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Abstract

Many practical applications of control require that coastts on the inputs and states of the system
be respected, while optimizing some performance criterionthe presence of model uncertainties or
disturbances, for many control applications it sufficesderkthe state constraints at least for a prescribed
share of the time, as e.g. in building climate control or lagitigation for wind turbines. For such sys-
tems, a new control method of Scenario-Based Model Predi@ontrol (SCMPC) is presented in this
paper. It optimizes the control inputs over a finite horizemhject to robust constraint satisfaction under
a finite number of random scenarios of the uncertainty ardisturbances. While previous approaches
have shown to be conservative (i.e. to stay far below theifipécate of constraint violations), the new
method is the first to account for the special structure oMRE problem in order to significantly reduce
the number of scenarios. In combination with a new frameworkinterpreting the probabilistic con-
straints as average-in-time, rather than pointwisesretithe conservatism is eliminated. The presented
method retains the essential advantages of SCMPC, naneehgduced computational complexity and
the handling of arbitrary probability distributions. Isalallows for adopting sample-and-remove strate-
gies, in order to trade performance against computatiamajpdexity.

1 Introduction

Model Predictive Control (MPC) is a powerful approach fonting multi-variable control problems with
constraints on the states and inputs. Its feedback comnothn also incorporate feedforward informa-
tion, e.g. about the future course of references and/auntiahces, and the optimization of a performance
criterion of interest.

Over the past two decades, the theory of linear and robust N#3CGnatured considerably [22]. There
are also widespread practical applications in diversedif2é]. Yet many potentials of MPC are still not
fully uncovered.

One active line of research is Stochastic MPC (SMPC), whHeresystem dynamics are of a stochastic
nature. They may be affected by additive disturbances [33/@ 4| 18, 19], by random uncertainty in the
system matrices$ [11], or both [12,/15]25, 30]. In this fraragya common objective is to minimize a cost
function, while the system state is subject to chance caint$; i.e. constraints that have to be satisfied only
with a given probability.

Stochastic systems with chance constraints arise natimabme applications, such as building climate
control [23], wind turbine control[12], or network traffioatrol [34]. Alternatively, they can be considered
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as relaxations of robust control problems, in which the sbisatisfaction of state constraints can be traded
for an improved cost performance.

A major challenge in SMPC is the solution to chance-const@finite-horizon optimal control prob-
lems (FHOCPSs) in each sample time step. These correspomsioanvex stochastic programs, for which
finding an exact solution is computationally intractabbe;ept for very special cases |17)31]. Moreover,
due to the multi-stage nature of these problems, it gerydralblves the computation of multi-variate con-
volution integrals[[10].

In order to obtain a tractable solution, various samplesi@pproximation approaches have been con-
sidered, e.g.[]2,14,32]. They share the significant advantdgcoping with generic probability distri-
butions, as long as a sufficient number of random sampless¢@narios’) can be obtained. The open-
loop control laws can be approximated by sums of basis fanstias in the Q-design procedure proposed
by [32]. However, these early approaches of Scenario-Biake@d (SCMPC) remain computationally de-
manding [2] and/or of a heuristic nature, i.e. without sfiegjuarantees on the satisfaction of the chance
constraints[[4, 32].

More recent approaches [6] 7)21124)28, 33] are based omeevn the field of scenario-based opti-
mization. However, these approaches share the drawbadiraftonservativavhen applied in a receding
horizon fashion, i.e. the focus is either on obtaining a sblsalution [6, 71, 33] or the chance constraints are
over-satisfied by the closed loop systemi [21], 24, 28].

This conservatism of SCMPC represents a major practicagjshat is resolved by the contributions
of this paper. In contrast to the previous results, the napproach interprets the chance constraints as a
time average, rather than pointwise-in-time with a highfictemce, which is much less restrictive. Further-
more, the sample size is reduced by exploiting the strulgbuoperties of the finite-horizon optimal control
problem [29]. The approach also allows for the presence dfiphelsimultaneous chance constraints on
the state, and an a-posteriori removal of adverse sampl@sjfooving the controller performande [21].

In the most general setting, this paper considers lineaesyswith stochastic additive disturbances
and uncertainty in the system matrices, which may only bevknihirough a sufficient number of random
samples. The computational complexity can be traded agaém®rmance of the controller by removing
samples a-posteriori, starting from a simple convex lirmagquadratic program and converging to the
optimal SMPC solution in the limit.

The paper is organized as follows: Sectidn 2 presents aatgoiormulation of the optimal control
problem that one would like to solve; Sectioh 3 describes hovapproximated solution is obtained by
SCMPC; Sectiofi]4 develops the theoretical details, inalgidihe technical background and closed-loop
properties; Section]5 demonstrates the application of tethad to a numerical example; and Secfibn 6
presents the main conclusions.

2 Optimal Control Problem
Consider a discrete-time control system with a linear sistib transition map
Ti4+1 — A(5t)It + B(5t)ut + w(5t) ) o = fo y (1)

for some fixed initial conditiory € R™. Thesystem matrixd(d;) € R™*™ and theinput matrix B(4;) €
R™*™ as well as the additive disturbane¢d;) € R™ are random, as they are (known) functions of a primal
uncertaintyd,;. For notational simplicityy; comprises all uncertain influences on the system at time

Assumption 1 (Uncertainty) (a) The uncertaintie§do, 1, ...}, are independent and identically distributed
(i.i.d.) random variables on a probability spa¢A, P). (b) A ‘sufficient number’ of i.i.d. samples fraf
can be obtained, either empirically or by a random numberegator.

The support sef\ of §; and the probability measud on A are entirely generic. In fact\ andP
need not be known explicitly. The ‘sufficient number’ of sdag which is required instead, will become
concrete in later sections of the paper. Note that any isatisisg from the definition of @-algebra on



(A, P) are glossed over in this paper, as they are unnecessatilyited. Instead, every relevant subset of
A is assumed to be measurable.

The system[{1) can be controlled by inpytsy, u1, ...}, to be chosen from a set of feasible inputs
U c R™. Since the future evolution of the systelmh (1) is uncertaiis, generally impractical to indicate alll
future inputs explicitly. Instead, eaeh should be determined by a static feedback law

Y:R" - U with ug = P(xy)

based only on the current state of the system.
The optimal state feedback layvshould be determined in order to minimize the time-averdgexeo
pected stage cosfs R" x R™ — Ro4,
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—

E[é(a:t, ut)} . ()

Nl =

t=

Each stage cost is taken in expectaﬂbh ] since its arguments, andu, are random variables, being
functions of{dy, ..., 0;:—1 }. The time horizorT" is considered to be very large, yet it may not be precisely
known at the point of the controller design.

The minimization of the cost is subject to keeping the stasidie a state constraint S§tfor a given
fraction of all time steps. For many applications, the ralsasisfaction of the state constraint (izg.€ X
at all timest) is too restrictive for the choice af, and results in a poor performance in terms of the cost
function. This is especially true in cases where the lowasies of the cost function are achieved close
to the boundary oK. Moreover, it may be impossible to enforce if the supportwés,) is unknown and
possibly unbounded.

In order to make this more precise, lef; := 1xc(z:41) denote the random variable indicating that
zi11 ¢ X, i.e.1xc : R — {0, 1} is the indicator function on the complemeXt of X. The expected
time-average of constraint violations should be upper dedrby some € (0,0.5),

1 T-1
E[T;Mt] <e. 3)

Assumption 2 (Control Problem) (a) The state of the system can be measured at each time ¢ he
set offeasible inputdJ is bounded and convex. (c) Thiate constrained s&tis convex. (d) The stage cost
£(-,-) is a convex function.

Assumptior 2(b) holds for most practical applications, &ady large artificial bounds can always be
introduced for input channels without natural bounds. @gpchoices for the stage cdsinclude

0 0) = ||Qe€|l, + ||Rev]| (4a)
or é(&vv) = ||Qf§||oo + ||RZUHOO ) (4b)
or £(,0) == ||Qe€||s + || Rev]]; (4¢)

where@, € R"*"™ andR, € R™*™ are positive semi-definite weighting matrices. Typicaliche for the
constraintsU andX are polytopic or ellipsoidal sets.
Combining the previous discussions, tiytimal control problem (OCPgan be stated as follows:

1 T-1

min T ZE[Z(xt,utﬂ , (5a)
¥ t=0
S.t. Ti41 = A(ét)l't + B(6t)ut + w(ét) , Lo = Zo Vit= 0, ceey T-1 5 (5b)
1 T-1
E[T ; Ixe(z)] <e (5¢)



The equality constraint§](5b) are understood to be submtittecursively to eliminate all state variables
T, T1, ..., z7_1 from the problem. Thus only the state feedback lavemains as a free variable [d (5).

Remark 3 (Alternative Formulations) (a) Instead of the sum of expected values, the cost fun@mn (
can also be defined as a desired quantile of the sum of disedstdage costs. Then the problem formulation
corresponds to a minimization of the ‘value-at-risk’, seg. ¢31]. (b) Multiple chance constraints on the
stateX;, each with an individual probability level;, can be included without further complications. A
single chance constraint is considered here for notatiaialplicity.

Many practical control problems can be cast in the generat fof (5). For example in building cli-
mate control([28], the energy consumption of a building $tidae¢ minimized, while its internal climate is
subject to uncertain weather conditions and the occupafttyeduilding. The comfort range for the room
temperatures may occasionally be violated without majomhi@ the system. Another example is wind
turbine control[[12], where the power efficiency of a winddime should be maximized, while its dynamics
are subject to uncertain wind conditions. High stress feirethe blades must not occur too often, in order
to achieve a desired fatigue life of the turbine.

3 Scenario-Based Model Predictive Control

The OCP is generally intractable, as it involves an infinit@ensional decision variabig (the state feed-
back law) and a large number of constraints (growing Wi)h Therefore it is common to approximate it
by various approaches, suchMedel Predictive Control (MPC)

3.1 Stochastic Model Predictive Control (SMPC)

The basic concept of MPC is to solve a tractable counterpdB)aver a small horizornV repeatedly at
each time step. Only the first input of this solution is apptiethe systeni{1). In Stochastic MPC (SMPC),
a Finite Horizon Optimal Control Problem (FHOCR$ formulated by introducing chance constraints on
the state:

N—-1
min Z E[ﬁ(x“t,uﬂt)} , (6a)
uo‘t,...,uN,Ut —0
s.t. xi+1|t = A((StJri)ZCﬂt + B(étﬂ-)ui‘t + w(étﬂ-) y $0|t = Tt Vi= O, ceey N -1 y (Gb)
P[Ii+1‘t¢X] SE»L' \V/Z:O,,N—l ) (6C)
w €U Vi=0,.,N—1. (6d)

Herez;, andu;, denote predictions and plans of the state and input vasabbee at timé, for i steps
into the future. The current measured statds introduced as an initial condition for the dynamics. The
predicted states; |, ...,z v, are understood to be eliminated by recursive substitutidfly). Note that
the predicted states are random by the influence of the waictesd,, ..., o v 1.

Theprobability levels; in thechance constraintlc) usually coincide witls from the OCP[[14,23,30],
but they may generally diffef [34]. Some formulations alsgalve chance constraints over the entire
horizon [12] 19], or as a combination with robust constsa[®f)] 18]. Other alternatives of SMPC consider
integrated chance constraints|[13], or constraints onxtpecation of the staté [25].

Remark 4 (Terminal Cost) An optional (convex) terminal cogf : R — Ry can be included in the
FHOCP [20/27]. In this case the term

Bl (eny)]
would be added to the cost functign (6a).



The state feedback law provided by SMPC is given by a recdutmigon policy: the current state
is substituted intc{6b), then the FHOCP is solved for anfisegquencéug,, ..., uy .}, and the current
input is set tou; := u0|t This means that the FHOCP must be solved onllne at each tepe, sising the
current measurement of the state

However, the FHOCP is a stochastic program that remaingudiffio solve, except for very special
cases. In particular, the feasible set described by chamstraints is generally non-convex, despite of
the convexity ofX, and hard to determine explicitly. Hence a further appration shall be made by
scenario-based optimization.

3.2 Scenario-Based Model Predictive Control (SCMPC)

The basic idea of Scenario-Based MPC (SCMPC) is to computgaimal finite-horizon input trajectory
{u0|t,.. uy 1‘t} that is feasible undek™ of sampled ‘scenarios’ of the uncertainty. Clearly, thenseci®
numberK has to be selected carefully in order to attain the desiregepties of the controller. In this
section, the basic setup of SCMPC is discussed, while trextimh of a value forK is deferred until
Sectiorf4.

More concretely, les Y

e Z‘t ) bei.id. samples of;,;, drawn at time € N for the predlct|on steps

i =0,..., N — 1. For convenience, they are combined ifith-horizon samples;tk) = {60 . N 1|t}
also calledscenarlos TheFinite-Horizon Scenario Program (FHSCH)en reads as follows
K N-1
“ mhn Z g 7,|t ) 7,|t ) (7a)
0|t N-—1|t k1 i—0

st ol = A0l + BO i + w@i)) a2l =2 Vi=0,.,N-1,k=1,.,K

i+1|t it it

(7b)
fi’w eXVi=1,..N—1,k=1,.. K, (7c)
wi €U Vi=0,..,N—1. (7d)

The dynamics[{[7b) provid&™ different state trajectories over the prediction horizeach corresponding
to one sequence of affine transition maps defined by a pamsnbnarlou( ). Note that thesé( state
trajectories are not fixed, as they are still subject to thii®iug, ..., un_1;. The cost function[{7a)
approximated (6a) as an average ovefkakcenarios. The state constrairifis (7c) are required to bold
sampled state trajectories over the prediction horizon.

Applying a receding horizon policy, the SCMPC feedback lavdéfined as follows (see also Figure
[, for R = 0). At each time step € N the current state measuremetis substituted into[{7b), and the
current inputu; := uou is set to the first of the optimal FHSCP squU(m()It, ey U/N—l\t}’ which is called
thescenario solution

Unlike many MPC approaches, SCMPC does not have an inhenardugtee ofecursive feasibilityin
the sense of[22, Sec. 4]. Hence for a proper analysis of tsedHoop system, the following is assumed.

Assumption 5 (Resolvability) Under the SCMPC regime, each FHSCP admits a feasible salatievery
time stept almost surely.

While Assumptiof b appears to be restrictive from a thecaépoint of view, it is often reasonable from
a practical point of view. For some applications, such aklimgs [23], recursive feasibility may hold by
intuition, or it may be ensured by the usesufft constraint§26, Sec. 2]. All in all, MPC remains a useful
tool in practice, even for difficult stochastic systefs (1thaut the possibility of an explicit guarantee of
recursive feasibility.

The following are possible alternatives and also convemtdations of[¥). The reasoning in each case
is based on the theory in [29] and omitted for brevity.



Remark 6 (Alternative Formulations) (a) Instead of the average cost [d (7a), the minimization oty
cern the cost of a nominal trajectory, as e.g.linl[24, 28]; betaverage may be taken over any sample size
other thanK. (b) The inclusion of additional chance constraints i, as mentioned in Remalk 3(b),
is straightforward. The number of scenarii§ may generally differ between multiple chance constraints.
(c) In case of a value-at-risk formulation, as in Remlark 3¢ag average cost i{7a) is replaced by the
maximum: K

“ § ” “ max ” ,
k=1 K

where the sample siz€ must be sdigéted according to the desired risk level.

Remark 7 (Control Parameterization) In the FHSCP, the predicted control input§,;, ..., uy_1; may
also be parameterized as a weighted sum of basis functiotiteafincertainty, as proposed in_[32,/33].
In particular, letey, ..., e,, be theJy := m unit vectors inR™, and for each time step=1,..., N let

qf"? : A7t — R™ be afinite sej € {1, ..., J;} of pre-selected basis functions. Then
Jo )
Ug|t = Z ¢87)bj ,
j=1

it \Gojz 2 C—1)¢

Ji
Uit 1= Z¢E.7)q(3)(5(k) . 5(k) ) Vi=1,..,N—1,
j=1

can be substituted into probled), so that the weight$§j) e Rfori =0,...,.N—-1landj =1,...,J;
become the new decision variables.

A control parameterization with an increasing number ofidésctions.Jy, ..., Jxy—1 generally im-
proves the quality of the SCMPC feedback, while increadiegrtumber of decision variables and hence
the computational complexity; see [32] 33] for more details

Given the sampled scenariol] (7) is a convex optimizatiognam for which efficient solution algo-
rithms exist, depending on its structuré [5]. In particuiaK andU are polytopic (respectively ellipsoidal)
sets, then the FHSCP has linear (second-order cone) ciomstrdf the stage cost is eithdr] (4a,b), then
the FHSCP has a reformulation with a linear objective fuorctiusing auxiliary variables. If the stage
cost is [(4c), then the FHSCP can be expressed as a quadm@giapr. More details on these formulation
procedures are found in [20, pp. 154f.].

3.3 A-Posteriori Scenario Removal

A key merit of SCMPC is that it renders the uncertain contystsm [6b) into multiple deterministic affine
systems[{I7b) by substituting particular scenarios. Tlyeificantly simplifies the solution to the FHSCP,
as compared to the FHOCP. However, by introducing theseorargtenarios, a randomizing element is
added to the SCMPC feedback law. In particular, the closeg-bystem may occasionally show an erratic
behavior due to highly unlikely outliers in the sampled sévs.

This effect can be mitigated by a-posteriori scenario resmhmee([[9]. This allows for thetate con-
straints(Zc) corresponding t& > 0 scenarios to be removedter the outcomes of all samples have been
observed. In exchange, the original sample dizenust be (appropriately) increased over its value for
R = 0. Any appropriate combinatiof¥<, R) is called asample-removal pair The choice of appropri-
ate values fork and R is deferred to Sectiol 4. The selection of removed scenaipsrformed by a
(scenario) removal algorithrf8l, Def. 2.1].

Definition 8 (Removal Algorithm) (a) For eaché € R™, the(scenario) removal algorithd, : AVK —
ANE=F) is a deterministic function selectingc — R) out of K scenarios{w."”, ...,w")}. (b) The
selected scenarios at time stephall be denoted by

Q= A, (w§1)7 ...,wEK)) .



Definition[8 is very general, in the sense that it covers atgragety of possible scenario removal
algorithms. However, the most common and practical algoritare described below:

Optimal Removal:The FHSCP is solved for all possible combinations of chapgirout of K scenarios.
Then the combination that yields the lowest cost functidoeaf all the solutions is selected. This
requires the solution t& chooseR instances of the FHSCP, a complexity that is usually praik#i
for larger values oRR.

Greedy RemovalThe FHSCP is first solved with alk scenarios. Then, in each &f consecutive steps,
the state constraints of a single scenario are removed igfldsythe biggest improvement, either in
the total cost or in the first stage cost. Thus the proceduménates after solvingg R — R(R—1)/2
instances of FHSCP.

Marginal Removal: The FHSCP is first solved with the state constraints ofsaicenarios. Then, in each
of R consecutive steps, the state constraints of a single soeararremoved based on the highest
Lagrange multiplier. Hence the procedure requires thetisolto X instances of FHSCP.

Figurd depicts an algorithmic overview of SCMPC, for thaeyal case with scenario removal> 0.
For the case without scenario removal, considet 0 and the selected scenarfds := {wt(l), s ng)}_

At every time steg, perform the following steps:

1. Measure current state.

2. ExtractK scenariosut(l), s w,SK).

3. RemoveR scenarios viad,,, and solve FHSCP with
only the state constraints of the remaining scengrios

Q.

4. Apply the first input of the scenario solutien :=
ugy, to the system.

Figure 1: Schematic overview of the SCMPC algorithm, for¢hee with scenario removak(> 0) and
without scenario removali{ = 0).

4 Problem Structure and Sample Complexity

For the SCMPC algorithm described in Secf{idn 3, the sangigewal pair K, R) remains to be specified.
Appropriate values fol and R are theoretically derived in this section. Their valuesagally depend
on the control system and the constraints, &ds referred to as theample complexitgf the SCMPC
problem.

For some intuition about this problem, suppose that 0 is fixed and the sample siZ€ is increased.
This means that the solution to the FHSCP becomes robust te seenarios, with the following conse-
guences. First, the average-in-time state constrainatiosls [8) decrease, in general. Therefore the state
constraint will translate into a lower bound & Second, the computational complexity increases as well
as the average-in-time closed-loop c@$t (2), in generatrdfore the objective is to choogé as small as
possible, and ideally equal to its lower bound.

The higher the number of removed constraifitz 0, the higher will be the lower bound o4, in order
for the state constraints](3) to be satisfied. Now considis p&, K') of removed constraint® together



with their corresponding lower bounds, which equally satisfy the state constraimfs (3). For theifion,
SupposeR is increased, sd increases as well. Then the computational complexity grolwe to more
constraints in the FHSCP and the removal algorithm. At tineestme, the solution quality of the FHSCP
improves, in general, and hence the average-in-time clmsmzicost[(2) decreases. Therefdtas usually
fixed to a value that is as high as admitted by the availablepctational resources.

4.1 Support Rank

According to the classic scenario approdch [8, 9], the egleguantity for determining the sample sike
for a single chance constraint (with a fix&) is the number o$upport constraint§8| Def. 2.1]. In fact, i
grows with the (unknown) number of support constraintsheaal is to obtain a tight upper bound. For the
classic scenario approach, this upper bound is given byithertsion of the decision space [8, Prop. 2.2],
i.e. Nm in the case of the FHSCP.

The FHSCP is a multi-stage stochastic program, with ma@ltgblance constraints (namé\y, one per
stage). This requires an extension to the classic scengpimach; the reader is referred to][29] for more
details. Now each chance constraint contributes an indalidumber of support constraints, to which an
upper bound must be obtained. These individual upper boarelprovided by theupport rankof each
chance constraint [29, Def. 3.6].

Definition 9 (Support Rank) (a) Theunconstrained subspage of a constraint € {0, ..., N — 1} in (Zc)
is the largest (in the set inclusion sense) linear subspddbesearch spacR™ that remains uncon-
strained by all sampled instancesipflmost surely. (b) Theupport ranlof a constraint € {0,..., N —1}
in (dc) is

pi = Nm—dimL; ,
wheredim £; represents the dimension of the unconstrained subsface

Note that the support rank is an inherent property of a pdeichance constraint and it is not affected
by the simultaneous presence of other constraints. Hercgettof constraints of the FHSCP may change,
for instance, due to the reformulations of Renfdrk 3.

Besides the extension to multiple chance constraints, dppat rank has the merit of a significant
reduction of the upper bound on the number of support cdnsiralndeed, the following two lemmas
replace the classic upper boundn with much lower values, such ds< n or m, depending on the
problem structure.

For systems affected additivedisturbances only, the support rank of any state consiraihe FHSCP
is given by the support rank< n of X in R™ (i.e. the co-dimension of the largest linear subspace that i
unconstrained bX).

Lemma 10 (Pure Additive Disturbances) Let! < n be the support rank af and suppose thaﬁt(&g"?) =

A andB(égﬁ)) = B are constant and the control is not parameterized (as in Reffa Then the support
rank of any state constrainte {0, ..., N — 1} in ({c) is at most.

For systems affected dditive and multiplicativelisturbances, Lemniall0 no longer holds. However,
it will be seen that for the desired closed-loop properties relevant quantity for selecting the sample size
K is the support rank; of the state constraint ary |, only. For this first predicted step, the support rank is
restricted to at most, under both additive and multiplicative disturbances.

Lemma 11 (Additive and Multiplicative Disturbances) The support rank; of constraint; = 1 in (7c)
is at mostm.

For the sake of readability, the proofs of Lemrals 10and 1deferred to Appendix]A. They effectively
decouple the support rank, and hence the samplesjfeom the horizon lengthv.

Note that the result of Lemnialll holds also for the paranedrcontrol laws of RemaiK 7. In this
case, it decouples the sample siZzdrom the number of basis functions for all stages = 1,..., N — 1.



Tighter bounds of; than those in Lemmas1i0 and 11 may exist, resulting from d@amaicture of the
system|[(ll) and/or the state constraintefhe basic insights to exploit this can be found in the Apjpend
Aland [29].

4.2 Sample Complexity

This section describes the selection of the sample-renpain( K, R), based on a bound of the support
rank p;. Throughout this subsection, the initial stateis considered to be fixed to an arbitrary value.

Let V;|z; denote thefirst step) violation probabilityi.e. the probability with which the first predicted
state falls outside dX:

Recall thatuy,, denotes the first input of the scenario solutiarf ;. ..., uy_;,}. Clearly,ug, andVi|z,
depend on the scenariék that are substituted into the FHSCP at time The notatiormglt(ﬂt) and
Vi |2+ (Q:) shall be used occasionally to emphasize this fact.

The violation probabilityV; |z (€2;) can be considered as a random variable on the probabiligespa
(AN PEN) with support in[0, 1]. HereAXYN andP*" denote thel’ N-th product of the sef\ and
the measur®, respectively. For distinction, the expectation operatofA, P) is denotedE, and that on
(AKN PENY is denoteds ™ V.

The distribution ofV;|z:(£2:) is unknown, being a complicated function of the entire calntroblem
(6) and the removal algorithmd,,. However, it is possible to derive the following upper bowmdthis
distribution.

Lemma 12 (Upper Bound on Distribution) Let Assumptions] L] 2] 5 hold ang € R™ be an arbitrary
initial state. For any violation level € [0, 1],

PEN [V}|xt(§2t) > 1/] < Uk ,gp (V), (9a)
R -1
Uk R,p (V) := min{l,( o )B(V;K,R—i—m—l)}, (9b)
R
whereB(-; -, -) represents the beta distribution function [1, frm. 26.28.5.7],
R+p1—1 K
B(v;K,R+p; —1):= (,)Vj(l—y)Kj.
( Z:jo ;

Proof. The proof is a straightforward extensionlof[29, Thm. 6. Ware the bound oW |z () is saturated
atl. |

This paper exploits the result of Lemid 12 to obtain an uppant on the expectation
EN Vi | 2] ::/ Vil () dPEN (10)

AKEN

A reformulation via the indicator functioh : AXY — {0, 1} yields that
EXN [V, | 2] :/ / 1(Vi]ae () > v) dPN dv
[0,1] Jaxn
= / PN Vi () > v] dv
[0,1]

S/ UK-,R-,PI(V) dV . (11)
[0,1]



Definition 13 (Admissible Sample-Removal Pair)A sample-removal paifi, R) is admissiblef its sub-
stitution into(@T) yieldsE* ™ [V | z,] < e.

Whether a given sample-removal p@if, R) is admissible can be tested by performing the one-dimeakion
numerical integratiof (11). It can easily be seen that thegiral value[(Tl1) monotonically decreases with
K and monotonically increases witR. Hence, if either or R is fixed, an admissible sample-removal
pair (K, R) can be determined e.g. by a bisection method. Moreovét,if fixed, there always exist’
large enough to generate an admissible Q&irR).

Remark 14 (No Scenario Removal)lf R = 0, the integration{IT) can be replaced by the exact analytic
formula

KN P1
E [Vt|xt]§K+1 : (12)

Figure[2 illustrates the monotonic relationship of the uppeund [I1) inK and R. Supposing that
R =0,30,100is fixed, the corresponding admissible pdif, R) can be found by moving along the graphs
until the desired violation level is reached. The solid and the dashed line correspond toatiffsupport
dimensiong; = 2 andp; = 5.

f y t 2 K
400 600 800 1,000

Figure 2: Upper bound on the expected violation probablify”" [Vt |:ct] as a function of the sample
size K, for different scenario removal® and support dimensions = 2 (solid lines) angp; = 5 (dashed
lines).

4.3 Closed-Loop Properties

This section analyzes the closed-loop properties of thé&ralbsystem under the SCMPC law for an admis-
sible sample-removal pafiK’, R). To this end, the underlying stochastic process is firstritest. Recall
that

e x0,...,z7_1 IS the closed-loop trajectory, whetg depends on all past uncertainti&s..., 6,1 as
well as all past scenarid®, ..., Q;_1;

e Vj,..., Vr_1 are the violation probabilities, whefé depends om;; and(2;, and hence of, ..., )
anddg, ..., 0¢_1;

10



e My, ..., Mp_; indicate the actual violation of the constraints, wh&fedepends or:; 1, and hence
onQyg,...,Q; anddg, ..., O;.

At each time step, there are a total ab := (K N + 1) random variables, namely the scenarios together
with the disturbancéd;, Q;} € AKN+D = AP In order to simplify notations, define

]:t = {607907 '-'75253925} € A(t+1)D )

foranyt € {0, ...,T—1}. These auxiliary variables allow for the random variablgs; 1), Vi(Fi—1, Q),

M, (F:) to be expressed in terms of their elementary uncertaintMereover, letP**VP denote the

probability measure anB“+1 the expectation operator ak(*+1)?, for anyt € {0, ..., T — 1}.
Observe that/; € {0, 1} is a Bernoulli random variable with (random) paraméfgrbecause

E[Mt |}‘t_1,Qt} z/ M(F:) dP(6y)
A
= Vi(Fi1,%) (13)
for any values ofF; 1, Q.

Theorem 15 Let Assumptionis] L] £] 5 hold aridl’, R) be an admissible sample-removal pair. Then the
expected time-average of closed-loop constraint viote{8)) remains below the specified level

1 T-1
ETD [T Z Mt] <e. (14)
t=0
foranyT € N.

Proof. By linearity of the expectation operator,

1
E"P [T (Mo + My + ...+ Mr_1)]
1
T
_1
T

(EP [Mo] + E*P [Mi] + ... + ETP [Mp_q])
(EP ' [Vo] + 2P Vi) + .+ ETP T Ve ]),
by virtue of [13). Moreover, forany < {0,...,T — 1},

E(t+1)D—1 [‘/t} :/ ED_l[‘/t |ft71j| dPtD S €,
AtD e —
<e

where the integrand is pointwise upper bounded bgcaus€ K, R) is an admissible sample-removal pair.
[

Theoreni Ib shows that the chance constraints of the OCP @@tpbeted to be satisfied over any finite
time horizonT'. The next Lemm&_16 sets the stage for an even stronger réhalbyeni 1I7, showing that
the chance constraint are satisfied almost surel§y as oc.

Lemma 16 If AssumptionEIL]Z]5 hold, then
T—1

lim % > (M~ EPT W|Fia]) =0 (15)

T—o0
t=0
almost surely.

11



Proof. For anyt € N, defineZ, := M, — E”~"[V;|F,_1] and observe that
EP [Z|F,-1] (16)
=E" [M;|Feor] - EP[EP T [Vi|Fooa ][ Foed]
~ BP0 Fos] - B[] F]
=0, a7

by virtue of [I3). In probabilistic terms, this says tH&f; }:cn is a sequence of martingale differences.
Moreover,

> t _:1)2 EP[Z}|Fia] < o0 (18)
=0

almost surely, becaus€;| < 1 is bounded for € N. Therefore[[15, Thm.2.17] can be applied, which

yields that
T-1

1
2% (19
t=0
converges almost surely @s— co. The result[(1b) now follows by use of Kronecker’'s Lemma] [1.631].

Note that Lemm&a_16 does not imply that
1 T-1 1 T—-1
. . D—1
i 7 2 M= i 7 2 BT Vil 20)

almost surely, because it is not clear that the right-hatdie sonverges almost surely. However, if it con-
verges almost surely, theln (20) holds.

Theorem 17 Let Assumptioris [] P] 5 hold ag#’, }g) l:ie an admissible sample-removal pair. Then

1
i — <
h;“n—folip T ; M, <e (22)
almost surely.
Proof. From Lemma 1B,
1 T-1
_1; D—-1
0—211_{1(1)0?;(]\415_]3 [V;E‘]:t—l])
1 T-1
>lim sup — M; —¢
- T—)oop ;( ! )
1 T—-1
=limsup — M —¢ 22
T—)oop T ; ! ( )
almost surely, where the second line follows from Definifigh |
5 Numerical Example
5.1 System Data
Consider the stochastic linear system
B 0.7 —0.1(2+ ;) 10 w
T 0.1(3 4 26,) 09 "o "t |,@

12



wherez, = [1 1]7. Heref, ~ U([0,1]) is uniformly distributed on the intervd0, 1] andwt(l),w§2) ~
N(0,0.1) are normally distributed with mednand variancé.1. The inputs are confined to

U:={veR?| M <5 A [v?)] < 5},
and two state constraints are considered:
X :={€eR* W >1} , Xo:={€eR?|¢@ >1},
either individually or in combinatioX := X; NX5. The stage cost function is chosen to be of the quadratic
form (4c), with the weight®), := I andR, := I. The MPC horizon is set t&/ := 5.

5.2 Joint Chance Constraint

The support rank of the joint chance constrainis bounded by, = 2. Figure[3 depicts a phase plot of
the closed-loop system trajectory, for two admissible dam@moval pairs (a}19, 0) and (b)(1295, 100),
corresponding te = 10%. Instances in which the state trajectory lea¥eare indicated in red. Note that
the distributions are centered around a similar mean in tathks, however the caBe= 0 features stronger
outliers thank = 100.

(a) CaseR = 0 (b) CaseR = 100

Figure 3: Phase plot of closed-loop system trajectory (véalating states; black: other states). The axis
lines mark the boundary of the feasible Xet

Table[d shows the empirical results of a simulation of the@tbloop system ovéF = 10, 000 time
steps. Note that there is essentially no conservatism irtdise of no removalsi{ = 0). Some minor
conservatism is present for small removal sizes, disapppasymptotically ag? — co. At the same time,
the reduction of the average closed-loop dag is minor for this example, while the standard deviation
l4qis affected significantly.

e=10% || R=0 R=50 R=100 R =500

K 19 702 1,295 5,723

Vavg 9.87%  7.37% 8.06% 8.74%
Lavg 3.78 3.75 3.72 3.68
lstg 0.54 0.44 0.42 0.37

Table 1: Joint chance constraint: closed-loop results feamviolationsla,g, mean stage coghyg, and
standard deviation of stage cogtg.
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To highlight the impact of the presented SCMPC approachreahelts of Tabl€]l can be compared to
those of previous SCMPC approaches [6, 28]. The sample siz& jcompared to about00), and the
empirical share of constraint violations in closed-loop.&7% (compared to abowt05%). These figures
become even worse when longer horizons are consideredpe.y. = 20, previous approaches require
about 900 samples and yield abow% violations.

5.3 Individual Chance Constraints

For the same example, the two chance constraintend X, are now considered separately, with the
individual probability levels; = 5% andey = 10%. Each support rank is bounded py = 1. Figure

[ depicts a phase plot of the closed-loop system trajectorythe admissible sample-removal pairs (a)
(19,0), (9,0) and (b)(2020, 100), (1010, 100).

I§2) w?)

(@) Casel?y = R2 =0 (b) CaseR; = R> = 100

Figure 4: Phase plot of closed-loop system trajectory (bie, purple: violating states &f;, X, X; and
Xa; black: other states). The axis lines mark the boundaridseofeasible setX; andXs, respectively.

Table[2 shows the empirical results of a simulation of theetbloop system oveér = 10, 000 time
steps. Note that there is very little conservatism in alksasAs in the previous example, the reduction of
the average closed-loop cdsiq is minor, while the standard deviatidgq is affected significantly.

e1=5%, | Ri=Ry Ri=Ry, Ry =R,
er = 10% =0 =50 =100
K, 19 1,020 2,020
Ko 9 510 1,010
Vavg 1 514%  4.84%  4.95%
Vavg2 9.94%  9.81%  9.93%
Cavg 3.67 3.62 3.51
let 0.54 0.46 0.42

Table 2: Single chance constraint: closed-loop resultsrean violationsd/ayg1 andVayg2 of X; andX,,
mean stage costyg and standard deviation of stage costs

14



6 Conclusion

The paper has presented new results on Scenario-Based Miedittive Control (SCMPC). By focusing
on the average-in-time probability of constraint violasoand by exploiting the multi-stage structure of
the finite-horizon optimal control problem (FHOCP), the raenof scenarios has been greatly reduced
compared to previous approaches. Moreover, the posgituladopt a-posteriori constraint removal strate-
gies is also accommodated. Due to its computational effigighe presented approach paves the way for a
tractable application of Stochastic Model Predictive ColSMPC) to large-scale problems with hundreds
of decision variables.
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A Proof of Lemmas[10 and 11

The particular bounding arguments follow rather easilgrafome general observations on the support
rank. Pick any state constrainte {1,..., N} from (@c). Recursively substituting the dynamiCk (7b), the
constrained state can be expressed as

Ug|t Woyt
(k) _ (4 (k) (k) ik Bk | ik |
e = (A - Agi)me + Ay By : + A Co (23a)
UN-1|¢t wff)llt
e 877
AL A
(k) :
Al = b , (23b)
Al
I I
B 0 ... 0 0 .0
o B® .. 0 o0 ..0
= 1|t
Bfﬁ) = . e : (23c)
: : .t 0
0 0o .. BY o 0

wherel € R"*" denotes the identity matrix, and for any= 0, ..., N — 1 the following abbreviations are
used:

AR = AR, B = BER). W) =l

ilt it it

Let! < n be the supportrank &f, i.e. the co-dimension of the largest linear subspace shatéonstrained
by X. Then there exists a projection matixc R'*™ such that for each € R”

re€X <= PrePX:={P¢{|¢eX} .

For example, if the state constraint concerns only the firstdlements of the state vector, thes 2 and
P ¢ R?*™ may contain the first two unit vectoes, e; € R™ as its rows.
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Proof of Lemmal[l0
If A(5§|kt)) =A andB(zSglkt)) = B are constant for all € {0, ..., N — 1}, then [23h) reduces to

w®
Uo|t 0|t

[PA'B ... P 0 ..]| : |+PAx+[PA'B ... P]| : |ePX, (24
rank(-) <l UN—1]t wz(ﬁ)”t

foranyi € {1,..., N}. The rank of the first matrix of dimensidnx Nm can be at most, and therefore

it has a null space of dimension at led&tn — . The disturbance has no effect on this null space, because
it enters only through the third, additive term [n}24). Herhis null space is clearly an unconstrained
subspace of the constraintapd< [ < n forall i € {1,..., N}, proving Lemma70.

Proof of Lemmal[Il
Consider the first state constraint 1 of (7Zc). Here[[23a) reduces to

Uo|t

P 0 ... 0 : | +PAY) 2 4+ Pw

o i ™) e PX . (25)

0|t

UN—
rank(-) <m N1t

The rank of the first matrix can here be at mosfor all outcomes 01‘?3(()"?, because the lagtv — 1)m

variables in the decision vector are always in its null spatencep; < m in all cases, proving Lemnijalll.

Parameterized Control Laws

For the case of parameterized control laws as in Refark 7 hevshown that the argument of Lemind 11
continues to apply. Define for any=1,..., N — 1

Qot =1, Doy == Poit 5
2
k 1 2 Ji . .
Qz('\t) = [qz(\t) ql(\t) ql(\t )} ) D)4 = : )
eR™* /i ‘bgél)
ER7i

whereqffg = qffg (5(()1?, ceny 65"?) is used as an abbreviation ah& R"*™ denotes the identity matrix.

Then the vector of control inputs under scendrie 1, ..., K can be expressed as the matrix-vector product

U% Qojt (()k) e 0 Dy,
Uy B 0 th e 0 Py
(®) 0 oW '
un ), 0 0 ... Qnlyy, (I)le|t
—.0m =:Dy

Substitute this, in place of the original decision vectofdB) to see that the same rank argument as before
applies.
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