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Discrete Convolutions

•Discrete linear convolution sums based on the fast
Fourier transform (FFT) algorithm [Gauss 1866],
[Cooley & Tukey 1965] have become important tools for:

– image filtering;

– digital signal processing;

– correlation analysis;

– pseudospectral simulations.
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Discrete Cyclic Convolution

•The FFT provides an efficient tool for computing the discrete
cyclic convolution

N−1
∑

p=0

FpGk−p,

where the vectors F and G have period N .

•Define the Nth primitive root of unity:

ζN = exp

(

2πi

N

)

.

•The fast Fourier transform method exploits the properties that
ζrN = ζN/r and ζNN = 1.
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•The unnormalized backwards discrete Fourier transform of
{Fk : k = 0, . . . , N} is

fj
.
=

N−1
∑

k=0

ζjkN Fk j = 0, . . . , N − 1,

•The corresponding forward transform is

Fk
.
=

1

N

N−1
∑

j=0

ζ−kjN fj k = 0, . . . , N − 1.

•The orthogonality of this transform pair follows from

N−1
∑

j=0

ζℓjN =







N if ℓ = sN for s ∈ Z,
1− ζℓNN
1− ζℓN

= 0 otherwise.
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Discrete Linear Convolution

•The pseudospectral method requires a linear convolution since
wavenumber space is not periodic.

•The convolution theorem states:

N−1
∑

j=0

fjgjζ
−jk
N =

N−1
∑

j=0

ζ−jkN





N−1
∑

p=0

ζjpN Fp









N−1
∑

q=0

ζjqNGq





=

N−1
∑

p=0

N−1
∑

q=0

FpGq

N−1
∑

j=0

ζ
(−k+p+q)j
N

=N
∑

s

N−1
∑

p=0

FpGk−p+sN .

•The terms indexed by s 6= 0 are called aliases.

•We need to remove the aliases by ensuring that Gk−p+sN = 0
whenever s 6= 0.
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• If Fp and Gk−p+sN are nonzero only for 0 ≤ p ≤ m − 1 and
0 ≤ k − p + sN ≤ m− 1, then we want k + sN ≤ 2m− 2 to
have no solutions for positive s.

•This can be achieved by choosing N ≥ 2m− 1.

•That is, one must zero pad input data vectors of length m to
length N ≥ 2m− 1:

{Fk}
m−1

k=0
{Gk}

m−1

k=0

{Fk}
m−1

k=0
{0}m−1

k=0
{Gk}

m−1

k=0
{0}m−1

n=0

{fj}
2m−1

j=0

FFT−1

{gj}
2m−1

j=0

FFT−1

{fjgj}
2m−1

j=0

{F ∗G}m−1

k=0

FFT

F*G
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•Physically, explicit zero padding prevents mode m − 1 from
beating with itself, wrapping around to contaminate mode N =
0modN .

• Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m.
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Implicit Padding

• If fk = 0 for k ≥ m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber

f2ℓ=
m−1
∑

k=0

ζ2ℓk2mFk =

m−1
∑

k=0

ζℓkmFk,

f2ℓ+1=

m−1
∑

k=0

ζ
(2ℓ+1)k
2m Fk =

m−1
∑

k=0

ζℓkm ζkNFk ℓ = 0, 1, . . . m− 1.

•This requires computing two subtransforms, each of size m,
for an overall computational scaling of order 2m log2m =
N log2m.
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•Odd and even terms of the convolution can then be computed
separately, multiplied term-by-term, and transformed again to
Fourier space:

2mFk=

2m−1
∑

j=0

ζ−kj2m fj =
m−1
∑

ℓ=0

ζ−k2ℓ2m f2ℓ +
m−1
∑

ℓ=0

ζ
−k(2ℓ+1)
2m f2ℓ+1

=

m−1
∑

ℓ=0

ζ−kℓm f2ℓ + ζ−k2m

m−1
∑

ℓ=0

ζ−kℓm f2ℓ+1 k = 0, . . . ,m− 1.

•No bit reversal is required at the highest level.

•An implicitly padded convolution is implemented as in our
FFTW++ library (version 1.07) as cconv(f,g,u,v) computes an
in-place implicitly dealiased convolution of two complex vectors
f and g using two temporary vectors u and v, each of length m.

•This in-place convolution requires six out-of-place transforms,
thereby avoiding bit reversal at all levels.
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Input: vector f, vector g
Output: vector f
u← fft−1(f);
v← fft−1(g);
u← u ∗ v;
for k = 0 to m− 1 do

f[k]← ζk2mf[k];
g[k]← ζk2mg[k];

end

v← fft−1(f);
f ← fft−1(g);
v← v ∗ f;

f ← fft(u);
u← fft(v);

for k = 0 to m− 1 do

f[k]← f[k] + ζ−k2mu[k];
end

return f/(2m);
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Implicit Padding in 1D
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Implicit Padding in 2D
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Implicit Padding in 3D
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Hermitian Convolutions

•Hermitian convolutions arise when the input vectors are
Fourier transforms of real data:

fN−k = fk.
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Centered Convolutions

•For a centered convolution, the Fourier origin (k = 0) is
centered in the domain:

m−1
∑

p=k−m+1

fpgk−p

•Here, one needs to pad to N ≥ 3m− 2 to prevent mode m− 1
from beating with itself to contaminate the most negative (first)
mode, corresponding to wavenumber −m + 1. Since the ratio
of the number of physical to total modes, (2m − 1)/(3m − 2)
is asymptotic to 2/3 for large m, this padding scheme is often
referred to as the 2/3 padding rule.

•The Hermiticity condition then appears as

f−k = fk.
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Implicit Hermitician Centered Padding in 1D
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Implicit Hermitician Centered Padding in 2D
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Ternary convolution

•The ternary convolution of three vectors F , G, and H is

N−1
∑

p=0

N−1
∑

q=0

FpGqHk−p−q.

•Computing the transfer function for Z4 = N 3
∑

j ω
4(xj)

requires computing the Fourier transform of the cubic
quantity ω3.

•This requires a centered Hermitian ternary convolution:

m−1
∑

p=−m+1

m−1
∑

q=−m+1

m−1
∑

r=−m+1

FpGqHrδp+q+r,k.

•Correctly dealiasing requires a 2/4 zero padding rule (instead of
the usual 2/3 rule for a single convolution).
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2/4 Padding Rule

•Computing the transfer function for Z4 with a 2/4 padding rule
means that in a 2048 × 2048 pseudospectral simulation, the
maximum physical wavenumber retained in each direction is
only 512.

•For a centered Hermitian ternary convolution, implicit padding
is twice as fast and uses half of the memory required by
conventional explicit padding.
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Implicit Ternary Convolution in 1D
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Implicit Ternary Convolution in 2D
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Conclusions

•Memory savings: in d dimensions implicit padding
asymptotically uses 1/2d−1 of the memory require by
conventional explicit padding.

•Computational savings due to increased data locality: about a
factor of two.

•Highly optimized versions of these routines have been
implemented as a software layer FFTW++ on top of the FFTW

library and released under the Lesser GNU Public License.

•With the advent of this FFTW++ library, writing a high-
performance dealiased pseudospectral code is now a relatively
straightforward exercise.
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Asymptote: 2D & 3D Vector Graphics Language

Andy Hammerlindl, John C. Bowman, Tom Prince

http://asymptote.sf.net

(freely available under the Lesser GNU Public License)
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Asymptote Lifts TEX to 3D

http://asymptote.sf.net
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