
ar
X

iv
:1

30
7.

56
40

v2
  [

m
at

h.
O

C
]  

18
 N

ov
 2

01
3

The Scenario Approach for Stochastic Model Predictive
Control with Bounds on Closed-Loop Constraint Violations∗

Georg Schildbach† Lorenzo Fagiano‡ Christoph Frei§ Manfred Morari†

November 19, 2013

Abstract

Many practical applications of control require that constraints on the inputs and states of the system
be respected, while optimizing some performance criterion. In the presence of model uncertainties or
disturbances, for many control applications it suffices to keep the state constraints at least for a prescribed
share of the time, as e.g. in building climate control or loadmitigation for wind turbines. For such sys-
tems, a new control method of Scenario-Based Model Predictive Control (SCMPC) is presented in this
paper. It optimizes the control inputs over a finite horizon,subject to robust constraint satisfaction under
a finite number of random scenarios of the uncertainty and/ordisturbances. While previous approaches
have shown to be conservative (i.e. to stay far below the specified rate of constraint violations), the new
method is the first to account for the special structure of theMPC problem in order to significantly reduce
the number of scenarios. In combination with a new frameworkfor interpreting the probabilistic con-
straints as average-in-time, rather than pointwise-in-time, the conservatism is eliminated. The presented
method retains the essential advantages of SCMPC, namely the reduced computational complexity and
the handling of arbitrary probability distributions. It also allows for adopting sample-and-remove strate-
gies, in order to trade performance against computational complexity.

1 Introduction

Model Predictive Control (MPC) is a powerful approach for handling multi-variable control problems with
constraints on the states and inputs. Its feedback control law can also incorporate feedforward informa-
tion, e.g. about the future course of references and/or disturbances, and the optimization of a performance
criterion of interest.

Over the past two decades, the theory of linear and robust MPChas matured considerably [22]. There
are also widespread practical applications in diverse fields [26]. Yet many potentials of MPC are still not
fully uncovered.

One active line of research is Stochastic MPC (SMPC), where the system dynamics are of a stochastic
nature. They may be affected by additive disturbances [3, 10, 13, 14, 18, 19], by random uncertainty in the
system matrices [11], or both [12,15,25,30]. In this framework, a common objective is to minimize a cost
function, while the system state is subject to chance constraints, i.e. constraints that have to be satisfied only
with a given probability.

Stochastic systems with chance constraints arise naturally in some applications, such as building climate
control [23], wind turbine control [12], or network traffic control [34]. Alternatively, they can be considered
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as relaxations of robust control problems, in which the robust satisfaction of state constraints can be traded
for an improved cost performance.

A major challenge in SMPC is the solution to chance-constrained finite-horizon optimal control prob-
lems (FHOCPs) in each sample time step. These correspond to non-convex stochastic programs, for which
finding an exact solution is computationally intractable, except for very special cases [17, 31]. Moreover,
due to the multi-stage nature of these problems, it generally involves the computation of multi-variate con-
volution integrals [10].

In order to obtain a tractable solution, various sample-based approximation approaches have been con-
sidered, e.g. [2, 4, 32]. They share the significant advantage of coping with generic probability distri-
butions, as long as a sufficient number of random samples (or ‘scenarios’) can be obtained. The open-
loop control laws can be approximated by sums of basis functions, as in the Q-design procedure proposed
by [32]. However, these early approaches of Scenario-BasedMPC (SCMPC) remain computationally de-
manding [2] and/or of a heuristic nature, i.e. without specific guarantees on the satisfaction of the chance
constraints [4,32].

More recent approaches [6, 7, 21, 24, 28, 33] are based on advances in the field of scenario-based opti-
mization. However, these approaches share the drawback of beingconservativewhen applied in a receding
horizon fashion, i.e. the focus is either on obtaining a robust solution [6,7,33] or the chance constraints are
over-satisfied by the closed loop system [21,24,28].

This conservatism of SCMPC represents a major practical issue, that is resolved by the contributions
of this paper. In contrast to the previous results, the novelapproach interprets the chance constraints as a
time average, rather than pointwise-in-time with a high confidence, which is much less restrictive. Further-
more, the sample size is reduced by exploiting the structural properties of the finite-horizon optimal control
problem [29]. The approach also allows for the presence of multiple simultaneous chance constraints on
the state, and an a-posteriori removal of adverse samples for improving the controller performance [21].

In the most general setting, this paper considers linear systems with stochastic additive disturbances
and uncertainty in the system matrices, which may only be known through a sufficient number of random
samples. The computational complexity can be traded against performance of the controller by removing
samples a-posteriori, starting from a simple convex linearor quadratic program and converging to the
optimal SMPC solution in the limit.

The paper is organized as follows: Section 2 presents a rigorous formulation of the optimal control
problem that one would like to solve; Section 3 describes howan approximated solution is obtained by
SCMPC; Section 4 develops the theoretical details, including the technical background and closed-loop
properties; Section 5 demonstrates the application of the method to a numerical example; and Section 6
presents the main conclusions.

2 Optimal Control Problem

Consider a discrete-time control system with a linear stochastic transition map

xt+1 = A(δt)xt +B(δt)ut + w(δt) , x0 = x̄0 , (1)

for some fixed initial condition̄x0 ∈ R
n. Thesystem matrixA(δt) ∈ R

n×n and theinput matrixB(δt) ∈
R
n×m as well as the additive disturbancew(δt) ∈ R

n are random, as they are (known) functions of a primal
uncertaintyδt. For notational simplicity,δt comprises all uncertain influences on the system at timet.

Assumption 1 (Uncertainty) (a) The uncertainties{δ0, δ1, ...}, are independent and identically distributed
(i.i.d.) random variables on a probability space(∆,P). (b) A ‘sufficient number’ of i.i.d. samples fromδt
can be obtained, either empirically or by a random number generator.

The support set∆ of δt and the probability measureP on ∆ are entirely generic. In fact,∆ andP
need not be known explicitly. The ‘sufficient number’ of samples, which is required instead, will become
concrete in later sections of the paper. Note that any issuesarising from the definition of aσ-algebra on
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(∆,P) are glossed over in this paper, as they are unnecessarily technical. Instead, every relevant subset of
∆ is assumed to be measurable.

The system (1) can be controlled by inputs{u0, u1, ...}, to be chosen from a set of feasible inputs
U ⊂ R

m. Since the future evolution of the system (1) is uncertain, it is generally impractical to indicate all
future inputs explicitly. Instead, eachut should be determined by a static feedback law

ψ : Rn → U with ut = ψ(xt) ,

based only on the current state of the system.
The optimal state feedback lawψ should be determined in order to minimize the time-average of ex-

pected stage costsℓ : Rn × R
m → R0+,

1

T

T−1∑

t=0

E
[
ℓ
(
xt, ut

)]
. (2)

Each stage cost is taken in expectationE
[
·
]
, since its argumentsxt andut are random variables, being

functions of{δ0, ..., δt−1}. The time horizonT is considered to be very large, yet it may not be precisely
known at the point of the controller design.

The minimization of the cost is subject to keeping the state inside a state constraint setX for a given
fraction of all time steps. For many applications, the robust satisfaction of the state constraint (i.e.xt ∈ X

at all timest) is too restrictive for the choice ofψ, and results in a poor performance in terms of the cost
function. This is especially true in cases where the lowest values of the cost function are achieved close
to the boundary ofX. Moreover, it may be impossible to enforce if the support ofw(δt) is unknown and
possibly unbounded.

In order to make this more precise, letMt := 1XC(xt+1) denote the random variable indicating that
xt+1 /∈ X, i.e. 1XC : Rn → {0, 1} is the indicator function on the complementX

C of X. The expected
time-average of constraint violations should be upper bounded by someε ∈ (0, 0.5),

E
[ 1

T

T−1∑

t=0

Mt

]
≤ ε . (3)

Assumption 2 (Control Problem) (a) The state of the system can be measured at each time stept. (b) The
set of feasible inputsU is bounded and convex. (c) Thestate constrained setX is convex. (d) The stage cost
ℓ(·, ·) is a convex function.

Assumption 2(b) holds for most practical applications, andvery large artificial bounds can always be
introduced for input channels without natural bounds. Typical choices for the stage costℓ include

ℓ(ξ, υ) :=
∥
∥Qℓξ

∥
∥
1
+
∥
∥Rℓυ

∥
∥
1
, (4a)

or ℓ(ξ, υ) :=
∥
∥Qℓξ

∥
∥
∞

+
∥
∥Rℓυ

∥
∥
∞

, (4b)

or ℓ(ξ, υ) :=
∥
∥Qℓξ

∥
∥
2

2
+
∥
∥Rℓυ

∥
∥
2

2
, (4c)

whereQℓ ∈ R
n×n andRℓ ∈ R

m×m are positive semi-definite weighting matrices. Typical choices for the
constraintsU andX are polytopic or ellipsoidal sets.

Combining the previous discussions, theoptimal control problem (OCP)can be stated as follows:

min
ψ

1

T

T−1∑

t=0

E
[
ℓ
(
xt, ut

)]
, (5a)

s.t. xt+1 = A(δt)xt +B(δt)ut + w(δt) , x0 = x̄0 ∀ t = 0, ..., T − 1 , (5b)

E
[ 1

T

T−1∑

t=0

1XC(xt)
]
≤ ε , (5c)

ut = ψ(xt) ∀ t = 0, ..., T − 1 . (5d)
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The equality constraints (5b) are understood to be substituted recursively to eliminate all state variables
x0, x1, ..., xT−1 from the problem. Thus only the state feedback lawψ remains as a free variable in (5).

Remark 3 (Alternative Formulations) (a) Instead of the sum of expected values, the cost function (5a)
can also be defined as a desired quantile of the sum of discounted stage costs. Then the problem formulation
corresponds to a minimization of the ‘value-at-risk’, see e.g. [31]. (b) Multiple chance constraints on the
stateXj , each with an individual probability levelεj , can be included without further complications. A
single chance constraint is considered here for notationalsimplicity.

Many practical control problems can be cast in the general form of (5). For example in building cli-
mate control [23], the energy consumption of a building should be minimized, while its internal climate is
subject to uncertain weather conditions and the occupancy of the building. The comfort range for the room
temperatures may occasionally be violated without major harm to the system. Another example is wind
turbine control [12], where the power efficiency of a wind turbine should be maximized, while its dynamics
are subject to uncertain wind conditions. High stress levels in the blades must not occur too often, in order
to achieve a desired fatigue life of the turbine.

3 Scenario-Based Model Predictive Control

The OCP is generally intractable, as it involves an infinite-dimensional decision variableψ (the state feed-
back law) and a large number of constraints (growing withT ). Therefore it is common to approximate it
by various approaches, such asModel Predictive Control (MPC).

3.1 Stochastic Model Predictive Control (SMPC)

The basic concept of MPC is to solve a tractable counterpart of (5) over a small horizonN repeatedly at
each time step. Only the first input of this solution is applied to the system (1). In Stochastic MPC (SMPC),
a Finite Horizon Optimal Control Problem (FHOCP)is formulated by introducing chance constraints on
the state:

min
u0|t,...,uN−1|t

N−1∑

t=0

E
[
ℓ
(
xi|t, ui|t

)]
, (6a)

s.t. xi+1|t = A(δt+i)xi|t +B(δt+i)ui|t + w(δt+i) , x0|t = xt ∀ i = 0, ..., N − 1 , (6b)

P
[
xi+1|t /∈ X

]
≤ εi ∀ i = 0, ..., N − 1 , (6c)

ui|t ∈ U ∀ i = 0, ..., N − 1 . (6d)

Herexi|t andui|t denote predictions and plans of the state and input variables made at timet, for i steps
into the future. The current measured statext is introduced as an initial condition for the dynamics. The
predicted statesx1|t, ..., xN |t are understood to be eliminated by recursive substitution of (6b). Note that
the predicted states are random by the influence of the uncertaintiesδt, ..., δt+N−1.

Theprobability levelsεi in thechance constraints(6c) usually coincide withε from the OCP [14,23,30],
but they may generally differ [34]. Some formulations also involve chance constraints over the entire
horizon [12,19], or as a combination with robust constraints [10,18]. Other alternatives of SMPC consider
integrated chance constraints [13], or constraints on the expectation of the state [25].

Remark 4 (Terminal Cost) An optional (convex) terminal costℓf : Rn → R0+ can be included in the
FHOCP [20,27]. In this case the term

E
[
ℓf
(
xN |t

)]

would be added to the cost function (6a).
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The state feedback law provided by SMPC is given by a recedinghorizon policy: the current statext
is substituted into (6b), then the FHOCP is solved for an input sequence{u⋆0|t, ..., u

⋆
N−1|t}, and the current

input is set tout := u⋆0|t. This means that the FHOCP must be solved online at each time stept, using the
current measurement of the statext.

However, the FHOCP is a stochastic program that remains difficult to solve, except for very special
cases. In particular, the feasible set described by chance constraints is generally non-convex, despite of
the convexity ofX, and hard to determine explicitly. Hence a further approximation shall be made by
scenario-based optimization.

3.2 Scenario-Based Model Predictive Control (SCMPC)

The basic idea of Scenario-Based MPC (SCMPC) is to compute anoptimal finite-horizon input trajectory
{u′0|t, ..., u

′
N−1|t} that is feasible underK of sampled ‘scenarios’ of the uncertainty. Clearly, the scenario

numberK has to be selected carefully in order to attain the desired properties of the controller. In this
section, the basic setup of SCMPC is discussed, while the selection of a value forK is deferred until
Section 4.

More concretely, letδ(1)
i|t , ..., δ

(K)
i|t be i.i.d. samples ofδt+i, drawn at timet ∈ N for the prediction steps

i = 0, ..., N − 1. For convenience, they are combined intofull-horizon samplesω(k)
t := {δ

(k)
0|t , ..., δ

(k)
N−1|t},

also calledscenarios. TheFinite-Horizon Scenario Program (FHSCP)then reads as follows:

min
u0|t,...,uN−1|t

K∑

k=1

N−1∑

i=0

ℓ
(
x
(k)
i|t , ui|t

)
, (7a)

s.t. x
(k)
i+1|t = A(δ

(k)
i|t )x

(k)
i|t +B(δ

(k)
i|t )ui|t + w(δ

(k)
i|t )̧ x

(k)
0|t = xt ∀ i = 0, ..., N − 1, k = 1, ...,K,

(7b)

x
(k)
i+1|t ∈ X ∀ i = 1, ..., N − 1, k = 1, ...,K, (7c)

ui|t ∈ U ∀ i = 0, ..., N − 1 . (7d)

The dynamics (7b) provideK different state trajectories over the prediction horizon,each corresponding
to one sequence of affine transition maps defined by a particular scenarioω(k)

t . Note that theseK state
trajectories are not fixed, as they are still subject to the inputsu0|t, ..., uN−1|t. The cost function (7a)
approximates (6a) as an average over allK scenarios. The state constraints (7c) are required to hold forK
sampled state trajectories over the prediction horizon.

Applying a receding horizon policy, the SCMPC feedback law is defined as follows (see also Figure
1, forR = 0). At each time stept ∈ N the current state measurementxt is substituted into (7b), and the
current inputut := u′0|t is set to the first of the optimal FHSCP solution{u′0|t, ..., u

′
N−1|t}, which is called

thescenario solution.
Unlike many MPC approaches, SCMPC does not have an inherent guarantee ofrecursive feasibility, in

the sense of [22, Sec. 4]. Hence for a proper analysis of the closed-loop system, the following is assumed.

Assumption 5 (Resolvability) Under the SCMPC regime, each FHSCP admits a feasible solution at every
time stept almost surely.

While Assumption 5 appears to be restrictive from a theoretical point of view, it is often reasonable from
a practical point of view. For some applications, such as buildings [23], recursive feasibility may hold by
intuition, or it may be ensured by the use ofsoft constraints[26, Sec. 2]. All in all, MPC remains a useful
tool in practice, even for difficult stochastic systems (1) without the possibility of an explicit guarantee of
recursive feasibility.

The following are possible alternatives and also convex formulations of (7). The reasoning in each case
is based on the theory in [29] and omitted for brevity.
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Remark 6 (Alternative Formulations) (a) Instead of the average cost in (7a), the minimization maycon-
cern the cost of a nominal trajectory, as e.g. in [24,28]; or the average may be taken over any sample size
other thanK. (b) The inclusion of additional chance constraints into(7), as mentioned in Remark 3(b),
is straightforward. The number of scenariosKj may generally differ between multiple chance constraints.
(c) In case of a value-at-risk formulation, as in Remark 3(a), the average cost in (7a) is replaced by the
maximum:

“
K∑

k=1

” −→ “ max
k=1,...,K

” ,

where the sample sizeK must be selected according to the desired risk level.

Remark 7 (Control Parameterization) In the FHSCP, the predicted control inputsu0|t, ..., uN−1|t may
also be parameterized as a weighted sum of basis functions ofthe uncertainty, as proposed in [32, 33].
In particular, let e1, ..., em be theJ0 := m unit vectors inRm, and for each time stepi = 1, ..., N let
q
(j)
i|t : ∆i−1 → R

m be a finite setj ∈ {1, ..., Ji} of pre-selected basis functions. Then

u0|t :=

J0∑

j=1

φ
(j)
0 bj ,

ui|t :=

Ji∑

j=1

φ
(j)
i q

(j)
i|t

(
δ
(k)
0|t , ..., δ

(k)
i−1|t

)
∀ i = 1, ..., N − 1 ,

can be substituted into problem(7), so that the weightsφ(j)i ∈ R for i = 0, ..., N − 1 and j = 1, ..., Ji
become the new decision variables.

A control parameterization with an increasing number of basis functionsJ1, ..., JN−1 generally im-
proves the quality of the SCMPC feedback, while increasing the number of decision variables and hence
the computational complexity; see [32,33] for more details.

Given the sampled scenarios, (7) is a convex optimization program for which efficient solution algo-
rithms exist, depending on its structure [5]. In particular, if X andU are polytopic (respectively ellipsoidal)
sets, then the FHSCP has linear (second-order cone) constraints. If the stage cost is either (4a,b), then
the FHSCP has a reformulation with a linear objective function, using auxiliary variables. If the stage
cost is (4c), then the FHSCP can be expressed as a quadratic program. More details on these formulation
procedures are found in [20, pp. 154 f.].

3.3 A-Posteriori Scenario Removal

A key merit of SCMPC is that it renders the uncertain control system (6b) into multiple deterministic affine
systems (7b) by substituting particular scenarios. This significantly simplifies the solution to the FHSCP,
as compared to the FHOCP. However, by introducing these random scenarios, a randomizing element is
added to the SCMPC feedback law. In particular, the closed-loop system may occasionally show an erratic
behavior due to highly unlikely outliers in the sampled scenarios.

This effect can be mitigated by a-posteriori scenario removal, see [9]. This allows for thestate con-
straints(7c) corresponding toR > 0 scenarios to be removedafter the outcomes of all samples have been
observed. In exchange, the original sample sizeK must be (appropriately) increased over its value for
R = 0. Any appropriate combination(K,R) is called asample-removal pair. The choice of appropri-
ate values forK andR is deferred to Section 4. The selection of removed scenariosis performed by a
(scenario) removal algorithm[9, Def. 2.1].

Definition 8 (Removal Algorithm) (a) For eachξ ∈ R
n, the(scenario) removal algorithmAξ : ∆

NK →

∆N(K−R) is a deterministic function selecting(K − R) out ofK scenarios{ω(1)
t , ..., ω

(K)
t }. (b) The

selected scenarios at time stept shall be denoted by

Ωt := Axt

(
ω
(1)
t , ..., ω

(K)
t

)
.
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Definition 8 is very general, in the sense that it covers a great variety of possible scenario removal
algorithms. However, the most common and practical algorithms are described below:

Optimal Removal:The FHSCP is solved for all possible combinations of choosingR out ofK scenarios.
Then the combination that yields the lowest cost function value of all the solutions is selected. This
requires the solution toK chooseR instances of the FHSCP, a complexity that is usually prohibitive
for larger values ofR.

Greedy Removal:The FHSCP is first solved with allK scenarios. Then, in each ofR consecutive steps,
the state constraints of a single scenario are removed that yields the biggest improvement, either in
the total cost or in the first stage cost. Thus the procedure terminates after solvingKR−R(R− 1)/2
instances of FHSCP.

Marginal Removal:The FHSCP is first solved with the state constraints of allK scenarios. Then, in each
of R consecutive steps, the state constraints of a single scenario are removed based on the highest
Lagrange multiplier. Hence the procedure requires the solution toK instances of FHSCP.

Figure 1 depicts an algorithmic overview of SCMPC, for the general case with scenario removalR > 0.
For the case without scenario removal, considerR = 0 and the selected scenariosΩt := {ω

(1)
t , ..., ω

(K)
t }.

At every time stept, perform the following steps:

1. Measure current statext.

2. ExtractK scenariosω(1)
t , ..., ω

(K)
t .

3. RemoveR scenarios viaAxt
, and solve FHSCP with

only the state constraints of the remaining scenarios
Ωt.

4. Apply the first input of the scenario solutionut :=
u′0|t to the system.

Figure 1: Schematic overview of the SCMPC algorithm, for thecase with scenario removal (R > 0) and
without scenario removal (R = 0).

4 Problem Structure and Sample Complexity

For the SCMPC algorithm described in Section 3, the sample-removal pair(K,R) remains to be specified.
Appropriate values forK andR are theoretically derived in this section. Their values generally depend
on the control system and the constraints, andK is referred to as thesample complexityof the SCMPC
problem.

For some intuition about this problem, suppose thatR ≥ 0 is fixed and the sample sizeK is increased.
This means that the solution to the FHSCP becomes robust to more scenarios, with the following conse-
quences. First, the average-in-time state constraint violations (3) decrease, in general. Therefore the state
constraint will translate into a lower bound onK. Second, the computational complexity increases as well
as the average-in-time closed-loop cost (2), in general. Therefore the objective is to chooseK as small as
possible, and ideally equal to its lower bound.

The higher the number of removed constraintsR ≥ 0, the higher will be the lower bound onK, in order
for the state constraints (3) to be satisfied. Now consider pairs (R,K) of removed constraintsR together

7



with their corresponding lower boundsK, which equally satisfy the state constraints (3). For the intuition,
supposeR is increased, soK increases as well. Then the computational complexity grows, due to more
constraints in the FHSCP and the removal algorithm. At the same time, the solution quality of the FHSCP
improves, in general, and hence the average-in-time closed-loop cost (2) decreases. ThereforeR is usually
fixed to a value that is as high as admitted by the available computational resources.

4.1 Support Rank

According to the classic scenario approach [8, 9], the relevant quantity for determining the sample sizeK
for a single chance constraint (with a fixedR) is the number ofsupport constraints[8, Def. 2.1]. In fact,K
grows with the (unknown) number of support constraints, so the goal is to obtain a tight upper bound. For the
classic scenario approach, this upper bound is given by the dimension of the decision space [8, Prop. 2.2],
i.e.Nm in the case of the FHSCP.

The FHSCP is a multi-stage stochastic program, with multiple chance constraints (namelyN , one per
stage). This requires an extension to the classic scenario approach; the reader is referred to [29] for more
details. Now each chance constraint contributes an individual number of support constraints, to which an
upper bound must be obtained. These individual upper boundsare provided by thesupport rankof each
chance constraint [29, Def. 3.6].

Definition 9 (Support Rank) (a) Theunconstrained subspaceLi of a constrainti ∈ {0, ..., N − 1} in (7c)
is the largest (in the set inclusion sense) linear subspace of the search spaceRNm that remains uncon-
strained by all sampled instances ofi, almost surely. (b) Thesupport rankof a constrainti ∈ {0, ..., N−1}
in (7c) is

ρi := Nm− dimLi ,

wheredimLi represents the dimension of the unconstrained subspaceLi.

Note that the support rank is an inherent property of a particular chance constraint and it is not affected
by the simultaneous presence of other constraints. Hence the set of constraints of the FHSCP may change,
for instance, due to the reformulations of Remark 3.

Besides the extension to multiple chance constraints, the support rank has the merit of a significant
reduction of the upper bound on the number of support constraints. Indeed, the following two lemmas
replace the classic upper boundNm with much lower values, such asl ≤ n or m, depending on the
problem structure.

For systems affected byadditivedisturbances only, the support rank of any state constraintin the FHSCP
is given by the support rankl ≤ n of X in R

n (i.e. the co-dimension of the largest linear subspace that is
unconstrained byX).

Lemma 10 (Pure Additive Disturbances) Let l ≤ n be the support rank ofX and suppose thatA
(
δ
(k)
i|t

)
≡

A andB
(
δ
(k)
i|t

)
≡ B are constant and the control is not parameterized (as in Remark 7). Then the support

rank of any state constrainti ∈ {0, ..., N − 1} in (7c) is at mostl.

For systems affected byadditive and multiplicativedisturbances, Lemma 10 no longer holds. However,
it will be seen that for the desired closed-loop properties,the relevant quantity for selecting the sample size
K is the support rankρ1 of the state constraint onx1|t only. For this first predicted step, the support rank is
restricted to at mostm, under both additive and multiplicative disturbances.

Lemma 11 (Additive and Multiplicative Disturbances) The support rankρ1 of constrainti = 1 in (7c)
is at mostm.

For the sake of readability, the proofs of Lemmas 10 and 11 aredeferred to Appendix A. They effectively
decouple the support rank, and hence the sample sizeK, from the horizon lengthN .

Note that the result of Lemma 11 holds also for the parameterized control laws of Remark 7. In this
case, it decouples the sample sizeK from the number of basis functionsJi for all stagesi = 1, ..., N − 1.
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Tighter bounds ofρ1 than those in Lemmas 10 and 11 may exist, resulting from a special structure of the
system (1) and/or the state constraint setX. The basic insights to exploit this can be found in the Appendix
A and [29].

4.2 Sample Complexity

This section describes the selection of the sample-removalpair (K,R), based on a bound of the support
rankρ1. Throughout this subsection, the initial statext is considered to be fixed to an arbitrary value.

Let Vt|xt denote the(first step) violation probability, i.e. the probability with which the first predicted
state falls outside ofX:

Vt|xt := P
[
A(δt)xt +B(δt)u

′
0|t + w(δt) /∈ X

∣
∣xt

]
. (8)

Recall thatu′0|t denotes the first input of the scenario solution{u′0|t, ..., u
′
N−1|t}. Clearly,u′0|t andVt|xt

depend on the scenariosΩt that are substituted into the FHSCP at timet. The notationu′0|t(Ωt) and
Vt|xt(Ωt) shall be used occasionally to emphasize this fact.

The violation probabilityVt|xt(Ωt) can be considered as a random variable on the probability space
(∆KN ,PKN ), with support in[0, 1]. Here∆KN andPKN denote theKN -th product of the set∆ and
the measureP, respectively. For distinction, the expectation operatoron (∆,P) is denotedE, and that on
(∆KN ,PKN ) is denotedEKN .

The distribution ofVt|xt(Ωt) is unknown, being a complicated function of the entire control problem
(6) and the removal algorithmAxt

. However, it is possible to derive the following upper boundon this
distribution.

Lemma 12 (Upper Bound on Distribution) Let Assumptions 1, 2, 5 hold andxt ∈ R
n be an arbitrary

initial state. For any violation levelν ∈ [0, 1],

P
KN

[
Vt|xt(Ωt) > ν

]
≤ UK,R,ρ1(ν) , (9a)

UK,R,ρ1(ν) := min
{

1,

(
R+ ρ1 − 1

R

)

B
(
ν;K,R+ ρ1 − 1

)}

, (9b)

whereB( · ; · , · ) represents the beta distribution function [1, frm. 26.5.3,26.5.7],

B
(
ν;K,R + ρ1 − 1

)
:=

R+ρ1−1
∑

j=0

(
K

j

)

νj(1 − ν)K−j .

Proof. The proof is a straightforward extension of [29, Thm. 6.7], where the bound onVt|xt(Ωt) is saturated
at1. �

This paper exploits the result of Lemma 12 to obtain an upper bound on the expectation

E
KN

[
Vt

∣
∣ xt

]
:=

∫

∆KN

Vt|xt(Ωt) dP
KN . (10)

A reformulation via the indicator function1 : ∆KN → {0, 1} yields that

E
KN

[
Vt

∣
∣ xt

]
=

∫

[0,1]

∫

∆KN

1
(
Vt|xt(Ωt) > ν

)
dPKN dν

=

∫

[0,1]

P
KN

[
Vt|xt(Ωt) > ν

]
dν

≤

∫

[0,1]

UK,R,ρ1(ν) dν . (11)

9



Definition 13 (Admissible Sample-Removal Pair)A sample-removal pair(K,R) is admissibleif its sub-
stitution into(11)yieldsEKN

[
Vt

∣
∣ xt

]
≤ ε.

Whether a given sample-removal pair(K,R) is admissible can be tested by performing the one-dimensional
numerical integration (11). It can easily be seen that the integral value (11) monotonically decreases with
K and monotonically increases withR. Hence, if eitherK or R is fixed, an admissible sample-removal
pair (K,R) can be determined e.g. by a bisection method. Moreover, ifR is fixed, there always existK
large enough to generate an admissible pair(K,R).

Remark 14 (No Scenario Removal)If R = 0, the integration(11) can be replaced by the exact analytic
formula

E
KN

[
Vt

∣
∣ xt

]
≤

ρ1
K + 1

. (12)

Figure 2 illustrates the monotonic relationship of the upper bound (11) inK andR. Supposing that
R = 0, 30, 100 is fixed, the corresponding admissible pair(K,R) can be found by moving along the graphs
until the desired violation levelε is reached. The solid and the dashed line correspond to different support
dimensionsρ1 = 2 andρ1 = 5.

E
KN

[

Vt

∣

∣xt

]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

K

0 200 400 600 800 1, 000

R = 0

R = 30

R = 100

Figure 2: Upper bound on the expected violation probabilityE
KN

[
Vt

∣
∣ xt

]
, as a function of the sample

sizeK, for different scenario removalsR and support dimensionsρ1 = 2 (solid lines) andρ1 = 5 (dashed
lines).

4.3 Closed-Loop Properties

This section analyzes the closed-loop properties of the control system under the SCMPC law for an admis-
sible sample-removal pair(K,R). To this end, the underlying stochastic process is first described. Recall
that

• x0, ..., xT−1 is the closed-loop trajectory, wherext depends on all past uncertaintiesδ0, ..., δt−1 as
well as all past scenariosΩ0, ...,Ωt−1;

• V0, ..., VT−1 are the violation probabilities, whereVt depends onxt andΩt, and hence onΩ0, ...,Ωt
andδ0, ..., δt−1;

10



• M0, ...,MT−1 indicate the actual violation of the constraints, whereMt depends onxt+1, and hence
onΩ0, ...,Ωt andδ0, ..., δt.

At each time stept, there are a total ofD := (KN+1) random variables, namely the scenarios together
with the disturbance{δt,Ωt} ∈ ∆(KN+1) = ∆D. In order to simplify notations, define

Ft := {δ0,Ω0, ..., δt,Ωt} ∈ ∆(t+1)D ,

for anyt ∈ {0, ..., T−1}. These auxiliary variables allow for the random variablesxt(Ft−1), Vt(Ft−1,Ωt),
Mt(Ft) to be expressed in terms of their elementary uncertainties.Moreover, letP(t+1)D denote the
probability measure andE(t+1)D the expectation operator on∆(t+1)D, for anyt ∈ {0, ..., T − 1}.

Observe thatMt ∈ {0, 1} is a Bernoulli random variable with (random) parameterVt, because

E
[
Mt

∣
∣Ft−1,Ωt

]
=

∫

∆

Mt(Ft) dP(δt)

= Vt(Ft−1,Ωt) (13)

for any values ofFt−1,Ωt.

Theorem 15 Let Assumptions 1, 2, 5 hold and(K,R) be an admissible sample-removal pair. Then the
expected time-average of closed-loop constraint violations(3) remains below the specified levelε,

E
TD

[ 1

T

T−1∑

t=0

Mt

]
≤ ε . (14)

for anyT ∈ N.

Proof. By linearity of the expectation operator,

E
TD

[ 1

T

(
M0 +M1 + ...+MT−1

)]

=
1

T

(
E
D
[
M0

]
+E

2D
[
M1

]
+ ...+E

TD
[
MT−1

])

=
1

T

(
E
D−1

[
V0

]
+E

2D−1
[
V1

]
+ ...+E

TD−1
[
VT−1

])
,

by virtue of (13). Moreover, for anyt ∈ {0, ..., T − 1},

E
(t+1)D−1

[
Vt
]
=

∫

∆tD

E
D−1

[
Vt

∣
∣Ft−1

]

︸ ︷︷ ︸

≤ε

dPtD ≤ ε ,

where the integrand is pointwise upper bounded byε because(K,R) is an admissible sample-removal pair.
�

Theorem 15 shows that the chance constraints of the OCP can beexpected to be satisfied over any finite
time horizonT . The next Lemma 16 sets the stage for an even stronger result,Theorem 17, showing that
the chance constraint are satisfied almost surely asT → ∞.

Lemma 16 If Assumptions 1, 2, 5 hold, then

lim
T→∞

1

T

T−1∑

t=0

(

Mt −E
D−1

[
Vt
∣
∣Ft−1

])

= 0 (15)

almost surely.

11



Proof. For anyt ∈ N, defineZt :=Mt −E
D−1

[
Vt
∣
∣Ft−1

]
and observe that

E
D
[
Zt

∣
∣Ft−1

]
(16)

= E
D
[
Mt

∣
∣Ft−1

]
−E

D
[
E
D−1

[
Vt
∣
∣Ft−1

]∣
∣Ft−1

]

= E
D
[
Mt

∣
∣Ft−1

]
−E

D−1
[
Vt
∣
∣Ft−1

]

= 0 , (17)

by virtue of (13). In probabilistic terms, this says that{Zt}t∈N is a sequence of martingale differences.
Moreover,

∞∑

t=0

1

(t+ 1)2
E
D
[
Z2
t

∣
∣Ft−1

]
<∞ (18)

almost surely, because|Zt| ≤ 1 is bounded fort ∈ N. Therefore [16, Thm. 2.17] can be applied, which
yields that

T−1∑

t=0

1

t+ 1
Zt (19)

converges almost surely asT → ∞. The result (15) now follows by use of Kronecker’s Lemma, [16, p. 31].
�

Note that Lemma 16 does not imply that

lim
T→∞

1

T

T−1∑

t=0

Mt = lim
T→∞

1

T

T−1∑

t=0

E
D−1

[
Vt
∣
∣Ft−1

]
(20)

almost surely, because it is not clear that the right-hand side converges almost surely. However, if it con-
verges almost surely, then (20) holds.

Theorem 17 Let Assumptions 1, 2, 5 hold and(K,R) be an admissible sample-removal pair. Then

lim sup
T→∞

1

T

T−1∑

t=0

Mt ≤ ε (21)

almost surely.

Proof. From Lemma 16,

0 = lim
T→∞

1

T

T−1∑

t=0

(

Mt −E
D−1

[
Vt
∣
∣Ft−1

])

≥lim sup
T→∞

1

T

T−1∑

t=0

(
Mt − ε

)

=lim sup
T→∞

1

T

T−1∑

t=0

Mt − ε (22)

almost surely, where the second line follows from Definition13. �

5 Numerical Example

5.1 System Data

Consider the stochastic linear system

xt+1 =

[
0.7 −0.1(2 + θt)

−0.1(3 + 2θt) 0.9

]

xt +

[
1 0
0 1

]

ut +

[

w
(1)
t

w
(2)
t

]

,

12



wherex0 = [1 1]T. Hereθt ∼ U
(
[0, 1]

)
is uniformly distributed on the interval[0, 1] andw(1)

t , w
(2)
t ∼

N (0, 0.1) are normally distributed with mean0 and variance0.1. The inputs are confined to

U :=
{
υ ∈ R

2
∣
∣ |υ(1)| ≤ 5 ∧ |υ(2)| ≤ 5

}
,

and two state constraints are considered:

X1 :=
{
ξ ∈ R

2
∣
∣ ξ(1) ≥ 1

}
, X2 :=

{
ξ ∈ R

2
∣
∣ ξ(2) ≥ 1

}
,

either individually or in combinationX := X1∩X2. The stage cost function is chosen to be of the quadratic
form (4c), with the weightsQℓ := I andRℓ := I. The MPC horizon is set toN := 5.

5.2 Joint Chance Constraint

The support rank of the joint chance constraintX is bounded byρ1 = 2. Figure 3 depicts a phase plot of
the closed-loop system trajectory, for two admissible sample-removal pairs (a)(19, 0) and (b)(1295, 100),
corresponding toε = 10%. Instances in which the state trajectory leavesX are indicated in red. Note that
the distributions are centered around a similar mean in bothcases, however the caseR = 0 features stronger
outliers thanR = 100.

(a) CaseR = 0 (b) CaseR = 100
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Figure 3: Phase plot of closed-loop system trajectory (red:violating states; black: other states). The axis
lines mark the boundary of the feasible setX.

Table 1 shows the empirical results of a simulation of the closed-loop system overT = 10, 000 time
steps. Note that there is essentially no conservatism in thecase of no removals (R = 0). Some minor
conservatism is present for small removal sizes, disappearing asymptotically asR → ∞. At the same time,
the reduction of the average closed-loop costℓavg is minor for this example, while the standard deviation
ℓstd is affected significantly.

ε = 10% R = 0 R = 50 R = 100 R = 500

K 19 702 1, 295 5, 723

Vavg 9.87% 7.37% 8.06% 8.74%

ℓavg 3.78 3.75 3.72 3.68

ℓstd 0.54 0.44 0.42 0.37

Table 1: Joint chance constraint: closed-loop results for mean violationsVavg, mean stage costℓavg, and
standard deviation of stage costsℓstd.
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To highlight the impact of the presented SCMPC approach, theresults of Table 1 can be compared to
those of previous SCMPC approaches [6, 28]. The sample size is 19 (compared to about400), and the
empirical share of constraint violations in closed-loop is9.87% (compared to about0.05%). These figures
become even worse when longer horizons are considered; e.g.for N = 20, previous approaches require
about 900 samples and yield about0.2% violations.

5.3 Individual Chance Constraints

For the same example, the two chance constraintsX1 andX2 are now considered separately, with the
individual probability levelsε1 = 5% andε2 = 10%. Each support rank is bounded byρ1 = 1. Figure
4 depicts a phase plot of the closed-loop system trajectory,for the admissible sample-removal pairs (a)
(19, 0), (9, 0) and (b)(2020, 100), (1010, 100).

(a) CaseR1 = R2 = 0 (b) CaseR1 = R2 = 100
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Figure 4: Phase plot of closed-loop system trajectory (blue, red, purple: violating states ofX1, X2, X1 and
X2; black: other states). The axis lines mark the boundaries ofthe feasible setsX1 andX2, respectively.

Table 2 shows the empirical results of a simulation of the closed-loop system overT = 10, 000 time
steps. Note that there is very little conservatism in all cases. As in the previous example, the reduction of
the average closed-loop costℓavg is minor, while the standard deviationℓstd is affected significantly.

ε1 = 5%, R1 = R2 R1 = R2 R1 = R2

ε2 = 10% = 0 = 50 = 100

K1 19 1, 020 2, 020

K2 9 510 1, 010

Vavg,1 5.14% 4.84% 4.95%

Vavg,2 9.94% 9.81% 9.93%

ℓavg 3.67 3.62 3.51

ℓstd 0.54 0.46 0.42

Table 2: Single chance constraint: closed-loop results formean violationsVavg,1 andVavg,2 of X1 andX2,
mean stage costℓavg, and standard deviation of stage costsℓstd.
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6 Conclusion

The paper has presented new results on Scenario-Based ModelPredictive Control (SCMPC). By focusing
on the average-in-time probability of constraint violations and by exploiting the multi-stage structure of
the finite-horizon optimal control problem (FHOCP), the number of scenarios has been greatly reduced
compared to previous approaches. Moreover, the possibility to adopt a-posteriori constraint removal strate-
gies is also accommodated. Due to its computational efficiency, the presented approach paves the way for a
tractable application of Stochastic Model Predictive Control (SMPC) to large-scale problems with hundreds
of decision variables.
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A Proof of Lemmas 10 and 11

The particular bounding arguments follow rather easily after some general observations on the support
rank. Pick any state constrainti ∈ {1, ..., N} from (7c). Recursively substituting the dynamics (7b), the
constrained state can be expressed as

x
(k)
i|t =

(
A

(k)
i|t · ... · A

(k)
0|t

)
xt + Ā

(k)
i|t B̄

(k)
i|t






u0|t
...

uN−1|t




+ Ā

(k)
i|t







w
(k)
0|t

...

w
(k)
i−1|t






, (23a)

Ā
(k)
i|t :=









A
(k)
i|t · ... · A

(k)
1|t

...

A
(k)
1|t

I









T

, (23b)

B̄
(k)
i|t :=










B
(k)
0|t 0 . . . 0 0 . . . 0

0 B
(k)
1|t . . . 0 0 . . . 0

...
...

.. .
... 0 . . . 0

0 0 . . . B
(k)
i|t 0 . . . 0










, (23c)

whereI ∈ R
n×n denotes the identity matrix, and for anyi = 0, ..., N − 1 the following abbreviations are

used:
A

(k)
i|t := A

(
δ
(k)
i|t

)
, B

(k)
i|t := B

(
δ
(k)
i|t

)
, w

(k)
i|t := w

(
δ
(k)
i|t

)
.

Let l ≤ n be the support rank ofX, i.e. the co-dimension of the largest linear subspace that is unconstrained
byX. Then there exists a projection matrixP ∈ R

l×n such that for eachx ∈ R
n

x ∈ X ⇐⇒ Px ∈ PX :=
{
Pξ

∣
∣ ξ ∈ X

}
.

For example, if the state constraint concerns only the first two elements of the state vector, thenl = 2 and
P ∈ R

2×n may contain the first two unit vectorse1, e2 ∈ R
n as its rows.
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Proof of Lemma 10

If A
(
δ
(k)
i|t

)
≡ A andB

(
δ
(k)
i|t

)
≡ B are constant for alli ∈ {0, ..., N − 1}, then (23a) reduces to

[
PAi−1B . . . P 0 . . .

]

︸ ︷︷ ︸

rank(·)≤l






u0|t
...

uN−1|t




+ PAixt +

[
PAi−1B . . . P

]







w
(k)
0|t
...

w
(k)
i−1|t






∈ PX , (24)

for any i ∈ {1, ..., N}. The rank of the first matrix of dimensionl × Nm can be at mostl, and therefore
it has a null space of dimension at leastNm− l. The disturbance has no effect on this null space, because
it enters only through the third, additive term in (24). Hence this null space is clearly an unconstrained
subspace of the constraint andρi ≤ l ≤ n for all i ∈ {1, ..., N}, proving Lemma 10.

Proof of Lemma 11

Consider the first state constrainti = 1 of (7c). Here (23a) reduces to

[

PB̄
(k)
0|t 0 . . . 0

]

︸ ︷︷ ︸

rank(·)≤m






u0|t
...

uN−1|t




+ PA

(k)
0|t xt + Pw

(k)
0|t ∈ PX . (25)

The rank of the first matrix can here be at mostm for all outcomes ofB̄(k)
0|t , because the last(N − 1)m

variables in the decision vector are always in its null space. Henceρ1 ≤ m in all cases, proving Lemma 11.

Parameterized Control Laws

For the case of parameterized control laws as in Remark 7, it will be shown that the argument of Lemma 11
continues to apply. Define for anyi = 1, ..., N − 1

Q0|t := I , Φ0|t := φ0|t ,

Q
(k)
i|t :=

[

q
(1)
i|t q

(2)
i|t . . . q

(Ji)
i|t

]

︸ ︷︷ ︸

∈Rm×Ji

, Φi|t :=







φ
(1)
i|t

...

φ
(Ji)
i|t







︸ ︷︷ ︸

∈RJi

,

whereq(j)
i|t := q

(j)
i|t

(
δ
(k)
0|t , ..., δ

(k)
i|t

)
is used as an abbreviation andI ∈ R

m×m denotes the identity matrix.
Then the vector of control inputs under scenariok = 1, ...,K can be expressed as the matrix-vector product









u0|t
u
(k)
1|t
...

u
(k)
N−1|t









=









Q0|t 0 . . . 0

0 Q
(k)
1|t . . . 0

...
...

. . .
...

0 0 . . . Q
(k)
N−1|t









︸ ︷︷ ︸

=:Q̄
(k)
t








Φ0|t

Φ1|t

...
ΦN−1|t








︸ ︷︷ ︸

=:Φ̄t

.

Substitute this, in place of the original decision vector in(25) to see that the same rank argument as before
applies.
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