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2D Turbulence

•Consider the Navier–Stokes equations for 2D incompressible
homogeneous isotropic turbulence with density ρ = 1:

∂u

∂t
− ν∇2u + u·∇u +∇P = F ,

∇·u = 0,∫
Ω

u dx = 0,

∫
Ω

F dx = 0,

u(x, 0) = u0(x),

with Ω = [0, 2π]×[0, 2π] and periodic boundary conditions on ∂Ω.

• Introduce the Hilbert space

H(Ω)
.
= cl

{
u ∈ (C2(Ω) ∩ L2(Ω))2 : ∇·u = 0,

∫
Ω

u dx = 0

}
.

with inner product (u,v) =
∫
Ωu(x, t)·v(x, t) dx and L2 norm

∥u∥ = (u,u)1/2.
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•For u ∈ H(Ω), the Navier–Stokes equations can be expressed:

du

dt
− ν∇2u + u·∇u +∇P = F .

• Introduce A .
= −P(∇2), f

.
= P(F ), and the bilinear map

B(u,u) .= P (u·∇u +∇P ) ,

where P : C2(Ω) → H(Ω) is the Helmholtz–Leray projection:

P(v)
.
= v −∇∇−2∇·v.

•The dynamical system can then be compactly written:

du

dt
+ νAu + B(u,u) = f .
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Stokes Operator A

•The operator A = P(−∇2) is positive semi-definite and self-
adjoint, with a compact inverse.

•On the periodic domain Ω = [0, 2π]× [0, 2π], the eigenvalues of
A are

λ = k·k, k ∈ Z× Z\{0}.
•The eigenvalues of A can be arranged as

0 < λ0 < λ1 < λ2 < · · · , λ0 = 1

and its eigenvectorswi, i ∈ N0, form an orthonormal basis for the
Hilbert space H , upon which we can define any quotient power
of A:

Aαwj = λαjwj, α ∈ R, j ∈ N0.
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Subspace of Finite Enstrophy

•We define the subspace of H consisting of solutions with finite
enstrophy:

V
.
=

u ∈ H :

∞∑
j=0

λj(u,wj)
2 <∞

 .

•Another suitable norm for elements u ∈ V is

∥∥∥A1/2u
∥∥∥ =

(∫
Ω

2∑
i=1

∂u

∂xi
·∂u
∂xi

)1/2

=

 ∞∑
j=0

λj(u,wj)
2

1/2

.
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Quadratic Quantities

•For any solution u of the 2D Navier–Stokes equation, define the
nth-order polystrophy

En =
1

2

∥∥∥An/2u
∥∥∥2 ,

•E0, Z
.
= E1, P

.
= E2, and P2

.
= E3 are called the

energy, enstrophy, palinstrophy, hyperpalinstrophy.
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Properties of the Bilinear Map

•We make use of the antisymmetry

(B(u,v),w) = −(B(u,w),v),

which implies the conservation of the energy E0 =
1
2 ∥u∥

2.

• In 2D, we also have orthogonality:

(B(u,u), Au) = 0

and the strong form of enstrophy invariance:

(B(Av,v),u) = (B(u,v), Av).

which implies the conservation of the enstrophy 1
2

∥∥A1/2u
∥∥2.

• In 2D, the above properties imply the symmetry

(B(v,v), Au) + (B(v,u), Av) + (B(u,v), Av) = 0.
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Dynamical Behaviour

•Our starting point is the incompressible 2D Navier–Stokes
equation with periodic boundary conditions:

du

dt
+ νAu + B(u,u) = f , u ∈ H.

•Take the inner product with u (respectively Au):

1

2

d

dt
∥u∥2 + ν

∥∥∥A1/2u
∥∥∥2 = (f ,u),

1

2

d

dt

∥∥∥A1/2u
∥∥∥2 + ν ∥Au∥2 = (f , Au).

•The Cauchy–Schwarz and Poincaré inequalities yield

(f ,u) ≤ ∥f∥ ∥u∥ and ∥u∥ ≤
∥∥∥A1/2u

∥∥∥ .
• Since the existence and uniqueness for solutions to the 2D
Navier–Stokes equation has been proven, a global attractor can
be defined ?, ?.
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Dynamical Behaviour: Constant Forcing

• If the force f is constant with respect to time, a Gronwall
inequality can be exploited:

∥u(t)∥2 ≤ e−νt ∥u(0)∥2 + (1− e−νt)ν2G2,

where G =
∥f∥
ν2

is a nondimensional Grashof number.

• Similarly,∥∥∥A1/2u(t)
∥∥∥2 ≤ e−νt

∥∥∥A1/2u(0)
∥∥∥2 + (1− e−νt)ν2G2.

•Being on the attractor thus requires

∥u∥ ≤ νG and
∥∥∥A1/2u

∥∥∥ ≤ νG.
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Z–E Bounds: Constant Forcing

•A trivial lower bound is provided by the Poincaré inequality:

∥u∥2 ≤
∥∥∥A1/2u

∥∥∥2 ⇒ E ≤ Z.

•An upper bound is given by

Theorem 1 (Dascaliuc, Foias, and Jolly [2005])
For all u ∈ A, ∥∥∥A1/2u

∥∥∥2 ≤ ∥f∥
ν

∥u∥ .

•That is,

2Z ≤ νG
√
2E.
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Z–E Bounds: Constant Forcing

2Z
ν2G2

2E
ν2G2

A in
here
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Extended Norm: Random Forcing

•For a random variable α, with probability density function P ,
define the ensemble average

⟨α⟩ =
∫ ∞

−∞
α

(
dP

dζ

)
dζ.

•The extended inner product is

(u,v)
.
=

∫
Ω

⟨u·v⟩ dx =

∫
Ω

(∫ ∞

−∞
u·v dP

dζ
dζ

)
dx,

with norm

∥f∥ .
=

(∫
Ω

〈
|f |2

〉
dx

)1/2

.

•The n-th order injection rate is ϵn = (f , Anu).

12



Dynamical Behaviour: Random Forcing

•Energy balance:

1

2

d

dt
∥u∥2 + ν(Au,u) + (B(u,u),u) = (f ,u)

.
= ϵ,

where ϵ
.
= ϵ0 is the rate of energy injection.

•From the energy conservation identity (B(u,u),u) = 0,

1

2

d

dt
∥u∥2 + ν

∥∥∥A1/2u
∥∥∥2 = ϵ.

•The Poincaré inequality ||A1/2u|| ≥ ∥u∥ leads to

1

2

d

dt
∥u∥2 ≤ ϵ− ν ∥u∥2 ,

which implies that ∥u(t)∥2 ≤ e−2νt ∥u(0)∥2 +
(
1− e−2νt

ν

)
ϵ.

• So for every u ∈ A, we expect ∥u(t)∥2 ≤ ϵ/ν.
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•From ∥u(t)∥ ≤
√
ϵ/ν we obtain a lower bound for ∥f∥:

√
νϵ ≤ ϵ

∥u∥ =
(f ,u)

∥u∥ ≤ ∥f∥ ∥u∥
∥u∥ = ∥f∥ .

• It is convenient to use this lower bound for ∥f∥ to define a lower
bound for the Grashof number G = ∥f∥ /ν2 that provides a
normalization G̃ for random forcing:

G̃ =

√
ϵ

ν3
.

•We proved the following theorem (JDE 2018):

Theorem 2 (?) For all u ∈ A with energy injection rate ϵ,∥∥∥A1/2u
∥∥∥2 ≤√ ϵ

ν
∥u∥ .

•This leads to the same form as for a constant force: Z ≤ νG̃
√
E.
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Z–E Bounds: Random Forcing

2Z
ν2G̃2

2E
ν2G̃2
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Z–E Bounds: Random Forcing
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2D Vorticity Plot: Random Forcing
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3D Vorticity Plot: Random Forcing
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Large-Scale friction

• In the random-forcing case, we have recently extended the
analysis to include a large-scale friction term:

∂ω

∂t
+ u·∇ω = −ν0w + ν∇2ω + f.

• If we generalize our definition of the Grashof number to account
for ν0:

G̃ =

√
ϵ(ν + ν0)

ν2
,

the resulting analytic bounds retain the same form!
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Z–E Bounds: Random Forcing+Friction
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2D Vorticity Plot: Random Forcing+Friction
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3D Vorticity Plot: Random Forcing+Friction
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P–Z Bounds

•The rate of energy dissipation is 2νZ, while the rate of enstropy
dissipation is 2νP .

•Dascaliuc, Foias, and Jolly also obtained bounds for the
palinstrophy–enstrophy plane.

•A critical step in their argument is the application of the
Cauchy–Schwarz inequality to estimate the bilinear triplet

(B(u,u), Anu) for n = 2.

•For this bound to be sharp: B(u,u) = αAnu a.e. for some
α ∈ R.

•From the self-adjointness of A, such an alignment would require

0 = (B(u,u),u) = (αAnu,u) = (αAn/2u,An/2u)

= α
∥∥∥An/2u

∥∥∥2 ⇒ B(u,u) = 0 a.e.,
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which would imply no cascade!

•Numerical simulations show that these quantities are far from
being aligned; in fact they are extremely close to being
perpendicular!

•Consequently, the observed palinstrophy values are much lower
than the predicted bounds.
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P–Z Upper Bounds
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Z
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P–Z Bounds: Random Forcing+Friction
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Isotropic turbulence

•For statistically isotropic turbulence, (B(u,u), Anu) = 0:

Theorem 3 (?) In incompressible statistically isotropic 2D
turbulence,

⟨(u·∇)u·Anu⟩ = 0, ∀n ∈ R.

• Proof: Express u = (u, v) = (−ψy, ψx), where ψ is the stream
function and define:

α
.
= −ux = ψyx = vy, β

.
= −uy = ψyy, γ

.
= vx = ψxx.

• Statistical isotropy then implies

⟨(u·∇)u·Anu⟩ = ⟨(uux + vuy)A
nu + (uvx + vvy)A

nv⟩
= ⟨(−αu− βv)Anu + (γu + αv)Anv⟩
= ⟨α(vAnv − uAnu) + (γuAnv − βvAnu)⟩
= 0.
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Statistical independence of B(u, u) and A2u

•To demonstrate that these two vectors are statistically
independent, denote

cos−1

( 〈
(u·∇)u·A2u

〉√
⟨|(u·∇)u|2⟩ ⟨|A2u|2⟩

)
by ⟨θ⟩.

•We measure ⟨θ⟩ for a fully developed 2D turbulence with
random forcing and friction.
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⟨θ⟩ averaged for 0.1s
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https://www.math.ualberta.ca/~bowman/asygl/bilinear/angle1z1023.html


⟨θ⟩ averaged for 120s
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https://www.math.ualberta.ca/~bowman/asygl/bilinear/anglez1023.html


How small is the triplet term?

1

2

d

dt
|Au(t)|2 + ν |A3/2u(t)|2︸ ︷︷ ︸

2P2

+ (B(u,u), A2u) = (f , A2u(t)).
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The triplet term is indeed negligible
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https://www.math.ualberta.ca/~bowman/asygl/bilinear/tripletz1023.html


P vs. Z

•Normalizing to G̃ =
√
ϵ1(ν + ν0)/ν

2,

2P

(νG̃)2
≤
√

2Z

(νG̃)2
.
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General upper bound

•For every σ ∈ R and for all u ∈ A driven by a random forcing
having injection rate equal to ϵσ,

Theorem 4 (?)∥∥∥A(σ+1)/2u
∥∥∥2 ≤√ϵσ

ν

∥∥∥Aσ/2u
∥∥∥ .
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P–Z–E Bounds: Random Forcing+Friction
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Isotropic Spectrum: Random Forcing+Friction
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https://www.math.ualberta.ca/~bowman/asygl/bilinear/ekz1023.html


P–Z–E Bounds: Random Forcing
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https://www.math.ualberta.ca/~bowman/asygl/bilinear/pzez1023pure.html


Anisotropic Spectrum: Random Forcing
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DNS code

•We have released a highly optimized 2D pseudospectral code in
C++: https://github.com/dealias/dns.

• It uses our FFTW++ library to implicitly dealias the advective
convolution, while exploiting Hermitian symmetry ?, ?, ?.

•Advanced computer memory management, such as hybrid
padding, memory alignment, and dynamic moment averaging
allow DNS to attain its extreme performance.

•The formulation proposed by ? is used to reduce the number of
FFTs required for 2D (3D) incompressible turbulence to 4 (8).

•We also include simplified 2D (146 lines) and 3D (287 lines)
versions called ProtoDNS for educational purposes:
https://github.com/dealias/dns/tree/master/

protodns.
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Implicit Dealiasing

•Let N = 2m. For j = 0, . . . , 2m− 1 we want to compute

fj =
2m−1∑
k=0

ζjk2mFk.

• If Fk = 0 for k ≥ m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

f2ℓ =
m−1∑
k=0

ζ2ℓk2mFk =
m−1∑
k=0

ζℓkmFk,

f2ℓ+1 =

m−1∑
k=0

ζ
(2ℓ+1)k
2m Fk =

m−1∑
k=0

ζℓkm ζ
k
2mFk, ℓ = 0, 1, . . .m− 1.

•This requires computing two subtransforms, each of size m,
for an overall computational scaling of order 2m log2m =
N log2m.
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•Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v3.02) on top of
the FFTW library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/
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Hybrid Dealiasing

• combines the conventional practice of explicit dealiasing
(explicitly padding the input data with zeros) and implicit
dealiasing (mathematically accounting for these zero values);

• generalizes implicit dealiasing to arbitrary padding ratios and
includes explicit dealiasing as a special case;

• implements multidimensional convolutions by decomposing
them into lower-dimensional convolutions;

• supports hybrid OpenMP/MPI parallelism;

• outperforms explicit dealiasing in one, two, and three
dimensions.
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Hybrid Dealiasing Performs Consistently Well

21

22

23

24

25

26
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Conclusions

•The upper bound in the Z–E plane obtained previously for
constant forcing also works for white-noise forcing and large-
scale friction (hypoviscosity).

•Previous bounds in the P–Z plane vastly overestimate the
values obtained from numerical simulations.

•These bounds can be greatly tightened by exploiting isotropy.

•Analytical bounds for random forcing provide a means to
evaluate various heuristic turbulent subgrid (and supergrid!)
models by characterizing the behaviour of the global attractor
under these models.
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