Interactive TeX-Aware 3D Vector Graphics

John Bowman and Andy Hammerlindl

Department of Mathematical and Statistical Sciences
University of Alberta

Collaborators: Orest Shardt, Michail Vidiassov

June 30, 2010

http://asymptote.sf.net/intro.pdf

History

e 1979: TEX and METAFONT (Knuth)

e 1986: 2D Bézier control point selection (Hobby)

e 1989: MetaPost (Hobby)

e 2004: Asymptote
— 2004: initial public release (Hammerlindl, Bowman, & Prince)
—2005: 3D Bézier control point selection (Bowman)
—2008: 3D interactive TEX within PDF files (Shardt & Bowman)
—2009: 3D billboard labels that always face camera (Bowman)
—2010: 3D PDF enhancements (Vidiassov & Bowman)

Statistics (as of June, 2010)

e Runs under Linux/UNIX, Mac OS X, Microsoft Windows.

e 4000 downloads/month from primary
asymptote.sourceforge.net site alone.

e 80 000 lines of low-level C+-+ code.
e 36 000 lines of high-level Asymptote code.

Cartesian Coordinates

e Asymptote’s graphical capabilities are based on four primitive
commands: draw, label, £ill clip |[BHOS]

draw((0,0)--(100,100)) ;

e units are PostScript big points (1 bp = 1/72 inch)

e —— means join the points with a linear segment to create a path

e cyclic path:
draw((0,0)--(100,0)--(100,100)--(0,100)--cycle) ;

Scaling to a Given Size

e PostScript units are often inconvenient.

e Instead, scale user coordinates to a specified final size:

size(100,100);
draw((0,0)--(1,0)--(1,1)--(0,1)--cycle);

e One can also specify the size in cm:

size(3cm,3cm) ;
draw(unitsquare) ;

Labels
e Adding and aligning IXTEX labels is easy:

size(6cm) ;
draw(unitsquare) ;
label("A", (0,0),SW);
label ("B", (1,0),SE);
label ("C", (1,1),NE);
label ("D", (0,1) ,NW) ;

D

2D Bézier Splines

e Using .. instead of —— specifies a Bézier cubic spline:

draw(z0 .. controls cO and cl1 .. zl,blue);

——————————————————————

<0

(1 —1)°29 + 3t(1 — t)%co + 3t*(1 — t)c; + 2, t e [0,1].

Smooth Paths

e Asymptote can choose control points for you, using the algorithms of
Hobby and Knuth [Hob86, Knu86|:

pair[] =z={(0,0), (0,1), (2,1), (2,0), (1,0)};
draw(z[0]..z[1]..z[2]..z[3]..z[4]. .cycle,

grey+linewidth(5));
dot(z,linewidth(7));

e First, linear equations involving the curvature are solved to find
the direction through each knot. Then, control points along those
directions are chosen:

/
/
/
¥
/
N 7
\ -—— / b\ e e —e /o/
g ~~

Filling
e The £ill primitive to fill the inside of a path:

path star;

for(int i=0; i < 5; ++i)
star=star—--dir (90+144i) ;

star=star--cycle;

fill(star,orange+zerowinding) ;
draw(star,linewidth(3));

fill(shift(2,0)*star,blue+evenodd) ;
draw(shift(2,0)*star,linewidth(3));

9

Filling
e Use a list of paths to fill a region with holes:

path[] p={scale(2)*unitcircle, reverse(unitcircle)};
fill(p,greentzerowinding) ;

10

Clipping
e Pictures can be clipped to a path:

fill(star,orange+zerowinding) ;
clip(scale(0.7)*unitcircle);
draw(scale(0.7)*unitcircle);

11

Affine Transforms

e Affine transformations: shifts, rotations, reflections, and scalings can
be applied to pairs, paths, pens, strings, and even whole pictures:

fill(P,blue);
fill(shift(2,0)*reflect((0,0),(0,1))*P, red);
fill(shift(4,0)*rotate(30)*P, yellow);
fill(shift(6,0)*yscale(0.7)*xscale(2)*P, green);

P 9

12

Modules

e There are modules for Feynman diagrams,

data structures,

13

algebraic knot theory:

(R
Q5 g

OD(xy, w9, T3, T4, 25) = pap(T1 + T4, T2, 23, T5) + pap(T1, T2, T3, T4)
+ paa(T1, T2 + X3, T4, T5) — pap(x1, T2, T3, T4 + T5)
— P4a(5'71 +ZC2,ZE3,ZC4,SE5) _ P4a(5’71733273347$5)-

14

Scientific Graph

Proportion of crows

| L1 Nt

/\

109

101

15

Images and Contours

f(z,y)
—1 —0.8-0.6—0.4-02 0

0.2 04 06 0.8

1

16

100

200

sediment depth (cm)

w
o
o

400

Multiple Graphs

50

50

50

%o

40

50

40

40 10

1910

17

Hobby’s 2D Direction Algorithm

e A tridiagonal system of linear equations is solved to determine any
unspecified directions ¢ and 6}, through each knot zy:

Or1— 201 _ drr1 — 20

e Ut

e The resulting shape may be adjusted by modifying optional tension
parameters and curl boundary conditions.

18

Hobby'’s 2D Control Point Algorithm

e Having prescribed outgoing and incoming path directions e at

node zp and €’ at node z; relative to the vector z; — 2y, the control
points are determined as:

u = 20+ 62'-(9(251 — ZO)f(ea _¢)7
V= 21 — €Z¢(Z1 — ZO)f<_¢a ‘9)7

where the relative distance function f(6, ¢) is given by Hobby [1986].

19

3D Generalization of Direction Algorithm

e Must reduce to 2D algorithm in planar case.

e Determine directions by applying Hobby's algorithm in the plane
contalning zr_1, 2k, k41

e The only ambiguity that can arise is the overall sign of the angles,
which relates to viewing each 2D plane from opposing normal
directions.

e A reference vector based on the mean unit normal of successive
segments can be used to resolve such ambiguities [Bow07, BS09]

20

3D Control Point Algorithm

e Eixpress Hobby's algorithm in terms of the absolute directions wy
and wy:

U = 20+ Wy ’Z1 — Zo’ f((g? _¢>7

v =2z —wi |z — 20| f(—¢,0),

interpreting 6 and ¢ as the angle between the corresponding path
direction vector and z; — 2p.

e Here there is an unambiguous reference vector for determining the
relative sign of the angles ¢ and 6.

21

Interactive 3D Saddle

e A unit circle in the X-Y plane may be constructed with:
(1,0,0)..(0,1,0)..(-1,0,0)..(0,-1,0)..cycle:

and then distorted into the saddle
(1,0,0)..(0,1,1)..(—1,0,0)..(O,—l,l)..cycle:

22

Lifting TeX to 3D

e Glyphs are first split into simply connected regions and then
decomposed into planar Bézier surface patches [BS09, SB10]:

merge, bezulate B @D

—_— >
@ partition @ merge, bezulate @
=

- =

bezulate

23

Label Manipulation

e They can then be extruded and/or arbitrarily transformed:

o’
I\ dx =

T
Q

24

Billboard Labels

Em

oard

25

L

Smooth 3D surfaces

26

Curved 3D Arrows

27

Slide Presentations
e Asymptote has a module for preparing slides.

e [t even supports embedded high-resolution PDF movies.

title("Slide Presentations");
item("Asymptote has a module for preparing slides.");
item("It even supports embedded high-resolution PDF movies.");

28

Automatic Sizing

e Figures can be specified in user coordinates, then automatically scaled
to the desired final size.

Y
m (2a,0) (@,0) \(2a,0) (a,0) (24,0)

q_/// T x T
size(0,50);

size(0,100);

size(0,200);

29

Deterred Drawing

e We can’t draw a graphical object until we know the scaling factors for
the user coordinates.

e Instead, store a function that, given the scaling information, draws
the scaled object.

void draw(picture pic=currentpicture, path g, pen p=currentpen) {
pic.add(new void(frame f, transform t) {
draw(f,t*g,p);
I3F
pic.addPoint(min(g) ,min(p)) ;
pic.addPoint (max(g) ,max(p)) ;

}

30

Coordinates

e Store bounding box information as the sum of

coordinates:

pic.addPoint (min(g) ,min(p));
pic.addPoint (max(g) ,max(p));

e Filling ignores the pen width:

pic.addPoint(min(g), (0,0));
pic.addPoint (max(g), (0,0));

user and true-size

e Communicate with IXTEX via a pipe to determine label sizes:

E = mc

2

31

Sizing
e When scaling the final figure to a given size S, we first need to

determine a scaling factor a > 0 and a shift b so that all of the
coordinates when transformed will lie in the interval |0, S].

e That is, if w and ¢ are the user and truesize components:

D0<au-+t+b<5>S.

e Maximize the variable a subject to a number of inequalities.

e Use the simplex method to solve the resulting linear programming
problem.

32

Infinite Lines
e Deferred drawing allows us to draw infinite lines.

drawline(P, Q);

2P

33

Helpful Math Notation

e Integer division returns a real. Use quotient for an integer result:

3/4 == 0.75 quotient (3,4) ==

e Caret for real and integer exponentiation:

2°3 2.7°3 2.7°3.2
e Many expressions can be implicitly scaled by a numeric constant:

2pi 10cm 2x "2 3sin(x) 2(atb)

e Pairs are complex numbers:

(0,1)*(0,1) == (-1,0)

34

Function Calls

e Functions can take default arguments in any position. Arguments are
matched to the first possible location:

void drawEllipse(real xsize=1, real ysize=xsize, pen p=blue) {
draw(xscale(xsize)*yscale(ysize)*unitcircle, p);

}

drawEllipse(2);
drawEllipse(red);

e Arguments can be given by name:

drawEllipse(xsize=2, ysize=1);
drawEllipse(ysize=2, xsize=3, green);

O

35

High-Order Functions

e Functions are first-class values. They can be passed to other functions:

import graph;

real f(real x) {
return x*sin(10x);

}

draw(graph(f,-3,3,300) ,red);

36

Object-Oriented Programming

e Functions are defined for each instance of a structure.

struct Quadratic {
real a,b,c;
real discriminant() {
return b 2-4*axc;
h
real eval(real x) {
return a*x 2 + b*x + c;

}
}

e This allows us to construct “methods” which are just normal functions
declared in the environment of a particular object:

Quadratic poly=new Quadratic;
poly.a=-1; poly.b=1; poly.c=2;

real f(real x)=poly.eval;
real y=f(2);
draw(graph(poly.eval, -5, 5));

37

Specialization

e Can create specialized objects just by redefining methods:

struct Shape {
void draw() ;
real area();

}

Shape rectangle(real w, real h) {
shape s=new Shape;

s.draw

S.area
return

}

S

new void () {
£i111((0,0)--(w,0)--(w,h)--(0,h)--cycle); };
new real () { return wxh; };

Shape circle(real radius) {
shape s=new Shape;

s.draw
S.area
return

S,

new void () { fill(scale(radius)*unitcircle); };
new real () { return pix*radius’2; }

38

Overloading

e Consider the code:

int x1=2;
int x2() {
return 7;

}

int x3(int y) {
return 2y;

}

write(x1+x2()); // Writes 9.
write(x3(x1)+x2()); // Writes 11.

39

Overloading

e x1, x2, and x3 are never used in the same context, so they can all be
renamed x without ambiguity:

int x=2;
int x(O) {
return 7;

}

int x(int y) {
return 2y;

}

write(x+x()); // Writes 9.
write(x(x)+x()); // Writes 11.

e Function definitions are just variable definitions, but variables are
distinguished by their signatures to allow overloading.

40

Operators

e Operators are just syntactic sugar for functions, and can be addressed
or defined as functions with the operator keyword.

int add(int x, int y)=operator +;
write(add(2,3)); // Writes 5.

// Don’t try this at home.

int operator +(int x, int y) {
return add(2x,y);

}

write(2+3); // Writes 7.
e This allows operators to be defined for new types.

41

Operators

e Operators for constructing paths are also functions:

a.. controls b and ¢ .. d--e

is equivalent to

operator --(operator ..(a, operator controls(b,c), d), e)

e This allowed us to redefine all of the path operators for 3D paths.

42

Summary

e Asymptote:
— uses IEEE floating point numerics;
— uses C++/Java-like syntax;
— supports deferred drawing for automatic picture sizing;
— supports Grayscale, RGB, CMYK, and HSV colour spaces;
— supports PostScript shading, pattern fills, and function shading:
— can fill nonsimply connected regions;
— generalizes MetaPost path construction algorithms to 3D:
— lifts TEX to 3D;
— supports 3D billboard labels and PDF grouping.

43

[BHOS)]

[Bow07]

[BS09)

[Hob86]
[Knu86]
[SB10]

References

John C. Bowman and Andy Hammerlindl. Asymptote: A vector graphics language. TUGboat: The Communications
of the TEX Users Group, 29(2):288-294, 2008.

John C. Bowman. The 3D Asymptote generalization of MetaPost Bézier interpolation. Proceedings in Applied
Mathematics and Mechanics, 7(1):2010021-2010022, 2007.

John C. Bowman and Orest Shardt. Asymptote: Lifting TEX to three dimensions. TUGboat: The Communications of
the TgX Users Group, 30(1):58-63, 2009.

John D. Hobby. Smooth, easy to compute interpolating splines. Discrete Comput. Geom., 1:123-140, 1986.
Donald E. Knuth. The METAFONTbook. Addison-Wesley, Reading, Massachusetts, 1986.

Orest Shardt and John C. Bowman. Surface parametrization of nonsimply connected planar Bézier regions. Submitted
to Computer Aided Design, 2010.

Asymptote: 2D & 3D Vector Graphics Language

tote

http://asymptote.sf.net

(freely available under the LGPL license)

44

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PlayPauseLeft:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:

