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Outline

1. Micro impact
individual child orders
paid by liquidity demander to supplier

2. Macro impact
need parent orders (brokers only)
incorporate time or no time

3. Models for trade optimization

2



Edmonton mini-course, July 2016

Market impact

How your trades affect the market
How much it costs you to trade
"micro" impact:  individual trades or events

execute trade with market order
or place/cancel limit order

"macro" impact: larger scale orders
"buy 1000 lots across next 2 hours"
how does price change during and after trading

Models for trade trajectory optimization
dependence of cost on scheduling decisions
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Two conundrums of market impact

1. Buyer vs seller
who pays impact to whom?

2. Impact vs alpha
trade decision is not exogenous
depends on previous price changes 
and on anticipated price changes
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Conundrum #1: Buyer vs seller

Every trade has two sides
Which one pays market impact?

Answers
"People like me" pay to "the market"
More aggressive pays to less aggressive

5

Sell

Buy

Price goes up  
following trade

Positive impact

Negative impact
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Data sources

Public market data
impact of aggressive (market) orders
problem: algo executions can be 50% passive

Broker or internal data set
client orders paying impact to market
problem: in closed system, sum to zero

CME LDB data set (to 2012)
trade volume tagged by "CTI code" (local/external)
can demonstrate transfer to locals
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Exhibit 1 also shows the average price at which 
each group bought and at which each group sold 
during this particular 15-minute interval. As it hap-
pened, for the two insider groups – CTI 1+3 and CTI 
2, the average buy price was lower than the average 
sell price, while for the one outsider group – CTI 4 
– the average sell price was lower than the average 
buy price. This is consistent with our intuition that 
the first two groups are more interested in providing 
liquidity and getting paid for it, while the last group 
is more interested in access to liquidity and is willing 
to pay for it. 

The longer view
It would be a bit of a stretch to suggest that the dif-
ference in average prices is a measure of market 
slippage for these three groups, but the evidence pro-
vided in Exhibit 2 is at least consistent with the idea 
that outsiders are paying for access, while those who 
are closer to the market are in the business of provid-
ing market liquidity. 

In the upper panel, we have plotted the average 
values of these differences between sell and buy 
prices calculated for 15 minute intervals. The price 
differences are fairly stable and fairly small. On av-
erage, traders in the CTI 4 group pay approximately 
0.1/32nd, which is about 1/5th of the tick in this mar-
ket and is worth about $3.00. This is much smaller 
than and a far cry from what one would have found 
in the open outcry days when someone in this group 

could have counted on paying the full bid/ask spread – or very close to it – for access to the market. 

On the other hand, the risks inherent in providing liquidity are evident in the lower panel where 
we have shown the differences in sell and buy prices when we calculate these averages over entire 
trading days instead of the narrow 15-minute intervals used to produce the values in the upper panel. 
The business of making markets – or of being a liquidity provider – is one of selling options. The most 
you can make is the bid/ask spread and the market can get away from you. In the lower panel, we see 
a clear quarterly cycle in the price difference, probably associated with the futures expiration. We can 
also see two extended episodes, in June 2009 and December 2010, when those in the CTI 4 group – the 
so-called liquidity demanders – were consistently winners across the day while the liquidity providers 
were the losers. We do not yet have an explanation for these episodes.

Robert Almgren is co-founder and Head of Research at Quantitative Brokers LLC, a broker dedicated to 
algorithmic execution and transaction cost measurement for interest rate products. He has an extensive re-
search and publishing record in optimal trade execution and cost measurement.

Galen Burghardt is Director of Research at Newedge Group. He is a co-author of The Treasury Bond Ba-
sis and Managed Futures: A Guide for Institutional Investors and author of The Eurodollar Futures and 
Options Handbook.
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Exhibit 2
Difference between average sell price and average buy price 
Averages calculated over 15 minute intervals

Averages calculated over full trading days

A WINDOW INTO THE WORLD OF FUTURES MARKET LIQUIDITY  2

NEWEDGE PRIME BROKERAGE
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The purpose of this snapshot is to call attention to an interesting data set maintained by the Chicago 
Mercantile Exchange (CME) that affords a unique insight into futures trading costs. As brokers, we use 
this data to help understand transactions costs and to keep them as low as possible for our clients. 

The CME microstructure data allows us to conclude two things. First, those traders whom we tra-
ditionally think of as liquidity takers do in fact pay for access to the pool of liquidity afforded by the 
exchange. Second, the net price paid for liquidity is remarkably small given the size of the bid/ask 
spread. In this example, which highlights trading in 10-year Treasury note futures, we find that the 
average price paid by “liquidity takers” is about $3 per contract per round turn, while the value of 
the bid/ask spread is just over $15. 

A window into the world of futures market liquidity

NEWEDGE PRIME BROKERAGE | INVESTOR RESEARCH

Research Snapshot

Robert Almgren
robertalmgren@quantitativebrokers.com

Galen Burghardt
galen.burghardt@newedge.com

March 30, 2011

CTI 1 – An individual member trading for his or her own account, a “local,”

CTI 2 – A member firm trading for its own proprietary account,

CTI 3 – A member firm trading for another member (very little volume), and

CTI 4 – All other participants.

CME LDB data 
(no longer available)



Edmonton mini-course, July 2016

Conundrum #2: impact vs alpha

Decision to trade is never exogenous
Trader buys because expects price rise

subsequent rise is impact or alpha?
Ideal study: send random orders
Must calibrate impact model for each trade style

short-term alpha vs long term
Example:  cross-impact

correlation due to cross impact or correlated trading?
Example: serial correlation of trade sign

buys followed by buys, sells by sells

8
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Micro impact

Price change following market order execution
Only study you can do with public data

9

Ask

Bid

Trade is a "buy" 
because at ask price:

buy market order  
with sell limit order

Δt

Δp

Market impact model:
Δp as function of 
 Δt and trade size
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Typical market impact data:
many small trades,

lots of noise

Clustering on 
integer multiples 

of tick size
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Same with log scale for trade size
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Challenges in micro impact

Buy/sell classification is arbitrary
legitimate study, but may not be what you want

Market order may depend on quote sizes
microprice (quote imbalance) is common signal

Market orders are serially correlated
impact may be due to earlier and later orders
cause may be slicing of larger orders, or 
trade decisions reacting to trade activity

12
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Aggressive orders 
when microprice is away  
(opposite quote is small)  

because anticipate price motion
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Figure 5. Conditional probability of a price increase, as a function of the bid and ask queue sizes, compared
with empirical transition frequencies for Citigroup stock price tick-by-tick data on June 26th, 2008.

Noting that e−r(t) = 2− cos(t)−
√

(2− cos(t))2 − 1 we obtain the result.
Note that the conditional probabilities (7) are, in the case of a balanced order book,

independent of the parameters describing the order flow.
The expression (7) is easily computed numerically: Figure 5 displays the shape of the

function pup1 . Comparison with empirical data for Citigroup stock (June, 2008) shows good
agreement between the theoretical value (7) and the empirical transition frequencies of the
price conditional on the state of the consolidated order book.

3.3. Probability of price increase: Asymmetric order flow. In this section we relax the
symmetry assumptions above and allow the intensity of limit and market orders at the bid
and the ask to be different; more precisely we assume the following:

• Limit orders at the ask arrive at independent, exponential times with parameter λa.
• Market orders and cancellations at the ask arrive at independent, exponential times

with parameter µa + θa.
• Limit orders at the bid arrive at independent, exponential times with parameter λb.
• Market orders and cancellations at the bid arrive at independent, exponential times,

with parameter µb + θb.
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Price Dynamics in a Markovian Limit Order Market∗

Rama Cont† and Adrien de Larrard†

Abstract. We propose a simple stochastic model for the dynamics of a limit order book, in which arrivals of
market orders, limit orders, and order cancellations are described in terms of a Markovian queueing
system. Price dynamics are endogenous and result from the execution of market orders against
outstanding limit orders. Through its analytical tractability, the model allows us to obtain analytical
expressions for various quantities of interest, such as the distribution of the duration between price
changes, the distribution and autocorrelation of price changes, and the probability of an upward
move in the price, conditional on the state of the order book. We study the diffusion limit of the
price process and express the volatility of price changes in terms of parameters describing the arrival
rates of buy and sell orders and cancellations. These analytical results provide some insight into the
relation between order flow and price dynamics in limit order markets.

Key words. limit order book, market microstructure, queueing, diffusion limit, high-frequency data, liquidity,
duration analysis, point process

AMS subject classifications. 60J28, 60J70, 60K25, 90B22

DOI. 10.1137/110856605

1. Introduction. An increasing number of financial instruments are traded in electronic,
order-driven markets, in which orders to buy and sell are centralized in a limit order book avail-
able to market participants and market orders are executed against the best available offers in
the limit order book. The dynamics of prices in such markets are interesting not only from the
viewpoint of market participants—for trading and order execution (Alfonsi, Schied, and Schulz
(2010), Predoiu, Shaikhet, and Shreve (2011))—but also from a fundamental perspective since
they provide a rare glimpse into the dynamics of supply and demand and their role in price
formation (Cont (2011)).

Equilibrium models of price formation in limit order markets (see Parlour (1998), Rosu
(2009)) have shown that the evolution of the price in such markets is rather complex and de-
pends on the state of the order book. On the other hand, empirical studies on limit order books
(see Bouchaud, Farmer, and Lillo (2008), Farmer et al. (2004), Gourieroux, Jasiak, and Le Fol
(1999), Hollifield, Miller, and Sandas (2004), Smith et al. (2003)) provide an extensive list of
statistical features of order book dynamics that are challenging to incorporate in a single
model. While most of these studies have focused on unconditional/steady-state distributions
of various features of the order book, empirical studies (Harris and Panchapagesan (2005),
Cont, Kukanov, and Stoikov (2010a)) show that the state of the order book contains infor-
mation on short-term price movements, so it is of interest to provide forecasts of various

∗Received by the editors November 28, 2011; accepted for publication (in revised form) October 10, 2012;
published electronically January 29, 2013.

http://www.siam.org/journals/sifin/4/85660.html
†Laboratoire de Probabilités et Modèles Aléatoires, CNRS-Université Pierre et Marie Curie, 75252 Paris, France

(Rama.Cont@columbia.edu, adriendelarrard@gmail.com).
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Fluctuations and response in financial
markets: the subtle nature of
‘random’ price changes
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1 Commissariat à l’Energie Atomique, Orme des Merisiers,
91191 Gif-sur-Yvette Cedex, France
2 Science and Finance, Capital Fund Management, 109–111 rue Victor Hugo,
92 532 Levallois Cedex, France
3 Condensed Matter Physics Department, Weizmann Institute of Science,
76 100 Rehovot, Israel

Received 28 August 2003, in final form 21 November 2003
Published 19 December 2003
Online at stacks.iop.org/Quant/4/176 (DOI: 10.1088/1469-7688/4/2/007)

Abstract
Using trades and quotes data from the Paris stock market, we show that the
random walk nature of traded prices results from a very delicate interplay
between two opposite tendencies: long-range correlated market orders that
lead to super-diffusion (or persistence), and mean reverting limit orders that
lead to sub-diffusion (or anti-persistence). We define and study a model
where the price, at any instant, is the result of the impact of all past trades,
mediated by a non-constant ‘propagator’ in time that describes the response
of the market to a single trade. Within this model, the market is shown to be,
in a precise sense, at a critical point, where the price is purely diffusive and
the average response function almost constant. We find empirically, and
discuss theoretically, a fluctuation–response relation. We also discuss the
fraction of truly informed market orders, that correctly anticipate short-term
moves, and find that it is quite small.

1. Introduction
The efficient market hypothesis (EMH) posits that all available
information is included in prices, which emerge at all times
from the consensus between fully rational agents, that would
otherwise immediately arbitrage away any deviation from the
fair price [1, 2]. Price changes can then only be the result of
unanticipated news and are by definition totally unpredictable.
The price is at any instant of time the best predictor of future
prices. One of the central predictions of EMH is thus that
prices should be random walks in time, which (to a good
approximation) they indeed are. This was interpreted early on
as a success of EMH. However, as pointed out by Shiller, the
observed volatility of markets is far too high to be compatible

with the idea of fully rational pricing [3]. The frantic activity
observed in financial markets is another problem: on liquid
stocks, there is typically one trade every 5 s, whereas the
time lag between relevant news is certainly much larger.
More fundamentally, the assumption of rational, perfectly
informed agents seems intuitively much too strong, and has
been criticized by many [4–6]. Even the very concept of the
fair price of a company appears to be somewhat dubious.

There is a model at the other extreme of the spectrum
where prices also follow a pure random walk, but for a totally
different reason. Assume that agents, instead of being fully
rational, have zero intelligence and take random decisions to
buy or to sell, but that their action is interpreted by all the others
agents as potentially containing some information. Then, the

176 1469-7688/04/020176+15$30.00 © 2004 IOP Publishing Ltd PII: S1469-7688(04)68104-8
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Figure 1. Plot of
√

D(ℓ)/ℓ as a function of ℓ for France-Telecom,
during three different periods. The variation of D(ℓ)/ℓ with ℓ is
very small, in particular in the small-tick (0.01 Euros) period (July
2001–December 2002). For the large-tick-size period (0.05 Euros;
January 2001–June 2001), there is a systematic downward trend:
see also figure 2.

systematically discarded the first ten and the last ten minutes
of trading in a given day, to remove any artifacts due to the
opening and closing of the market. Many quantities of interest
in the following are two-time observables, that is, compare
two observables at (trade) time n and n + ℓ. In order to avoid
overnight effects, we have restricted our analysis mostly to
intraday data, i.e. both n and n + ℓ belong to the same trading
day. We have also assumed that our observables only depend
on the time lag ℓ.

In the example of France-Telecom, on which we will
focus mostly, there are on the order of 10 000 trades/day.
For example, the total number of trades on France-Telecom
during 2002 was close to 2 × 106; this allows quite accurate
statistical estimates of various quantities. The volume of each
trade was found to be roughly log-normally distributed, with
⟨ln V ⟩ ≃ 5.5 and a root mean square of " ln V ≃ 1.8. The
range of observed values of ln V is between 1 and 11.

2.2. Price fluctuation and diffusion
The simplest quantity to study is the average mean square
fluctuation of the price between (trade) time n and n+ℓ. Here,
the price pn is defined as the mid-point just before the nth trade:
pn ≡ mn− . In this paper, we always consider detrended prices,
such that the empirical drift is zero. We thus define D(ℓ) as

D(ℓ) = ⟨(pn+ℓ − pn)
2⟩. (1)

As is well known, in the absence of any linear correlations
between successive price changes, D(ℓ) has a strictly diffusive
behaviour, i.e.

D(ℓ) = Dℓ, (2)

where D is a constant. In the presence of short-range
correlations, one expects deviations from this behaviour at
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Figure 2. Plot of
√

D(ℓ)/ℓ as a function of ℓ for other stocks
during the year 2002, except Barclays (May–June 2002). The y-axis
has been rescaled arbitrarily for clarity. We note that stocks with
larger tick size tend to reveal a stronger mean-reverting effect.

short times. However, on liquid stocks with relatively small
tick sizes such as France-Telecom (FT), one finds a remarkably
linear behaviour for D(ℓ), even for small ℓ. The absence
of linear correlations in price changes is compatible with the
idea that (statistical) arbitrage opportunities are absent, even
for high-frequency trading. In fact, in order to emphasize
the differences from a strictly diffusive behaviour, we have
studied the quantity

√
D(ℓ)/ℓ (which has the dimension of

Euros). We show this quantity in figure 1 for FT, averaged
over three different periods: the first semester of 2001 (where
the tick size was 0.05 Euros), the second semester of 2001
and the whole of 2002 (where the tick size was 0.01 Euros).
One sees that D(ℓ)/ℓ is indeed nearly constant, with a small
‘oscillation’ on which we will comment later. Similar plots
can be observed for other stocks (see figure 2). We have noted
that for stocks with larger ticks a slow decrease of D(ℓ)/ℓ is
observed, corresponding to a slight anti-persistence (or sub-
diffusion) effect. Note that since we study the mid-point, the
anti-correlations reported here are not related to the trivial bid–
ask bounce.

The conclusion is that the random walk (diffusive)
behaviour of stock prices appears even at the trade by trade
level, with a diffusion constant D which is of the order of
the typical bid–ask squared. From figure 1, one indeed sees
that

√
D(1) ∼ 0.01 Euros, which is precisely the tick size,

whereas FT has an average bid–ask spread equal to two ticks.
Hence, each transaction typically moves the mid-point by half
the bid–ask.

2.3. Response function and market impact

In order to better understand the impact of trading on price
changes, one can study the following response function R(ℓ),
defined as

R(ℓ) = ⟨(pn+ℓ − pn)εn⟩, (3)
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Figure 3. Average response function R(ℓ) for FT, during three
different periods (full symbols). We have given error bars for the
2002 data. For the 2001 data, the y-axis has been rescaled to best
collapse onto the 2002 data. Using the same rescaling factor, we
have also shown the data of figure 1. The fact that the same
rescaling works approximately for D(ℓ) as well will be considered
further in section 2.5 below.

where εn is the sign of the nth trade, introduced in section 2.1.
The quantity R(ℓ) measures how much, on average, the price
moves up conditioned to a buy order at time zero (or a sell
order moves the price down) a time ℓ later. As will be clear
below, this quantity is however not the market response to a
single trade, a quantity that will later be denoted by G0. A
more detailed object can in fact be defined by conditioning the
average to a certain volume V of the nth trade:

R(ℓ, V ) = ⟨(pn+ℓ − pn)εn⟩|Vn=V . (4)

Previous empirical studies have mostly focused on the volume
dependence of R(ℓ, V ), and established that this function
is strongly concave as a function of the volume [7, 27–30].
In [31], a thorough analysis of US stocks was performed
in terms of a piecewise power-law dependence for R(ℓ =
1, V ) ∝ V α , with an exponent α ≃ 0.4 for small volumes,
and a smaller value (α ≃ 0.2) for larger volumes (see
also [32]). In a previous publication [33], two of us have
proposed that this dependence might in fact be logarithmic
(see also a footnote in [30]): R(ℓ = 1, V ) = R1 ln V

(where R1 is a stock dependent constant), a law that seems to
satisfactorily account for all the data that we have analysed.
The empirical determination of the temporal structure of
R(ℓ, V ) has been much less investigated (although one can find
in [30] somewhat related results on a coarse-grained version
of R(ℓ, V )). Preliminary empirical results, published in [33],
reported that R(ℓ, V ) could be written in a factorized form
(first suggested on theoretical grounds in [12]):

R(ℓ, V ) ≈ R(ℓ)f (V ); f (V ) ∝ ln V, (5)

where R(ℓ) is a slowly varying function that initially increases
up to ℓ ∼ 100–1000 and then is seen to decrease back, with a
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Figure 4. Average response function R(ℓ) for a restricted selection
of stocks, during the year 2002.

rather small overall range of variation. The initial increase of
R(ℓ) was reported in [27] and has also recently been noticed
by Lillo and Farmer [17]. Here, we provide much better data
that supports both the above assertions. We show for example
in figure 3 the temporal structure of R(ℓ) for France-Telecom,
for different periods. Note that R(ℓ) increases by a factor
∼2 between ℓ = 1 and ℓ∗ ≈ 1000, before decreasing again.
Including overnights allows one to probe larger values of ℓ

and confirm that R(ℓ) decreases, and even becomes negative
beyond ℓ ≃ 5000 (why this may be so will be explained
by our model). Similar results have been obtained for many
different stocks as well: figure 4 shows a small selection of
other stocks, where the non-monotonic behaviour of R(ℓ)

is shown. However, in some cases (such as Pechiney), the
maximum is not observed. One possible reason is that the
number of daily trades is in this case much smaller (∼1000),
and that ℓ∗ is beyond the maximum intraday time lag. On
the other hand, the model discussed below does also allow for
monotonic response functions.

The existence of a timescale ℓ∗ beyond which R(ℓ)

decreases is thus both statistically significant, and to a large
degree independent of the considered stock. On the other
hand, the amplitude of the change of R(ℓ) seems to be stock
dependent. As will be clear later, the fact that R(ℓ) slowly
increases before decreasing back to negative values is a non-
trivial result that requires a specific interpretation.

Turning now to the factorization property of R(ℓ, V ),
equation (5), we illustrate its validity in figure 5, where
R(ℓ, V )/f (V ) is plotted as a function of ℓ for different values
of V . The function f (V ) was chosen for best visual rescaling,
and is found to be close to f (V ) = ln V , as expected. Note that
for the smallest volume (open circles) the long-time behaviour
of R(ℓ, V ) seems to be different, which is probably due to
the fact that small volumes are in fact more likely to be large
volumes chopped up into small pieces.
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Figure 8. Average diffusion constant D = D(ℓ)/ℓ, computed for
ℓ = 128, and conditioned to a certain value of R2(ℓ), also computed
for ℓ = 128 (FT). The open symbols correspond to 2002, whereas
the black symbols are computed using the first semester of 2001,
where the tick size was five times larger. Correspondingly, the
x-axis was rescaled down by a factor of 25 and the y-axis by a factor
of five for this data set.

mentioned above, the statistics of price changes reveals very
little temporal correlation, the correlation function of the sign
εn of the trades, on the other hand, reveals very slowly decaying
correlations as a function of trade time. This correlation has
been mentioned in some papers before; see e.g. [7, 27]. Here,
we propose that these correlations decay as a power law of the
time lag, at least up to ℓ ≈ 15 000 (two trading days) beyond
which we do not have sufficiently accurate data.

More precisely, one can consider the following correlation
function:

C0(ℓ) = ⟨εn+ℓεn⟩ − ⟨εn⟩2. (6)

If trades were random, one should observe that C0(ℓ) decays
to zero beyond a few trades. Surprisingly, this is not what
happens: on the contrary, C0(ℓ) is strong and decays very
slowly toward zero, as an inverse power law of ℓ (see figure 9):

C0(ℓ) ≃ C0

ℓγ
, (ℓ ! 1). (7)

The value of γ seems to be somewhat stock dependent. For
example, for FT, one finds γ ≈ 1/5, whereas for Total
γ ≈ 2/3. In their study, Lillo and Farmer found a somewhat
larger value of γ ≈ 0.39 for Vodafone [17]. In any case,
the value of γ is found to be smaller than one, which is very
important because the integral of C0(ℓ) is then divergent. This
is in fact the precise definition of ‘long-term’ correlations.
Now, as will be shown more precisely in the next section, the
integral of C0(ℓ) can intuitively be thought of as the effective
number Ne of correlated successive trades. Hence, out of—
say—1000 trades, one should group together

Ne ≃ 1 +
1000∑

ℓ=1

C0(ℓ) ≈ 1 +
C0

1 − γ
10001−γ (8)
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Figure 9. Volume-weighted sign autocorrelation functions as a
function of time lag: C0, C1 and C2 (see the text for definitions). The
straight line corresponds to ℓ−γ with γ = 1/5. The dotted curves
correspond to the simple approximation given by equations (11).
Using data across different days allows one to extend the power-law
decay at least up to 15 000 trades.

‘coherent’ trades. For FT, γ ≈ 1/5 and C0 ≈ 0.2, which
means that the effect of one trade should be amplified, through
the correlations, by a factor Ne ≈ 50! In other words, both the
response function R and the diffusion constant should increase
by a factor of 50 between ℓ = 1 and 1000, in stark contrast
with the observed empirical data. This is the main puzzle that
one should try to elucidate: how can one reconcile the strong,
slowly decaying correlations in the sign of the trades with the
nearly diffusive nature of the price fluctuations, and the non-
monotonic response function?

Before presenting a mathematical transcription of the
above question and proposing a possible resolution, let
us comment on two related correlation functions that will
naturally appear in the following, namely

C1(ℓ) = ⟨εn+ℓεn ln Vn⟩, (9)

and
C2(ℓ) = ⟨εn+ℓ ln Vn+ℓεn ln Vn⟩. (10)

We have found empirically that these two ‘mixed’ correlation
functions are proportional to C0(ℓ) (see figure 8):

C1(ℓ) ≈ ⟨ln V ⟩C0(ℓ); C2(ℓ) ≈ ⟨ln V ⟩2C0(ℓ). (11)

There are however small systematic deviations, which indicate
that (i) small volumes contribute more to the long-range
correlations than larger volumes and (ii) ln V − ⟨ln V ⟩ is a
quantity exhibiting long-range correlations as well.

3. A micro-model of price fluctuations
3.1. Set up of the model
In order to understand the above results, we will postulate the
following trade superposition model, where the price at time
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Price motion has no serial 
correlation, even though is 
response to correlated 
order flow. Other traders 
anticipate future orders.

Modern models:  "propagators"
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Macro impact

Need to know "parent order"
Plot slippage vs size
Fit linear or nonlinear model
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Cost model

Inputs:
X = executed order size
B = benchmark price, bid-ask midpoint at start
P = average executed price
C = P - B = trade cost or slippage (for buy order)  
   = -(P - B) for sell order
Model C as function of X:  C = f(X)

17

This structure takes no account of 
 how the order is executed  
or over what time horizon.  

No use for optimizing execution!
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Nondimensionalization

18

V = daily volume (actual, average, or forecast)  
σ = daily volatility

 Idea:  Measure your order relative to  
 what the market is doing anyway  

Lets you compare different assets and different days 
(with widely varying volume and volatility) in same model

"Trading 1% daily volume costs 5% of daily volatility"
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Structure of f(x)

19

Minimize sum of squares error to order data

Linear

Nonlinear

j indexes orders
a, b, k are universal
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Advantages of this model (parent order level):
simple to do
simple to interpret
gives immediate useful results for cost estimation

Disadvantages of this model
not useful for order scheduling or optimization
no microscopic description of mechanism

Caveats
some orders may be cancelled based on market moves

solution:  restrict sample to fully executed orders
different strategies have different short term alpha

solution: results are client-specific and strategy-specific

25
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distorting the results by including excessive overnight volatility, but we
have found this to be give more consistent results than the alternative of
truncating at the close.

Based on these prices, we define the following impact variables:

Permanent impact: I =

Spost � S0

S0

Realized impact: J =

S̄ � S0

S0
.

The “effective” impact J is the quantity of most interest, since it deter-
mines the actual cash received or spent on the trade. In the model below,
we will define temporary impact to be J minus a suitable fraction of I,
and this temporary impact will be the quantity described by our theory.
We cannot sensibly define temporary impact until we write this model.

On any individual order, the impacts I, J may be either positive or
negative. In fact, since volatility is a very large contributor to their values,
they are almost equally likely to have either sign. They are defined so that
positive cost is experienced if I, J have the same sign as the total order
X: for a buy order with X > 0, positive cost means that the price S(t)
moves upward. We expect the average values of I, J, taken across many
orders, to have the same sign as X.

Volume time The level of market activity is known to vary substantially
and consistently between different periods of the trading day; this intra-
day variation affects both the volume profile and the variance of prices.
To capture this effect, we perform all our computations in volume time
⌧ , which represents the fraction of an average day’s volume that has exe-
cuted up to clock time t. Thus a constant-rate trajectory in the ⌧ variable
corresponds to a VWAP execution in real time, as shown in Figure 1. The
relationship between t and ⌧ is independent of the total daily volume;
we scale it so that ⌧ = 0 at market open and ⌧ = 1 at market close.

We map each of the clock times t0, . . . , tn in the data set to a cor-
responding volume time ⌧0, . . . ,⌧n. Since the stocks in our sample are
heavily traded, in this paper we use a nonparametric estimator that di-
rectly measures differences in ⌧ : the shares traded during the period
corresponding to the exection of each order. Figure 2 illustrates the em-
pirical profiles. The fluctuations in these graphs are the approximate
size of statistical error in the volume calculation for a 15-minute trade;
these errors are typically 5% or less, and are smaller for longer trades.
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izing each individual stock (in addition to daily volume and volatility).
There are several candidates for the inputs to L:

• Shares outstanding: We constrain the form of L to be

L =

✓⇥
V

◆
�

.

where ⇥ is the total number of shares outstanding, and the expo-
nent � is to be determined. The dimensionless ratio ⇥/V is the
inverse of “turnover,” the fraction of the company’s value traded
each day. This is a natural explanatory variable, and has been used
in empirical studies such as Breen, Hodrick, and Korajczyk (2002).

• Bid-ask spread: We have found no consistent dependence on the
bid ask spread across our sample, so we do not include it in L.

• Market capitalization: Market cap differs from shares outstanding
by the price per share, so including this factor is equivalent to in-
cluding a “price effect.” Our empirical studies suggest that there is a
persistent price effect, as also found by Lillo, Farmer, and Mantegna
(2003), but that the dependence is weak enough that we neglect it
in favor of the conceptually simpler quantity ⇥/V .

Temporary In extensive preliminary exploration, we have found that
the temporary cost function h(v) does not require any stock-specific
modification: liquidity cost as a fraction of volatility depends only on
shares traded as a fraction of average daily volume.

Determination of exponent After assuming the functional form ex-
plained above, we confirm the model and determine the exponent � by
performing a nonlinear regression of the form

I

�

= � T sgn(X)
����
X

VT

����
↵

✓⇥
V

◆
�

+ hnoisei (7)

1
�

✓
J �

I

2

◆
= ⌘ sgn(X)

����
X

VT

����
�

+ hnoisei (8)

where “noise” is again the heteroskedastic error term from (1), and sgn
is the sign function. We use a modified Gauss-Newton optimization algo-
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where “noise” is again the heteroskedastic error term from (1), and sgn
is the sign function. We use a modified Gauss-Newton optimization algo-
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rithm to determine the values of �, ↵, and � that minimize the normal-
ized residuals. The results are

↵ = 0.891 ± 0.10

� = 0.267 ± 0.22

� = 0.600 ± 0.038.

Here, as throughout this paper, the error bars expressed with ± are one
standard deviation, assuming a Gaussian error model. Thus the “true”
value can be expected to be within this range with 67% probability, and
within a range twice as large with 95% probability.

From these values we draw the following conclusions:

• The value ↵ = 1, for linear permanent impact, cannot reliably be
rejected. In view of the enormous practical simplification of linear
permanent impact, we choose to use ↵ = 1.

• The liquidity factor is very approximately � = 1/4.

• For temporary impact, our analysis confirms the concavity of the
function with � strictly inferior to 1. This confirms the fact that
the bigger the trades made by fund managers on the market, the
less additional cost they experience per share traded. At the 95%
confidence level, the square-root model � = 1/2 is rejected. We will
therefore fix on the temporary cost exponent � = 3/5. In compari-
son with the square-root model, this gives slightly smaller costs for
small trades, and slightly larger costs for large trades.

Note that because � > 0, for fixed values of the number X of shares in the
order and the average daily volume V , the cost increases with ⇥, the total
number of shares outstanding. In effect, a larger number of outstanding
shares means that a smaller fraction of the company is traded each day,
so a given fraction of that flow has greater impact.

Therefore these results confirm empirically the theoretical arguments
of Huberman and Stanzl (2004) for permanent impact that is linear in
block size, and the concavity of temporary impact as has been widely
described in the literature for both theoretical and empirical reasons.

4.3 Determination of coefficients

After fixing the exponent values, we determine the values of � and ⌘

by linear regression of the models (7,8), using the heteroskedastic error
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Market impact models for trading

Two types of market impact 
(both active, both important):

• Permanent
due to information transmission
affects public market price

• Temporary
due to finite instantaneous liquidity
“private” execution price not reflected in market

Many richer structures are possible
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Temporary vs. permanent market impact

28

price

time

Pre-trade

Post-trade

Execution
(sell)

Temporary impact
(liquidity cost)  

depends on rate 
of execution

Permanent impact
(information)

independent of 
execution strategy

Instantaneous relaxation
from temporary impact

to permanent level

Jim Gatheral: richer time structures for decay
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Permanent impact

29

✓t = instantaneous rate of trading

Xt = X0 +
Z T

0
✓s ds

Linear to avoid round-trip arbitrage (Huberman & Stanzl, Gatheral)  
(Schönbucher & Wilmott 2000:  knock-out option--also need temporary impact)

Pt = P0 + � Wt + ⌫(Xt �X0)

G(✓) = ⌫ ✓

dPt = � dWt + G(✓t) dt

Cost to execute net X shares = 
1
2
⌫ X2

(independent  
of path)

t

X(t)
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Temporary impact

30

We trade at P̃t 6= Pt

P̃t depends on instantaneous trade rate ✓t

Require finite instantaneous trade rate 
⇒ imperfect hedging 

P̃t = Pt + H(✓t)
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Example: bid-ask spread

31

✓t

buy at ask

sell at bid

P̃t

Pt s

P̃t = Pt +
1
2
s sgn(✓t)

1
2
s sgn(✓t) · ✓t �t =

1
2
s|✓t|�t

“Linear” model:  cost to trade          shares✓t �t
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Critique of linear cost model

independent of trade size
not suitable for large traders

in practice, effective execution near midpoint
spread cost not consistent with modern cost models
liquidity takers act as liquidity providers

32
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Proportional temporary cost model

33

✓t
H(0) = 0

concave 
(empirical)

H(✓t)

Special case: linear for simplicity

⟹ Quadratic total cost: 

H(✓) = 1
2
�✓

H(✓) · ✓�t = 1
2
�✓2�t

P̃t = Pt + H(✓t)
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Conclusions

Market impact not easy to define or measure
trading and price changes are related
who pays trading cost to whom

Micro models from public data
including trade size
excluding trade size

Macro models from private trade data
excluding time
including time
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