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Stochastic Optimal Control

» Stochastic Optimal Control is concerned with maximizing
/ minimizing a performance criteria where the criteria is
affected by future unknown noise in the system, as well as
the actions of the controller / agent
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Stochastic Optimal Control

» We aim to solve the problem

-
H(x)=supE| G(XF7") —I—/ F(s, X" us) ds
ue A N—— 0

terminal reward -
running reward/penalty

where
» u = (U)o is the control process and the agent chooses it

» A is the admissible set of controls — e.g., exclude doubling
strategies

» XY = (X{)t>0 is the controlled process, which the agent
partially controls, and satisfies the SDE

dX! = p(t, X, u) dt + o(t, X!, uy) dW; Xo=x
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Stochastic Optimal Control

» Trick is to introduce a larger class of problems indexed by time

» The value function is defined as

H(t,x) = sup E; «
ue A

T

GOX#)+ [ F(s, X ds]
t

where E; ,[-] means expectation conditional on X; = x.

> Prove a dynamic programming principle and the
corresponding dynamic programming equation
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Stochastic Optimal Control

We will “flow” an arbitrary admissible control and re-write the
value function recursively...

8 E; xu [G(X;) +fTTF(s, X!, ug)ds|
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Stochastic Optimal Control

» Take an arbitrary admissible control v € A

HY(t, x)

= ]Et,x

= IE!,X

(by

)
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B T
GO + [ F(s, Xt us)ds
t

G(XY) +/T

T

F(s, Xs”,us)ds+/ F(s, X&, us)ds
t

.
E, xu [G(X#) +/ F(s, XY, us) ds

T

-
+ / F(S, Xsu7us)d5:|
t

iterated expectation)

B T
H“(T,x:)+/ F(s, Xs",us)ds] (by defn)
t
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Stochastic Optimal Control

» However, H(t,x) > H"(t, x), with equality if v = u*, hence

Hu(t7 X) S Et,x

t

H(r, XY) + / Fs, X¥, us) ds]

< sup Erx
ue A

H(r, X;) +/ F(s, XJ', us) ds]

t

and so

H(t7 X) < sup Ef,x
ue A

H(r, X;) +/ F(s, XJ', us) ds]
t
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Stochastic Optimal Control

» Take an e-optimal control v — a control that performs
better than H(t,x) — ¢, but of course not as good as H(t, x),
i.e., such that

H(t,x) > HY (t,x) > H(t,x) — ¢

> Modify the e-optimal control between t and 7 by an arbitrary
control u, i.e., define 0° by

~E L e
Uy 1= U Le<r +v; Tisr
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Stochastic Optimal Control

» Then,

H(t,x) > H" (t,x)

= ]Et,x

= Et,x

2 Et,x

T

H™ (7, st) + / F(s, Xsﬂs ,05) ds} by iterated expectations
t

T

HY" (7, X) +/

t

F(s, XJ', us) ds} by the modified strategy

H(r, X;)— e+ / F(s, X{', us) ds} e-optimal control
t

» Hence, taking € | 0, and since v is arbitrary

H(t,x) > sup E; «
uc A

H(r, X2) + / F(s, X, us) ds]
t
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Stochastic Optimal Control

» Putting both inequalities together we arrive at the dynamic
programming principle (DPP)

H(t7 X) = sup Et,x

H(r, XY) + / F(s, XY, u;) ds
uc A t

» The dynamic programming equation (DPE) is the
infinitesimal version of this principle
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Stochastic Optimal Control

» Take 7 in the DPP to be the following

T=TAInf{s>t:(s—t |XY—x|)&[0,h) x[0,€)}.

T 1.002 1.004 1.006 1.008 1.01
Time t

» that is, either

1. an amount of time h passes, and the processes has deviated by
less than ¢, or

2. the process deviates by € and we stop
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Stochastic Optimal Control
» From the DPP

H(t,x) > sup E; «
uc A

H(r, X2) + / F(s, X, us) ds]
t

» Hence, for a constant strategy v on the interval [t, 7]

H(t, x) > Eex

H(r, X7) —|—/ F(s, Xy, v) ds}
t

» Applying Itd’s lemma to the value function
H(rX2) = H(EX) + [0+ 22 His. X2 ds
t
+ / DH(s, X2) (s, XV, v) AW,
t

where the generator is
gt“ = :U’(t7 X, U) ax + %J2(t7 X, U) aXX
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Stochastic Optimal Control

» We then have,

H(t,x) > Eq. H(t,Xt)Jr/ (0 + L) H(s, X”) ds
t

—|—/ aXH(S7X5U)O'(S7XSU,’U)dW5+/ F(s, st,v)ds]
t t

» Since | X — x| < € on [t, 7], the stochastic integral is indeed a
martingale and we have

H(t,x) > E¢x

HiE ) + [ L0+ .2) His, X2) + F(s, X2, 0) } ds
[ }or
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Stochastic Optimal Control

» Then,
0> limEe.. % T{(at+.,sﬂ:)H(s,xs“)+F(s, x:,v)} ds
t

= (8¢ + L) H(t, x) + F(t, x,v)

which follows b/c

(i) as h\y0, T =t + h a.s. since the process will not hit the
barrier of € in extremely short periods of time,

(ii) the condition that |X* — x| < €, which implies that if the
process does hit the barrier it is bounded,

(iii) the Mean-Value Theorem allows us to write
. h
limpyo ftH ws ds = wy, and

(iv) the process starts at X = x.
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Stochastic Optimal Control

» This inequality holds for every constant v, and therefore

OeH(t, x) + sup {2 H(t. x) + F(£, x, v)} < 0
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Stochastic Optimal Control

> Next, we show the opposite inequality, i.e., that
OrH(t, x) + sup { & H(t,x) + F(t, x,v)} >0
v
» We do this by contradiction... assume 3 (tp, xp) s.t.,
OeH(to, x0) + sup { £ H(to, x0) + F(to, x0,v)} <0 (1)
> Then, define a modification ¢ of the value function H via
o(t,x) = H(t,x) + € ((t — to)> + (x — x0)*)

this lies above the value function, but equals it at (g, xp), and
is differentiable enough to apply It6’s lemma
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Stochastic Optimal Control

» Note also that

0rp(to, x0) = O:H(to, x0) ,
8x§0(t07X0) - axH(t07X0) )
8xx§0(t0,xo) = axxH(t07X0)

» Therefore, from (1), we have that
Orp(to, x0) + sup {Z ¢(to, x0) + F(to, x0,v)} <0
and if the Hamiltonian sup,, { £ H(t,x) + F(t, x,v)} is
continuous, then
3 a neighbourhood N, = (to — r,to+r) X (xo — r,x0 + r)

s.t.
Orp(t, x) +sup{ L p(t,x) + F(t, x,v)} <0 2

for all (t,x) € N,

(c) S. Jaimungal, 2016 Algo Trading July, 2016 17 /21



Stochastic Optimal Control

> Define
n= max (¢—H)(t,x)>0

(t,x)€ON;
» Take an arbitrary control u € A and define the stopping time
T=inf{s >ty : X! ¢ N}
» Since X is continuous

X/ € ON,

and therefore
o(1, X/') > n+ H(r, X}!) (3)
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Stochastic Optimal Control
> Apply It6's lemma to ¢ to find

o1, X2) = o0, x0)+ / (et p(s, XY) st / Dip(s, X2) (s, XY, u) dW,s
tp to

» Therefore,
V(to, %) = ¢(to, x0)

— Ero [m xt)— [ [0+ 206(5.0) ds}
to

» From (2), for (t,x) € N,
P(t, x) = Oep(t, x) + sup {LFp(t,x) + F(t, x,v)} <0
so that
Orp(t, x) + L o(t,x) + F(t, x,ur) < (t,x) <0
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Stochastic Optimal Control
» Therefore, we have
V(to, x0) = ¢(to, x0)

— Ere [so(n xt) = [0+ 206l5.X) ds}
to

> Enso [so(f, x4 [ (R X ) = (s X)) ds}

» On boundary N,, ¢ dominates H, i.e. from (3), we have

V(to, x0) > By, [17 + H(r, X)) + /T (F(s, XS, us) — (s, X)) ds} (since ¥ < 0)

> 1+ By {H(T, XY) + / F(s, X2, us) ds]

to
> Ky, [H(T, X2 +/ F(s, X2, us) ds}

to

This violates the DPP!
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Stochastic Optimal Control

Hence we obtain the Dynamic Programming Equation (DPE),

aka Hamilton-Jacobi-Bellman (HJB) equation

OrH(t, x) +sup { L H(t,x) + F(t, x,v)} =0

» This is a non-linear PDE that the value function must
satisfy

» It is not clear that if we solve this PDE, the solution is the
value function!

» This requires a verification theorem
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