Wi(Ãt, τ̃t) ,
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and so it is enough to show that Wi
R̃t

(Ã, τ̃) −→ Wi(Ã, τ̃) is the zero map for all
i ∈ Z. By the identification of derived and coherent Witt groups this is equivalent

to show that W̃ i
R̃t

(Ã, τ̃ , Ĩ•) −→ W̃
i
(Ã, τ̃ , Ĩ•) is trivial for all i ∈ Z.

Let (Ñ•, φ̃) be a i-symmetric space representing an element of W̃ i
R̃t

(Ã, τ̃ , Ĩ•).

Replacing R by a localization we can assume that t ∈ R, R′ := R/Rt is flat over V ,

and (Ñ•, φ̃) = γ∗(N•, φ) for some i-symmetric space (N•, φ) in Db
c ,Rt(Mqc(A)) for

the duality DA,τ
I , where γ : R −→ R̃ is the localization morphism.

By the dévissage theorem [10, Thm. 5.2] we can assume that (N•, φ) = trπ(M•, ϕ)

for some i-symmetric space in Db
c(Mqc(A

′)) for the duality DA′,τ ′

π\(I)
, where π : R −→

R/Rt is the quotient morphism and (A′, τ ′) := R′ ⊗R (A, τ).

Now Lemma 8.3 gives (Ñ•, φ̃) = γ∗(N•, φ) = γ∗(trπ(M•, ϕ)) is neutral in the

triangulated category with duality (Db
c(M(Ã))(0),DÃ,τ̃

Ĩ
). But the ith triangular

Witt group of this category with duality is W̃
i
(Ã, τ̃ , Ĩ), and we are done. �

8.5. Proof of Theorem 8.2. Modulo some technical details we follow essentially
Gillet and Levine [14, Proof of Cor. 6].

By the construction of the hermitian Gersten-Witt complex we have to show that
Wi(Db(P(Ã))(p+1)) −→Wi(Db(P(Ã))(p)), or equivalently (using the identification
of coherent and derived hermitian Witt groups, see 5.2), that

Wi(Db
c(Mqc(Ã))(p+1),DÃ,τ̃

Ĩ
) −→ Wi(Db

c(Mqc(Ã))(p),DÃ,τ̃

Ĩ
)

is the zero homomorphism for all p ≥ 0 and i ∈ Z. For this we distinguish the cases
p ≥ 1 and p = 0 if V is not a field.

Case p ≥ 1, or p ≥ 0 and V is a field.

Let x̃ be an element of Wi(Db
c(Mqc(Ã))(p+1)). Replacing SpecR by a smaller affine

neighbourhood of P if necessary we can assume that x̃ is in the image of

Wi(Db
c(Mqc(A))(p+1)) −→ Wi(Db

c(Mqc(Ã))(p+1)) ,

say x̃ = γ∗(N•, φ) for some i-symmetric space (N•, φ) in (Db
c(Mqc(A))(p+1),DA,τ

I ).
Since the support of N• has codimension ≥ 2 if V is not a field there exists t ∈ R
with R′ := R/Rt flat over V and suppN• ⊆ SpecR′. By dévissage, see 5.4, we have
(N•, φ) = trπ(M•, ϕ) for some i-symmetric space

(M•, ϕ) in (Db
c(Mqc(A

′))(p),DA′,τ ′

π\(I)
) ,

where π : R −→ R′ is the quotient morphism, and (A′, τ ′) = R′ ⊗R (A, τ).

We conclude by Lemma 8.3 above.

Case p = 0 and V is a discrete valuation ring.

Let f ∈ V be an uniformizer. The ring R̃/R̃f is essentially smooth over the residue

field V/V f of V and so a regular local ring. It follows that P0 := R̃f is a prime

ideal of height one and consequently R̃P0 is a discrete valuation ring.

By the main result of [13] the homomorphism

Wi(ÃP0 , τ̃P0) −→ Wi(K ⊗R̃ A, idK ⊗ τ̃)
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is injective. On the other hand, R̃P0
is the localization of R̃ at the multiplica-

tive closed subset of R̃ consisting of all t ∈ R̃ with R̃/R̃t flat over V . Hence by

Corollary 8.4 also Wi(Ã, τ̃) −→Wi(ÃP0
, τ̃P0

) is injective, and therefore

ι∗ : Wi(Ã, τ̃) −→ Wi(K ⊗R̃ Ã, idK ⊗ τ̃)

is a monomorphism for all i ∈ Z as well. In other notations, this means that

Wi(Db(P(Ã))(0)) −→ Wi(Db(P(Ã))(0)/Db(P(Ã))(1)) ,

where the Witt groups are with respect to the duality DA,τ , respectively with
respect to the by DA,τ induced duality, is injective and therefore by Balmer’s [1]
localization sequence we get that

Wi(Db(P(Ã))(1)) −→ Wi(Db(P(Ã))(0))

is the zero map for all i ∈ Z. We are done.

9. Proof of Lemma 8.3.

9.1. Quillen’s normalization lemma and a generalization. We continue with
the notation of the last section, see 8.1 as well as Lemma 8.3.

By Quillen [20, §7, Lem. 5.12] if V is a field, respectively by Gillet-Levine [14,
Lem. 1] otherwise, there exists an open immersion θ : R −→ R0 with P ∈ SpecR0

and a smooth morphism ι0 : Γ := V [T1, . . . , Td−1] −→ R0 of relative dimension one,
where d is the relative dimension of R over V , such that the composition of this
morphism with the quotient map π0 : R0 −→ R0/R0t is quasi-finite, respectively
finite if V is a field.

Using Lemma 5.6 we can replace R by R0 to prove Lemma 8.3, and get a com-
mutative (ignoring the morphism ∆̃) diagram:

R̃/R̃t

R̃⊗Γ R
′

s̃

33

R⊗Γ R
′

γ⊗idR′
oo R′

γ′

OO

u
oo

R̃⊗Γ R

idR̃⊗π

OO

∆̃

}}

R⊗Γ R
γ⊗idR

oo

idR⊗π

OO

R

π

OO

p
oo

R̃

q̃

OO

R

q

OO

γ
oo Γ ,

ι

OO

ι
oo

(6)

where all squares are cartesian, and:

• γ′ : R′ = R/Rt −→ R̃/R̃t =: R̃′ is the localization morphism;
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• s̃ : R̃ ⊗Γ R
′ −→ R̃′, r̃ ⊗ x 7→ r̃ · γ′(x) = π̃(r̃) · γ′(x), where π̃ : R̃ −→ R̃′ =

R̃/R̃t is the quotient morphism;

• ∆̃ : R̃⊗Γ R −→ R̃, r̃ ⊗ r 7→ r̃ · γ(r) is the ’diagonal’;

• p : R −→ R ⊗Γ R, r 7→ 1 ⊗ r, q : R −→ R ⊗Γ R, r 7→ r ⊗ 1, and
q̃ : R̃ −→ R̃⊗Γ R, r̃ 7→ r̃ ⊗ 1 are the ’projections’; and

• (idR̃⊗π) ◦ q̃ is quasi-finite, respectively finite if V is a field.

The morphisms ι, p, q and q̃ are smooth of relative dimension one, and so u is also
smooth of relative dimension one. Therefore R̃⊗Γ R is a regular ring of dimension
1 +dim R̃. Since ι : Γ −→ R is flat the element 1⊗ t ∈ R̃⊗ΓR is a non zero divisor,
and therefore R̃⊗Γ R

′ is a Gorenstein ring of dimension dim R̃.

It follows now from [15, Chap. II, Thm. 4.15] that s̃ : R̃ ⊗Γ R
′ −→ R̃′ and

∆̃ : R̃⊗Γ R −→ R̃ are regular embeddings of codimension one.

9.2. Set p̃ := (γ ⊗ idR) ◦ p and q1 := (idR̃⊗π) ◦ q̃.

If q̃∗(Ã, τ̃) ' p̃∗(A, τ) and q1 is finite we can now finish the proof of Lemma 8.3
as explained in the introduction. However in general q1 is quasi-finite only and it
is possible that q̃∗(Ã, τ̃) 6' p̃∗(A, τ).

The first obstacle can be resolved using Zariski’s main theorem, and for the latter
we use a construction due to Ojanguren and the second named author [17, Sects.

7 and 8] to get a smooth morphism of relative dimension zero R̃ ⊗Γ R
κ−→ C, such

that there exists an isomorphism of C-algebras with involution

κ∗
(
p̃∗(A, τ))

'−−→ κ∗
(
q̃∗(Ã, τ̃)

)
.

The result of this construction is the following technical lemma. Before we
state the result we note that the algebras with involutions (of the first- or second

kind) q̃∗(Ã, τ̃) and p̃∗(A, τ) become naturally isomorphic after pull-back along ∆̃ :

R̃⊗Γ R −→ R̃. More precisely, we have a natural isomorphism

ρ : ∆̃∗
(
p̃∗(A, τ)

) '−−→ ∆̃∗
(
q̃∗(Ã, τ̃)

)
of algebras with involutions, which fits into the commutative diagam

R̃⊗R̃⊗ΓR
(R̃⊗Γ R)⊗R A //ρ

'
//

'
((

R̃⊗R̃⊗ΓR
(R̃⊗Γ R)⊗R̃ R̃⊗R A

'
uu

R̃⊗R A ,

(7)
where the diagonal arrows are the natural identifications. Note here that on the
left hand side R acts on R̃⊗Γ R via the right factor, i.e. via p̃ = (γ ⊗ idR) ◦ p.
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9.3. Lemma. There exists a commutative diagram

R̃′

C̃

β
..

C ′

β′

22

loo R̃⊗Γ R
′κ′oo

s̃

<<

R′

γ′

OO

ũoo

D

α

OO

α′

??

C

πC

OO

R̃⊗Γ R

idR̃⊗π

OO

κoo R
p̃oo

π

OO

R̃ ,

j

OO

δ

ff

q̃

77

(8)

where ũ = (γ⊗idR′)◦u, C ′ = C⊗RR′ = C⊗R̃⊗ΓR
(R̃⊗ΓR

′), and l : C ′ −→ C̃ := C ′Q
is the localization homomorphism at Q := (β′)−1(PR̃′) (recall that R̃ = RP and so

PR̃ is the maximal ideal of R̃.)

These rings and morphisms satisfy the following:

(a) κ is a smooth morphism of relative dimension zero, and so the same holds
for κ′;

(b) C ′ is a Gorenstein ring and dim C̃ = dim R̃;

(c) β′ is a regular immersion of codimension one, and so the kernel of β is
generated by a non unit and non zero divisor;

(d) the by α′ induced morphism of affine schemes SpecC ′ −→ SpecD is an
open immersion, δ is a finite morphism, and we have

π̃ = β ◦ α ◦ δ = β′ ◦ πC ◦ j = s̃ ◦ (idR̃⊗π) ◦ q̃ ,

where π̃ : R̃ −→ R̃′ = R̃/R̃t is the quotient morphism;

(e) the morphism j = κ ◦ q̃ is smooth of relative dimension one, and has a

splitting ∆C : C −→ R̃ with ∆C ◦ κ = ∆̃; and

(f) there is an isomorphism of C-algebras with involution

χ : C ⊗R (A, τ)
'−−→ C ⊗R̃ (Ã, τ̃) ,

such that ∆∗C(χ) coincides with the natural isomorphism

∆∗C
(
κ∗(p̃∗A)

) '−−→ ∆̃∗(p̃∗A)
ρ−→ ∆̃∗(q̃∗Ã)

'−−→ ∆∗C
(
κ∗(q∗Ã)

)
.

Proof. Let m :=
(
s̃ ◦ (idR̃⊗π)

)−1
(PR̃′). We have m ⊇ Ker ∆̃, and q̃−1(m) = PR̃

is the maximal ideal of R̃. Hence m is the unique maximal ideal of R̃⊗Γ R, which
contains Ker ∆̃, and ∆̃ factors via the regular local ring S̃ := (R̃⊗ΓR)m. It follows

dim S̃ = dim(R̃⊗Γ R) = 1 + dim R̃ (9)
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since m contains the kernel of ∆̃ : R̃ ⊗Γ R −→ R̃, which is a regular embedding of
codimension one.

We get a diagram

S̃

∆S̃ ""

R̃⊗Γ R
ι̃oo

∆̃

��
R̃ ,

q̃

OO

where ι̃ : R̃⊗ΓR −→ S̃ is the localization morphism and ∆S̃ ◦ ι̃ = ∆̃. In particular,

we have ∆S̃ ◦ (ι̃ ◦ q̃) = idR̃, and so there is an isomorphism of R̃-algebras with
involutions

ρS̃ : ∆∗
S̃

(
ι̃∗(p̃∗(A, τ))

) '−→ ∆̃∗(p̃∗(A, τ))
ρ−→ ∆̃∗(q̃∗(Ã, τ̃))

'−→ ∆∗
S̃

(
ι̃∗(q̃∗(Ã, τ̃))

)
.

Now by the theorem [17, Prop. 7.1] of Ojanguren and the second named author

there exists a finite étale morphism h̃ : S̃ −→ ˜̃C, such that

• there is an isomorphism of ˜̃C-algebras with involutions

χ̃ : (h̃ ◦ ι̃)∗
(
p̃∗(A, τ)

) '−−→ (h̃ ◦ ι̃)∗
(
q̃∗(Ã, τ̃)

)
;

and

• a splitting ∆ ˜̃C
: ˜̃C −→ R̃ of h̃ ◦ ι̃ ◦ q̃, such that ∆∗˜̃C

(χ̃) = ρS̃ .

We can extend these data to an open neighbourhood of the maximal ideal m: There
exists b ∈ (R̃⊗Γ R) \m and a diagram

C

∆C

++

(R̃⊗Γ R)b
hoo R̃⊗Γ R

ιoo

κ

ww

∆̃

ww
R̃ ,

q̃

OO

where ι is the localization morphism, κ = h ◦ ι, ∆C ◦ κ = ∆̃, and such that there
exists an isomorphism of C-algebras with involutions

χ : κ∗(p̃∗(A, τ))
'−−→ κ∗(q̃∗(Ã, τ̃)) ,

such that ∆∗C(χ) coincides with the natural isomorphism of R̃-algebras with invo-
lutions

ρ : ∆̃∗(p̃∗(A, τ))
'−−→ ∆̃∗(q̃∗(Ã, τ̃))

introduced in (7). Note that by construction m ∈ Spec(R̃ ⊗Γ R)b and therefore
since h is étale and finite we get tacking (9) into account

dimC = dim(R̃⊗Γ R)b = dim(R̃⊗Γ R)m = dim R̃⊗Γ R = 1 + dim R̃ . (10)
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We have constructed the following commutative diagram:

R̃′

C ′ R̃⊗Γ R
′

s̃

OO

κ′oo

C

πC

OO

R̃⊗Γ R

idR̃⊗π

OO

κoo

R̃ ,

j

OO

q̃

77

(11)

where C ′ := C ⊗R̃⊗ΓR
(R̃⊗Γ R

′), i.e. the middle square is cartesian, and j := κ ◦ q̃,
which is smooth of constant relative dimension one. By construction

κ′ : R̃⊗Γ R
′ −→ (R̃⊗Γ R

′)b −→ C ′

is the composition of a localization map followed by a finite étale morphism, and
so quasi-finite and smooth of relative dimension zero. It follows that πC ◦ j =
κ′ ◦ (idR̃⊗π) ◦ q̃ is quasi-finite as well since (idR̃⊗π) ◦ q̃ is, and that C ′ is a
Gorenstein ring, see [6, Cor. 3.3.15] for the latter claim. Moreover, since the non
zero divisor 1⊗ t is in m and b 6∈ m we have

dim(R̃⊗Γ R
′)b = dim(R̃⊗Γ R

′)m = dim(R̃⊗Γ R) − 1 ,

which by (10) implies dim(R̃⊗Γ R
′)b = dim R̃, and hence dimC ′ = dim R̃.

We are done except for the existence of β′ and the factorization of the quasi-
finite morphism πC ◦ j. For the later we use a version of Zariski’s main theorem,
see e.g. [21, p. 42, Cor. 2]. By this result the quasi-finite morphism πC ◦ j factors

R̃
δ−→ D

α′−→ C ′ with δ finite and the by α′ induced morphism of affine schemes
SpecC ′ −→ SpecD an open immersion.

We are left to show that there exists a regular embedding of codimension one
β′ : C ′ −→ R̃′, such that β′ ◦ κ′ = s̃. As C ′ = C ⊗R̃⊗ΓR

(R̃ ⊗Γ R
′) it is for the

existence enough to show that there exists a morphism βC : C −→ R̃′, such that

βC ◦ κ = s̃ ◦ (idR̃⊗π) .

We claim that βC := π̃ ◦ ∆C does the job. In fact, by construction of (11) we
have

π̃ ◦∆C ◦ κ = s̃ ◦ (idR̃⊗π) ◦ q̃ ◦∆C ◦ κ = s̃ ◦ (idR̃⊗π) ◦ q̃ ◦ ∆̃ .

Now observe that for r̃ ∈ R̃ and r ∈ R we have

s̃
[

(idR̃⊗π)
(

(q̃ ◦ ∆̃)(r̃ ⊗ r)
) ]

= s̃
(

(idR̃⊗π)((r̃ · γ(r))⊗ 1)
)

= π̃(r̃ · γ(r))

= s̃
(

(idR̃⊗π)(r̃ ⊗ r)
)
.

Finally, since κ′ is smooth of relative dimension 0 and s̃ is a regular immersion
of codimension one, also β′ is a regular immersion of codimension one, see e.g. [7,
Chap. IV, Prop. 3.9]. We are done. �
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9.4. The dualizing complexes. We have on D the dualizing complex E• :=
δ\(Ĩ•), on C̃ the dualizing complex α∗(E•), and on R̃′ the two dualizing complexes

π̃\(Ĩ•) = (β ◦ α)\(E•) and β\
(
α∗(E•)

)
, which are isomorphic to each other, see 6.4.

Since

Ĩ• : Ĩ0 −→ Ĩ−1 −→ . . . −→ Ĩ− dim R̃ ∈ Db
c(Mqc(R̃))

is a (minimal) injective resolution of R̃ living in the indicated degrees and dimD =

dim R̃ by Lemma 9.3 (b) and (d) we know by Lemma 4.7 that µE(P ) = dimDP

for all P ∈ SpecD. Therefore the same holds for the restriction to the localization
Spec C̃, i.e. µα∗(E)(P ) = dim(C̃)P for all P ∈ Spec C̃. Since C̃ is a local Gorenstein
ring it follows from the uniqueness of dualizing complexes, see [16, Chap. V, Thm.

3.1], that α∗(E•) is an injective resolution of the C̃-module C̃.

9.5. Two transfer maps. Along the morphism β : C̃ −→ R̃′ we have the following
two two duality preserving functors(

Db
c(Mqc(Ã

′)),DÃ′,τ̃ ′

β\(α∗(E))

)
−→

(
Db
c(Mqc(C̃ ⊗R′ A′)),DC̃⊗(A′,τ ′)

α∗(E)

)
and (

Db
c(Mqc(Ã

′)),DÃ′,τ̃ ′

β\(α∗(E))

)
−→

(
Db
c(Mqc(C̃ ⊗R̃ Ã)),D

C̃⊗(Ã,τ̃)
α∗(E)

)
,

where we have set (Ã′, τ̃ ′) := R̃′⊗R̃(Ã, τ̃). These correspond to (cf. 5.3 for notation)

(β, ζ) : (C̃, C̃ ⊗R′ (A′, τ ′)) −→ (R̃′, R̃′ ⊗R (A, τ)) ,

where ζ is the C̃-algebra homomorphism

C̃ ⊗R′ A′ = C̃ ⊗R′ R′ ⊗R A −→ R̃′ ⊗C̃ C̃ ⊗R′ R
′ ⊗R A

'−−→ R̃′ ⊗R A ,

c̃⊗ r′ ⊗ a 7−→
(
β(c̃) · γ′(r′)

)
⊗ a ,

and

(β, ξ) : (C̃, C̃ ⊗R̃ (Ã, τ̃)) −→ (R̃′, R̃′ ⊗R (A, τ)) ,

where ξ is the C̃-algebra homomorphism

C̃ ⊗R̃ Ã = C̃ ⊗R̃ R̃⊗R A −→ R̃′ ⊗C̃ C̃ ⊗R̃ R̃⊗R A
'−−→ R̃′ ⊗R A ,

c̃⊗ r̃ ⊗ a 7−→
(
β(c̃) · π̃(r̃)

)
⊗ a ,

see 5.3 for notation.

By Lemma 9.3 (f) there exists an isomorphism of C̃-algebras with involutions

idC̃ ⊗χ : C̃ ⊗C (C ⊗R A) −→ C̃ ⊗C (C ⊗R̃ R̃⊗R A) ,

c̃⊗ c⊗ a 7−→ c⊗ χ(c⊗ a) =
(
c̃ · (l ◦ πC)(c)

)
⊗ χ(1⊗ a) .

Here C on the left hand side is an R-algebra via R
p̃−→ C and on the right hand side

it is considered as R̃-algebra via R̃
j−→ C.

These three morphisms of C̃-algebras with involutions are related as follows.
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Lemma. We have a commutative diagram of C̃-algebra morphisms:

C̃ ⊗C (C ⊗R A)
idC̃ ⊗χ //

g

��

C̃ ⊗C (C ⊗R̃ R̃⊗R A)

idC̃ ⊗ g1

��
C̃ ⊗R̃ R̃⊗C (C ⊗R̃ R̃⊗R A)

idC̃ ⊗ g2

��
C̃ ⊗R′ R′ ⊗R A

ζ ''

C̃ ⊗R̃ (R̃⊗R A)

ξuu
R̃′ ⊗R A ,

where g, g1, and g2 are the canonical isomorphisms. Setting ` := idC̃ ⊗ (g2 ◦ g1) we
have therefore an isometry

tr(idC̃ ,g)

(
tr(β,ζ)(N•, ψ)

)
' tr(idC̃ , idC̃ ⊗χ)

[
tr(idC̃ , `)

(
tr(β,ξ)(N•, ψ)

) ]
in (Db

c(Mqc(C̃ ⊗R A)),D
C̃⊗(A,τ)
α∗(E) ) for all i-symmetric spaces (N•, ψ) in the trian-

gulated category with duality (Db
c(Mqc(R̃

′ ⊗R A)),D
R̃′⊗(A,τ)

β\(α∗(E))
).

Proof. The last assertion follows from the first, see 5.3. To prove that the diagram
commutes we recall first that by Lemma 9.3 (f) the following diagram commutes

R̃⊗C (C ⊗R A)
idR̃⊗χ //

''

R̃⊗C (C ⊗R̃ R̃⊗R A)

g2vv
R̃⊗R A ,

where the diagonal arrows are the natural isomorphisms. In particular we have

g2

(
(idR̃⊗χ)

(
r̃ ⊗ c⊗ a)

)
= (r̃ ·∆C(c))⊗ a .

Using this we compute for c̃⊗ c⊗ a ∈ C̃ ⊗C C ⊗R A:

ξ
[
`
(

(idC̃ ⊗χ)(c̃⊗ (c⊗ a))
) ]

= ξ
[
`
(

(c̃ · (l ◦ πC)(c))⊗ χ(1C ⊗ a)
) ]

= ξ
[

(idC̃ ⊗ g2)
(

(c̃ · (l ◦ πC)(c))⊗ 1R̃ ⊗ χ(1C ⊗ a)
) ]

= ξ
[ (
c̃ · (l ◦ πC)(c)

)
⊗ 1R̃ ⊗ a

]
= β

(
c̃ · (l ◦ πC)(c)

)
⊗ a ,

where we denote for clarity by 1S the one of a ring S.

On the other hand we have

ζ
[
g
(
c̃⊗ (c⊗ a)

) ]
= ζ

[ (
c̃ · (l ◦ πC)(c)

)
⊗ (1R′ ⊗ a)

]
= β

(
c̃ · (l ◦ πC)(c)

)
⊗ a ,

hence the lemma. �
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9.6. We are now in position to prove Lemma 8.3. Let for this (M•, ϕ) be a i-

symmetric space in (Db
c(Mqc(A

′))(p),DA′,τ ′

π\(I)
).

The pull-back γ′∗(M•, ϕ) is a i-symmetric space in Db
c(Mqc(R̃

′⊗RA))(p) for the

duality D
R̃′⊗R(A,τ)

π̃\(Ĩ)
, which is isomorphic to the duality D

R̃′⊗R(A,τ)

β\
(
α∗(E)

) , see 9.4. For

ease of notation we denote by γ′∗(M•, ϕ)� the space corresponding to γ′∗(M•, ϕ)
under this isomorphism of triangulated categories, i.e.

γ′∗(M•, ϕ)� :=
(

idDb
c(Mqc(R̃′⊗RA)) , γ̂(α, β)

)
∗(γ
′∗(M•, ϕ)) ,

see 6.4 for notation.

We apply now the zero theorem, see 5.7. By this result

tr(β,ζ)

(
γ′∗(M•, ϕ)�

)
is a neutral i-symmetric space in the triangulated category with duality(

Db
c(Mqc(C̃ ⊗R′ A′))(p),D

C̃⊗R′ (A
′,τ ′)

α∗(E)

)
.

(Note here that since Ĩ• is a minimal injective resolution of the R̃-module R̃ living

in degrees 0,−1, . . . ,−dim R̃, the complex π̃\(Ĩ•) is a minimal injective resolution

of R̃′ living in degrees −1, . . . ,−dim R̃, cf. Example 4.5 (ii).)

By the lemma in 9.5 above this implies

Lemma. The push-forward tr(β,ξ)

(
γ′∗(M•, ϕ)�

)
is a neutral space in the triangu-

lated category with duality
(
Db
c(Mqc(C̃ ⊗R̃ Ã))(p) , D

C̃⊗R̃(Ã,τ̃)

α∗(E)

)
.

We compute now:

γ∗
(

trπ(M•, ϕ)
)

= trπ̃
(
γ′∗(M•, ϕ)

)
by Lemma 5.6

= trδ
[

trβ◦α
(
γ′∗(M•, ϕ)

) ]
= trδ

[
(α∗, θ)∗

(
tr(β,ξ)(γ

′∗(M•, ϕ)�
) ]

by Lemma 6.5

It follows that γ∗
(

trπ(M•, ϕ)
)

is neutral in (Db
c(Mqc(Ã))(p),DÃ,τ̃

Ĩ
) since the space

tr(β,ξ)

(
γ′∗(M,ϕ)�

)
is neutral in

(
Db
c(Mqc(C̃⊗R̃ Ã))(p) , D

C̃⊗R̃(Ã,τ̃)

α∗(E)

)
by the lemma

above. We are done.

9.7. Remark. In the article [12] by the first named author it was not observed

that if (Ã, τ̃) is not extended from the base ring then the R ⊗Γ R-algebras with

involutions p∗(A, τ) and q∗(Ã, τ̃) are not necessarily isomorphic (using the notation
of (6)). Hence [12] proves the Gersten conjecture only in the constant case, i.e.

in case R̃ is a regular local ring which contains a field V and (Ã, τ̃) is extended
from V .
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[18] D. Popescu, General Néron desingularization, Nagoya Math. J. 100 (1985), 97–126.
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