
Interactive TeX-Aware 3D Vector Graphics

John Bowman and Andy Hammerlindl

Department of Mathematical and Statistical Sciences
University of Alberta

Collaborators: Orest Shardt, Michail Vidiassov

June 30, 2010

http://asymptote.sf.net/intro.pdf

1

History

• 1979: TEX and METAFONT (Knuth)

• 1986: 2D Bézier control point selection (Hobby)

• 1989: MetaPost (Hobby)

• 2004: Asymptote

– 2004: initial public release (Hammerlindl, Bowman, & Prince)

– 2005: 3D Bézier control point selection (Bowman)

– 2008: 3D interactive TEX within PDF files (Shardt & Bowman)

– 2009: 3D billboard labels that always face camera (Bowman)

– 2010: 3D PDF enhancements (Vidiassov & Bowman)

2

Statistics (as of June, 2010)

•Runs under Linux/UNIX, Mac OS X, Microsoft Windows.

• 4000 downloads/month from primary
asymptote.sourceforge.net site alone.

• 80 000 lines of low-level C++ code.

• 36 000 lines of high-level Asymptote code.

3

Cartesian Coordinates
•Asymptote’s graphical capabilities are based on four primitive

commands: draw, label, fill, clip [BH08]

draw((0,0)--(100,100));

• units are PostScript big points (1 bp = 1/72 inch)

• -- means join the points with a linear segment to create a path

• cyclic path:

draw((0,0)--(100,0)--(100,100)--(0,100)--cycle);

4

Scaling to a Given Size

• PostScript units are often inconvenient.

• Instead, scale user coordinates to a specified final size:

size(100,100);

draw((0,0)--(1,0)--(1,1)--(0,1)--cycle);

•One can also specify the size in cm:

size(3cm,3cm);

draw(unitsquare);

5

Labels
•Adding and aligning LATEX labels is easy:

size(6cm);

draw(unitsquare);

label("A",(0,0),SW);

label("B",(1,0),SE);

label("C",(1,1),NE);

label("D",(0,1),NW);

A B

CD

6

2D Bézier Splines

•Using .. instead of -- specifies a Bézier cubic spline:

draw(z0 .. controls c0 and c1 .. z1,blue);

z0

c0 c1

z1

(1− t)3z0 + 3t(1− t)2c0 + 3t2(1− t)c1 + t3z1, t ∈ [0, 1].

7

Smooth Paths
•Asymptote can choose control points for you, using the algorithms of

Hobby and Knuth [Hob86, Knu86]:

pair[] z={(0,0), (0,1), (2,1), (2,0), (1,0)};

draw(z[0]..z[1]..z[2]..z[3]..z[4]..cycle,

grey+linewidth(5));

dot(z,linewidth(7));

•First, linear equations involving the curvature are solved to find
the direction through each knot. Then, control points along those
directions are chosen:

8

Filling

•The fill primitive to fill the inside of a path:

path star;

for(int i=0; i < 5; ++i)

star=star--dir(90+144i);

star=star--cycle;

fill(star,orange+zerowinding);

draw(star,linewidth(3));

fill(shift(2,0)*star,blue+evenodd);

draw(shift(2,0)*star,linewidth(3));

9

Filling

•Use a list of paths to fill a region with holes:

path[] p={scale(2)*unitcircle, reverse(unitcircle)};
fill(p,green+zerowinding);

10

Clipping

•Pictures can be clipped to a path:

fill(star,orange+zerowinding);

clip(scale(0.7)*unitcircle);

draw(scale(0.7)*unitcircle);

11

Affine Transforms
•Affine transformations: shifts, rotations, reflections, and scalings can

be applied to pairs, paths, pens, strings, and even whole pictures:

fill(P,blue);

fill(shift(2,0)*reflect((0,0),(0,1))*P, red);

fill(shift(4,0)*rotate(30)*P, yellow);

fill(shift(6,0)*yscale(0.7)*xscale(2)*P, green);

12

Modules
•There are modules for Feynman diagrams,

k′

k

q

p′

p

e−

e+

µ+

µ−

data structures,

5

4 0

2

6 7

3

1

13

algebraic knot theory:

0 1

234

5

ΦΦ(x1, x2, x3, x4, x5) = ρ4b(x1 + x4, x2, x3, x5) + ρ4b(x1, x2, x3, x4)

+ ρ4a(x1, x2 + x3, x4, x5)− ρ4b(x1, x2, x3, x4 + x5)

− ρ4a(x1 + x2, x3, x4, x5)− ρ4a(x1, x2, x4, x5).

14

Scientific Graph

0.1

0.3

0.5

0.7

0.9

10 11 12 13 14 15
Time (τ)

10−2

10−1

100
Proportion of crows

15

Images and Contours

0 1 2 3 4 5 6
x

0

1

2

3

4

5

6

y

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1

f(x, y)

16

Multiple Graphs

50

A
ch
na
nt
he
s
m
in
ut
is
si
m
a
K
ue
tz
in
g

0

100

200

300

400

se
d
im

en
t
d
ep

th
(c
m
)

50

A
no
m
oe
on
ei
s
vi
tr
ea
(G
ru
no
w
)
R
os
s

50

A
st
er
io
ne
lla

fo
rm
os
a
H
as
sa
ll

40

Ta
be
lla
ri
a
flo
cc
ul
os
a
(R
ot
h)
K
ue
tz
in
g

50

Fr
ag
ila
ri
a
cf
. t
en
er
a

40

C
ha
et
oc
er
os
m
ue
lle
ri
/e
lm
or
ei
cy
st
s

40

A
ul
ac
os
ei
ra
sp
p.

10

Fr
ag
ila
ri
a
ca
pu
ci
na

va
r.
va
uc
he
ri
ae
(K
ue
tz
in
g)

8

Fr
ag
ila
ri
a
cr
ot
on
en
si
s
K
it
to
n

A B C

2000
1998

1996 1994
1992

1990
1988

1986
1984 1982
1980
1978
1972
1970
1965

1961
1950

19421940
1920

1915
1910

1888

1763

1726

% 17

Hobby’s 2D Direction Algorithm

•A tridiagonal system of linear equations is solved to determine any
unspecified directions φk and θk through each knot zk:

θk−1 − 2φk
`k

=
φk+1 − 2θk

`k+1
.

ℓk

ℓk+1

θk

φk

zk−1

zk

zk+1

•The resulting shape may be adjusted by modifying optional tension
parameters and curl boundary conditions.

18

Hobby’s 2D Control Point Algorithm

•Having prescribed outgoing and incoming path directions eiθ at
node z0 and eiφ at node z1 relative to the vector z1 − z0, the control
points are determined as:

u = z0 + eiθ(z1 − z0)f (θ,−φ),

v = z1 − eiφ(z1 − z0)f (−φ, θ),

where the relative distance function f (θ, φ) is given by Hobby [1986].

ω0

ω1

θ

φ

z0

z1

19

3D Generalization of Direction Algorithm

•Must reduce to 2D algorithm in planar case.

•Determine directions by applying Hobby’s algorithm in the plane
containing zk−1, zk, zk+1.

•The only ambiguity that can arise is the overall sign of the angles,
which relates to viewing each 2D plane from opposing normal
directions.

•A reference vector based on the mean unit normal of successive
segments can be used to resolve such ambiguities [Bow07, BS09]

20

3D Control Point Algorithm

•Express Hobby’s algorithm in terms of the absolute directions ω0

and ω1:

u = z0 + ω0 |z1 − z0| f (θ,−φ),

v = z1 − ω1 |z1 − z0| f (−φ, θ),

ω0

ω1

θ

φ

z0

z1

interpreting θ and φ as the angle between the corresponding path
direction vector and z1 − z0.

•Here there is an unambiguous reference vector for determining the
relative sign of the angles φ and θ. 21

Interactive 3D Saddle
•A unit circle in the X–Y plane may be constructed with:
(1,0,0)..(0,1,0)..(-1,0,0)..(0,-1,0)..cycle:

and then distorted into the saddle
(1,0,0)..(0,1,1)..(-1,0,0)..(0,-1,1)..cycle:

22

Lifting TeX to 3D

•Glyphs are first split into simply connected regions and then
decomposed into planar Bézier surface patches [BS09, SB10]:

partition

merge, bezulate

merge, bezulate

bezulate

23

Label Manipulation

•They can then be extruded and/or arbitrarily transformed:

24

Billboard Labels

25

Smooth 3D surfaces

26

Curved 3D Arrows

27

Slide Presentations
•Asymptote has a module for preparing slides.

• It even supports embedded high-resolution PDF movies.

title("Slide Presentations");

item("Asymptote has a module for preparing slides.");

item("It even supports embedded high-resolution PDF movies.");
. . .

28

Automatic Sizing

•Figures can be specified in user coordinates, then automatically scaled
to the desired final size.

x

y
(a, 0) (2a, 0)

size(0,50);

x

y

(a, 0) (2a, 0)

size(0,100);

x

y

(a, 0) (2a, 0)

size(0,200);

29

Deferred Drawing

•We can’t draw a graphical object until we know the scaling factors for
the user coordinates.

• Instead, store a function that, given the scaling information, draws
the scaled object.

void draw(picture pic=currentpicture, path g, pen p=currentpen) {
pic.add(new void(frame f, transform t) {

draw(f,t*g,p);

});
pic.addPoint(min(g),min(p));

pic.addPoint(max(g),max(p));

}

30

Coordinates
• Store bounding box information as the sum of user and true-size

coordinates:

pic.addPoint(min(g),min(p));

pic.addPoint(max(g),max(p));

•Filling ignores the pen width:

pic.addPoint(min(g),(0,0));

pic.addPoint(max(g),(0,0));

•Communicate with LATEX via a pipe to determine label sizes:

E = mc2

31

Sizing

•When scaling the final figure to a given size S, we first need to
determine a scaling factor a > 0 and a shift b so that all of the
coordinates when transformed will lie in the interval [0, S].

•That is, if u and t are the user and truesize components:

0 ≤ au + t + b ≤ S.

•Maximize the variable a subject to a number of inequalities.

•Use the simplex method to solve the resulting linear programming
problem.

32

Infinite Lines
•Deferred drawing allows us to draw infinite lines.

drawline(P, Q);

P
Q

P +Q

P

2P

33

Helpful Math Notation

• Integer division returns a real. Use quotient for an integer result:

3/4 == 0.75 quotient(3,4) == 0

•Caret for real and integer exponentiation:

2ˆ3 2.7ˆ3 2.7ˆ3.2

•Many expressions can be implicitly scaled by a numeric constant:

2pi 10cm 2xˆ2 3sin(x) 2(a+b)

•Pairs are complex numbers:

(0,1)*(0,1) == (-1,0)

34

Function Calls
•Functions can take default arguments in any position. Arguments are

matched to the first possible location:

void drawEllipse(real xsize=1, real ysize=xsize, pen p=blue) {
draw(xscale(xsize)*yscale(ysize)*unitcircle, p);

}

drawEllipse(2);

drawEllipse(red);

•Arguments can be given by name:

drawEllipse(xsize=2, ysize=1);

drawEllipse(ysize=2, xsize=3, green);

35

High-Order Functions

•Functions are first-class values. They can be passed to other functions:

import graph;

real f(real x) {
return x*sin(10x);

}
draw(graph(f,-3,3,300),red);

36

Object-Oriented Programming

•Functions are defined for each instance of a structure.

struct Quadratic {
real a,b,c;

real discriminant() {
return bˆ2-4*a*c;

}
real eval(real x) {

return a*xˆ2 + b*x + c;

}
}
•This allows us to construct “methods” which are just normal functions

declared in the environment of a particular object:

Quadratic poly=new Quadratic;

poly.a=-1; poly.b=1; poly.c=2;

real f(real x)=poly.eval;

real y=f(2);

draw(graph(poly.eval, -5, 5));

37

Specialization

•Can create specialized objects just by redefining methods:

struct Shape {
void draw();

real area();

}

Shape rectangle(real w, real h) {
Shape s=new Shape;

s.draw = new void () {
fill((0,0)--(w,0)--(w,h)--(0,h)--cycle); };

s.area = new real () { return w*h; };
return s;

}

Shape circle(real radius) {
Shape s=new Shape;

s.draw = new void () { fill(scale(radius)*unitcircle); };
s.area = new real () { return pi*radiusˆ2; }
return s;

} 38

Overloading

•Consider the code:

int x1=2;

int x2() {
return 7;

}
int x3(int y) {

return 2y;

}

write(x1+x2()); // Writes 9.

write(x3(x1)+x2()); // Writes 11.

39

Overloading

• x1, x2, and x3 are never used in the same context, so they can all be
renamed x without ambiguity:

int x=2;

int x() {
return 7;

}
int x(int y) {

return 2y;

}

write(x+x()); // Writes 9.

write(x(x)+x()); // Writes 11.

•Function definitions are just variable definitions, but variables are
distinguished by their signatures to allow overloading.

40

Operators

•Operators are just syntactic sugar for functions, and can be addressed
or defined as functions with the operator keyword.

int add(int x, int y)=operator +;

write(add(2,3)); // Writes 5.

// Don’t try this at home.

int operator +(int x, int y) {
return add(2x,y);

}
write(2+3); // Writes 7.

•This allows operators to be defined for new types.

41

Operators

•Operators for constructing paths are also functions:

a.. controls b and c .. d--e

is equivalent to

operator --(operator ..(a, operator controls(b,c), d), e)

•This allowed us to redefine all of the path operators for 3D paths.

42

Summary

•Asymptote:

– uses IEEE floating point numerics;

– uses C++/Java-like syntax;

– supports deferred drawing for automatic picture sizing;

– supports Grayscale, RGB, CMYK, and HSV colour spaces;

– supports PostScript shading, pattern fills, and function shading;

– can fill nonsimply connected regions;

– generalizes MetaPost path construction algorithms to 3D;

– lifts TEX to 3D;

– supports 3D billboard labels and PDF grouping.

43

References
[BH08] John C. Bowman and Andy Hammerlindl. Asymptote: A vector graphics language. TUGboat: The Communications

of the TEX Users Group, 29(2):288–294, 2008.

[Bow07] John C. Bowman. The 3D Asymptote generalization of MetaPost Bézier interpolation. Proceedings in Applied
Mathematics and Mechanics, 7(1):2010021–2010022, 2007.

[BS09] John C. Bowman and Orest Shardt. Asymptote: Lifting TEX to three dimensions. TUGboat: The Communications of
the TEX Users Group, 30(1):58–63, 2009.

[Hob86] John D. Hobby. Smooth, easy to compute interpolating splines. Discrete Comput. Geom., 1:123–140, 1986.

[Knu86] Donald E. Knuth. The METAFONTbook. Addison-Wesley, Reading, Massachusetts, 1986.

[SB10] Orest Shardt and John C. Bowman. Surface parametrization of nonsimply connected planar Bézier regions. Submitted
to Computer Aided Design, 2010.

Asymptote: 2D & 3D Vector Graphics Language

http://asymptote.sf.net

(freely available under the LGPL license)

44

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PlayPauseLeft:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:

