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Discrete Convolutions

e Discrete linear convolution sums based on the fast
Fourier  transform  (FFT)  algorithm  |Gauss 1866,
[Cooley & Tukey 1965] have become important tools for:

— image filtering;
— digital signal processing;
— correlation analysis;

— pseudospectral simulations.



Discrete Cyclic Convolution

e The FF'T provides an efficient tool for computing the discrete
cyclic convolution

N—-1
> FGip
p=0

where the vectors F' and G have period N.
e Define the Nth primitive root of unity:

(N = exp (%) -

e The fast Fourier transform method exploits the properties that
Cy = Cnyr and Cﬁ = 1.



e The unnormalized

backwards discrete Fourier transtorm of

{Fkikzo,...,N}iS

N—-1
=Y §F  j=0,...,N—1
k=0

e The corresponding
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forward transform is

N—-1 |
G k=0, N-1
j=0

e The orthogonality of this transform pair follows from
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Discrete Linear Convolution

e The pseudospectral method requires a ltnear convolution since
wavenumber space is not periodic.

e The convolution theorem states:
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e The terms indexed by s # 0 are called aliases.

e We need to remove the aliases by ensuring that Gj_p4+sn = 0
whenever s # 0.



o If I, and Gj_p1sny are nonzero only for 0 < p < m — 1 and
0<k—p+sN <m—1, then we want k + sN < 2m — 2 to

have no solutions for positive s.

e This can be achieved by choosing N > 2m — 1.

e That is, one must zero pad input data vectors of length m to
length N > 2m — 1:
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e Physically, explicit zero padding prevents mode m — 1 from
beating with itself, wrapping around to contaminate mode N =

Omod N.

e Since FFT sizes with small prime factors in practice yield

the most eflicient implementations, the padding is normally
extended to N = 2m.



Implicit Padding

olf f, = 0 for £ > m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber

m—1
for= Z G Fe = G Fy,
k=0

m—1
fng—ZcQ%“ Fo=Y (kR 0=01,..m—1
k=0

e This requires computing two subtransforms, each of size m,
for an overall computational scaling of order 2mlog,m =
N logy m.



e Odd and even terms of the convolution can then be computed
separately, multiplied term-by-term, and transformed again to
Fourier space:

2m—1
—kJ _k(2041)
2k = Z Com [ = Z Com ™" fat + ZC o
J= 0 —
Z Mfzg—FC%]fZC o1 k=0,...,m—1.
/=0

e No bit reversal is required at the highest level.

e An implicitly padded convolution is implemented as in our
FFTW++ library (version 1.07) as cconv(f,g,u,v) computes an
in-place implicitly dealiased convolution of two complex vectors
f and g using two temporary vectors u and v, each of length m.

e This in-place convolution requires six out-of-place transforms,
thereby avoiding bit reversal at all levels.

10



Input: vector f, vector g

Output: vector f

u <+ fft1(f);

v« fft 1(g);

U< U*V;

for k=0tom—1do
flk] < Goflk];
glk] < 5,.8[K];

end

v« £t 1(f);

f+ fft 1(g);

V< vk f;

f < f£ft(u);

u< fft(v);

for k=0tom—1do

K]« £k] + Gopulk];

end

return f/(2m);
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Implicit Padding in 1D
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Implicit Padding in 2D
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Implicit Padding in 3D
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Hermitian Convolutions

e Hermitian convolutions arise when the input vectors are
Fourier transforms of real data:

fN—k — ﬁ
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Centered Convolutions

e For a centered convolution, the Fourier origin (kK = 0) is
centered in the domain:

e Here, one needs to pad to N > 3m — 2 to prevent mode m — 1
from beating with itself to contaminate the most negative (first)
mode, corresponding to wavenumber —m + 1. Since the ratio
of the number of physical to total modes, (2m — 1)/(3m — 2)
is asymptotic to 2/3 for large m, this padding scheme is often
referred to as the 2/3 padding rule.

e The Hermiticity condition then appears as

f=k = [
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Implicit Hermitician Centered Padding in 1D
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Implicit Hermitician Centered Padding in 2D
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Ternary convolution

e The ternary convolution of three vectors F', GG, and H 1is

2

—1N-—-1
F,GyH—py.

q=0

I
o

p

e Computing the transfer function for Z; = Ngz Yz )
requires computing the Fourier transform of the cubic
quantity w?.

e This requires a centered Hermitian ternary convolution:

m—1

m—1 m—1
> Y Y FGH gk

p=—m+1 g=—m+1r=—m+1

e Correctly dealiasing requires a 2/4 zero padding rule (instead of
the usual 2/3 rule for a single convolution).
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2/4 Padding Rule

e Computing the transfer function for Z, with a 2/4 padding rule
means that in a 2048 x 2048 pseudospectral simulation, the

maximum physical wavenumber retained in each direction is
only 512.

e For a centered Hermitian ternary convolution, implicit padding
is twice as fast and uses half of the memory required by
conventional explicit padding.
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Implicit Ternary Convolution in 1D
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Implicit Ternary Convolution in 2D
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Conclusions

e Memory savings: in d dimensions implicit padding
asymptotically uses 1/2971 of the memory require by
conventional explicit padding.

e Computational savings due to increased data locality: about a
factor of two.

e Highly optimized versions of these routines have been
implemented as a software layer FFTW++ on top of the FFTW
library and released under the Lesser GNU Public License.

e With the advent of this FFTW++ library, writing a high-
performance dealiased pseudospectral code is now a relatively
straightforward exercise.
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