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A Formula for new estimator of return correlation

For practical purposes, we summarize our estimator for latent intra-segment asset return
correlation in the case of a first-order correction term, which typically captures a big part of
the bias of the classical estimator; compare Figure 1. Formulas for higher-order correction
terms and inter-segment correlation can be found in Section 4.1.
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with ®5(.,.; 0) denoting the bivariate normal cumulative distribution function with

correlation p,

e derivatives appearing in correction term:
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e sample variance and lag-1 sample autocovariance:
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B Proof of Theorem 3.3

By Taylor’s theorem, we can write
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for some & between p and ,_lp ZtT:l Z,;. Taking expectations and rearranging terms yield
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using that E[Z;] = u for all t by stationarity. We now analyze the different terms in (A.1).
First, we note g(u) = 0 and compute
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Similarly to (9), we can write the variance term as

B ) L0 B ) O U NS

T-1
2
Var< Zzt) = —Var (21) + = > (T = 0)Cov(Zy, Zi1). (A.3)
/=1

Finally, we apply Holder’s inequality with p = 4/3 and ¢ = 4 (which satisfy 1/p+ 1/¢ = 1)
to obtain
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which concludes the proof in light of (A.1)—(A.3). O
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