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Abstract

For stocks traded on the Hong Kong Exchange, the median of five prices taken
over the last minute of trading is currently chosen as the closing price. We introduce
a stochastic control formulation to target such a median benchmark in an empirically
justified model which takes the key microstructural features into account. We solve this
problem by providing an explicit and efficient algorithm which even has applications
beyond this paper as it can be used for the dynamic linear approximation of any square-
integrable random variable. Implementing the algorithm on the stocks of the Hang
Seng Index, we find an average improvement of around 6 % in standard deviation of
slippage compared to an average trader’s execution. We conclude by providing a novel
decomposition of the trading risk into that which is intrinsic to the median benchmark
and that due to execution.

1 Introduction

Over the past decade, there has been a huge increase in algorithmic trading in the global eq-
uity markets. As a result, all large brokers now offer and market a suite of trading algorithms
to clients for executing orders targeting different trading benchmarks. The standard offer-
ing includes arrival price, VWAP (volume weighted average price), TWAP (time weighted
average price), POV (percentage of volume) as well as several auction strategies for MOO
(market on open) and MOC (market on close) benchmarks. Such algorithms typically work
by attempting to optimally schedule trades to achieve an average price close to the bench-
mark selected by the client. Here, close is often defined in terms of expected slippage or
standard deviation of slippage (or even some combination of the two).

More concretely, if we denote the benchmark price by P̂ , the aim is to minimise some
function F (S) where S is the order slippage, defined (for a buy order) as the random variable
S = P̄w − P̂ where P̄w is the average price obtained on the order when it is executed using
strategy w. This is often formulated as a stochastic control problem in discrete or continuous
time. Given the importance of such problems in equity trading, there has been a large
amount of mathematical attention focussed on this area. The question of optimal execution
with an arrival price benchmark is particularly well studied in the literature, going back to
Almgren and Chriss [3]. For a collection of relevant literature in this topic and excellent
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overviews of algorithmic trading, market liquidity and microstructure, we refer to the recent
books by Cartea et al. [11], Guéant [18] as well as Lehalle and Laruelle [28]. Thanks to
work by Busseti and Boyd [9], Cartea and Jaimungal [10], Frei and Westray [15], as well
as Guéant and Royer [19], execution problems with a VWAP benchmark are now better
understood. Constraints on the execution strategy in terms of POV have also been studied
in the literature, for example, by Guéant [17], and Labadie and Lehalle [24]. In contrast,
the problem of trading in the auctions (specifically the closing auction) has been, with the
notable exception of Bacidore et al. [4], largely overlooked in the literature to date. In many
ways, this is understandable; in almost all developed markets, the closing price is derived
from a standard auction and so one either enters the auction and gets the closing price or
does not, and the only question is what percentage of one’s order should be placed in the
auction. This can be addressed by providing an accurate description of the microstructural
features which traders should be aware of when participating in the closing auction (and the
period immediately preceding it); see Bacidore et al. [4].

In addition to almost all developed markets, many exchanges in the emerging markets
use closing auctions. There are however some exceptions, amongst others the exchanges of
India, Egypt, Mexico and Shanghai, which use a period VWAP as the closing price. Given
that this benchmark is of VWAP type, mathematically it is no more complex than executing
a standard VWAP order and is thus covered by the approach in [15]. In this article we
focus attention on the Hong Kong Exchange, unique as the only exchange which chooses the
median of 5 prices taken over the last minute as the closing price. This benchmark, to the
best of our knowledge, has, until now, not been studied in the literature and thus motivates
the question we address, namely how should one trade in order to optimally target a median
benchmark? This is a novel mathematical problem with direct applications in trading.
The Hong Kong Exchange is one of the largest and most liquid exchanges worldwide, with
approximately the same market capitalization and trade volume as Euronext, the largest
exchange in continental Europe. In 2015, the Hong Kong Exchange was the 7th largest
exchange worldwide in terms of market capitalization and the 8th largest exchange in terms
of trade volume.1 Recently, Chinese regulators approved a ‘stock link’ between the Hong
Kong Exchange and the Shenzhen Stock Exchange (see for example Lockett [29]), further
opening China’s capital market and attracting more international investors. Therefore, the
Hong Kong Exchange certainly merits its own specific closing auction logic and thus sets the
scope of the present article.

To further highlight the relevance of this problem, we note that the history of the choice
of median as the closing price is not without controversy. Indeed on May 26, 2008, the Hong
Kong Exchange introduced a closing auction session to replace the closing price calculation
based on the median price; see [21]. However, there were significant fluctuations in the closing
prices and even suspicions of market manipulation. Notably, the stock price of HSBC, at the
time the second-biggest stock listed on the benchmark Hang Seng Index, plunged by 11 % in
the last few seconds of the closing auction session of March 9, 2009, resulting in a total drop
of 24 % for that day. The plunge in the closing auction was mainly due to a large sell order
without quoting a price, but there was no intention to manipulate the market as later ruled
by the Securities and Futures Appeals Tribunal of Hong Kong. The following day, the stock
price of HSBC rebounded by 14 %. As a consequence of these issues, the closing auction was
suspended on March 23, 2009, and the bourse returned to calculating the closing price based
on the median price.

1According to the statistics of the World Federation of Exchanges at http://www.world-exchanges.org
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Furthermore, it is also the case that different segments of market participants have dif-
ferent views on the choice of median as a benchmark. Large institutional investors (whose
performance is typically benchmarked to the close) are unhappy with the excess volatility
created by the present choice of benchmark (which is regarded as“calculated”and not“trade-
able”) and advocate a more classical auction mechanism (as seen in Europe/USA). Indeed,
a survey by Deutsche Bank in 2012 found that its institutional clients unanimously asked
for an improved system for automatically matching trades at the end of the day, as Himaras
[20] reported in Bloomberg; see also Lee [27].2

On the other hand, some local independent brokers oppose closing auctions because they
fear that a closing auction would be less fair for small players as well as potentially allowing
the price volatility as seen in HSBC; compare Himaras [20]. Finally we note that the Hong
Kong Exchange is again evaluating the advantages and disadvantages of the median price
calculation compared to a closing auction session; see the consultation paper [22] so that
the research here is also topical. Of course, the question of the use of auctions in improving
market quality is broader than the context studied here. Indeed, the empirical literature
provides strong support for the use of auctions; for example, enhanced market quality by
introducing auctions were reported by Pagano and Schwartz [32] for the Paris Bourse, by
Comerton-Forde et al. [13] for the Singapore Exchange, and by Barclay et al. [5] for NYSE’s
centralized opening call auction.

The first question we address in this article is quantifying the excess volatility created by
the median price benchmark. We analyse to which extent this can be reduced by choosing
an appropriate optimal strategy. Even when using such a strategy, there is some intrinsic
benchmark risk which cannot be mitigated by intelligent execution. To measure this bench-
mark risk, we first assume that the algorithm/trader can achieve exactly the prices used in
the median calculation. This is clearly a simplification and we go on to consider a more
realistic extension where we allow for uncertainty in the execution price, which is due to the
fact that a trader cannot hit exactly the prices used in the median calculation.3 This affects
the volatility of slippage against the benchmark and leads to execution risk, in addition to
the benchmark risk. Analysing the two sources of risk is interesting as it helps provide a
decomposition of the different components of slippage and provides insight into the execution
process during the auction in Hong Kong. Moreover, the article collects key microstructural
features of the Hong Kong market which are relevant for practitioners when deciding how to
trade at the close of the trading day.

The mathematical contribution of the present paper is twofold. While we specifically
analyse the optimal strategy for the median price benchmark, our solution is rather generic.
Indeed, we provide an optimal solution for the dynamic approximation of any L2 random
variable via an elegant recursion as well as an efficient tree based algorithm to calculate the
optimal control in a problem that is fully non-Markovian. We also show empirically for the
stocks in the Hang Seng Index that our model is parsimonious and captures the key aspects
of the problem at hand whilst being numerically tractable.

The structure of the article is as follows. We first describe the model as well as the specifics
of the closing price calculation in Hong Kong. Section 3 derives the optimal strategy as the

2The importance of auctions in Asian stock exchanges has also been highlighted by Gary Stone, Tom
Kingsely and Gabriel Kan; compare http://issuu.com/fixglobal/docs/2015-q3/c/sc5afq2.

3The impact of such differences between desired and effective trade execution has also been studied in a
different context of high-frequency trading: Moallemi and Sağlam [31] model and analyse the cost of latency
in high-frequency trading.
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explicit recursion for efficiently constructing the solution. Section 4 calibrates this model
to data and analyses the results cross-sectionally across the Hang Seng Index. Section 5
concludes. Data to the optimal strategy for all the stocks in the Hang Seng Index are
contained in Appendix A, and Appendix B compares our optimal stochastic strategy with
deterministic strategies.

2 HK Auction Price Calculation and Model Formula-

tion

According to the rules of the Hong Kong (HK) Exchange [23], the closing period begins at
15:59 and ends at 16:00 (HK local time). The closing price is constructed by taking the
median of 5 nominal prices, with the first nominal price taken at 15:59:00 and then every
15s until the last at 16:00:00. Each nominal price is computed as

Pi = min{max{P t
i , P

b
i }, P a

i },

where P t
i is the last traded price and (P b

i , P
a
i ) are the prevailing bid and ask prices at the

snap time (indexed by i). We thus work on a filtered probability space (Ω,F ,F{1,..,5},P) and
consider a trader who may choose a vector w (understood as the fraction of the total order
to be bought at time i) with wi, Fi−1-measurable4 and aims to minimise

E

[
5∑
i=1

wiP
r
i −median

j=1,...,5
(Pj)

]
+ λVar

(
5∑
i=1

wiP
r
i −median

j=1,...,5
(Pj)

)
,

5∑
i=1

wi = 1. (1)

We use the notation P r
i to indicate the realized price that the algorithm achieves at time

i since we may not be able to achieve exactly Pi because of execution risk. Note that we
formulate this problem from the perspective of a buyer. For a sell order, the formulation and
the result are analogous. In order that all objects are well defined in the above, we make the
standard assumption

max
j=1,...,5

E
[
P 2
j + (P r

j )2
]
<∞.

Given a description for the realized prices, the model will be completely specified, and we
can begin to address the questions posed in the introduction. To that end, we consider the
differences Ỹj = Pj − (P b

j + P a
j )/2 between nominal prices and mid prices. In Section 4.2,

we show that the nominal prices almost always (around 94 % on average) occur at the bid
or at the ask. Therefore, we can assume that Ỹj = δYj where δ is half the spread and Yj are
random variables valued in {−1, 1}. In other words, we have

Pj =
P b
j + P a

j

2
+ δYj.

Note that we do not assume that the Yj are i.i.d. because their dependence structure and
different values for P[Yj = 1] are important features as we will see from data in Section 4.2.
Denoting the changes in mid prices by Zi, we can write the prices as

Pj = P0 +

j∑
i=1

Zi + δYj.

4Since the trader needs to choose wi at time i − 1, the information at time i and later cannot be used.
This means that wi can depend only on the information up to time i− 1, hence it is Fi−1-measurable.
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Since the Zi are mid price changes, we assume, in contrast to the Yj, that they are i.i.d.
Similarly to the nominal prices, the realized prices are given by

P r
j = P0 +

j∑
i=1

Zi + δθj,

where we again assume that the random variables θj are valued in {−1, 1}, but they do not
need to be identical to Yj. The strength of this approach is that by using different θj, we
can explore different aspects of the problem. Specifically, there will be two cases we are
interested in.

1. θj ≡ Yj: Trading without execution risk.

In this case, the nominal prices are tradeable and the optimal solution measures the best
tradeable approximation to the median benchmark. The resulting standard deviation
of slippage should be thought of as the benchmark risk due to its construction as a
median. We will compare this to a strategy based on VWAP (volume weighted average
price) to quantify the improvement by using an appropriately designed optimisation.
We will assign values (in basis points and spread units) to the increased risk borne by
traders due to the median benchmark.

2. θj 6≡ Yj: Trading with execution risk.

This corresponds to a situation where the Yj cannot be captured exactly. One might
think of this intuitively via the following example. We are a buyer and we will cross
the spread. Ideally, we should be the last person to do this prior to the snap time
so that this is incorporated into the median calculation, but many other traders are
trying to do this as well. Therefore, we will realize a price P r

j which is close to Pj but
may not be exactly the same. This means that the underlying mid price is the same,
but we may be on the other side of the mid price than Pj. In other words, there is
some probability that θj = −Yj rather than θj = Yj. In the implementation in Section
4.2, we will estimate this probability based on data and conditional on the realizations
of Y1, Y2, . . . , Yj.

The reader will note that we have not considered market impact in the above. This
is because the Hong Kong market is characterized by having very wide spreads and large
level 1 sizes in the limit order book, so that assuming that an order can be executed at bid
or ask price is sensible. If we were to add a linear impact term, it would not change the
mathematical treatment, but make the presentation more cumbersome; see Remark 3.2.5

One may also ask whether a discrete formulation is appropriate here or whether by allowing
continuous trading would improve performance. Taking aside the increased complexity of a
continuous-time model, under the assumption that the drift is close to zero and observing
that by trading at prices different in time from the snap prices will only increase the variance
from the benchmark, it is difficult to make an intuitive argument as to why we would expect
to improve our performance by increasing the strategy space in this way.

5There is also the question of what to do when your order is a very large multiple of that typically traded
in the last minute. We omit that here, but a practical (and widely adopted) solution is to trade a piece of
your order prior to the close minute and then perform the optimal solution described here.
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Of course, by scaling the λ, we can indicate whether there is an effect of varying risk
aversions on the behaviour in (1). In its present form the problem is not tractable as we
have the standard issue related to terms of the form E2[·]. To address this, we write

Var

(
5∑
i=1

wiP
r
i −median

j=1,...,5
(Pj)

)
= E

[(
5∑
i=1

wiP
r
i −median

j=1,...,5
(Pj)

)2]
−E2

[
5∑
i=1

wiP
r
i −median

j=1,...,5
(Pj)

]
.

The first term is clearly amenable. To simplify the second term, we expand further and look
at

E2

[
median
j=1,...,5

(Pj)

]
− 2E

[
median
j=1,...,5

(Pj)

]
E

[
5∑
i=1

wiP
r
i

]
+ E2

[
5∑
i=1

wiP
r
i

]
.

Observing that the median is independent of the control, we can drop the first term. For
the second and third terms, note that if the w is deterministic the critical term would be
of the form

∑5
i=1wiE

[
P r
i ]. If we assume that the Zi have approximately mean zero (which

is intuitively sensible as they are mid price changes, compare Table 1), then we are left
only with the means of θi. However, these means are approximately constant like E[Yi], as
displayed in Table 1. Thus we are led to an approximation of our problem as

min
w

E

[(
5∑
i=1

wiP
r
i −median

j=1,...,5
(Pj)

)2]
+

1

λ
E

[
5∑
i=1

wiP
r
i −median

j=1,...,5
(Pj)

]

subject to
5∑
i=1

wi = 1.

A quick note is in order here. The approximation above is critical to allow the problem to
become tractable, else one ends up with a time inconsistent problem. Such an approximation
is suitable for general stochastic strategies, as pointed out in Almgren [2], Cartea et al. [11]
and Frei and Westray [15], who use similar approximations. In particular, the approximation
is exact for deterministic strategies, and Frei and Westray [15] show that the error from the
approximation is negligible even when using stochastic strategies. We should point out
that the approach above does not prohibit a complicated dependency structure amongst the
(Yi)i=1,...,5 or (θi)i=1,...,5. The approximation requires only that the unconditional means be
constant. One could think of a 5-dimensional zero mean Gaussian as an illustration, where
simply asking that the mean be 0 still allows full freedom in choosing the covariance matrix.

i = 1 i = 2 i = 3 i = 4 i = 5

E[Zi] (in HK$) 0.001 0.002 0.002 −0.002 −0.001
E[Yi] 0.128 0.149 0.129 0.131 0.113

Table 1: Means of Zi and Yi for the different periods i = 1, . . . , 5 based on the data set
of Section 4: all stocks in the Hang Seng Index from April 1, 2014 to March 31, 2015.
The means of Zi are close to zero and the means of Yi are approximately constant. The
standard errors are 0.001 for Zi and 0.01 for Yi in each period. The means of Yi are positive,
corresponding to P[Yi = 1] > 0.5, which we will return to in the analysis of Section 4.
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Remark 2.1. A very interesting stream of recent literature deals with using and developing
techniques from statistical learning to optimal trading; see for example Agarwal et al. [1] and
Laruelle et al. [25] and [26]. A main idea in this area is that the trader is learning while
trading by successively adjusting the strategy based on observations and results from their
own earlier trades. In our problem under consideration, a trader submits orders at a time
close to that of the snap prices for the median price calculation since the trader targets the
median price. These prices occur at 15 seconds difference so that the trader may learn more
from what is happing on the market in-between the 15 seconds, rather than from their own
trade execution. Therefore, in the implementation in Section 4.2, the trader will take the
market trades that are happening between the snap prices into consideration and learn from
them, rather than their own trading. The market trades between the snap prices will enter
the problem formulation through a suitable construction of the θi in Section 4.2.

3 The Optimal Solution

Suppose we now generalise the above problem to an arbitrary time horizon N .

min
w

E

[(
N∑
i=1

wiP
r
i −median

j=1,...,N
(Pj)

)2]
+

1

λ
E

[
N∑
i=1

wiP
r
i −median

j=1,...,N
(Pj)

]

subject to
N∑
i=1

wi = 1.

(2)

This problem cannot be solved in closed form, but we can derive a solution algorithm, which
explicitly determines the optimal weights in recursive steps. This procedure is here better
suited than analysing the dynamic value function, which is an alternative solution approach,
but would lead here to a numerical optimisation problem over a continuously valued pa-
rameter. Our procedure has the advantage that it provides a fast and easily implementable
algorithm, which we apply to data in the next section.

We first use the constraint
∑N

i=1wi = 1 to replace wN by 1−
∑N−1

i=1 wi so that (2) becomes

E

[(
N−1∑
i=1

wi(P
r
i −P r

N)−
(

median
j=1,...,N

(Pj)−P r
N

))2

+
1

λ

N−1∑
i=1

wi(P
r
i −P r

N)− 1

λ

(
median
j=1,...,N

(Pj)−P r
N

)]
.

Expanding and using that all wi are FN−2-measurable, we can write this as

E

[
N−1∑
i,j=1

wiQ
(N−1)
i,j wj − 2

N−1∑
i=1

R
(N−1)
i wi + r(N−1)

]
, (3)

where we define

Q
(N−1)
i,j = E[(P r

i − P r
N)(P r

j − P r
N)|FN−2], (4)

R
(N−1)
i = E

[
(P r

i − P r
N)
(

median
j=1,...,N

(Pj)− P r
N

)
− 1

2λ
(P r

i − P r
N)
∣∣∣FN−2], (5)

with r(N−1) not depending on w. The matrix Q(N−1)
.,. is symmetric and we assume that it is

positive definite, which is equivalent to

E

[(
N−1∑
i=1

xiP
r
i − P r

N

)2∣∣∣∣∣FN−2
]
> 0 (6)
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for all xi with
∑N−1

i=1 xi = 1. In other words, it is not possible to replicate P r
N as a convex

combination of the earlier P r
i on an FN−2-measurable set. This is a very weak condition and

is satisfied when price changes include randomness. We now analyse (3) backward in time,
starting with N − 1. The first-order condition for wN−1 yields

wN−1 =
R

(N−1)
N−1 −

∑N−2
i=1 wiQ

(N−1)
i,N−1

Q
(N−1)
N−1,N−1

.

Plugging this into (3) and simplifying, we can obtain

E

[
N−2∑
i,j=1

wiQ
(N−2)
i,j wj − 2

N−2∑
i=1

R
(N−2)
i wi + r(N−2)

]
, (7)

where we define

Q
(N−2)
i,j = E

[
Q

(N−1)
i,j −

Q
(N−1)
i,N−1Q

(N−1)
N−1,j

Q
(N−1)
N−1,N−1

∣∣∣∣∣FN−3
]
, R

(N−2)
i = E

[
R

(N−1)
i −

Q
(N−1)
i,N−1R

(N−1)
N−1

Q
(N−1)
N−1,N−1

∣∣∣∣∣FN−3
]
,

with r(N−2) not depending on w. Importantly, (7) is of the same quadratic structure as (3),
but with one term less in the sums involving wi. Therefore, we can continue in the same way
by analysing (7) backward for N − 2, . . . , 1. This yields Q(N−3), R(N−3), . . . , Q(1), R(1). Note
that the Q(k) are symmetric (k × k)-dimensional matrices, which are positive definite. The

latter follows because Q(k+1)
.,. − Q

(k+1)
.,k+1Q

(k+1)
k+1,.

Q
(k+1)
k+1,k+1

is the Schur complement of the (k× k)-restriction

in Q(k+1). The Schur complement of a positive definite matrix is again positive definite;
see A.5.5 in Boyd and Vandenberghe [8]. Therefore, also its conditional expectation Q(k) is
positive definite. Hence, we obtain the following characterisation of the optimal weights.

Theorem 3.1. The optimal weights wj are found explicitly following the procedure of Algo-
rithm 1.

While there is existing literature on estimating and selecting the median (see for example
Dor and Zwick [14] and Manku et al. [30]), our algorithm provides an optimal dynamic
and stochastic approximation to the median in a general probabilistic framework. Observe
that Algorithm 1 is rather generic and describes the best dynamic linear approximation
of any square-integrable random variable. We can see this algorithm as a non-Markovian
generalisation of extended linear-quadratic control problems. The latter are of the form

min
N−1∑
n=0

Ln(xn, un) + LN(xN)

under an affine constraint of the form xn+1 = Anxn+Bnun+ bn, where the cost functions Ln
have quadratic, linear and constant terms; see for example Frison and Jørgensen [16]. Those
problems can be solved iteratively in a Riccati recursion using the Schur complement in each
step. In our case, the affine constraint is generalised to the condition that the weights are
predictable, which leads to a recursive use of conditional expectations in Algorithm 1.
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Initialisation:

Q(N−1)
.,. = E

[
(P r

. − P r
N)(P r

. − P r
N)>

∣∣FN−2]
R(N−1)
. = E

[
(P r

. − P r
N)
(

median
j=1,...,N

(Pj)− P r
N

)
− 1

2λ
(P r

. − P r
N)
∣∣∣FN−2]

Backward iteration:

for k = N − 2, . . . , 1 do

Q(k)
.,. = E

[
Q(k+1)
.,. −

Q
(k+1)
.,k+1Q

(k+1)
k+1,.

Q
(k+1)
k+1,k+1

∣∣∣∣∣Fk−1
]
,

R(k)
. = E

[
R(k+1)
. −

Q
(k+1)
.,k+1R

(k+1)
k+1

Q
(k+1)
k+1,k+1

∣∣∣∣∣Fk−1
]
,

end

Forward iteration:

for ` = 1, . . . , N − 1 do

w` =
R

(`)
` −

∑`−1
i=1 wiQ

(`)
i,`

Q
(`)
`,`

.

end

wN = 1−
N−1∑
i=1

wi

Algorithm 1: Computation of the optimal weights

Remark 3.2. 1) We could easily incorporate a linear temporary price impact in our model,
without altering the derivation of Algorithm 1. Indeed, if we assume that realized prices are
given by

P r,w
j = P0 +

j∑
i=1

Zi + δθj + κwj,

where κ is the coefficient of linear temporary market impact. We assume that the market
impact affects only the mean, but not the variance in (1). This is sensible because the
influence of price impact on variance is small. We can follow the same derivation as above
and obtain Algorithm 1, with the difference that Q(N−1)

.,. and R(N−1)
. are replaced by

Q̃(N−1)
.,. = Q(N−1)

.,. +
κ

λ


2 1 . . . 1

1
. . . . . .

...
...

. . . 1
1 . . . 1 2

 , R̃(N−1)
. = R(N−1)

. +
κ

λ

 1
...
1

 .
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2) In principle, the weights computed in Algorithm 1 could result in negative values. We
analysed the number of negative weights resulting from the data set used in Section 4. The
negative weights corresponded to less than 0.1 % of all weights, hence they are, for all practical
purposes, negligible. Indeed, the tractability gains from having a simple recursive algorithm
to compute the solution, outweighs the downside from simply taking 0 when a negative weight
occurs and adjusting the other weights accordingly.

4 Numerical Results

We first explain the implementation of the algorithm and describe the data set. Section 4.2
justifies our chosen model specification and Section 4.3 addresses the questions posed in the
introduction.

4.1 Implementation and Data Set

The algorithm above involves repeated evaluations of conditional expectations numerically
and we thus have two methods at our disposal: trees or regressions. Due to the low dimen-
sionality of our problem, we choose the tree method and opt for a trinomial discretisation
of the random variables Zi combined with the binomial random variables Yi, θi ∈ {−1, 1}.
To be clear, we use the full empirical distribution of the Yi, and then appropriately train
a scheme for discretizing the Zi. Since we have 5 steps and 12 branches at each step this
leads to 125 ≈ 250K nodes which is easily manageable numerically. We calculate the whole
tree at the beginning, then take the first step in the tree according to the realized Y1 and θ1
and the realized Z1 projected onto the nearest grid point. There are then two possibilities
to calculate the control as we move further through the nodes:

1. Continue moving on the calculated tree by following the nodes according to the realized
Yi and θi and the realized Zi projected onto the nearest grid point.

2. At each step i, we re-calculate the tree forward from step i using the true observed
price Pi−1 and applying the backward and forward recursions of Algorithm 1 back to
and forward from i.

Mathematically, the only difference of the two methods is how the conditional expectations
in the algorithm are calculated; the use of the algorithm and the constraint on the weights
are the same. We opt for the second method because this gives more precise values for the
conditional expectations and hence a better performance. The computational effort is still
easily manageable as there are only three re-calculations of smaller and smaller trees needed
(5 weights, but the first weight is determined from the original tree calculation, and the last
weight is given as the remainder).

We used data from Bloomberg6 during a one-year period from April 1, 2014 to March
31, 2015 and took all the trade and quote data for all the names in the Hang Seng Index on
every day. The first step was universe construction, for which we chose those 50 names which
were members of the Hang Seng Index on March 31, 2014.7 We compute all the empirical

6All data is used with permission of Bloomberg L.P.
7During the period, there was only one change in the Hang Seng Index: COSCO Pacific was replaced by

Link REIT on December 8, 2014. For consistency, we kept the same names during the whole period, but
making this change would not affect our conclusions.
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Zi and Yi from the data for each stock and day pair, using the prescription described in
Section 2. We take the price 15s before the first nominal price as P0 to keep equal time
spacing between the increments. Therefore, we only require the last 1:15 minutes of trading
on each day, which massively reduces the size of the data. We use the first six months (April
1 to September 30, 2014) to calibrate our model as will be described in Section 4.2 while
we use the other six months (October 1, 2014 to March 31, 2015) of the data set to test
the performance of the strategy from Algorithm 1. Keeping distinct training and test sets is
standard in the statistical literature to minimise overfitting; the choice of equal training and
test periods is for convenience only, and one could imagine a variant of the above where a
rolling calibration approach would be used.

Remark 4.1. Our method requires estimation of the points in the trinomial tree (6 parame-
ters) which can easily be done from the approximately 125 trading days in a 6 month window
for a given stock. We also require an estimate of the empirical distribution of the 5 dimen-
sional vector (Y1, Y2, Y3, Y4, Y5). Since each component is binary, +1 or −1, we regard 125
observations of this as also being sufficient, if slightly on the low side. The calculation of
the different path probabilities is highly efficient and whilst a shorter period is undesirable,
it could easily be extended to a longer time horizon (either 12 or 18 months) with minimal
overhead.

4.2 Model Component Specification

Let us first consider our model for Yi. For the stocks in the Hang Seng Index, the left panel
of Figure 1 indicates the percentage of the time the variable Yi is either ±1. For the Hang
Seng Index, it is 94 %. We conclude that this is an appropriate approximation for modelling
purposes. Note that we are effectively assuming spread is constant during the auction period.
This is of course a simplification, but we believe that whilst we have not captured all features,
we have captured the main dynamics of interest.

Having established that the Yi are ±1 valued, the next important empirical observation to
make is that they are not i.i.d. This is consistent with the analysis of Bouchaud et al. [7] who
demonstrate strong autocorrelation of trade signs for stocks traded on EU/US exchanges.
The right panel of Figure 1 shows the distribution of the different realizations of the number
of up moves in the 5 periods, under two assumptions. The first is that they are i.i.d. with
mean given by the empirical mean, which leads to a binomial distribution. The second is
the actual empirical distribution. One sees quite significant differences and we view this
as justification for the tree method we implement. Therefore, to calculate the conditional
expectations in Algorithm 1, we will calculate empirical probabilities corresponding to all
different possibilities of P[Yj = ±1|Y1 = ±1, . . . , Yj−1 = ±1] and not just P[Yj = ±1].
Interestingly, we also find that the probability of an up move is 0.56 and not 0.5. This is
related to an imbalance of market orders (slightly more buy than sell orders). The order
imbalance and its implications on price dynamics have been the interest of many studies; see
for example Chordia et al. [12].

To determine θi, we distinguish the two cases from pages 5 and 6. In the first case, θi is
identical to Yi. In the second case, the possibility that θi takes the opposite sign of Yi reflects
execution risk. We model

θi =

{
Yi − 2Ui if Yi = 1,

Yi + 2Vi if Yi = −1,

11
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Figure 1: Left panel: The percentage that Yi takes values ±1 is high. The kernel density
estimation is calculated across the 50 different names in the Hang Seng Index. The precise
value for each name is reported in Table 3 in Appendix A.
Right panel: Empirical distribution versus theoretical distribution under independence as-
sumption. The latter is a binomial distribution with n = 5 and p = 0.56, corresponding to
the overall probability of an up move.

where Ui and Vi are Bernoulli random variables with P[Ui = 1] = ui and P[Vi = 1] = vi.
If we are a buyer, θi = −1 is the favourable case. This occurs if either Yi = 1 and we get
a limit order executed (Ui = 1) or Yi = −1 and we hit Yi (Vi = 0). If all ui and vi were
zero, we would have θi ≡ Yi for all i and recover the first case. To estimate ui and vi, we
analyse the trades in the 15s before Yi occurs. For example, if i = 4, these are the trades
between 15:59:30 and 15:59:45. Similarly to Yi, they occur mostly at either bid or ask prices
so that we can classify these trades by a finite sequence of ±1. We set ui as the ratio of the
number of −1 compared to the total number of ±1, conditional on Yi = 1. We calculate
vi analogously, but conditional on Yi = −1. Estimating ui and vi from data, we observe
that their realizations also depend on the values Y1, . . . , Yi−1. Therefore, we make different
estimations of ui and vi, depending on the period i and the realizations of Y1, . . . , Yi−1, but
take the same estimations for all stocks in the Hang Seng Index.

In summary, the probabilities ui and vi are the fractions of the trades executed at ask and
bid prices during a 15s interval conditional on the value at the end of the interval. Intuitively,
calibrating them in this way is effectively a method of moments approximation to extracting
the probability of getting a limit order executed given the value at the end of the interval
and assuming that on average our execution price is equivalent to market VWAP over the
period.8

In passing we highlight another consequence of the choice of median as the closing price.
The left panel of Figure 2 shows the trading density in the last minute of the trading day.
We see huge spikes around the snap prices at 15:59:00, 15:59:15, . . . , 16:00:00. Traders are
clearly (and understandably) attempting to have their trades enter the median calculation.
This has implications for the exchange, as it needs to have infrastructure that can support

8We remark that if a sell order is considered, one needs to alter the definitions of ui and vi and the result
will change due to the asymmetry of bid and ask executions during the last 1:15 minutes of trading.
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Figure 2: Left panel: The average daily trading density shows a huge rush to trade at the
snap prices for the Hang Seng Index and, as example, HK.0005 (HSBC).
Right panel: Histogram of Zi for all stocks in the Hang Seng Index. To make Zi comparable
across different stocks, its value is divided by the prevailing spread.

these huge bursts of messages, which will increase infrastructure costs.
Turning finally to the Zi, we note that their empirical distribution is heavily centred and

discrete, which is shown in the right panel of Figure 2. Given the dominance of just three
values (representing around 73 % of all realizations) and since the increasing complexity does
not justify a high-order approximation, we approximate the range of Zi by the three most
frequently occurring values for each stock. This is justified by the following auxiliary result.

Lemma 4.2. Let Z be a random variable with cumulative distribution function F . Assume
that there exist N values z1 < z2 < · · · < zN such that

F (zi)− F (zi−) > F (zi−)− F (zi−1), F (zi)− F (zi−) > F (zi+1−)− F (zi) (8)

for all i = 1, . . . , N , where we set z0 = −∞ and zN+1 = ∞. Let Ẑ be a discrete random
variable taking values ẑ1 < ẑ2 < · · · < ẑN with cumulative distribution function F̂ . Then,
choosing ẑi such that

∫∞
−∞

∣∣F (z) − F̂ (z)
∣∣p dF (z) for some fixed p > 0 is minimised leads to

ẑi = zi for all i = 1, . . . , N .

The expression F (zi−) in (8) means the left limit F (zi−) = limz↗zi F (z). Condition (8)
says that Z takes the values zi with high probability. Indeed, (8) implies that the probability
of Z = zi is greater than the probabilities that Z takes values in (zi−1, zi) or (zi, zi+1). Lemma
4.2 then says that the best N -point approximation for Z is based on choosing exactly these
values zi. Lemma 4.2 can be proven by writing∫ ∞

−∞

∣∣F (z)− F̂ (z)
∣∣p dF (z) = · · ·+

∫ zi−

zi−1

∣∣F (z)− F̂ (z)
∣∣p dF (z)

+
∣∣F (zi)− F̂ (zi)

∣∣p(F (zi)− F (zi−)
)

+

∫ zi+1−

zi

∣∣F (z)− F̂ (z)
∣∣p dF (z) + . . . (9)
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Assume the minimising ẑi satisfy ẑi = zi for all i = 1, . . . , j−1 with F̂ (ẑi) ∈
[
F (zi), F (zi+1−)

]
.

If we now choose ẑj = zj for some j with F̂ (ẑj) ∈
[
F (zj), F (zj+1−)

]
, then it can be checked

that condition (8) implies that a deviation to either ẑj < zj or ẑj > zj leads to a higher value
of (9). By induction, we obtain that the optimal choice is ẑi = zi for all i. The corresponding
optimal values for F̂ are given such that F̂ (ẑi) ∈

[
F (zi), F (zi+1−)

]
minimises

∣∣F (zi)− F̂ (ẑi)
∣∣p(F (zi)− F (zi−)

)
+

∫ zi+1−

zi

∣∣F (z)− F̂ (ẑi)
∣∣p dF (z).

Lemma 4.2 gives a theoretical justification why we use an approximation for Zi based on the
three most frequently occurring values of Zi. Indeed, the three most frequent values of Zi
account for approximately 41 %, 16 % and again 16 % of all realizations (compare the right
panel of Figure 2) while all the probabilities of values in-between the three most frequent
realizations are significantly smaller so that we can apply Lemma 4.2 with N = 3. In fact,
testing with out-of-sample realizations, we obtain relatively small approximation errors as
reported in Table 4 in the Appendix A.

4.3 Main Findings

Recall from the introduction that the median benchmark has been heavily criticised due to
it not being tradeable. To measure this and get an appropriate scale for our results, we look
at the large λ limit in (2), i.e., where we are only focussed on having the smallest standard
deviation (variance) vs. the benchmark. The motivation for this is twofold. Firstly, when
institutional investors complain about the untradeability of the median, they are referring
to the tracking error, best described via standard deviation (variance). Secondly, the mean
portion of the problem can be thought of as slightly degenerate. To be more precise, if
one is targeting best performance in terms of mean, due to E[Zi] ≈ 0 (see Table 1), it is
effectively optimal to place a limit order for the full quantity and then cross the spread at the
end if one is not executed. As such this affords little insight into decomposing the different
components of the slippage. To help interpret our results, we compare all the performances
of the algorithm suggested here to that of a simple VWAP (volume weighted average price)
strategy. VWAP is well known for being “fair” in the sense that it can be achieved by a
random nonstrategic trader; see Berkowitz et al. [6].9 Therefore, in our context, VWAP
represents a simple benchmark that is easily accessible to all market participants, and in the
sense that median is also an average (as opposed to arrival/last price or something similar),
it is an appropriate data point for comparison and evaluation of our results.

For each stock in the Hang Seng Index, we calculate the standard deviation between
VWAP and median price benchmark over the trading days between October 1, 2014 and
March 31, 2015. The bars in Figure 3 show these values for five selected companies of the
Hang Seng Index in terms of basis points of the initial prices P0 at each day and the prevailing
spread. Since the error is related to the spread, measuring it in terms of the prevailing spread
allows for a more homogeneous presentation across different stocks; compare left and right
panels of Figure 3. The five companies are Cheung Kong, HSBC, Cathay Pacific, Bank
of China, and Petro China, which are chosen in order to have a good mixture of market

9We calculate the VWAP for each trading day and stock over the last 1:15 minutes of trading to achieve
consistency: traded prices are taken at any 15 seconds window before the prices used in the median calcula-
tion, in line with how we estimated θi in Section 4.2.
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capitalizations and sectors. The complete results for all stocks of the Hang Seng Index are
contained in Table 5 in the Appendix A.

We now compare the results of the strategy from Algorithm 1 with those corresponding
to VWAP. We start with the first case where all θi ≡ Yi, which means that the trader is
able to hit exactly the prices entering the median calculation. Figure 3 demonstrates that
the strategy from Algorithm 1 performs significantly better than VWAP among all stocks,
with an average improvement of about 40 %. All index level averages are taken using market
capitalization weights to better account for differences in traded notional.
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Figure 3: Standard deviations between median and strategies based on an average trader’s
execution (VWAP) and Algorithm 1 without execution risk. The numbers are in basis points
of the initial prices (left panel) and in terms of prevailing spread (right panel). Displayed
are Cheung Kong (0001.HK), HSBC (0005.HK), Cathay Pacific (0293.HK), Bank of China
(3988.HK), and Petro China (0857.HK). The horizontal lines show the overall performance,
based on the Hang Seng Index.

In reality, however, a trader cannot hit exactly the snap prices, and we now turn to the
second case where the θi are based on the estimations described in Section 4.2 and where
execution risk is taken into consideration. We added the corresponding results to the plots
as green squares and lines, shown in Figure 4. There is now no more a uniform improvement
across all names, for example, for Petro China, the performance of Algorithm 1 is worse than
that of VWAP. The average improvement is about 6 %, compared to 40 % without execution
risk.

In summary for the Hang Seng Index, our algorithm gives an average improvement from
a VWAP strategy of around 6 % in standard deviation when execution risk is taken into
account. The risk of such an optimal strategy can be understood as follows: 40 % of the
variance is due to the difficulty in linearly approximating the median. The other 60 % of the
variance is related to execution risk, due to not being able to execute at the prices used in
the median calculation. The conclusion is therefore nuanced. The challenge in targeting a
median benchmark is not exclusively that the median is inherently difficult to approximate;
additionally, the wide spreads give traders a high margin for error in terms of the execution
risk. Expressing this differently, the median is robust against outliers, but jumpy in small
samples, which is what is present in this problem.

15



0001.HK 0005.HK 0293.HK 3988.HK 0857.HK

B
as

is
 P

oi
nt

s

0

2

4

6

8

10

12
Standard Deviation

Theoretically Optimal
Additional for VWAP
Optimal Tradeable

-7%

-41%

Hang Seng:

0001.HK 0005.HK 0293.HK 3988.HK 0857.HK
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sp
re

ad
 U

ni
ts

Standard Deviation

Theoretically Optimal
Additional for VWAP
Optimal Tradeable

-40%

-6%

Hang
Seng:

Figure 4: Additionally to the data from Figure 3, standard deviations between median and
the strategy from Algorithm 1 with execution risk are displayed in green. For the Hang Seng
Index, the improvement compared to VWAP is around 6 % when execution risk is taken into
account.

The decomposition of risk in execution and benchmark risk components is fairly orthog-
onal. Indeed, let PM , P incl. and P excl. be the median price, the realized price with execution
risk, and the achieved price without execution risk, respectively. Then we can write

Var
(
PM − P incl.

)︸ ︷︷ ︸
(total risk)2

= Var
(
PM − P excl.

)︸ ︷︷ ︸
(benchmark risk)2

+ Var
(
P excl. − P incl.

)︸ ︷︷ ︸
(execution risk)2

+ 2 Cov
(
PM − P excl., P excl. − P incl.

)︸ ︷︷ ︸
≈0

.

Figure 5 shows that the covariance term is very small compared to the two variance terms
on the right-hand side of the equation. This means that the total risk can be decomposed
orthogonally in the intrinsic benchmark risk and the execution risk. Therefore, we can
consider benchmark and execution risk as two uncorrelated sources of risk.
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median price, and the realized prices with
and without execution risk, respectively.
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Name
Optimal with execution risk Optimal without execution risk

bps spread bps spread
det. stoch. det. stoch. det. stoch. det. stoch.

HSBC Hldgs 5.52 3.27 0.77 0.47 (−39%) 2.15 2.05 0.30 0.29 (−5%)
Bank of China 18.87 11.36 0.77 0.46 (−40%) 7.49 7.04 0.30 0.29 (−6%)
Petro China 10.18 7.42 0.86 0.64 (−26%) 4.63 4.13 0.40 0.36 (−10%)
Cheung Kong 8.41 5.17 0.80 0.57 (−29%) 3.40 3.40 0.34 0.36 (+6%)
Cathay Pacific 13.29 7.24 0.82 0.48 (−41%) 5.46 4.89 0.36 0.33 (−9%)

Hang Seng 10.83 6.56 0.84 0.55 (−35%) 4.51 4.19 0.38 0.35 (−8%)

Table 2: Standard deviations between median and results from optimal deterministic (det.)
and stochastic (stoch.) strategies. The numbers are in basis points (bps) of the starting
prices at each day and in terms of prevailing spread. The numbers in parentheses show the
reduction in standard deviation of the stochastic strategy to the corresponding values of the
deterministic strategy.

4.4 Improvement thanks to Stochastic Learning

Our stochastic control approach is one way of solving this problem. To give some further
context for the solution and investigate its appropriateness from a fitting perspective, we
compare the numerical results from Section 4.3 with a deterministic solution to the prob-
lem (2). For a full derivation of the solution, please see Appendix B. In brief, the optimal
weights of the deterministic solution are given by

(w1, . . . , wN−1)
> = A−1b and wN = 1−

N−1∑
i=1

wi,

where we define the matrix A = (Ak,i)1≤k,i≤N−1 and the vector b = (b1, . . . , bN−1)
> by

Ak,i = E[(P r
k − P r

N)(P r
i − P r

N)],

bk = E
[
(P r

k − P r
N)
(

median
j=1,...,N

(Pj)− P r
N

)
− 1

2λ
(P r

k − P r
N)
]
.

Using the same dataset and method as in Section 4.1, we analyse the performance of this
optimal deterministic strategy and compare it with that of our optimal stochastic strategy
from Algorithm 1. Table 2 shows the results of the comparison between these two strategies
for the Hang Seng Index and a selection of five of its stocks (the same stocks as chosen
in the analysis of Section 4.3). If execution risk is not considered, the stochastic strategy
outperforms the deterministic one by around 8 % on average. In the more realistic case with
execution risk, the average outperformance of the stochastic strategy is even around 35 %.
This indicates that with our multi-period non-Markovian approach, we are able to better fit
the data and offer clear improvements over a deterministic strategy, lending extra credence
to the findings from Section 4.3.

Remark 4.3. Under further assumptions, we can even derive an explicit formula for the
improvement of the performance of the optimal stochastic weights compared to that of the
optimal deterministic weights. Indeed, if we assume that θi are constant and E[Zi] = 0, the
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difference in squared errors between the two models compared to the media price benchmark
is given by

1

Var(Z1)

N∑
i=1

Var
(
E
[
Zimedian

j=1,...,N
(Pj)

∣∣∣Fi−1]).
In this formula, the improvement from using stochastic strategies is reflected in approxi-
mating Zimedian

j=1,...,N
(Pj) by successive conditional expectations, rather than taking directly an

expectation. While this formula holds under specific model assumptions, it shows the general
idea behind the improvement: the stochastic strategy allows for using successive predictions
of functionals of the median via conditional expectations. When we ran this on a numeri-
cal simulation, we found the relative improvement in standard deviation to be approximately
23 %. For further details, please see again Appendix B.

5 Conclusion

The algorithm derived in this paper not only gives an efficient way to optimally target a
median benchmark, but also allows us to draw several relevant conclusions on trading in
Hong Kong. The first is that even optimal stochastic weights only offer a small improvement
compared to the execution of an average trader targeting the median benchmark because of
the difficulty in targeting this median benchmark. Secondly, this difficulty is due to both
risk inherent to the benchmark and execution risk. The latter is mainly a consequence of the
trader’s inability to trade at the exact price used in the benchmark calculation, combined
with the occurrence of wide spreads. These risks for a trader should be borne in mind when
defining a mechanism for the calculation of closing prices.
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A Data Tables

Name RIC %

HSBC Hldgs 0005.HK 96.8
Tencent 0700.HK 89.8
China Mobile 0941.HK 90.3
AIA 1299.HK 92.1
CCB 0939.HK 97.3
ICBC 1398.HK 97.9
Bank of China 3988.HK 98.5
CNOOC 0883.HK 94.5
Petro China 0857.HK 95.2
Hutchison 0013.HK 92.4
Sinopec Corp 0386.HK 94.5
HKEx 0388.HK 91.3
Cheung Kong 0001.HK 90.3
China Life 2628.HK 95.3
SHK Prop 0016.HK 93.9
Galaxy Ent 0027.HK 92.7
Ping An 2318.HK 92.3
CLP Hldgs 0002.HK 91.5
Sands China 1928.HK 91.5
HK & China Gas 0003.HK 94.0
Hang Seng Bank 0011.HK 92.6
Power Assets 0006.HK 88.1
BOC Hong Kong 2388.HK 95.5
Wharf (Hldgs) 0004.HK 91.3
China Overseas 0688.HK 96.0

Name RIC %

China Unicom 0762.HK 95.8
China Shenua 1088.HK 96.0
Want Want China 0151.HK 95.0
Lenovo Group 0992.HK 92.4
Hengan Int’l 1044.HK 87.4
Swire Pacific ‘A’ 0019.HK 89.7
Hang Lung Prop 0101.HK 95.3
Li & Fung 0494.HK 94.7
Henderson Land 0012.HK 92.6
New World Dev 0017.HK 91.9
Bankcomm 3328.HK 96.8
Mengniu Daily 2319.HK 93.9
Belle Int’l 1880.HK 95.3
Bank of E Asia 0023.HK 94.2
China Res Power 0836.HK 93.7
MTR Corporation 0066.HK 95.5
Tingyi 0322.HK 94.7
Kunlun Energy 0135.HK 95.3
Sino Land 0083.HK 93.9
China Res Land 1109.HK 92.6
China Mer Hldgs 0144.HK 94.0
China Resources 0291.HK 96.0
CITIC Pacific 0267.HK 94.2
COSCO Pacific 1199.HK 94.4
Cathay Pacific 0293.HK 96.3

Table 3: The first and second columns are the names and RIC (Reuters Instrument Code) of
the 50 companies of the Hang Seng Index, ordered by decreasing market capitalisation. The
third column shows the percentages of the time that Yi is either ±1 (after diving by half the
prevailing spread), with a value of 93.9 % for the Hang Seng Index overall.
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Name % error

HSBC Hldgs 6.0
Tencent 16.5
China Mobile 17.2
AIA 9.6
CCB 7.3
ICBC 4.3
Bank of China 2.6
CNOOC 7.2
Petro China 7.8
Hutchison 13.6
Sinopec Corp 7.5
HKEx 9.7
Cheung Kong 13.1
China Life 9.4
SHK Prop 17.4
Galaxy Ent 11.6
Ping An 14.5
CLP Hldgs 12.6
Sands China 11.9
HK & China Gas 10.0
Hang Seng Bank 11.7
Power Assets 19.8
BOC Hong Kong 9.2
Wharf (Hldgs) 12.5
China Overseas 8.2

Name % error

China Unicom 11.4
China Shenua 8.0
Want Want China 12.1
Lenovo Group 8.7
Hengan Int’l 18.5
Swire Pacific ’A’ 12.9
Hang Lung Prop 6.5
Li & Fung 16.7
Henderson Land 13.0
New World Dev 8.2
Bankcomm 7.9
Mengniu Daily 9.0
Belle Int’l 6.6
Bank of E Asia 8.5
China Res Power 7.1
MTR Corporation 7.2
Tingyi 12.1
Kunlun Energy 9.6
Sino Land 9.1
China Res Land 16.1
China Mer Hldgs 11.1
China Resources 14.2
CITIC Pacific 7.3
COSCO Pacific 6.3
Cathay Pacific 10.6

Table 4: Approximation error (9) of the distribution of Zi with p = 1 in percentage of∫∞
−∞ F (z) dF (z) = 1/2. Estimations are based on data for Apr.–Sept. 2014 while the realiza-

tions are for Oct. 2014–Mar. 2015. For the Hang Seng Index, this relative error is 10.3.

Name
VWAP Optimal with exec. risk Optimal without exec. risk

bps spr. bps spread bps spread

HSBC Hldgs 3.63 0.52 3.27 (−10%) 0.47 (−9%) 2.05 (−44%) 0.29 (−44%)
Tencent 6.19 0.75 5.66 (−9%) 0.71 (−5%) 3.81 (−38%) 0.47 (−38%)
China Mobile 6.14 0.88 4.83 (−21%) 0.70 (−20%) 3.99 (−35%) 0.56 (−36%)
AIA 6.78 0.57 5.63 (−17%) 0.47 (−17%) 3.86 (−43%) 0.32 (−43%)
CCB 8.55 0.52 8.08 (−5%) 0.49 (−6%) 5.05 (−41%) 0.31 (−41%)
ICBC 9.37 0.50 8.90 (−5%) 0.47 (−6%) 5.40 (−42%) 0.28 (−44%)
Bank of China 11.81 0.48 11.36 (−4%) 0.46 (−4%) 7.04 (−40%) 0.29 (−40%)
CNOOC 9.52 0.52 9.06 (−5%) 0.50 (−4%) 5.63 (−41%) 0.31 (−41%)
Petro China 6.42 0.55 7.42 (+16%) 0.64 (+16%) 4.13 (−36%) 0.36 (−35%)
Hutchison 6.18 0.71 5.31 (−14%) 0.68 (−3%) 3.46 (−44%) 0.44 (−37%)
Sinopec Corp 7.79 0.46 7.63 (−2%) 0.47 (+2%) 4.79 (−38%) 0.29 (−36%)

. . . over
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Name
VWAP Optimal with exec. risk Optimal without exec. risk

bps spr. bps spread bps spread

HKEx 3.65 0.60 2.93 (−20%) 0.50 (−18%) 1.65 (−55%) 0.26 (−56%)
Cheung Kong 5.46 0.56 5.17 (−5%) 0.57 (+1%) 3.40 (−38%) 0.36 (−36%)
China Life 9.42 0.50 8.84 (−6%) 0.47 (−6%) 5.52 (−41%) 0.29 (−41%)
SHK Prop 5.88 0.55 5.35 (−9%) 0.53 (−3%) 3.32 (−44%) 0.34 (−38%)
Galaxy Ent 6.87 0.54 6.30 (−8%) 0.51 (−5%) 4.01 (−42%) 0.33 (−39%)
Ping An 5.14 0.72 4.50 (−12%) 0.63 (−12%) 3.14 (−39%) 0.46 (−35%)
CLP Hldgs 5.48 0.54 5.15 (−6%) 0.56 (+4%) 3.31 (−40%) 0.33 (−38%)
Sands China 8.23 0.58 7.34 (−11%) 0.53 (−8%) 4.38 (−47%) 0.32 (−44%)
HK & China Gas 6.53 0.50 6.01 (−8%) 0.49 (−1%) 4.03 (−38%) 0.33 (−34%)
Hang Seng Bank 5.64 0.57 5.31 (−6%) 0.60 (+5%) 2.95 (−48%) 0.32 (−44%)
Power Assets 5.63 0.57 6.12 (+9%) 0.62 (+9%) 4.55 (−19%) 0.39 (−31%)
BOC Hong Kong 9.41 0.48 9.12 (−3%) 0.47 (−3%) 5.53 (−41%) 0.29 (−41%)
Wharf (Hldgs) 7.06 0.53 6.89 (−2%) 0.61 (+14%) 4.43 (−37%) 0.35 (−35%)
China Overseas 10.68 0.46 9.61 (−10%) 0.42 (−8%) 6.80 (−36%) 0.29 (−36%)
China Unicom 9.69 0.53 9.29 (−4%) 0.52 (−2%) 6.15 (−37%) 0.34 (−36%)
China Shenua 11.40 0.53 11.02 (−3%) 0.53 (+1%) 6.51 (−43%) 0.28 (−47%)
Want Want 9.36 0.58 9.36 (−0%) 0.67 (+16%) 4.42 (−53%) 0.29 (−51%)
Lenovo Group 11.78 0.61 9.29 (−21%) 0.48 (−22%) 6.45 (−45%) 0.32 (−47%)
Hengan Int’l 7.94 0.72 6.50 (−18%) 0.67 (−7%) 4.68 (−41%) 0.45 (−38%)
Swire Pacific ‘A’ 7.43 0.52 7.06 (−5%) 0.60 (+17%) 4.05 (−45%) 0.32 (−37%)
Hang Lung Prop 12.37 0.45 12.98 (+5%) 0.50 (+11%) 7.33 (−41%) 0.27 (−41%)
Li & Fung 7.90 0.52 7.79 (−1%) 0.55 (+5%) 4.36 (−45%) 0.29 (−45%)
Henderson Land 7.22 0.56 6.35 (−12%) 0.55 (−2%) 4.21 (−42%) 0.33 (−40%)
New World Dev 7.96 0.54 6.49 (−19%) 0.54 (−0%) 4.10 (−49%) 0.34 (−37%)
Bankcomm 8.14 0.45 7.55 (−7%) 0.45 (+1%) 4.48 (−45%) 0.25 (−43%)
Mengniu Daily 10.30 0.51 8.82 (−14%) 0.48 (−5%) 5.83 (−43%) 0.31 (−40%)
Belle Int’l 8.64 0.69 7.52 (−13%) 0.61 (−11%) 5.61 (−35%) 0.45 (−34%)
Bank of E Asia 8.46 0.44 9.11 (+8%) 0.52 (+18%) 5.55 (−34%) 0.30 (−34%)
China Res Power 11.87 0.46 13.35 (+12%) 0.67 (+46%) 7.06 (−41%) 0.29 (−37%)
MTR Corp. 8.88 0.50 8.96 (+1%) 0.52 (+4%) 6.19 (−30%) 0.34 (−32%)
Tingyi 9.75 0.46 10.82 (+11%) 0.74 (+59%) 5.59 (−43%) 0.31 (−34%)
Kunlun Energy 8.45 0.57 9.59 (+13%) 0.67 (+18%) 4.55 (−46%) 0.31 (−46%)
Sino Land 9.39 0.50 9.25 (−1%) 0.50 (−0%) 5.89 (−37%) 0.31 (−39%)
China Res Land 10.47 0.55 8.29 (−21%) 0.49 (−10%) 6.02 (−43%) 0.33 (−39%)
China Mer Hldgs 13.48 0.49 12.99 (−4%) 0.52 (+7%) 8.07 (−40%) 0.27 (−44%)
China Resources 9.74 0.52 11.01 (+13%) 0.75 (+45%) 5.59 (−43%) 0.32 (−37%)
CITIC Pacific 8.45 0.51 8.16 (−3%) 0.50 (−2%) 5.19 (−39%) 0.32 (−39%)
COSCO Pacific 11.13 0.46 9.66 (−13%) 0.46 (+1%) 5.53 (−50%) 0.26 (−43%)
Cathay Pacific 8.99 0.55 7.24 (−19%) 0.48 (−13%) 4.89 (−46%) 0.33 (−41%)

Hang Seng 7.09 0.58 6.56 (−7%) 0.55 (−6%) 4.19 (−41%) 0.35 (−40%)

Table 5: Standard deviations between median and strategies based on VWAP and Optimal
weights with and without execution risk. The numbers are in basis points (bps) of the starting
prices at each day and in terms of prevailing spread. The numbers in parentheses show the
changes compared to the corresponding values of the VWAP strategy.
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B Comparison with Deterministic Strategies

Algorithm 1 provides an optimal stochastic strategy, which depends on taking successively
conditional expectations. In this appendix, we derive the optimal deterministic strategy as
comparison and show how much our optimal stochastic strategy improves the performance
compared to the deterministic strategy.

We still consider the minimisation problem (2), but now restrict to deterministic weights
w1, . . . , wN ∈ R while the weights in the previous section were stochastic. Using wN =
1− w1 − · · · − wN−1, we can rewrite the objective function in (2) as

f(w1, . . . , wN−1) = E

[(
N−1∑
i=1

wi(P
r
i − P r

N) + P r
N −median

j=1,...,N
(Pj)

)2]

+
1

λ
E

[
N∑
i=1

wi(P
r
i − P r

N) + P r
N −median

j=1,...,N
(Pj)

]
.

The first-order condition for the optimal weights is

∂f

∂wk
= 2E

[
(P r

k − P r
N)

(
N−1∑
i=1

wi(P
r
i − P r

N) + P r
N −median

j=1,...,N
(Pj) +

1

2λ

)]
= 0

for k = 1, . . . , N − 1. This can be written as Aw = b, where we define a matrix A =
(Ak,i)1≤k,i≤N−1 and a vector b = (b1, . . . , bN−1)

> by

Ak,i = E[(P r
k − P r

N)(P r
i − P r

N)],

bk = E
[
(P r

k − P r
N)
(

median
j=1,...,N

(Pj)− P r
N

)
− 1

2λ
(P r

k − P r
N)
]
.

A and b correspond to static analogues to Q and R, which were dynamically defined in
Algorithm 1. We assume that

there does not exist k ∈ {1, . . . , N} and (λi)i 6=k ∈ RN−1

with
∑
i 6=k

λi = 1 and P r
k =

∑
i 6=k

λiP
r
i a.s., (10)

which is the static analogue to (6). This assumption is very natural because otherwise, we
would know some of the prices in advance, which is not realistic. Under assumption (10),
the matrix A is invertible as we will show next so that the optimal weights are given by

(w1, . . . , wN−1)
> = A−1b and wN = 1−

N−1∑
i=1

wi. (11)

To show that A is invertible, we first note that A is symmetric and positive semidefinite
because for every x ∈ RN−1, we have

x>Ax = E

[
N−1∑
k,i=1

xk(P
r
k − P r

N)(P r
i − P r

N)xi

]
= E

[(
N−1∑
i=1

xi(P
r
i − P r

N)

)2]
≥ 0.

22



Therefore, A is invertible if it is positive definite. This holds if there does not exist x ∈
RN−1 \ {0} such that

N−1∑
i=1

xi(P
r
i − P r

N) = 0 a.s. (12)

If
∑N−1

i=1 xi 6= 0, (12) can be written as P r
N =

∑N−1
i=1 λiP

r
i a.s. with λi = xi/

∑N−1
k=1 xk, which

is in contraction to (10). If
∑N−1

i=1 xi = 0, (12) simplifies to
∑N−1

i=1 xiP
r
i = 0 a.s. Since x 6= 0,

there exists xk 6= 0, and we set λi = −xi/xk = xi/
∑

j 6=k xj for i 6= N and λN = 0 so that we
have P r

k =
∑

i 6=k λiP
r
i a.s., again in contraction to (10).

Comparing the optimal static solution given by (11) with the optimal dynamic solu-
tion from Algorithm 1, we see that the optimal static solution corresponds to a one-step
expectation while the optimal dynamic solution is based on taking successively conditional
expectations. To analyse in more detail this difference of the optimal strategies and the
different values of the objective function, we now restrict our attention to the case where θi
are constant and E[Zi] = 0. Then, we can simplify A and b to

Ak,i = σ2(N −max{k, i}), bk = σ2(N − k)−
N∑

i=k+1

E
[
Zimedian

j=1,...,N
(Pj)

]
.

where we set σ =
√
E[Z2

i ]. We can explicitly calculate the inverse of A, which is given by

A−1k,i =


1/σ2 if k = i = 1

2/σ2 if k = i > 1

−1/σ2 if k = i± 1

0 otherwise

so that the optimal weights equal

w = A−1b =


1− 1

σ2E
[
Z2median

j=1,...,N
(Pj)

]
1
σ2E
[
(Z2 − Z3)median

j=1,...,N
(Pj)

]
. . .

1
σ2E
[
(ZN−1 − ZN)median

j=1,...,N
(Pj)

]

 ,

wN = 1− w1 − · · · − wN−1 =
1

σ2
E
[
ZNmedian

j=1,...,N
(Pj)

]
.

Straightforward calculations yield

E
[ N∑
i=1

wiP
r
i

]
= 0, (13)

E
[( N∑

i=1

wiP
r
i −median

j=1,...,N
(Pj)

)2]
= E

[(
median
j=1,...,N

(Pj)
)2]
− 1

σ2

N∑
i=1

(
E
[
Zimedian

j=1,...,N
(Pj)

])2
.

As comparison, we prove the following result for the optimal stochastic weights.
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Proposition B.1. Assume E[Zi] = 0 and that θ1 = · · · = θN are constant, and set σ =√
E[Z2

i ]. Then the optimal stochastic weights from Algorithm 1 are explicitly given by

w1 = 1− 1

σ2
E
[
Z2median

j=1,...,N
(Pj)

]
,

w2 =
1

σ2
E
[
Z2median

j=1,...,N
(Pj)

]
− 1

σ2
E
[
Z3median

j=1,...,N
(Pj)

∣∣∣F1

]
,

. . .

wN−1 =
1

σ2
E
[
ZN−1median

j=1,...,N
(Pj)

∣∣∣FN−3]− 1

σ2
E
[
ZNmedian

j=1,...,N
(Pj)

∣∣∣FN−2],
wN =

1

σ2
E
[
ZNmedian

j=1,...,N
(Pj)

∣∣∣FN−2]. (14)

For the optimal stochastic weights wj, we have

E
[ N∑
i=1

wiP
r
i

]
= 0, (15)

E
[( N∑

i=1

wiP
r
i −median

j=1,...,N
(Pj)

)2]
= E

[(
median
j=1,...,N

(Pj)
)2]

(16)

− 1

σ2

N∑
i=1

E
[(

E
[
Zimedian

j=1,...,N
(Pj)

∣∣∣Fi−1])2],
where we set F−1 = F0.

Comparing (13) with (15), we see that the optimal deterministic and stochastic strategies
lead to the same mean, but the squared error to the median of the stochastic strategy
compared to that of the deterministic strategy is reduced by

1

σ2

N∑
i=1

E
[(

E
[
Zimedian

j=1,...,N
(Pj)

∣∣∣Fi−1])2]− 1

σ2

N∑
i=1

(
E
[
Zimedian

j=1,...,N
(Pj)

])2
=

1

σ2

N∑
i=1

Var
(
E
[
Zimedian

j=1,...,N
(Pj)

∣∣∣Fi−1]).
Note that for normally distributed Zi, this depends only on N and not on σ. A numerical
calculation shows that for N = 5, the relative improvement in standard deviation is approx-
imately 23 % from using the stochastic strategy compared to the deterministic strategy.

Proof of Proposition B.1. We first show that Qk,j and Ak,j in Algorithm 1 are given by

Qk,j = P r
j − P r

k+1 and Ak,j = 1 for k = 1, . . . , N − 1 and j ≤ k. (17)

We prove this claim by backward induction over k = N − 1, . . . , 1. For k = N − 1, we have
QN−1,j = Qj −QN by definition and

AN−1,j =
E[QN−1,N−1QN−1,j|FN−2]

E[Q2
N−1,N−1|FN−2]

=
E[(P r

N−1 − P r
N)(P r

j − P r
N)|FN−2]

E[(P r
N−1 − P r

N)2|FN−2]

=
E[ZN

∑N
i=j+1 Zi|FN−2]

E[Z2
N |FN−2]

=
σ2

σ2
= 1 for j ≤ N − 1.
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Assume now that Qk+1,j = P r
j − P r

k+2 and Ak+1,j = 1. Then we have

Qk,j = Qk+1,j −Qk+1,k+1Ak+1,j = P r
j − P r

k+1,

Ak,j =
E[Qk,kQk,j|Fk−1]
E[Q2

k,k|Fk−1]
=
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i=j+1 Zi|FN−2]

E[Z2
k+1|Fk−1]

=
σ2

σ2
= 1 for j ≤ k.

This shows (17). To analyse vN−1, . . . , v1, we use mN−1 = median
j=1,...,N

(Pj)−QN and find

vN−1 =
E
[
QN−1,N−1

(
mN−1 − 1

2λ

)∣∣FN−2]
E[Q2

N−1,N−1|FN−2]
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E
[
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and then

mN−2 = mN−1 −QN−1,N−1vN−1
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ZN
σ2

E
[
ZNmedian
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E
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(
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E
[
ZN−1median
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using the independence of ZN , ZN−1 and FN−3. Continuing like this, we find

vi = 1− 1

σ2
E
[
Zi+1median

j=1,...,N
(Pj)

∣∣∣Fi−1]
for all i = N − 1, . . . , 1. We use w1 = v1,

wj = vj −
j−1∑
`=1

Aj,`w` = vj −
j−1∑
`=1

w` = vj − vj−1

for j = 2, . . . , N − 1 and wN = 1−
∑N−1

`=1 w` = 1− vN−1 to deduce (14).
We derive (15) by the tower property of conditional expectation, which yields

E
[ N∑
i=1

wiQi

]
= E

[ N∑
j=1

Qj,jvj

]
= E

[ N∑
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= E
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For (16), we first deduce

E
[( N∑

i=1

wiQi −median
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(Pj)

)2]
= E
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(m1 −Q1,1v1)

2
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and then simplify m1 −Q1,1v1 to

m1 −Q1,1v1 = m2 −Q2,2v2 + Z2 −
Z2
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]
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Therefore, we obtain
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using the tower property of conditional expectation, the independence of Zi from Fi−1, and
E[Zi] = 0. This implies (16) using

E
[
Z1median

j=1,...,N
(Pj)

]
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