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Abstract

We study trading and risk management decisions of banks in over-the-counter mar-
kets, accounting for two types of risk: payoff risk from loans and counterparty risk
from trading activities. Our model provides empirically supported predictions on the
structure of the interbank credit default swap (CDS) market: (i) banks with high de-
fault probabilities either buy or sell CDS contracts; (ii) because of the counterparty
risk friction, payoff risk is only partially shared; and (iii) safe banks act as intermedi-
aries and help diversify counterparty risk. Banks manage their default probabilities to
become creditworthy counterparties, but they do so in a socially inefficient way.
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I Introduction

Counterparty risk is one of the most prominent sources of risk faced by market par-
ticipants and financial institutions in over-the-counter (OTC) markets. During the global
financial crisis of 2007–2008, roughly two thirds of credit related losses were attributed to
the market price of counterparty risk, and only about one third to actual default events; see
Bank for International Settlements (2011).

Our study investigates the critical role played by counterparty risk in shaping the struc-
ture of OTC markets. Banks are subject to payoff risk stemming from loan exposures.
Heterogeneity in these exposures incentivizes banks to share their payoff risk. Banks with
little risk-sharing needs emerge as intermediaries, and provide buy-sell services to other banks
that would otherwise be restricted by trade size limits. However, the counterparty risk fric-
tion impairs the sharing of payoff risk and strengthens intermediation. Even in the absence
of trade size limits, banks share payoff risk imperfectly. To avoid facing excessive counter-
party risk, banks wishing to share payoff risk seek intermediation services from other banks
with low default probabilities. We use a proprietary data set of bilateral exposures from the
market of credit default swaps (CDSs), and highlight the prominent role of five banks with
low default probabilities which act as the main intermediaries in the interbanking market
(see the network graph in Figure 2).

We investigate the implications of risk management on trading decisions, characteristics
of the intermediaries, and structure of the OTC market. In our framework, there is a finite
number of banks, each consisting of a continuum of risk-averse traders. Each bank initially
holds a loan portfolio, whose payoff is contingent on the realization of an aggregate credit
risk factor.1 While all banks are exposed to the same risk factor, they have heterogeneous
exposures to it. This dispersion in exposures gives banks an incentive to share payoff risk:
traders of a bank with higher initial exposure purchase protection in the form of CDSs from
traders of banks with lower initial exposures.

Trading is modeled as a two-stages process, as in Atkeson, Eisfeldt, and Weill (2015).
First, traders of each bank participate in the decentralized OTC market. When two traders
belonging to different banks meet, they negotiate over the terms of a trade, taking into con-
sideration that they are all subject to the same trade size limit. The negotiation process is
endogenous and gives rise to equilibrium prices and quantities that depend on banks’ loan
exposures. Importantly, and unlike in Atkeson et al. (2015), contract prices and traded
quantities also account for counterparty risk. When a trader of a bank purchases a contract
from a trader of another bank, it pays a bilaterally agreed-upon fee upfront. In exchange,
the trader receives the contractually agreed-upon payment if the realization of the aggre-
gate credit risk factor corresponds to a credit event, provided that the bank of its trading
counterparty does not default. In the second stage of trading, each bank consolidates the
contracts signed by its traders and executes these contracts.

In our model, all banks share their payoff risk through OTC contracts. However, banks
with high default probabilities impair the risk-sharing capacity of the market. Because they
are not guaranteed to fulfill the obligations towards their counterparties, they do not sell

1This factor may be thought of as a proxy for the systematic risk driving the prices of CDS indices, such
as the CDX.NA.IG and the Itraxx index.

2



as much credit protection as they would if they were riskless. A bank with high default
probability is active only on one side of the market, i.e., either as a buyer or as a seller, and
when it is a seller, it trades the same amount of protection with each bank on the buy side.
Safe banks, which in our stylized model have zero default probability, play an important
role: they act as intermediaries and sell some of the contracts that they bought from risky
banks to other banks. Thus, the safe banks increase the participation rate of banks with high
default probabilities by diversifying the counterparty risk in the system. As a consequence
of partial risk sharing, payoff risk is distributed more homogeneously among the banks after
trading. Because payoff risk stems from the banks’ loan exposures, this means that banks’
post-trade exposures are closer together than initial exposures. In particular, safe banks
have the same post-trade exposure if the trade size limit is big enough, whereas banks with
high default probabilities maintain diverse post-trade exposures.

Banks gain fees from intermediation services provided to other banks in the network and
manage their payoff risk by entering into CDS contracts. We do not disentangle these two
channels of income, i.e., banks do not first intermediate and then hedge their payoff risk.
Rather, each bank chooses the optimal trading strategy, which simultaneously identifies
the level of intermediation and hedging that is individually optimal. To become a more
attractive trading counterparty, each bank engages in costly risk management before trading
CDS contracts. We show that an inefficiency arises when each bank manages its default
probability to maximize its private certainty equivalent. Because the system-wide benefits of
counterparty risk reduction are only partially reflected in bilaterally negotiated prices, banks’
decisions on their default probabilities may deviate from the social optimum. Interestingly,
there exist circumstances under which banks may act conservatively (e.g., implement stricter
risk management strategies) and reduce their default probabilities below the socially optimal
level.

The inefficiency of the banks’ risk management decisions may be understood as follows.
The reduction of default probability is reflected in the bank’s certainty equivalent through
increased revenues generated from the sale of CDS contracts. In equilibrium, these revenues
are based on the banks’ marginal valuations, rather than on the banks’ total valuations
which determine the social optimum. We show that the marginal valuations depend on the
banks’ default probabilities in a different manner than the total valuations. In particular, if
traders of a bank increase their CDS purchases from another bank, counterparty risk becomes
more concentrated. As a result of this counterparty concentration, the marginal valuations
become more sensitive to changes in default probabilities than the total valuations. Since
the revenues of a CDS selling bank depend on the banks’ marginal valuations, the bank
may be overcompensated for lowering its default probability, compared to the system-wide
counterparty risk reduction reflected in the banks’ total valuations. We show that such a
situation occurs when the buyer has high bargaining power, the payoff risk is high, and the
seller incurs low risk management costs. Under these conditions, the selling bank reduces its
default probability below the socially optimal level.

The rest of paper is organized as follows. We review related literature in Section II. We
develop the model in Section III. We study the equilibrium trading decisions of banks in
Section IV. We analyze the normative implications of our model in Section V. Section VI
concludes. Proofs of all results are delegated to the Appendix.
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II Literature Review

Our main contribution to the literature is the development of a tractable framework to
study counterparty risk in OTC markets, along with its implications on banks’ risk manage-
ment and bilateral trading decisions.

Our model implication that high-risk banks engage in imperfect payoff risk sharing is
supported by empirical evidence provided by Du, Gadgil, Gordy, and Vega (2016). They
find that market participants are more likely to trade with counterparties whose credit
quality is high. Their analysis shows that if prices do not adjust materially to the credit
risk of the dealers, then trade quantities might adjust, i.e., the market transacts to a smaller
extent with weaker dealers. Our model predictions are also consistent with the empirical
results of Arora, Gandhi, and Longstaff (2012), who find a statistically significant negative
relation between the credit risk of the dealer and the prices at which he sells credit protection.
However, they also find that the economic significance of this relation is very small. While in
our model changes in banks’ default probabilities may lead to small adjustments in contract
prices, similarly to their findings, they can nonetheless have large implications on the market
structure. Oehmke and Zawadowski (2017) provide evidence consistent with hedging and
speculation motives of CDS contracts. While they investigate the relation between CDSs
and bonds of firms in different industries, we focus entirely on the interbank CDS market
and the role of counterparty risk.

Our framework builds on that developed by Atkeson et al. (2015). A crucial difference
is that the sellers of credit protection might default without delivering the full contracted
amount. This counterparty risk friction of our model has important ramifications with regard
to the equilibrium market structure, and leads to significantly different economic conclusions:
First, bilateral trading positions between banks are unique in equilibrium because the coun-
terparty risk of the sellers makes the traded contracts imperfect substitutes. Second, the
payoff risk-sharing capacity of the market is impaired, even when the trade size limit is not
binding. Finally, intermediaries play the additional role of diversifying counterparty risk,
besides increasing the payoff risk-sharing capacity of the market.

The classical setup used to study OTC markets is the search-and-bargaining framework
proposed by Duffie, Gârleanu, and Pedersen (2005), which models the trading friction char-
acteristics typical of these markets. Their model was generalized along several dimensions,
including the relaxation of the constraint of zero-one units of assets holdings (see Lagos and
Rocheteau (2009)), the entry of dealers (see Lagos and Rocheteau (2007)), and investors’
valuations drawn from an arbitrary distribution as opposed to being binary (see Hugonnier,
Lester, and Weill (2020)). All these studies do not allow for the inclusion of counterparty
risk, mainly because the framework cannot keep track of the identities of the counterparties
for the continuum of traders.

Our paper is also related to the emerging literature on endogenous OTC networks. Wang
(2018) shows that the trading network which emerges endogenously in OTC markets is of the
core-periphery type. In his model, intermediaries exploit their central position to balance
inventory risk, while in our model they help diversify counterparty risk in the network. Gof-
man (2014) provides a network model to study the intermediation friction in OTC markets.
As in our model, trading decisions and bilateral prices are jointly determined in equilibrium.
Traders can only transact if they have a trading relationship and extract a surplus which
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depends both on the private value of the buyer and on the resale opportunities of the asset.
While the focus of his study is on welfare losses due to intermediation frictions, we study
the negative externality originating from counterparty concentration. Babus and Hu (2017)
consider an infinite-horizon model of endogenous intermediation and analyze two important
frictions of OTC markets. The first is the limited commitment of market participants who
can renege on due payments, and the second is the opaqueness of OTC markets in which
participants have incomplete information on the past behavior of others.

A related branch of literature has studied the incentives behind the formation of interbank
loan networks.2 Farboodi (2017) proposes a model of financial intermediation where profit-
maximizing institutions strategically decide on borrowing and lending activities. Her model
predicts that banks which make risky investments voluntarily expose themselves to exces-
sive counterparty risk, while banks that mainly provide funding establish connections with a
small number of counterparties in the network. A related study by Acemoglu, Ozdaglar, and
Tahbaz-Salehi (2014-b) analyzes the endogenous formation of interbanking loan networks.
They find that banks may overlend in equilibrium and do not spread their lending among
a sufficiently large number of potential borrowers, thus creating insufficiently connected fi-
nancial networks prone to defaults. Different from their settings, our framework captures
stylized features of derivatives trading in OTC markets, as opposed to markets for inter-
banking loans. Meetings between traders are random, and the equilibrium trading patterns
are the outcome of bilateral bargaining that accounts for counterparty risk. Parlour and
Winton (2013) construct an equilibrium model to assess when banks use loans as opposed
to CDSs. They show that, for riskier credits, loan sales typically dominate CDSs as a means
for transferring credit risk while the opposite is true for safer credits, and CDSs allow for
efficient risk sharing. As we study how counterparty risk affects payoff risk sharing, we focus
on how banks manage their default probabilities before participating in the OTC market of
CDSs.

III The Model

The model economy consists of a unit continuum of traders, who are risk-averse agents.
They have constant absolute risk aversion with parameter η, i.e., their utility function is
given by U(x) = −e−ηx. The traders are organized into M banks, which are coalitions of
traders. All banks are granted access to the same technology to trade swaps.

The banks are heterogeneous in their initial exposures to an aggregate risk factor D,
taking binary values 0 (no default) and 1 (default), with P [D = 1] = q, where we assume
0 < q < 1. We denote by ωi the initial exposure per trader of bank i to the aggregate
risk factor. The traders are paired uniformly across the different banks. Therefore, the
frequency at which a trader of bank j 6= i is paired with a trader of bank i is proportional
to the measure of traders in bank i, which we refer to as the size of bank i. Both the initial
exposure ωi and the size of bank i are exogenously specified and observable to the traders. To

2Another branch of literature has studied counterparty risk in an exogenously specified network of financial
liabilities. The focus of these studies is on how the topology of the network affects the amplification of an
initial shock through the network. Relevant contributions in this direction include Eisenberg and Noe (2011),
Elliott, Golub, and Jackson (2013), and Acemoglu, Ozdaglar, and Tahbaz-Salehi (2014-a).
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highlight the primary economic forces at play, in the main body of the paper we present the
results for banks of equal size. We restate and prove the results in the Appendix, allowing
for heterogeneity in the banks’ sizes.

When a trader from bank i meets a trader from bank n, they bargain a contract similar
to a CDS. They agree that the trader of bank i sells γi,n contracts to the trader of bank n. If
γi,n > 0, bank n makes an immediate payment of γi,nRi,n, and at the end of the period, bank i
makes a payment of γi,nD to bank n if bank i has not defaulted by then; if it has defaulted,
there is no payment. For bank i, we denote by Ai the event that the bank defaults with
P [Ai|D = 1] = pi, where we assume 0 ≤ pi < 1. Because banks will trade contracts of CDS
type on the aggregate risk factor D, only the conditional default event Ai|D = 1 of bank i
and not the unconditional default event Ai matters to the trading counterparties of bank i.
Therefore, the conditional default probability pi determines the attractiveness of bank i on
the OTC market. We assume that the conditional events Ai|D = 1 are independent but do
not impose that the banks’ defaults themselves are independent. In particular, each bank
can have different default probabilities depending on the realization of the aggregate risk
factor. This setting allows for a dependence structure among the banks’ defaults. A special
role will be taken by banks with pi = 0. We call such banks safe, while banks with pi > 0
are referred to as risky.

In summary, the payment at the end of the period is γi,nD1A{
i

from bank i to bank n if

γi,n > 0, where A{
i denotes the complement of the default event Ai. For the case γi,n < 0,

the roles of i and n are interchanged. Therefore, the bilateral constraint γi,n = −γn,i holds.
We further assume that there is a trade size constraint per trader so that −k ≤ γi,n ≤ k
for some constant k > 0.3 We call a set of contracts (γi,n)i,n=1,...,M feasible if both the
bilateral constraint γi,n = −γn,i and the trade size constraint −k ≤ γi,n ≤ k hold for all
i, n = 1, . . . ,M . For notational convenience, we will use the abbreviation γi := (γi,1, . . . , γi,M)
to denote the collection of contracts that bank i has with the other banks.

At the end of the trading period, traders of every bank come together and consolidate all
their long and short positions. The consolidated per-capita wealth of bank i from its initial
exposure and the contracts γi,1, . . . , γi,M is

Xi = ωi(1−D) +
∑
n 6=i

γi,n
(
Ri,n −D1A{

n
1γi,n<0 −D1A{

i
1γi,n>0

)
,

where

• ωi(1−D) is the per-capita payout associated with the initial exposure.

•
∑

n6=i γi,nRi,n is the aggregate net payment received (if positive) or made (if negative)
during trading, corresponding to the CDS protection fees.

• −Dγi,n1A{
n
1γi,n<0 is the per-capita payment that bank i will receive from bank n. This

payment will be executed only if the realization of the aggregate risk factor is D = 1

3Those limits are an integral part of counterparty credit risk management frameworks: exposures are
typically monitored on an on-going basis and adequate risk controls are put in place to reduce the violation
of these limits. We refer to Office of the Comptroller of the Currency et al. (2011) for further details, see
Section V.I therein.
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and bank i net bought protection from bank n (γi,n < 0). In this case, bank i will
receive −γi,n if bank n does not default

(
event A{

n

)
.

• Dγi,n1A{
i
1γi,n>0 is the per-capita payment that bank i will make to bank n. This

payment will be executed only if the realization of the aggregate risk factor is D = 1
and bank i net sold protection to bank n (γi,n > 0). In this case, bank i will pay γi,n
if it does not default

(
event A{

i

)
.

IV Equilibrium Decisions and Market Structure

This section studies the trading decisions prevailing at the market equilibrium. In Section
IV.A, we develop an explicit expression for a bank’s certainty equivalent. In Section IV.B,
we establish the existence of such an equilibrium. In Section IV.C, we study the implica-
tions of counterparty risk on the banks’ post-trade exposures and the market structure. In
Section IV.D, we present a numerical example and provide empirical evidence in support of
the results of Section IV.C.

IV.A Banks’ Certainty Equivalents

We calculate the certainty equivalent xi of Xi by solving U(xi) = E[U(Xi)], which yields

(1) xi = ωi +
∑
n 6=i

γi,nRi,n − Γi(γi,1, . . . , γi,M),

where

Γi(y1, . . . , yM) =
1

η
logE

[
exp

(
ηD

(
ωi +

∑
n6=i

yn
(
1A{

i
1yn>0 + 1A{

n
1yn<0

)))]
.

The following result gives an explicit formula for Γi.

Lemma IV.1. We have

Γi(y1, . . . , yM) =
1

η
log
(

1− q + qeηωi+ηf(
∑
n:yn≥0 yn,pi)+η

∑
n:yn<0 f(yn,pn)

)
,

where

(2) f(y, p) =
1

η
log
(
(1− p)eηy + p

)
.

For p > 0, the functions

y 7→ Ξ(y) :=
1

η
log(1− q + qeηy) and y 7→ f(y, p)

are strictly increasing and strictly convex so that the function Γi(y1, . . . , yM) is strictly in-
creasing and convex. If pn > 0, then the function Γi, viewed as a function of yn, is strictly
convex on (−∞, 0). Moreover, the function f satisfies

(3) f(y1, p1) + f(y2, p2) > f(y1 + y3, p1) + f(y2 − y3, p2)

for all y1 < y2, y3 ∈
(
0, y2−y1

2

]
and p1 ≥ p2.
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The value f(y, p) quantifies how the certainty equivalent of a protection seller (or buyer)
changes when it sells y (or buys y if y < 0) contracts to (from) a protection buyer (seller),
where p is the default probability of the bank selling the contracts. If the bank that sells the
contracts is safe (pi = 0), then f(y, pi) = y is linear. However, if the bank that is selling the
contracts is risky (pi > 0), the increase in f(y, pi) is smaller given that

1

η
log
(
(1− pi)eηy + pi

){< 1
η

log
(
(1− pi)eηy + pi

)
= y if y > 0

> 1
η

log
(
(1− pi)eηy + pi

)
= y if y < 0.

The inequality (3) has a very intuitive interpretation. Suppose a bank buys CDS protection
from banks 1 and 2 with default probabilities p1 > p2. If the bank were to buy additional
protection from bank 1, its certainty equivalent would be lower with respect to the case in
which it makes balanced purchases from the two banks.

IV.B Market Equilibrium: Existence and Properties

Because traders are assumed to be small relative to their banks, they maximize the
marginal impact of their decisions on their banks’ utilities. When a trader of bank i sells
protection to a trader of bank n, the cost of risk bearing increases by γi,nΓiyn(γi) for bank i
and decreases by γi,nΓnyi(γn) for bank n, where Γnyi(γn) denotes the partial derivative of Γn(γn)
with respect to the i-th component. Therefore, when traders of banks i and n bargain, their
trading surplus is given by

γi,n
(
Γnyi(γn)− Γiyn(γi)

)
.

We assume that (i) all trader pairs from bank i and bank n choose the same trade quantity,
and (ii) the terms of a trade in each bilateral meeting are determined via Nash bargaining,
with possibly different bargaining powers of the two traders. Assumption (i) guarantees that
per-capita trade quantities between banks and the trades of their individual traders coincide.
As a consequence of Nash bargaining, the terms of a trade are bilaterally Pareto optimal,
hence the above trading surplus is maximized. Therefore, bilateral quantities chosen by
traders of two banks i and n are consistent with a perfect equalization of marginal valuations.
That is, after consolidation of all trades their banks have the same marginal valuation, i.e.,
Γiyn(γi) = Γnyi(γn) if this is attainable. However, this outcome may not be achievable for two
reasons. First, the quantity of traded contracts needed to achieve equal marginal valuation
may be larger than what the trade size limit allows. In this case, the marginal valuations
Γiyn(γi) and Γnyi(γn) differ, and traders choose the maximal quantity allowed under the trade
size limit, hence γi,n = k if Γiyn(γi) < Γnyi(γn) and γi,n = −k if Γiyn(γi) > Γnyi(γn). The
second reason why equal marginal valuation may not be attainable is that traders of bank i
may find it beneficial to neither buy from nor sell to traders of bank n, which occurs when
Γiyn(γi) < Γnyi(γn) for all γi,n < 0 and Γiyn(γi) > Γnyi(γn) for all γi,n > 0. In such a situation,
it is optimal not to trade because the trading surplus is negative for any nonzero quantity,
and we would expect the marginal valuations to be equal at zero, i.e., Γiyn(γi) = Γnyi(γn)
for γi,n = 0. However, this may not be the case because the marginal valuations may not
be defined at zero. The case of zero traded quantities between two banks is very special,
because under these circumstances a change in the per-capita trade quantity would alter the
direction of counterparty risk exposures for banks i and n: the certainty equivalent of the
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bank which buys protection is negatively impacted by the increased default probability of
its counterparty, while the bank selling protection benefits from its own default, and thus its
certainty equivalent is increased. By contrast, the banks’ valuations at any quantity other
than zero change in a smooth way with respect to the purchased or sold per-capita quantity.
Indeed, Γi(γi) and Γn(γn) are continuously differentiable in the per-capita trade quantities
γi,n and γn,i everywhere except at γi,n = γn,i = 0. This implies that when the marginal
valuations do not exist, the per-capita quantity must be zero. For future reference, we
provide a summary of the above discussion: for each bilateral trading relationship between
two banks, one of the following four cases arises:

(4)


Γiyn(γi) = Γnyi(γn),

Γiyn(γi) < Γnyi(γn); in this case, γi,n = k,

Γiyn(γi) > Γnyi(γn); in this case, γi,n = −k,
Γiyn(γi) or Γnyi(γn) do not exist; in this case, γi,n = 0.

The unit price Ri,n of a CDS is decided via bargaining between a protection seller with
bargaining power ν ∈ [0, 1] and a protection buyer with bargaining power 1− ν. Hence,

(5) Ri,n = ν max
{

Γiyn(γi),Γ
n
yi

(γn)
}

+ (1− ν) min
{

Γiyn(γi),Γ
n
yi

(γn)
}
.

If bank i sells contracts to bank n, it receives a fraction ν of the trading surplus. Indeed,
bank i’s cost of risk bearing increases by γi,nΓiyn(γi), but it receives a payment γi,nRi,n so
that the net effect on bank i is

− γi,nΓiyn(γi) + γi,nRi,n

= γi,n
(
ν max

{
Γiyn(γi),Γ

n
yi

(γn)
}︸ ︷︷ ︸

= Γnyi (γn) by (4)

+(1− ν) min
{

Γiyn(γi),Γ
n
yi

(γn)
}︸ ︷︷ ︸

= Γiyn (γi) by (4)

−Γiyn(γi)
)

= ν γi,n
(
Γnyi(γn)− Γiyn(γi)

)︸ ︷︷ ︸
trading surplus

.

Because of the translation invariance property of the exponential utility, the relative bar-
gaining power between buyers and sellers does not affect how traded quantities are chosen
in equilibrium.

Definition IV.2. Feasible contracts (γi,n)i,n=1,...,M build a market equilibrium if they are
optimal in the sense that they satisfy (4).

The following result shows that finding a market equilibrium is equivalent to solving a
planning problem.

Theorem IV.3. Feasible contracts (γi,n)i,n=1,...,M are a market equilibrium if and only if
they solve the optimization problem

(6) minimize
M∑
i=1

Γi(γi) over γ subject to γi,n = −γn,i and −k ≤ γi,n ≤ k.
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This result follows from the fact that certainty equivalents are quasi-linear so that feasible
contracts are a solution to the planning problem if and only if they are Pareto optimal for
the banks. Based on the quasi-linearity of certainty equivalents, Atkeson et al. (2015) find
that, conditional on entry decisions, the pairwise traded contracts are socially optimal.

In our model, a market equilibrium on the level of the individual traders is thus equivalent
to a Pareto optimal allocation for the banks. However, Pareto optimality for banks is only
a statement about quantities and does not characterize prices. In our model, prices are
determined in each meeting between two traders, as is standard in OTC market models.

Theorem IV.4. There exists a market equilibrium (γi,n)i,n=1,...,M . The per-capita trade
quantities γi,n are unique for pn > 0 and γi,n < 0, or pi > 0 and γi,n > 0. For every i,
the value of

∑
γi,n is unique in equilibrium, where the sum is over n such that pn = 0 and

γi,n < 0, or pi = 0 and γi,n > 0. In particular, the values of Γ(γn)’s are uniquely determined
for a market equilibrium (γi,n)i,n=1,...,M .

Theorem IV.4 establishes the existence of a market equilibrium, and states that per-capita
trade quantities between banks are unique in equilibrium if the bank selling protection is
risky. This uniqueness result extends Theorem 1 of Atkeson et al. (2015), where per-capita
trade quantities are not unique between banks with the same marginal valuation. As soon as
counterparty risk is accounted for in the valuation of a trade, per-capita trade quantities are
uniquely pinned down in equilibrium, even for trades between banks with the same marginal
valuation. The first reason is that we consider a finite number of large banks, rather than a
continuum of infinitesimally small banks like in Atkeson et al. (2015), to keep track of the
identities of defaulting banks. As a result, the per-capita trades between banks can change
their marginal valuations. The second and deeper reason is that counterparty risk makes
CDS contracts purchased from traders of different banks imperfect substitutes. This lack of
perfect substitutability is due to counterparty concentration, and persists even if banks were
to have the same default probability: because of risk aversion, if a trader buys two CDS
contracts, it prefers to choose the two trading counterparties from different banks, rather
than purchasing both contracts from traders of the same bank. The situation is different if
we only consider safe banks. For example, the size of trades between three safe banks A, B
and C could be increased without changing the planning problem (6) if A buys n additional
CDS contracts from B, B buys n additional CDS contracts from C, and C buys n additional
CDS contracts from A.

The uniqueness of per-capita trade quantities between risky banks implies the uniqueness
of trades of their individual traders under our assumption that all trader pairs of two banks
choose the same trade quantity. This is because, under this assumption, per-capita trade
quantities coincide with the trades of individual traders. If this assumption is relaxed,
individual traders could deviate in their traded quantities while maintaining the same per-
capita quantity, so that the individual trades would no longer be unique.

IV.C Post-trade Exposures and Intermediation Volume

Denote by (γi,n)i,n=1,...,M a market equilibrium from Theorem IV.4. The per-capita post-
trade exposure Ωi is given by

(7) E[U(−ΩiD)] = U(Γi(γi,1, . . . , γi,M))
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so that traders of bank i would be indifferent between (a) trading and changing the initial
exposure (certainty equivalent Γi(γi,1, . . . , γi,M) on the right-hand side of (7)) and (b) non-
trading and maintaining a fictitious initial exposure of Ωi units to the aggregate risk factor
(−ΩiD on the left-hand side of (7)). Solving (7) for Ωi yields

Ωi = ωi + f

( ∑
n:γi,n≥0

γi,n, pi

)
+

∑
n:γi,n<0

f(γi,n, pn),(8)

where f is defined in Lemma IV.1. Note that Ωi accounts for counterparty risk: if bank i
and all its counterparties are safe, then Ωi simplifies to ωi +

∑
n6=i γi,n, as in Atkeson et al.

(2015). Observe also that Ωi is uniquely determined by Theorem IV.4. If bank i buys −γi,n
contracts on average from each trader of a risky bank n, the exposure of bank i is effectively
reduced by less than γi,n to adjust for counterparty risk, taking the bank’s risk aversion into
consideration. Similarly, if bank i is risky and sells γi,n contracts on average to each trader
of bank n, then its effective increase in exposure is less than γi,n due to the benefit from not
honoring the promised payments if it defaults.

The next result says that the post-trade exposures are increasing and closer together
than initial exposures. This result generalizes the first part of Proposition 1 of Atkeson et
al. (2015) to our counterparty risk setting, while we will see in our Theorem IV.6 below that
the second part of Proposition 1 of Atkeson et al. (2015) takes a quite different form in our
model.

Proposition IV.5. We have the following relations between initial and post-trade exposures:

1. If ωi ≥ ωj and pi ≤ pj, then Ωi ≥ Ωj.

2. If ωi > ωj and pi ≥ pj, then ωi − ωj > Ωi − Ωj.

Proposition IV.5 states that

1. The banks’ order in post-trade exposures is the same as that in the initial exposures,
provided that their default probabilities are ordered in the opposite direction.

2. Post-trade exposures are closer together than initial exposures if the bank with larger
initial exposure is at least as risky as the bank with smaller initial exposure.

To see why conditions on the default probabilities of the banks need to be imposed,
consider two banks i and j whose initial exposures ωi > ωj are smaller than the average
initial exposure. Because both banks have initial exposures below the average, they are
interested in selling protection and earning the CDS protection fee. These trading motives
imply that their post-trade exposures Ωi and Ωj are bigger than ωi and ωj, respectively.
However, if bank i is safer than bank j, it is likely that the other banks will buy a higher
amount of protection from bank i so that Ωi−ωi > Ωj−ωj. This inequality stands in contrast
with that in the second statement of Proposition IV.5, noting that pi ≥ pj does not hold,
either. Yet if bank j is safer than bank i, it is likely that the other banks will buy a larger
amount of protection from bank j, leading to Ωj > Ωi even though the initial exposures
had the reverse order. We will graphically demonstrate later in Figure 1 that both of these
cases can indeed happen so that conditions on the default probabilities in Proposition IV.5
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are needed. Building on Proposition IV.5, we give the following theorem which (i) identifies
which banks engage in full payoff risk sharing if the trade size limit is big enough, and (ii)
characterizes the market structure of trading activities.

Theorem IV.6. Assume that the trade size limit is not binding, and there are at least two
safe banks.4 Then

1. There exists the following relation between banks’ creditworthiness, initial exposures
and post-trade exposures:

(a) All safe banks have the same post-trade exposure, say, Ω̄.

(b) Risky banks with initial exposure above some threshold α also have the same post-
trade exposure Ω̄. The threshold α is greater than Ω̄ and depends only on the
distribution of initial exposures, but not on the banks’ default probabilities.

(c) Risky banks with initial exposure below α will have post-trade exposures strictly
smaller than Ω̄.

2. Risky banks with initial exposure above α trade as follows:

(a) They do not trade between each other.

(b) They do not sell protection.

(c) Their purchases depend only on their initial exposure, but not on their default
probabilities.

3. Risky banks with initial exposure below α trade as follows:

(a) They do not trade between each other if their exposures, after trading with other
banks but before trading between themselves, are sufficiently close relative to the
amount of sold protection. 5

(b) They do not purchase protection from safe banks or risky banks with initial expo-
sures above α.

(c) They sell the same amount of protection to each safe bank and risky bank with
initial exposure above α.

4For payoff risk sharing to take place, the financial system must consist of at least two banks. Because
perfect risk sharing is done by safe banks, we consider in the proposition a market environment with at least
two safe banks.

5To be precise, consider two risky banks i and n that have initial exposures below α. We denote by
Γi =

∑
` 6=n:γi,`≥0 γi,` the sum of contracts that bank i sold to other banks. Assume without loss of generality

that Ω̃i ≤ Ω̃n, where Ω̃i and Ω̃n are the exposures of banks i and n, respectively, after trading with other

banks but before trading between themselves. If the condition Ξ′(Ω̃n)

Ξ′(Ω̃i)
≤ fy(Γi,pi)

1−pi is satisfied for f and Ξ

given in Lemma IV.1, banks i and n do not trade between each other. Note that
fy(Γi,pi)

1−pi is increasing in

Γi and greater than 1, hence the condition is satisfied when Ω̃n and Ω̃i are sufficiently close relative to the
protection Γi that bank i sold. For the detailed statement, see Theorem A.4 in the Appendix.
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Part 1a of the above theorem is consistent with Proposition 3 in Atkeson et al. (2015):
if the trade size limit is big enough, safe banks perfectly share their payoff risk and they
all end up with the same post-trade exposure. However, the presence of counterparty risk
leads to novel insights on the market structure relative to Atkeson et al. (2015), as can be
seen from the other parts of the theorem. Risky banks with large initial exposures are active
only as buyers on the OTC market. Hence, their default probabilities do not matter to
traders of other banks, so that the amount of purchased protection does not depend on their
default probabilities (part 2c) and they have the same post-trade exposure as the safe banks
(part 1b). By contrast, risky banks with small initial exposures would like to sell credit
protection, and do not buy protection (part 3b). These banks will have a lower post-trade
exposure than the safe banks (part 1c) for two reasons. Firstly, they sell a smaller amount of
credit protection because they are less attractive as trading counterparties due to their non-
zero default probabilities. Secondly, as a result of the credit protection sold, they increase
their post-trade exposure. However, because they may default and fail to honor obligations,
their exposure would be smaller compared to that of a safe bank offering the same amount
of protection. Unless the bank’s default probability pi is high, the first effect dominates
the second because protection buyers are highly sensitive to the seller’s default probability.
Although the action of selling protection is the same for a safe and risky bank, the value
of sold protection is different: purchasing from a safe bank guarantees complete protection
while purchasing from a risky bank is cheaper, but exposes to counterparty risk. If the two
banks have very similar credit quality (the default probability pi is low), buyers are more
sensitive to changes in credit quality, and likely switch to the safe bank if pi increases. By
contrast, if the two banks have very different credit quality (the default probability pi is
high), an increase of pi will have a smaller effect on the buyer’s behavior because the price
charged by the risky bank is much lower than that charged by the safe bank.

The condition on the non-binding trade size limit in Theorem IV.6 guarantees that safe
banks and risky banks with a high initial exposure have enough flexibility to trade and reach
a post-trade exposure of Ω̄. If the trade size limit is binding for some but not all of these
banks, those with high initial exposures and non-binding trade size limit will still have the
same post-trade exposure. Risky banks with low initial exposure will have strictly smaller
post-trade exposures regardless of the trade size limit.

To give further insight behind the economic forces at play in Theorem IV.6, we briefly
sketch the main steps of the proof, and delegate the full details to the Appendix. If the trade
size limit is large enough, all safe banks will perfectly share their payoff risk and have the
same post-trade exposure, which we denote by Ω̄ (part 1a of Theorem IV.6). This is similar
to Proposition 3 in Atkeson et al. (2015), with the only difference being that in our setting
the post-trade exposure of safe banks also depends on the counterparty risk faced when they
buy protection from risky banks. We then analyze the post-trade exposures of the risky
banks, and show that none of them can have a post-trade exposure greater than Ω̄. This
is intuitive because if a bank had a post-trade exposure greater than Ω̄, its traders would
buy protection from the safe banks. Therefore, risky banks will have a post-trade exposure
that is either exactly Ω̄ or smaller than Ω̄. We can show that there is a threshold α so that
risky banks with initial exposure greater than or equal to α have a post-trade exposure equal
to Ω̄ and those with initial exposures below α have post-trade exposures smaller than Ω̄.
Crucially, this threshold α does not depend on the banks’ default probability. Consequently,
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whether a risky bank will have a post-trade exposure equal to Ω̄ or smaller than Ω̄ depends
on its initial exposure, but not on its default probability (parts 1b and 1c).

Consider two risky banks with initial exposures above α, and thus with the same post-
trade exposures. Their marginal valuations need to be same, i.e, Γiyn(γi) = Γnyi(γn), but this
cannot hold for any non-zero traded quantity γi,n when the banks are risky and have the
same post-trade exposures, as we show in the proof. Intuitively, trading between two risky
banks with the same post-trade exposure does not give rise to any trade benefit because of
risk aversion: the additional counterparty risk incurred by the buyer outweighs the seller’s
benefit of defaulting on its obligations (part 2). This argument does not only apply to banks
that have the same post-trade exposure, but also to banks with different post-trade exposures
as long as the cost of counterparty risk outweighs the potential benefit from sharing payoff
risk. This happens when the banks’ post-trade exposures are sufficiently close relative to
the protection that they sold. Thus, such banks will not trade between each other (part 3a).
Finally, safe and risky banks with initial exposures above α have all the same post-trade
exposure Ω̄. Therefore, when traders of these banks negotiate with traders of a risky bank
whose initial exposure is below α, they all have the same trade incentive (depending on the
default probability of the selling bank, but not of their own bank), hence they buy the same
quantity in equilibrium (parts 3b & 3c).

An immediate consequence of Theorem IV.6 is the sensitivity of the post-trade exposures
to the banks’ default probabilities.

Corollary IV.7. If the trade size limit is big enough, the post-trade exposures of banks
with sufficiently high initial exposure are not sensitive to their default probabilities, while
the post-trade exposures of banks with small initial exposures are sensitive to their default
probabilities.

The statement in Corollary IV.7 is intuitive. If the payoff risk bearing capacity of the
market is not impaired by the presence of trade size limits, banks with sufficiently large initial
exposures are protection buyers and thus their own default probabilities do not matter to
their counterparties. However, banks with low initial exposures are protection sellers, so
their default probabilities matter when other banks decide to trade with them.

We next study which banks endogenously emerge as interbank intermediaries. These
banks participate on both sides of the CDS market, as opposed to taking large net positions,
either long or short. We consider per-capita gross numbers of sold or purchased contracts,
given by G+

i =
∑

n6=i max{γi,n, 0} and G−i =
∑

n 6=i max{−γi,n, 0}, respectively. The per-

capita intermediation volume of bank i is defined as Ii = min{G+
i , G

−
i }. We call a bank with

non-zero intermediation volume an intermediary.
From part 2 of Theorem IV.6, we deduce that risky banks with high initial exposures

only purchase protection. For each bank i in this group, G+
i = 0, and thus it is not an

intermediary. The situation is more subtle for risky banks with low initial exposures. By
part 3b of Theorem IV.6, these banks do not purchase any protection from safe banks and
risky banks with high initial exposures. Hence, most of them are active only on the sell
side, but some of them may purchase protection from other risky banks that have even
lower initial exposures. This happens when their post-trade exposures are not sufficiently
close relative to the protection they sold, i.e., they do not satisfy the condition in part 3a of
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Theorem IV.6. Therefore, intermediaries are only these banks or safe banks, as summarized
in the following corollary.

Corollary IV.8. Assume that the trade size limit is not binding, and there are at least two
safe banks. Let α be the threshold given in Theorem IV.6. Then an intermediary can only be
a safe bank or any risky bank whose initial exposure is below α and whose post-trade exposure
is not sufficiently close, relative to its protection sold, to that of any other risky bank.6

Specifically, we note that, although all safe banks buy the same amount of protection
from a risky bank whose initial exposure is sufficiently low (part 3c of Theorem IV.6), all safe
banks still end with the same post-trade exposures (part 1a of Theorem IV.6). Therefore,
such safe banks must be active as intermediaries. In our model, intermediation activities
are beneficial even when the trade size limit is high and non-binding. This result stands in
contrast with Atkeson et al. (2015), where the intermediation activity vanishes if the trade
size limit is sufficiently large. This is not the case in our framework due to counterparty risk.
Banks avoid buying protection from risky counterparties. By purchasing contracts through
intermediaries, part of the counterparty risk is transferred to the intermediaries which in turn
benefit from the received CDS protection fees. Because of these transactions, counterparty
risk is split between the customer bank and the intermediary, and the concentration of
counterparty risk in the OTC market is reduced. Therefore, in our model, the intermediaries
have two functions: they help diversify the aggregate level of counterparty risk and, as in
Atkeson et al. (2015), they facilitate partial sharing of payoff risk. Compared to safe banks,
risky banks are not as attractive for intermediation because they impose counterparty risk
on the protection buyer.

IV.D A Numerical Example and Empirical Evidence

We begin the section by constructing an example which illustrates the findings of Theorem
IV.6 and Corollary IV.8. We consider an economy consisting of 30 banks, and show in Figure
1 their post-trade exposures, purchases, sales, and intermediation volumes in equilibrium.
We first analyze post-trade exposures. We observe from the top left panel of the figure that
the dashed and dotted curves hit the solid line at the same point, which means that the
initial exposure needed to guarantee that risky banks have the same post-trade exposure
does not depend on their default probabilities. This is a consequence of Theorem IV.6, and
follows from the fact that the threshold α therein does not depend on the banks’ default
probabilities. Theorem IV.6 implies that the post-trade exposure of safe banks is higher
than their average initial exposure, and this is visually confirmed in Figure 1. We next
analyze protection purchases, and display them in the top right panel of Figure 1. The
observed patterns are fully consistent with part 3 of Theorem IV.6: risky banks with low
initial exposures do not buy protection if their post-trade exposures are sufficiently close,
which is the case in this example for all banks with initial exposure less than or equal to 5.

6 The precise condition for a risky bank n not to be an intermediary is that either it has initial exposure

above α, or it has initial exposure below α and satisfies Ξ′(Ω̃n)

Ξ′(Ω̃i)
≤ fy(Γi,pi)

1−pi for any risky bank i with Ω̃i < Ω̃n,

where Γi =
∑
` 6=n:γi,`≥0 γi,` is the sum of contracts sold by bank i, and Ω̃i and Ω̃n are the exposures of banks

i and n, respectively, after trading with other banks but before trading between themselves.
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Figure 1: Post-trade exposure and intermediation volume in an example. An
economy consisting of 30 banks: for each initial exposure 1, 2, . . . , 10, we consider three
banks, respectively with default probabilities p = 0, p = 0.1 and p = 0.2. We set the risk
aversion parameter η = 1, the probability of the binary risk factor q = 0.1, and use a non-
binding trade size limit. Top left panel: For large enough k, all safe banks and all risky banks
with big initial exposures have the same post-trade exposure. The corresponding value 6.19
is higher than the average initial exposure of the safe banks, 5.5 (= (1 + 2 + · · · + 10)/10).
Risky banks with p = 0.2 (dotted curve) have a smaller post-trade exposure than risky banks
with p = 0.1 (dashed curve). Top right panel: Risky banks with low initial exposures do
not buy protection. The quantities of purchased protection by risky banks with high initial
exposure do not depend on the banks’ default probabilities (dashed and dotted curves are
identical). Bottom left panel: Risky banks with high initial exposures do not sell protection.
Bottom right panel: Intermediation is done mostly by safe banks. Among the risky banks,
the only ones with a positive intermediation volume are those whose initial exposure equals
6. We verified that all other risky banks satisfy the condition in Footnote 6.
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Figure 2: Network of banks’ bilateral CDS exposures. Each node corresponds to a
bank. The inner nodes are the 5 main intermediaries, while the remaining 76 banks are
arranged as nodes on an outside circle. Both in the inner area and the outside circle,
the nodes are ordered based on the initial exposures from their loan portfolios. These
exposures correspond to the sizes of the nodes. The darker a node is, the higher is the
default probability of the corresponding bank. The widths of the edges are proportional to
the banks’ bilateral net CDS volume. We use blue for the CDS volume between two main
intermediaries; gray for CDS volume between two banks which are not main intermediaries;
light red for CDS protection sold by a main intermediary to another bank; dark red for CDS
protection purchased by a main intermediary from another bank.

In regards to protection sales, the graph in the bottom left panel supports the result in part
2 of Theorem IV.6: risky banks with high initial exposures do not sell any credit protection,
in contrast to their safe counterparts. Finally, the bottom right panel indicates that almost
all intermediation is done by safe banks, as stated in Corollary IV.8. We note that purchases,
sales, and intermediation volumes of the safe banks are not uniquely determined and could
be increased without changing the post-trade exposures and trading surplus, as explained
after Theorem IV.4. Nonetheless, the corresponding quantities for the risky banks as well
as the post-trade exposures of all banks are unique in equilibrium. Hence, all curves in the
top left panel and the dotted and dashed curves in the other panels are unique.

Corollary IV.8 makes the assumption that there exist banks with zero default probability,
which is of course violated in practice. Nonetheless, the prediction of Corollary IV.8 that
banks with small default probabilities are the main intermediaries is supported by data from
the bilateral CDS market, as shown in Figure 2. We describe the data set and the procedure
followed to generate the plot of the intermediation volume in Appendix B. We define the main
intermediaries to be those banks that provide at least 5 percent of the total intermediation
volume in the market. Using this definition, we obtain 5 intermediaries among the 81 banks
in the data set. The selection of these 5 banks is not sensitive to the chosen threshold on
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the intermediation volume. As it appears from Figure 2, most of the traded CDS volume is
either between two of the main intermediaries or between a main intermediary and another
bank. The volume of traded CDS contracts between the main intermediaries is high, but
each main intermediary has large trading positions with only a few, and not all, other main
intermediaries. There is high heterogeneity in the volume of traded CDS contracts for the
banks that are not main intermediaries: some banks (primarily those with very small initial
exposures) trade a very small volume of CDSs, while others are either large buyers or large
sellers of CDSs. Figure 3 further highlights that the main intermediaries are the banks with
medium initial exposures and low default probabilities, relative to all banks in the data set.
The relation between intermediaries and initial exposures is consistent with a theoretical
finding of Atkeson et al. (2015) (see Proposition 2 therein), where the economy consists only
of safe banks and the trade size limit is binding.

Figure 3: Main intermediaries. Intermediation volume as a function of initial exposures,
measured in trillion USD ($T), and default probabilities: each point denotes a bank. The
higher the default probability of a bank, the darker the color of the corresponding point.

V Private versus Socially Optimal Default Probabili-

ties

In the previous section, we discussed how banks share payoff risk among themselves. An
alternative risk management strategy for a bank is to manage its default probability pi. As
banks are regulated financial institutions, there exists a given maximal value p̄i that bank i’s
default probability can take. In order to become a more attractive trading counterparty in
the OTC market, bank i can decrease its default probability to pi ∈ [0, p̄i] at a cost Ci(pi).
Depending on its initial exposure, each bank i needs to decide before trading starts how
much it is willing to pay to reduce its default probability, i.e., which value of pi to choose.
These decisions also take into consideration the subsequent trading transactions that banks
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will establish and that are uniquely specified in terms of bilateral prices and quantities (see
Theorem IV.4 for details).

We assume that Ci : [0, p̄i] → [0,∞) is a decreasing, convex, and continuous function.
Let pi ∈ [0, p̄i] be the decision of bank i. Theorem IV.4 yields that for given p1, . . . , pM ,
there exists a market equilibrium (γi,n)i,n=1,...,M . As we focus in this section on the choice of
p1, . . . , pM , we write

(9) xi(p1, . . . , pM) := ωi +
∑
n6=i

γi,nRi,n − Γi(γi)

to denote bank i’s per-capita certainty equivalent (1) in a market equilibrium.

Lemma V.1. The value of xi(p1, . . . , pM) is uniquely determined.

Because each bank chooses individually its default probability, we are looking for a Nash
equilibrium.

Definition V.2. A choice of p1 ∈ [0, p̄1], . . . , pM ∈ [0, p̄M ] is an equilibrium if

xi(p1, . . . , pM)− Ci(pi) ≥ xi
(
p1, . . . , pi−1, p̃i, pi+1, . . . , pM

)
− Ci(p̃i)

for all i and p̃i ∈ [0, p̄i].

Proposition V.3. If the cost function Ci is such that

(10) arg max
pi∈[0,p̄i]

(
xi(p1, . . . , pM)− Ci(pi)

)
is a convex set for each i, then there exists an equilibrium p1, . . . , pM .

The assumption that the set specified by (10) is convex set means that if p̂i and p∗i are
maximizers of xi(p1, . . . , pM)−Ci(pi), then so is any convex combination of p̂i and p∗i . Note
that, in particular, this assumption is satisfied in the typical case when there is a unique
maximizer. The convexity assumption also covers the case where the cost function Ci(pi)
and the certainty equivalent xi(p1, . . . , pM) have the same slope (up to a constant) for values
of default probabilities around a maximum.

We consider a social planner who chooses the banks’ default probabilities p1, . . . , pM
and the quantities of traded contracts (γi,n)i,n=1,...,M so to maximize the banks’ aggregate
certainty equivalent minus the risk management costs. The planner maximizes the objective
function

(11)
M∑
i=1

xi(p1, . . . , pM)−
M∑
i=1

Ci(pi)

over p1 ∈ [0, p̄1], . . . , pM ∈ [0, p̄M ] and (γi,n)i,n=1,...,M subject to γi,n = −γn,i and−k ≤ γi,n ≤ k,
where

•
∑M

i=1 xi(p1, . . . , pM) is the aggregate certainty equivalent of the banks with default
probabilities p1, . . . , pM .

•
∑M

i=1 Ci(pi) is the sum of the costs incurred to reduce the default probabilities to the
levels p1, . . . , pM .

19



It follows from γi,n = −γn,i and Ri,n = Rn,i that
∑M

i=1 xi(p1, . . . , pM) =
∑M

i=1 ωi−
∑M

i=1 Γi(γi).
Therefore, the social planner’s optimization problem (11) is equivalent to minimize

M∑
i=1

Γi(γi) +
M∑
i=1

Ci(pi)

over the same optimization variables p1 ∈ [0, p̄1], . . . , pM ∈ [0, p̄M ] and (γi,n)i,n=1,...,M . Hence,
the social planner minimizes the aggregate cost of post-trade payoff risk and of risk manage-
ment through reduction of default probabilities.

Proposition V.4. The social planner’s optimization problem has a solution.

We will next analyze when and how the individually optimal banks’ risk management
choices differ from the social optimum. We compare for each bank i the marginal social
value (MSVi) and marginal private value (MPVi) of risk management, which are given by

MSVi(p) = −
M∑
n=1

∂xn
∂pi

(p) + C ′i(pi) =
∂Γi

∂pi
(γi, p) +

∑
n6=i

∂Γn

∂pi
(γn, p) + C ′i(pi),

MPVi(p) = −∂xi
∂pi

(p) + C ′i(pi) =
∂Γi

∂pi
(γi, p)−

∑
n6=i

γi,n
∂Ri,n

∂pi
(γi, γn, p) + C ′i(pi).

Note that γ is fixed in the computation of the partial derivatives. This is justified by the
envelop theorem in the form of Corollary 4 in Milgrom and Segal (2002), which we can
directly apply because, by our Theorem IV.4, γ is unique for risky banks. In words, MSVi
is the change in the social planner’s value given by (11) when bank i reduces its default
probability by an infinitesimal amount.7 To compute MPVi, we take the negative of the
pi-partial derivative of bank i’s certainty equivalent (9) minus its risk management costs.
When MSVi and MPVi differ, an externality in the amount of MSVi(p)−MPVi(p) arises.

Theorem V.5. The externality imposed by bank i on the system equals

(12) MSVi(p)−MPVi(p) =
∂Si
∂pi

(p) + k(1− ν)
∂Ti
∂pi

(p),

where

Si(p) :=
∑
n6=i

(
γi,nΓnyi(γn, p) + Γn(γn, p)

)
, Ti(p) :=

∑
n6=i

(
Γiyn(γi, p)− Γnyi(γn, p)

)
.

For small enough pi and large enough q, we have ∂Si
∂pi

(p) < 0 and ∂Ti
∂pi

(p) ≥ 0 with strict
inequality when the trade size limit is binding for at least one bilateral trading relationship.

MPVi and MSVi have two terms in common, namely, the pi-partial derivatives of the
bank i’s valuation Γi and risk management costs Ci. These terms cancel out when computing

7We take the negative of the pi-partial derivative of (11) because increased risk management results in a
reduction of pi.
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the difference between MPVi and MSVi. However, MPVi and MSVi account differently for
the effect of a change in pi on other banks. Such a change contributes directly to MSVi
through the valuations of the other banks, whereas it is reflected only indirectly in MPVi
through the revenues that bank i receives from other banks. Bank i’s risk management im-
pacts other banks’ revenues in a different way than their valuations, leading to an externality.
There are two primary causes of such an externality, which are mathematically captured by
the two terms on the right-hand side of (12):

1. The first cause is that the revenues reflected in MPVi depend on (the derivative of)
the marginal valuations of the buyer banks, whereas MSVi accounts for (the derivative
of) the banks’ total valuations. Marginal valuations determine the individual traders’
decisions, while the total valuation for a bank depends on the cumulative valuation
of its continuum of traders. The marginal and total valuations depend differently on
pi, and their difference is captured by the term ∂Si

∂pi
(p), which we call the coalitional

externality. It arises because traders are organized in large coalitions, namely banks,
and changes in a bank’s default probability affect the fulfillment of all contracts that
traders of a specific bank purchased from the traders of this counterparty bank.

2. The second cause is that the revenues of a protection selling bank generally differ from
the marginal valuations of a buyer bank, because the sellers may appropriate part of
the trade surplus. They do not coincide if the buyer does not have full bargaining
power (ν 6= 1) and there is a trade surplus, which occurs when the trade size limit is
binding. This difference is reflected in the term k(1− ν)∂Ti

∂pi
(p), which we call frictional

externality. It stems from the friction due to trade size limits, and it vanishes when
the trade size limit is big enough because then Ti = 0.

It is worth noting that two types of externalities arise in our model, while Atkeson et al.
(2015) only observe the frictional externality in their analysis of banks’ entry decisions to
an OTC market. In both models, inefficiencies are due to imperfect sharing of payoff risk
in the OTC market. In Atkeson et al. (2015), this arises because the friction from the trade
size limit impairs the risk sharing capacity of the market. In our model, in addition to the
trade size limit friction, another important reason for imperfect sharing of payoff risk is the
presence of counterparty risk. Therefore, we have an additional externality, which does not
vanish if the trade size limit is large and not binding. The presence of this externality is also
related to the finite number of large banks in our framework, unlike Atkeson et al. (2015)
who study a continuum of small banks.

We next discuss the sensitivities of Si and Ti on pi. Typically, we would expect a non-
negative coalitional externality ∂Si

∂pi
(p) ≥ 0, i.e., a change in pi would have a smaller impact

on bank i’s MPVi than on the other banks’ total valuations which contribute to the term
MSVi. This is because MPVi depends on the other banks only indirectly through the rev-
enues that bank i receives from them. Interestingly, for small enough pi and large enough
q, the theorem states that the coalitional externality is negative. This may be explained in
the following way. Because traders are organized in coalitions, changes in a counterparty’s
default probability affects all traders of the protection purchasing bank. However, the degree
to which they are affected depends on how much the traders have purchased collectively: the
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bigger the amount purchased from a specific bank, the higher is the counterparty concentra-
tion risk, and thus the marginal benefit from additional protection purchases will diminish.
Correspondingly, a change in the counterparty’s default probability affect the valuations dif-
ferently depending on how much protection has already been purchased, causing a wedge
between marginal and total valuations. We show in the proof of Theorem V.5 that, for small
enough pi and large enough q, the marginal valuation is more sensitive to changes in a bank’s
default probability than the total valuation. This leads to a negative coalitional externality
because marginal and total valuations affect MPVi and MSVi, respectively. By contrast,
the frictional externality k(1 − ν)∂Ti

∂pi
(p) is positive, because Ti corresponds to the negative

of the trade surplus, which gets smaller when pi increases.
We can see from (12) that the externality imposed by bank i on the system depends

linearly on the seller’s bargaining power ν. As ν increases, the size of the externality
MSVi(p) − MPVi(p) decreases, till becoming negative for ν = 1. If the externality im-
posed by bank i is negative, it means that the bank chooses a default probability below the
socially optimal level.

VI Conclusion

In this paper, we study the impact of counterparty risk on trading decisions and the
resulting OTC market structure. We also analyze the incentives behind banks’ default
risk management decisions, and their misalignment with the socially optimal outcome. Our
model predicts that banks share their payoff risk less if the counterparty risk in the market is
higher. Negative externalities may arise if protection selling banks are not fairly compensated
for their contribution in reducing the system-wide risk exposure. Our results show that banks
may reduce their default probabilities below what is socially optimal to benefit from higher
fees. These decisions depend on the banks’ initial exposures to an aggregate risk factor and
on the relative bargaining power of the banks’ traders. Intermediaries contribute to social
welfare by alleviating the frictions caused by the trade size limit, and more importantly, by
increasing counterparty risk diversification.

Our framework can be extended along several directions. A first extension is to construct
a model that can capture the dynamic formation of interbank trading relations, taking
counterparty risk into consideration. Secondly, our framework can be generalized to include
a role for the real economy. In such a model extension, banks might have obligations to
the private sector and, additionally, fees charged as the result of a CDS trade may be
used to finance the real economy. A third extension is to compare trading decisions when
market participants have the choice between bilateral OTC trading, which exposes them to
counterparty risk, and centralized trading. In the latter case, the clearinghouse insulates
banks from counterparty risk, but they would be required to additionally pay clearing fees.
A recent work by Dugast, Üslü, and Weill (2019) studies the welfare implications of central
clearing. Their main focus is on the trading capacity and costs of joining the centralized
clearing platform. Our proposed work would complement theirs by accounting for the netting
and counterparty risk reduction benefits of a clearinghouse. It would also be interesting to
analyze counterparty risk in a Walrasian market, where all traders meet together. In such
a model, the search friction disappears but the counterparty risk friction remains, so that
transaction prices are still negotiated bilaterally.
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A Results and their Proofs

This section contains the proofs of our results, which consider the more general case of
arbitrary sizes si for the banks. When the formulation of the statement is different from
that in the case si = 1, we restate the result.

A.A Proof of Lemma IV.1

Using P [D = 1] = q, we compute

Γi(y1, . . . , yM) =
1

η
logE

[
exp

(
ηD
(
ωi +

∑
n6=i

yn
(
1A{

i
1yn>0 + 1A{

n
1yn<0

)))]
=

1

η
log

(
1− q + qE

[
exp

(
ηωi + η

∑
n6=i

yn
(
1A{

i |D=11yn>0 + 1A{
n|D=11yn<0

)))])
=

1

η
log

(
1− q + qeηωiE

[
exp

(
η1A{

i |D=1

∑
n6=i: yn>0

yn

)] ∏
n6=i: yn<0

E
[

exp
(
η1A{

n|D=1yn
)])

.

Using that pi = P [Ai|D = 1], we obtain

Γi(y1, . . . , yM) =
1

η
log

(
1− q + qeηωi

(
(1− pi)eη

∑
n: yn>0 yn + pi

) ∏
n6=i: yn<0

(
(1− pn)eηyn + pn

))
,

which can be brought into the form Γi(y1, . . . , yM) written in the statement of Lemma IV.1.
To show the additional properties of Γi(y1, . . . , yM), we first note that the function Ξ

given by

Ξ(y) =
1

η
log
(
1− q + qeηy

)
is strictly increasing and strictly convex. Indeed, we can calculate

Ξ′(y) =
qeηy

1− q + qeηy
> 0, Ξ′′(y) =

(1− q)qηeηy

(1− q + qeηy)2
> 0.

Next, we consider

f(y, p) =
1

η
log
(
(1− p)eηy + p

)
for p > 0 and calculate

fy(y, p) =
(1− p)eηy

(1− p)eηy + p
> 0,(13)

fyy(y, p) = η
((1− p)eηy + p)((1− p)eηy)− ((1− p)eηy)2

((1− p)eηy + p)2
= η

p(1− p)eηy

((1− p)eηy + p)2
> 0.

These inequalities show that the function y 7→ f(y, p) is strictly increasing and strictly convex
for p > 0. Because f(y, p) either equals y (if p = 0) or is strictly increasing and strictly convex
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(if p > 0), we see that Γi(y1, . . . , yM) is strictly increasing, and the statements on convexity
of Γi(y1, . . . , yM) now follow from the fact that convexity is maintained under sums and
compositions with a convex, nondecreasing function.

Finally, to prove (3), let y1 < y2, y3 ∈
(
0, y2−y1

2

]
and p1 ≥ p2. We first note that (3) is

equivalent to(
(1− p1)eηy1 + p1

)(
(1− p2)eηy2 + p2

)
>
(
(1− p1)eη(y1+y3) + p1

)(
(1− p2)eη(y2−y3) + p2

)
,

which can be further simplified to

(1− p1)p2eηy1 + (1− p2)p1eηy2 > (1− p1)p2eη(y1+y3) + (1− p2)p1eη(y2−y3).

This inequality follows from

(14) aex1 + bex2 > aex1+x3 + bex2−x3

for all a ≤ b, x1 < x2 and x3 ∈
(
0, x2−x1

2

]
by choosing

a = (1− p1)p2, b = (1− p2)p1, x1 = ηy1, x2 = ηy2, x3 = ηy3,

where we note that p1 ≥ p2, y1 < y2, and y3 ∈
(
0, y2−y1

2

]
imply a ≤ b, x1 < x2, and

x3 ∈
(
0, x2−x1

2

]
. The inequality (14) can be seen from the convexity of the exponential

function or checked directly by calculating the partial derivative

∂

∂z
(aex1+z + bex2−z) = aex1+z − bex2−z ≤ bex1+z − bex2−z < 0

for all z ∈
[
0, x2−x1

2

)
.

A.B Results of Section IV.B and their Proofs

Theorem A.1 (Theorem IV.3). Feasible contracts (γi,n)i,n=1,...,M are a market equilibrium
if and only if they solve the optimization problem

(15) minimize
M∑
i=1

siΓ
i(γis) over γ subject to γi,n = −γn,i and −k ≤ γi,n ≤ k,

where γis := (γi,1s1, . . . , γi,MsM).

Proof. The Lagrangian function corresponding to (15) is

M∑
i=1

siΓ
i(γis)−

M∑
i,n=1

sisnαi,n(γi,n + γn,i)−
M∑

i,n=1

sisnβi,n(k − γi,n)−
M∑

i,n=1

sisnβi,n(k + γi,n).

The optimality conditions are

(16)
Γiyn(γis) = αi,n + αn,i − βi,n + βi,n, β

i,n
≥ 0, βi,n ≥ 0,

β
i,n

(k − γi,n) = 0, βi,n(k + γi,n) = 0.
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All of them are satisfied for

β
n,i

= βi,n =
1

2
max

{
Γiyn(γis)− Γnyi(γns), 0

}
, αi,n + αn,i =

1

2

(
Γiyn(γis) + Γnyi(γns)

)
if γ satisfies (4) and γi,n = −γn,i. This means that if γ is a market equilibrium, it is a
solution to (15). Conversely, if γ is a solution to (15), then (16) implies

Γiyn(γis)(k
2 − γ2

i,n) = (αi,n + αn,i)(k
2 − γ2

i,n) = (αn,i + αi,n)(k2 − γ2
n,i) = Γnyi(γns)(k

2 − γ2
n,i).

This equation shows that if γi,n 6= ±k, we need Γiyn(γis) = Γnyi(γns). In turn, Γiyn(γis) 6=
Γnyi(γns) implies γi,n = ±k. Consider the case Γiyn(γis) < Γnyi(γns) and assume γi,n = −k,

then γn,i = k; it follows from (16) that β
i,n

= 0, βn,i = 0 and

Γiyn(γis) = αi,n + αn,i + βi,n ≥ αi,n + αn,i ≥ αn,i + αi,n − βi,n = Γnyi(γns),

which is a contradiction to Γiyn(γis) < Γnyi(γns). Therefore, Γiyn(γis) < Γnyi(γns) implies
γi,n = k. By symmetry, Γiyn(γis) > Γnyi(γns) implies γi,n = −k. This shows that a solution
to (15) satisfies (4) and thus is a market equilibrium.

Theorem A.2 (Theorem IV.4). There exists a market equilibrium (γi,n)i,n=1,...,M . The γi,n
are unique for pn > 0 and γi,n < 0, or pi > 0 and γi,n > 0. For every i, the value is the same
for
∑
γi,nsn where the sum is over n such that pn = 0 and γi,n < 0, or pi = 0 and γi,n > 0.

In particular, Γ(γns) are uniquely determined for a market equilibrium (γi,n)i,n=1,...,M .

Proof. We prove first the existence of a market equilibrium. To this end, we will apply
Kakutani’s fixed-point theorem (see, for example, Corollary 15.3 in Border (1985)). We fix
k, set S = [−k, k]M(M−1)/2, and define a mapping Φ : S → 2S as follows, where 2S denotes
the power set of S, i.e., the set of all subsets of S. Each element in S corresponds to the
lower triangular matrix of (γi,n)i,n=1,...,M , where we set the diagonal elements γii equal to
zero and the upper diagonal elements are defined by γi,n = −γn,i. Let Φ(γ) consist of all
(γ̃i,n)i,n=1,...,M that satisfy γ̃i,n = −γ̃n,i, −k ≤ γ̃i,n ≤ k, with the further restriction in the
following three cases

γ̃i,n


= k if Γiyn(γis) < Γnyi(γns),

= γi,n if Γiyn(γis) = Γnyi(γns),

= 0 if Γiyn(γi) or Γnyi(γn) do not exist,

= −k if Γiyn(γis) > Γnyi(γns).

Note that these “if” conditions depend on γ and not on γ̃. We can see that Φ(γ) is nonempty,
compact and convex. To show that Φ has a closed graph, consider a sequence

(
γ(m), γ̃(m)

)
converging to (γ, γ̃) with γ̃(m) ∈ Φ

(
γ(m)

)
for all m. Because γ̃(m) → γ̃ and γ̃(m) ∈ Φ

(
γ(m)

)
,

we have γ̃i,n = −γ̃n,i and −k ≤ γ̃i,n ≤ k. Moreover, if Γiyn(γis) < Γnyi(γns), we have

Γiyn
(
γ

(m)
i s

)
< Γnyi

(
γ

(m)
n s

)
for all m big enough, as γ(m) → γ. This yields γ̃

(m)
i,n = k for all m

big enough; hence, γ̃i,n = k. Similarly, Γiyn(γis) > Γnyi(γns) implies γ̃i,n = −k. The condition
is also satisfied for the last case Γiyn(γis) = Γnyi(γns), as we have already shown −k ≤ γ̃i,n ≤ k.

25



Therefore, there exists γ with Φ(γ) = γ by Kakutani’s fixed-point theorem; hence, there is
a market equilibrium.

To prove uniqueness, we first apply Theorem IV.3, which says that finding a market
equilibrium is equivalent to solving (15). We then write the objective function in (15) as

M∑
i=1

siΓ
i(γis) =

M∑
i=1

siΞ

(
ωi + f

( ∑
n:γi,nsn≥0

γi,nsn, pi

)
+

∑
n:γi,nsn<0

f(γi,nsn, pn)

)
,

where the function Ξ is given in Lemma IV.1. The uniqueness statements now follow from
the statements on convexity in Lemma IV.1.

A.C Results of Section IV.C and their Proofs

Proposition A.3 (Proposition IV.5). Assume that at least one of the following conditions
holds:

(a)
∑

`:γi,`≥0 γi,`s` ≥ si max` γi,`, or

(b)
∑

`:γj,`≥0 γj,`s` ≥ sj max` γj,`.

We then have the following relations between initial and post-trade exposures:

1. If ωi ≥ ωj, pi ≤ pj, and si ≤ sj, then Ωi ≥ Ωj.

2. If ωi > ωj, pi ≥ pj, and si ≥ sj, then ωi − ωj > Ωi − Ωj.

Proof. Under conditional independence and for general sizes, the post-trade exposure is given
by

Ωi = ωi + f

( ∑
n:γi,n≥0

γi,nsn, pi

)
+

∑
n:γi,n<0

f(γi,nsn, pn).

We split the proof in several steps, starting with some preparation.
Claim 1a. For two banks i and j, we have

(C1a) Ωj > Ωi =⇒ γj,i ≤ 0.

Proof of Claim 1a. From Lemma IV.1, it follows that

Γjyi(γjs) =

{
Ξ′(Ωj)ηfy

(∑
n:γj,n≥0 γj,nsn, pj

)
if γj,i > 0,

Ξ′(Ωj)ηfy(γj,isi, pi) if γj,i < 0,

with an analogous expression for Γiyj(γis). If γj,i > 0 (and thus γi,j < 0), we obtain

Γjyi(γjs) = Ξ′(Ωj)ηfy

( ∑
n:γj,n≥0

γj,nsn, pj

)

> Ξ′(Ωi)ηfy

( ∑
n:γj,n≥0

γj,nsn, pj

)
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≥ Ξ′(Ωi)ηfy(γi,jsj, pj)

= Γiyj(γis)

by strict convexity of Ξ and convexity of f(., pj) from Lemma IV.1. However, this implies
γj,i = −k by (4) in contradiction to the assumption γj,i > 0.

Claim 1b. For two banks i and j, we have

(C1b) Ωj > Ωi =⇒ γj,n ≤ γi,n or γj,n = −k for all n with Ωn < Ωj.

Proof of Claim 1b. We distinguish the following three cases:

• If Ωn ∈ (Ωi,Ωj), we have γj,n ≤ 0 and γi,n ≥ 0 by (C1a) so that γj,n ≤ γi,n holds.

• If Ωn < Ωi, we have γj,n ≤ 0 and γi,n ≤ 0 by (C1a); thus,

Γjyn(γjs) = Ξ′(Ωj)ηfy(γj,nsn, pn),(17)

Γiyn(γis) = Ξ′(Ωi)ηfy(γi,nsn, pn),(18)

Γnyj(γns) = Ξ′(Ωn)ηfy

( ∑
`:γn,`≥0

γn,`s`, pn

)
= Γnyi(γns).(19)

Assume that γj,n 6= −k, which implies

Γjyn(γjs) = Γnyj(γns) = Γnyi(γns) ≤ Γiyn(γis)

by (4) and (19); thus,

1 <
Ξ′(Ωj)

Ξ′(Ωi)
≤ fy(γi,nsn, pn)

fy(γj,nsn, pn)

by (17) and (18). This is only possible if γj,n < γi,n.

• If Ωn = Ωi, we argue as in the first item if γi,n ≥ 0, or as in the second item if γi,n < 0.

Note that (C1b) holds regardless of the default probabilities of banks i and j. This is because
we are considering banks n with smaller post-trade exposures; thus, banks that are sellers
of protection by (C1a) so that the same counterparty risk pn applies to trades with i and j.

Claim 1c. For two banks i and j, we have
(C1c)

Ωj > Ωi =⇒
fy
(∑

`:γj,`≥0 γj,`s`, pj
)

fy
(∑

`:γi,`≥0 γi,`s`, pi
) < fy(γn,jsj, pj)

fy(γn,isi, pi)
or γn,i = −k for all n with Ωn > Ωj.

Proof of Claim 1c. Ωn > Ωj implies γj,n ≥ 0 by (C1a), and thus Γjyn(γjs) ≤ Γnyj(γns). If

γn,i 6= −k, it follows that Γiyn(γis) ≥ Γnyi(γns); hence,

Γnyj(γns) ≥ Γjyn(γjs) = Ξ′(Ωj)ηfy

( ∑
`:γj,`≥0

γj,`s`, pj

)
> Ξ′(Ωi)ηfy

( ∑
`:γj,`≥0

γj,`s`, pj

)
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= Γiyn(γis)
fy
(∑

`:γj,`≥0 γj,`s`, pj
)

fy
(∑

`:γi,`≥0 γi,`s`, pi
) ≥ Γnyi(γns)

fy
(∑

`:γj,`≥0 γj,`s`, pj
)

fy
(∑

`:γi,`≥0 γi,`s`, pi
) ,

which shows (C1c), as Γnyi(γns) = Ξ′(Ωn)ηfy(γn,isi, pi) and Γnyj(γns) = Ξ′(Ωn)ηfy(γn,jsj, pj).
Claim 1d. For three banks i, j, and n, we have

(C1d) Ωi < Ωj = Ωn =⇒ γj,n ≤ γi,n or (C1c) holds.

Proof of Claim 1d. If γj,n ≤ 0, we obtain γj,n ≤ γi,n, as γi,n ≥ 0 by (C1a). If γj,n > 0, we
can argue as (C1c).

We can summarize (C1a)–(C1d) as

(C1) Ωj > Ωi =⇒

{
γj,n ≤ γi,n for all γj,n ≤ 0,

(C1c) holds for all γj,n > 0.

Claim 2. For two banks i and j, we have

(C2) ωi ≥ ωj, pj ≥ pi, sj ≥ si, and (a), (b) or (c) of the proposition holds =⇒ Ωi ≥ Ωj.

Proof of Claim 2. We prove the claim by contradiction and assume that Ωi < Ωj. This
implies γj,n ≤ γi,n for all γj,n ≤ 0 by (C1); hence,

f

( ∑
`:γj,`≥0

γj,`s`, pj

)
= Ωj − ωj −

∑
n:γj,n<0

f(γj,nsn, pn)

> Ωi − ωi −
∑

n:γi,n<0

f(γi,nsn, pn)

= f

( ∑
`:γi,`≥0

γi,`s`, pi

)

≥ f

( ∑
`:γi,`≥0

γi,`s`, pj

)
,

using (8), pj ≥ pi, and that f(y, p) is decreasing in p for y ≥ 0 because, using definition (2),

(20) fp(y, p) =
∂

∂p

1

η
log
(
(1− p)eηy + p

)
=

−eηy + 1

η((1− p)eηy + p)
< 0 for y ≥ 0.

This yields
∑

`:γj,`≥0 γj,`s` >
∑

`:γi,`≥0 γi,`s`, as y 7→ f(y, pj) is strictly increasing by Lemma IV.1.
This implies that there exists n with γj,n > γi,n ≥ 0; thus,

(21) γn,j < γn,i ≤ 0 and γn,jsj < γn,isi

because sj ≥ si by assumption. Moreover, γj,n > 0 implies Ωn ≥ Ωj by (C1a). On the other
hand, Ωi < Ωj implies by (C1c) and (C1d) that γn,i = −k (which stands in contradiction to
(21) because γn,j ≥ −k) or γj,n ≤ γi,n (also a contradiction to (21)) or

(22)
fy
(∑

`:γi,`≥0 γi,`s`, pi
)

fy(γn,isi, pi)
>
fy
(∑

`:γj,`≥0 γj,`s`, pj
)

fy(γn,jsj, pj)
.
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We will show that (22) contradicts

(23) pj ≥ pi,
∑

`:γj,`≥0

γj,`s` >
∑

`:γi,`≥0

γi,`s` and γn,jsj < γn,isi

if one of the conditions (a)–(c) of the proposition holds.

As an auxiliary step, we next analyze the function p 7→ fy(y1,p)

fy(y2,p)
and show that

(24)
∂

∂p

fy(y1, p)

fy(y2, p)
≥ 0 for all p ∈ [0, 1) and y1 ≥ −y2 ≥ 0.

To show this, first note that if p = 0, then fy(y1, p) = fy(y2, p) = 1 so that ∂
∂p

fy(y1,p)

fy(y2,p)
= 0.

Now assume that p > 0. We use (13) and

fyp(y, p) =
∂

∂p

(1− p)eηy

(1− p)eηy + p
=

((1− p)eηy + p)(−eηy)− ((1− p)eηy)(−eηy + 1)

((1− p)eηy + p)2

=
−eηy

((1− p)eηy + p)2

to deduce that

∂

∂p

fy(y1, p)

fy(y2, p)
=
fy(y2, p)fyp(y1, p)− fyp(y2, p)fy(y1, p)

(fy(y2, p))2

=

(1−p)eηy2
(1−p)eηy2+p

−eηy1
((1−p)eηy1+p)2

− −eηy2
((1−p)eηy2+p)2

(1−p)eηy1
(1−p)eηy1+p

(fy(y2, p))2

=
−eηy1

(
(1− p)eηy2

)(
(1− p)eηy2 + p

)
((1− p)eηy1 + p)2((1− p)eηy2 + p)2(fy(y2, p))2

−
−eηy2

(
(1− p)eηy1

)(
(1− p)eηy1 + p

)
((1− p)eηy1 + p)2((1− p)eηy2 + p)2(fy(y2, p))2

=
eη(y1+y2)

((1− p)eηy1 + p)2((1− p)eηy2 + p)2(fy(y2, p))2

×
(

(1− p)eηy1
(
1− p+ pe−ηy1

)
−
(
(1− p)eηy2

)(
1− p+ pe−ηy2

))
.

From this, we obtain ∂
∂p

fy(y1,p)

fy(y2,p)
≥ 0 because

(1− p)eηy1
(
1− p+ pe−ηy1

)
−
(
(1− p)eηy2

)(
1− p+ pe−ηy2

)
= (1− p)2

(
eηy1 − eηy2

)
≥ 0,

using y1 ≥ y2. This concludes the proof of (24).
We now consider each of the two conditions (a) and (b) of the proposition.
Condition (a). We apply (24) choosing p = pi, y1 =

∑
`:γi,`≥0 γi,`s`, and y2 = γn,isi. This

implies

fy
(∑

`:γi,`≥0 γi,`s`, pi
)

fy(γn,isi, pi)
≤
fy
(∑

`:γi,`≥0 γi,`s`, pj
)

fy(γn,isi, pj)
≤
fy
(∑

`:γj,`≥0 γj,`s`, pj
)

fy(γn,jsj, pj)
,
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where we use (23) and the convexity of y 7→ f(y, pj) for the second inequality.
Condition (b). This time, we apply (24) choosing p = pj, y1 =

∑
`:γj,`≥0 γj,`s`, and

y2 = γn,jsj. We obtain

fy
(∑

`:γj,`≥0 γj,`s`, pj
)

fy(γn,jsj, pj)
≥
fy
(∑

`:γj,`≥0 γj,`s`, pi
)

fy(γn,jsj, pi)
≥
fy
(∑

`:γi,`≥0 γi,`s`, pi
)

fy(γn,isi, pi)
,

where we again use (23) and the convexity of y 7→ f(y, pi) for the second inequality.
Under each of the two conditions (a) and (b), we obtain a contradiction to (22). Hence,

Ωi < Ωj cannot hold, which concludes the proof of (C2).
Claim 3. For two banks i and j, we have

ωi > ωj, pj ≤ pi, sj ≤ si =⇒ Ωi − ωi < Ωj − ωj.

Proof of Claim 3. We proceed similarly to the proof of (C2). We prove the claim by
contradiction and assume that Ωi − ωi ≥ Ωj − ωj. This implies Ωi > Ωj; hence, γi,n ≤ γj,n
for all γi,n ≤ 0 by (C1) and γi,j ≤ 0 ≤ γj,i by (C1a), and thus

f

( ∑
`:γj,`≥0

γj,`s`, pj

)
= Ωj − ωj −

∑
n:γj,n<0

f(γj,nsn, pn)

< Ωi − ωi −
∑

n:γi,n<0

f(γi,nsn, pn)

= f

( ∑
`:γi,`≥0

γi,`s`, pi

)

≤ f

( ∑
`:γi,`≥0

γi,`s`, pj

)

using pj ≤ pi and (20), which yields
∑

`:γj,`≥0 γj,`s` <
∑

`:γi,`≥0 γi,`s` because y 7→ f(y, pj) is
strictly increasing by Lemma IV.1. We conclude the proof in the same way as the proof of
(C2) after (21), with i and j interchanged.

Theorem A.4 (Theorem IV.6). Assume that the trade size limit is not binding and that
there are at least two safe banks. Then

1. There exists the following relation between banks’ creditworthiness, initial exposures
and post-trade exposures:

(a) All safe banks have the same post-trade exposure, say, Ω̄.

(b) Risky banks with initial exposure above some level α also have the same post-trade
exposure Ω̄. The level α is greater than Ω̄ and depends only on the distribution of
initial exposures and sizes, but not on the banks’ default probabilities.

(c) Risky banks with initial exposure below α will have post-trade exposures strictly
smaller than Ω̄.
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2. Risky banks with initial exposure above α trade as follows:

(a) They do not trade between each other.

(b) They do not sell protection.

(c) Their purchases depend only on their initial exposure, but not on their default
probabilities.

3. Risky banks with initial exposure below α trade as follows:

(a) Any two risky banks i and n with initial exposure below α do not trade between
each other if their exposures Ω̃i and Ω̃n after trading with other banks but before
trading between themselves satisfy Ω̃i ≤ Ω̃n and

(25)
Ξ′(Ω̃n)

Ξ′(Ω̃i)
≤
fy
(∑

` 6=n:γi,`≥0 γi,`s`, pi
)

1− pi
.

(b) They do not purchase protection from safe banks or risky banks with initial expo-
sures above α.

(c) If all banks have the same size, then they sell the same amount of protection to
each safe bank and risky bank with initial exposure above α.

Proof. To prove the first part, we define k̄1 by

(26) k̄1 = inf
{
k > 0 : Ωi = Ωj for all i, j with pi = pj = 0

}
.

We can prove that 0 < k̄1 <∞ and that the infimum in (26) is attained along the same lines
as on page 2273 of Atkeson et al. (2015), restricting their arguments to the safe banks. We
choose k̄ as the smallest number k ≥ k̄1 such that

(27) Ωi ≤ Ωj

for all i, j with pi > 0 and pj = 0. We next show that such a finite k̄ exists. If (27) holds for
k = k̄1, we set k̄ = k̄1. Moreover, (27) always holds for k big enough. To see this, let i be
such that pi > 0 and, working towards a contradiction, assume that

(28) Ωi > Ωj

for some j with pj = 0. From (C1a) and (C1) in the proof of Proposition IV.5 with pj = 0,
it follows that γi,j ≤ 0 and γi,n ≤ γj,n for all n; hence,

Γjyi(γjs) = Ξ′(Ωj)ηfy

( ∑
n:γj,n≥0

γj,nsn, pj

)
= Ξ′(Ωj)η

< Ξ′(Ωi)η = Ξ′(Ωi)ηfy(γi,jsj, pj) = Γiyj(γis)
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using that fy(y, pj) = 1 because pj = 0, Ξ is strictly increasing and strictly convex, and
Ωi > Ωj. Then γi,j = −k follows from Γjyi(γjs) < Γiyj(γis) by (4), and thus

Ωj = ωj + f

( ∑
n:γj,n≥0

γj,nsn, pj

)
+

∑
n:γj,n<0

f(γj,nsn, pn)

≥ ksi + ωj + f

( ∑
n:γi,n≥0

γi,nsn, pi

)
+

∑
n:γi,n<0

f(γi,nsn, pn)

= ksi + ωj − ωi + Ωi.

However, for k ≥ (ωi − ωj)/si, this gives Ωj ≥ Ωi in contradiction to (28). Hence, we have
that (27) holds for k big enough. By a compactness argument similar to page 2273 of Atkeson
et al. (2015), we deduce that (27) holds for k = k̄. By definition of k̄, for k < k̄, there exist
i and j with pj = 0 such that Ωi > Ωj.

We now consider k ≥ k̄ and

β(p, s) = max
i:pi=p,si=s

Ωi, ī(p, s) =

arg max
i:pi=p,si=s

Ωi if β(p, s) = Ωj for j with pj = 0,

∅ otherwise.

δ(p, s) = min
i∈ī(p,s)

ωi, δ(p, s) = max
{i:pi=p,si=s}\̄i(p,s)

ωi

for p ∈ {p1, . . . , pM} and s ∈ {s1, . . . , sM} where the minimum (and maximum) over an
empty set equals +∞ and −∞ by the usual convention. Several pj and sj for different j can
take the same values, and thus ī(p, s) can be a set with several entries because the maximum
does not need to be attained at a unique i. We can choose a function ᾱ : (0, 1]×[0, 1]→ [0,∞)
for all s such that δ(p, s) < ᾱ(p, s) ≤ δ(p, s) for all p ∈ {p1, . . . , pM} and s ∈ {s1, . . . , sM}.
Note that ᾱ(p, s) may depend here on both arguments p and s, but in the next paragraph,
we will show that ᾱ can be chosen independently of p. From ᾱ(p, s) ≤ δ(p, s), it follows that
A(ᾱ) defined by

A(ᾱ) = {i : ωi ≥ ᾱ(pi, si) or pi = 0}
contains all indices i with Ωi = Ωj for j with pj = 0. To show that A(ᾱ) contains only such
indices i, assume that there exists i ∈ A(ᾱ) with Ωi < Ωj for j with pj = 0. This implies

ωi ≥ ᾱ(pi, si) > δ(pi, si);

hence, ωi > ω` for all ω` with Ω` < Ωj, which contradicts Ωi < Ωj. Therefore, all banks
i ∈ A(ᾱ) have the same post-trade exposure Ωi while banks i /∈ A(ᾱ) have a strictly smaller
post-trade exposure. Thus, we can set Ω̄ = Ωi for some i ∈ A(ᾱ).

We next show that ᾱ can be chosen independently of p, consider k ≥ k̄ and i with pi > 0
and Ωi = Ωj for j with pj = 0. Because k ≥ k̄, it follows from (27) that Ωi ≥ Ω` for all `.
In the case Ωi > Ω`, we obtain γi,` ≤ 0 by (C1a). In the case Ωi = Ω`, we argue similarly
to the proof of (C1a) to show γi,` ≤ 0. Indeed, to derive a contradiction, we assume that
γi,` > 0 and Ωi = Ω`, which implies

Γiy`(γis) = Ξ′(Ωi)ηfy

( ∑
n:γi,n≥0

γi,nsn, pi

)
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= Ξ′(Ω`)ηfy

( ∑
n:γi,n≥0

γi,nsn, pi

)
> Ξ′(Ω`)ηfy(γ`,isi, pi)

= Γ`yi(γ`s)

by strict convexity of f(., pi) from Lemma IV.1, using that pi > 0. However, this implies
γi,` = −k by (4) in contradiction to the assumption γi,` > 0. Hence, we have γi,` ≤ 0, and
the trading choices of bank i do not depend on pi. Using Lemma IV.1, we then deduce
that, for all `, Γ`(γ`s) does not depend on pi if γi,` ≤ 0, and thus the objective function∑M

`=1 s`Γ
`(γ`s) in (15) does not depend on pi in the optimum. Therefore, ᾱ can be chosen

independently of p. From γi,` ≤ 0 for all `, we also deduce that ᾱ ≥ Ω̄. This concludes the
proof of the first part of the theorem.

To prove part 2a of the theorem, we consider two risky banks i and n with ωi ≥ α and
ωn ≥ α. From part 1b of the theorem, we know that the banks’ post-trade exposures are
Ωi = Ωn = Ω̄. Working towards a contradiction, we assume that γi,n > 0 so that bank i sells
protection to bank n. We then have Γiyn(γi) = Γnyi(γn) by (4), which implies

Ξ′(Ωi)ηfy

( ∑
`:γi,`≥0

γi,`s`, pi

)
= Ξ′(Ωn)ηfy(γn,isn, pi).

This equality cannot hold because Ξ′(Ωi) = Ξ′(Ωn) = Ξ′(Ω̄) and

fy

( ∑
`:γi,`≥0

γi,`s`, pi

)
> fy(γn,isn, pj).

Therefore, we deduce that γi,n > 0 leads to a contradiction and so does γi,n < 0 by symmetry.
Hence, we must have γi,n = 0, proving part 2a. Moreover, any bank i with initial exposure
ωi ≥ α will have a post-trade exposure Ω̄, which is strictly greater than the post-trade
exposure of any risky bank n that has initial exposure ωn < α. Therefore, bank i does not
sell to bank n by (C1a). Similarly to part 2a, we can show that bank i does not sell to
any safe bank, either, establishing part 2b. Consequently, the post-trade exposure of banks
with initial exposure greater than or equal to α does not depend on the banks’ own default
probabilities, and neither does their purchased quantities. This shows part 2c.

For part 3, we consider two banks i and n that satisfy (25) and have exposures Ω̃i ≤ Ω̃n

after trading with other banks, but before trading between themselves. We deduce γi,n ≥ 0
from (C1a). Working towards a contradiction, we assume that γi,n > 0. We then have
Γiyn(γi) = Γnyi(γn) by (4), which implies

Ξ′(Ωi)ηfy

( ∑
`:γi,`≥0

γi,`s`, pi

)
= Ξ′(Ωn)ηfy(γn,isn, pi)

so that

Ξ′(Ωi)ηfy

( ∑
6̀=n:γi,`≥0

γi,`s`, pi

)
< Ξ′(Ωn)ηfy(0, pi) = Ξ′(Ωn)η(1− pi),
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which is a contradiction to

Ξ′(Ωn)

Ξ′(Ωi)
≤
fy
(∑

` 6=n:γi,`≥0 γi,`s`, pi
)

1− pi
.

which is implied by (25), γi,n > 0 and the convexity of Ξ by Lemma IV.1. This shows that
γi,n = 0 so that banks i and n do not trade with each other, proving part 3a. Moreover,
any bank i with initial exposure ωi < α will have a post-trade exposure smaller than Ω̄.
Hence, its post-trade exposure is strictly smaller than that of any bank n that has initial
exposure ωn ≥ α. Therefore, bank i does not buy from bank n by (C1a), proving part 3a.
Finally, we note that safe banks and risky banks with initial exposures above α have all the
same post-trade exposure Ω̄. Therefore, when traders of these banks meet traders of a risky
bank i with initial exposure ωi < α, they all have the same incentive compatibility condition,
namely, either they do not trade or

Ξ′(Ωi)ηfy

( ∑
`:γi,`≥0

γi,`s`, pi

)
= Ξ′(Ω̄)ηfy(γn,isn, pj),

where n refers to any of the safe banks or risky banks with initial exposures above α. If all
sizes sn are equal, each bank n satisfies the same condition, thus each of them buys the same
amount from bank i, as stated in part 3c.

Proof of Corollary IV.8. Part 2b of Theorem A.4 implies that risky banks with initial expo-
sures above α only purchase protection, hence they are not intermediaries.

Next we consider a bank n with initial exposure below α and that satisfies Ξ′(Ω̃n)

Ξ′(Ω̃i)
≤ fy(Γi,pi)

1−pi

for any risky bank i with Ω̃i < Ω̃n, where Γi =
∑

`6=n:siγi,`≥0 γi,` is the sum of contracts sold

by bank i, and Ω̃i and Ω̃n are the exposures of banks i and n, respectively, after trading
with other banks but before trading between themselves. From part 3a of Theorem A.4, we
obtain γi,n = 0 so that bank i and n do not trade between themselves. Moreover, part 3b
of Theorem A.4 implies that bank n does not purchase protection from safe banks or risky
banks with initial exposures above α. Therefore, bank n only sells protection, hence it is not
an intermediary.

A.D Results of Section V and their Proofs

Lemma A.5 (Lemma V.1). For given s1, . . . , sM , the value of xi(p1, . . . , pM) is uniquely
determined.

Proof. For general si, (9) becomes

xi(p1, . . . , pM) = ωi +
∑
n6=i

γi,nsnRi,n − Γi(γis).

Using the definition (5) of Ri,n and (4), we can write

xi(p1, . . . , pM) = ωi − Γi(γis) +
∑

n:γi,n>0

γi,nsn
(
νΓnyi(γns) + (1− ν)Γiyn(γis)

)
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+
∑

n:γi,n<0

γi,nsn
(
νΓiyn(γis) + (1− ν)Γnyi(γns)

)
= ωi − Γi(γis) + ν

∑
n:γi,n>0

γi,nsn
(
Γnyi(γns)− Γiyn(γis)

)
+ (1− ν)

∑
n:γi,n<0

γi,nsn
(
Γnyi(γns)− Γiyn(γis)

)
+
∑
n6=i

γi,nsnΓiyn(γis)

= ωi − Γi(γis) + νk
∑

n:γi,n>0

sn
(
Γnyi(γns)− Γiyn(γis)

)
− (1− ν)k

∑
n:γi,n<0

sn
(
Γnyi(γns)− Γiyn(γis)

)
+

∑
pn > 0, γi,n < 0, or
pi > 0, γi,n > 0

γi,nsnΓiyn(γis)

+ Γ
i
(γis)

∑
pn = 0, γi,n < 0, or
pi = 0, γi,n > 0

γi,nsn,

where

Γ
i
(y):=Γiyn(y) =

qeηωi+ηf(
∑
n:yn≥0 yn,pi)+η

∑
n:yn<0 f(yn,pn)

1− q + qeηωi+ηf(
∑
n:yn≥0 yn,pi)+η

∑
n:yn<0 f(yn,pn)

does not depend on the specific n for all n with pn = 0 and γi,n < 0, or pi = 0 and γi,n > 0.
This means that Γiyn is the same for all banks n that are (I) default-free protection sellers to
i, or (II) protection buyers from i, and i is default-free. All these pairwise transactions do not
bear any counterparty risk. Uniqueness of xi(p1, . . . , pM) now follows from Theorem A.2.

Proof of Proposition V.3. We first note that the mapping pi 7→ xi(p1, . . . , pM) is continu-
ous. This follows from the Envelope theorem using that Γi and its partial derivatives are
differentiable. For p−i = (pj)j 6=i, we define set-valued functions

ri(p−i) = arg max
pi∈[0,p̄i]

(
xi(p1, . . . , pM)− Ci(pi)

)
, r(p) =

(
r1(p−1), . . . , rM(p−M)

)
so that r is a mapping from [0, p̄1] × · · · × [0, p̄m] onto its power set. It has the following
properties:

• [0, p̄1]× · · · × [0, p̄m] is compact, convex, and nonempty.

• For each p, r(p) is nonempty because a continuous function over a compact set has
always a maximizer.

• r(p) is convex by assumption.

• It follows from Berge’s maximum theorem that r(p) has a closed graph.

Thanks to these properties, Kakutani’s fixed point theorem implies that there exists a fixed
point of the mapping r, which means that there exists an equilibrium.

Proof of Proposition V.4. Because the function

M∑
i=1

siΓ
i(γis, p) +

M∑
i=1

siCi(pi)
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is continuous over the compact set [0, p̄1] × · · · × [0, p̄M ], it has a maximum, which shows
the statement of the proposition, using that the social planner’s optimization problem over
(γi,n)i,n=1,...,M conditional on the choice of the default probabilities has a solution by Theo-
rems IV.3 and IV.4.

Theorem A.6 (Theorem V.5). The externality imposed by bank i on the system equals

(29) MSVi(p)−MPVi(p) =
∂Si
∂pi

(p) + k(1− ν)
∂Ti
∂pi

(p),

where
(30)

Si(p) :=
∑
n6=i

sn

(
γi,nΓnyi(γns, p) +

1

si
Γn(γns, p)

)
, Ti(p) :=

∑
n 6=i

sn
(
Γiyn(γis, p)− Γnyi(γns, p)

)
.

For small enough pi and large enough q, we have ∂Si
∂pi

(p) < 0 and ∂Ti
∂pi

(p) ≥ 0 with strict
inequality when the trade size limit is binding for at least one bilateral trading relationship.

Proof. 1. part: proof of (29).
For arbitrary bank sizes, marginal private and social values for bank i are given by

MSVi(p) =
M∑
n=1

sn
∂Γn

∂pi
(γns, p) + siC

′
i(pi),

MPVi(p) = si
∂Γi

∂pi
(γis, p)− si

∑
n 6=i

γi,nsn
∂Ri,n

∂pi
(γis, γns, p) + siC

′
i(pi)

so that its difference is

MSVi(p)−MPVi(p) =
∑
n 6=i

sn

(
siγi,n

∂Ri,n

∂pi
(γis, γns, p) +

∂Γn

∂pi
(γns, p)

)
.

If γi,n ≤ 0, then we obtain from (5) that

Ri,n(γis, γns, p) = νΓiyn(γis, p) + (1− ν)Γnyi(γns, p).

We then have that ∂Γn

∂pi
(γns, p) = 0 and

∂Ri,n
∂pi

(γis, γns, p) = 0 because Γn(γns, p), Γiyn(γis, p),

and Ri,n(γis, γns, p) do not depend on pi for γi,n ≤ 0; if traders of bank i are buying CDSs
from bank n, the default probability of bank i does not affect the terms of trade between
traders of banks i and n. For γi,n > 0, we find

Ri,n(γis, γns, p) = νΓnyi(γns, p) + (1− ν)Γiyn(γis, p)

by (4) and (5) so that

MSVi(p)−MPVi(p) =
∑

n:γi,n>0

sn

(
siγi,n

∂Ri,n

∂pi
(γis, γns, p) +

∂Γn

∂pi
(γns, p)

)
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=
∑

n:γi,n>0

sn

(
siγi,n

∂Γnyi
∂pi

(γns, p) +
∂Γn

∂pi
(γns, p)

)

+
∑

n:γi,n>0

snsiγi,n(1− ν)

(
∂Γiyn
∂pi

(γis, p)−
∂Γnyi
∂pi

(γns, p)

)
=

∂

∂pi

∑
n 6=i

sn
(
siγi,nΓnyi(γns, p) + Γn(γns, p)

)
+

∂

∂pi

∑
n6=i

snsik(1− ν)
(
Γiyn(γis, p)− Γnyi(γns, p)

)
,

using for the last equality that ∂Γn

∂pi
(γns, p) = 0,

∂Γnyi
∂pi

(γns, p) = 0 and
∂Γiyn
∂pi

(γis, p) = 0 for

γi,n ≤ 0 and Γiyn(γis, p) = Γnyi(γns, p) for γi,n ∈ (−k, k). Combining this with (30), we
conclude the proof of (29).

2. part: ∂Si
∂pi

(p) < 0 for small enough pi and large enough q.
We recall from Lemma IV.1 that

Γn(y, p) =
1

η
log
(

1− q + qeηωn+ηf(
∑
`:y`≥0 y`,pn)+η

∑
`:y`<0 f(y`,p`)

)
=

1

η
log
(

1− q + a(1− pi)eηyi + apie
ηryi
)

for yi < 0, where we use the abbreviation a = qeηωn+ηf(
∑
`:y`≥0 y`,pn)+η

∑
` 6=i:y`<0 f(y`,p`) in this

proof. We compute

Γnpi(y, p) =
1

η

−aeηyi + a

1− q + a(1− pi)eηyi + api
=

1

η

1− eηyi

b+ (1− pi)eηyi + pi
,

using the abbreviation b = (1− q)/a. Next, we find

Γnyi,pi(y, p) =
(b+ (1− pi)eηyi + pi)(−eηyi)− (1− eηyi)(1− pi)eηyi

(b+ (1− pi)eηyi + pi)2

=
b(−eηyi)− pieηyi − (1− pi)e2ηyi − (1− pi)eηyi + (1− pi)e2ηyi

(b+ (1− pi)eηyi + pi)2

=
b(−eηyi)− eηyi

(b+ (1− pi)eηyi + pi)2
.(31)

For pi = 0, q = 1 and γi,n > 0, we obtain

∂

∂pi

(
siγi,nΓnyi(γns, p) + Γn(γns, p)

)∣∣∣∣
pi=0,q=1

=
(
siγi,nΓnyi,pi(γns, p) + Γnpi(γns, p)

)∣∣
pi=0,q=1

=

(
siγi,n

b(−e−ηsiγi,n)− e−ηsiγi,n

(b+ (1− pi)e−ηsiγi,n + pi)2
+

1

η

1− e−ηsiγi,n

b+ (1− pi)e−ηsiγi,n + pi

)∣∣∣∣
pi=0,q=1

=
−siγi,n
e−ηsiγi,n

+
1− e−ηsiγi,n

ηe−ηsiγi,n
<
−siγi,n
e−ηsiγi,n

+
ηsiγi,n
ηe−ηsiγi,n

= 0.
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Using that γi,nΓnyi,pi(γns, p) = 0 and Γnpi(γns, p) = 0, we deduce ∂Si
∂pi

(p)
∣∣
pi=0,q=1

< 0 by the

definition (30) of Si(p), which implies ∂Si
∂pi

(p) < 0 for small enough pi and large enough q by
continuity.

3. part: ∂Ti
∂pi

(p) ≥ 0 for small enough pi and large enough q with strict inequality when
the trade size limit is binding for at least one bilateral trading relationship.
We compare Γnyi,pi(γn, p) and Γiyn,pi(γi, p). We first note that Γnyi,pi(γn, p) = 0 and Γiyn,pi(γi, p) =
0 for γn,i = −γi,n ≥ 0. For pi = 0 and q = 1, we obtain from (31) that

Γnyi,pi(y, p)
∣∣
pi=0,q=1

=
−beηyi − eηyi

(b+ (1− pi)eηyi + pi)2

∣∣∣∣
pi=0,q=1

= −e−ηyi

for yi < 0. A calculation similar to (31) gives

Γiyn,pi(y, p)
∣∣
pi=0,q=1

=
−b̃eη

∑
`:y`≥0 y` − eη

∑
`:y`≥0 y`

(b̃+ (1− pi)eη
∑
`:y`≥0 y` + pi)2

∣∣∣∣∣
pi=0,q=1

= −e−η
∑
`:y`≥0 y`

for yn > 0, where b̃ = (1 − q)/
(
qeηωi+η

∑
`:y`<0 f(y`,p`)

)
. Therefore, for γn,i = −γi,n < 0, we

obtain
Γnyi,pi(γns, p)

∣∣
pi=0,q=1

< Γiyn,pi(γis, p)
∣∣
pi=0,q=1

and thus ∂Ti
∂pi

(p) > 0 in this case when k is binding for some bilateral trades.

B Description of Data and Plot Generation Procedure

In this section, we test the empirical predictions of our model conditional on banks’
chosen default probabilities. We use different data sources for the bilateral exposures in the
CDS market, the initial exposures of banks, and their default probabilities.

CDS volume. CDS data come from the confidential Trade Information Warehouse
of the DTCC. We use position data from December 31, 2011. This data set allows for a
post-crisis analysis in which a large part of CDS trades were not yet centrally cleared.8 We
eliminate from our data set the following transactions:

• All swaps with governments, states, or sovereigns as reference entities. We eliminate
these transactions because we expect the default probabilities of corporate reference
entities to have stronger dependence on the risk stemming from banks’ exposures than
on that of sovereign entities.

• All swaps with reference entities that are considered systemically important financial
institutions. By doing so, we avoid problems related to specific wrong-way risk, where
the seller of the transaction also happens to be the reference entity.

• All transactions done by nonbanking institutions. For nonbanking institutions, there is
no consistent way to measure initial exposures, which are needed in our analysis. While

8Distortion on the CDS market due to the “London Whale” (large unauthorized trading activities in
JPMorgan’s Chief Investment Office) occurred only after December 31, 2011 and, thus, does not affect our
analysis.
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we consider only banks, we adjust their initial exposures by including CDS trades done
with nonbanks. This procedure is consistent with our model and means that initial
exposures of banks are determined after they have traded with nonbanks.

• The transactions done by two small private banks for which there were no data available
on their initial exposures. Because these two banks are small players, the conclusions
of our analysis are not affected by their exclusion.

Other than these four restrictions, we do not make any further adjustments. In particular,
our data set also includes settlement locations outside of the United States, which allows
for a more complete coverage of CDS trades and, importantly, guarantees symmetry in the
inclusion of CDS trades (the transactions of both buyers and sellers are accounted for). The
resulting set consists of CDS data for 81 banks.

Initial exposure. For each of these 81 banks, we compute its initial exposure by us-
ing 2011 data from the Federal Financial Institutions Examination Council (FFIEC) form
031 (“call report”), as in Begenau, Piazzesi, and Schneider (2015). We compute the initial
exposure of each bank as the discounted valuation of its securities and loan portfolio, in-
cluding CDSs traded with nonbanks as explained above. For large banks that book their
assets mainly in holding companies, we use securities and loan portfolios at the bank holding
company level. We group the securities and loans into three categories and use a specific
discount factor for each group: less than one year (using the six-month U.S. Treasury rate
to discount), one to five years (using the two-year U.S. Treasury rate to discount), and more
than five years (using the seven-year U.S. Treasury rate to discount). Given the low interest
rate environment in 2011, the precise choice of the discounting date and rate does not have
a significant effect on our results. For foreign banks that do not report to the FFIEC, we
analyze individual annual reports from 2011 to find the maturity profile of their securities
and loans. Most of these annual reports are dated December 31, 2011, making them consis-
tent with the domestic bank data. Some of them were released in March, June, or October
of 2011, in line with the respective country’s regulatory guidelines.

Default probabilities. The banks’ default probabilities are calculated using CDS
spread data from IHS Markit Ltd. (2018) via Wharton Research Data Services (WRDS).
Because the default probabilities that are relevant for the analysis are those around the time
of the transaction, we fix January 3, 2011 as the proxy date for CDS transactions and use the
spread on this date to infer the default probability. We use the average five-year spread for
Senior Unsecured Debt (Corporate/Financial) and Foreign Currency Sovereign Debt (Gov-
ernment) (SNRFOR). We compute the default probabilities from the CDS spreads applying
standard techniques (credit triangle relation). For 19 among the 81 banks, CDS spread data
were not available. For each of these banks, we instead use Moody’s credit rating as of
January 2011 for its Senior Unsecured Debt, and relate the ratings to default probabilities
by using corporate default rates over the 1982–2010 period from Moody’s.

Intermediation volume. For each bank i, we compute the intermediation volume as
Ii = min{G+

i , G
−
i }, where G+

i =
∑

n6=i max{γi,n, 0} and G−i =
∑

n6=i max{−γi,n, 0}, following
the definition in Section IV.C.
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