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2D Turbulence

e Consider the Navier—Stokes equations for 2D incompressible
homogeneous isotropic turbulence with density p = 1:

%—?—VVZquu Vu+ VP =F,
V-u =0,
/'u,d:c— /Fdw—
0
) = up(x

with £ = |0, 27| x |0, 27T] and periodic boundary conditions on 0f2.
e Introduce the Hilbert space

H(Q2) =cl {u c (C*Q)NLAHN))?* : Veu =0, /Qudm = O} .

with inner product (u,v) = [, u( v(x,t)dz and L* norm

Jull = (u, u)'?



e For u € H(?), the Navier—Stokes equations can be expressed:

Cfl—? —vwWu+uVu+VP=F.

e Introduce A = —P(V?), f = P(F), and the bilinear map
B(u,u) =P (u-Vu+ VP),

where P : C%(Q) — H(Q) is the Helmholtz Leray projection:

P(v) =v— VV *V.o.
e The dynamical system can then be compactly written:

C;—?quAuth(u,u) = f.



Stokes Operator A

e The operator A = P(—=V?) is positive semi-definite and self-
adjoint, with a compact inverse.

e On the periodic domain €2 = [0, 27] x |0, 27|, the eigenvalues of
A are

A=k-k, ke Z x 7Z\{0}.
e The eigenvalues of A can be arranged as
D<A < A< A<--n, A =1

and its eigenvectors w;, ¢ € Ny, form an orthonormal basis for the
Hilbert space H, upon which we can define any quotient power

of A:

AOé’lUj = )\?w]‘, aecR, 7¢&N,.



Subspace of Finite Enstrophy

e We define the subspace of H consisting of solutions with finite
enstrophy:

( )

V=<uecH :Z)\j(u,wj)2<oo>.

J=0

\ /

e Another suitable norm for elements w € V is

1/2 2 ou Ou 2 > 5
|A/u< [ aa) (S,
j=0

1=1

1/2




(Quadratic Quantities

e For any solution u of the 2D Navier—Stokes equation, define the
nth-order polystrophy
1 2
By =g |4

o [y, / = FE, P=FE5 and P, = Fj5 are called the
energy, enstrophy, palinstrophy, hyperpalinstrophy.



Properties of the Bilinear Map

e We make use of the antisymmetry
(B(’U,, ’U), w) — _(B(uv w>> ’U),
which implies the conservation of the energy Ey = 3 ]|,

e In 2D, we also have orthogonality:

(B(u,u), Au) =0

and the strong form of enstrophy invariance:
(B(Av,v),u) = (B(u,v), Av).

: : : : 2
which implies the conservation of the enstrophy % HAl/ ZuH .

e In 2D, the above properties imply the symmetry

(B(v,v), Au) + (B(v,u), Av) + (B(u,v), Av) = 0.



Dynamical Behaviour

e Qur starting point is the incompressible 2D Navier—Stokes
equation with periodic boundary conditions:

%+yAu+B(u u) = f, u e H.

e Take the inner product with w (respectively Au):

2dtH v AWUH (),
2

‘Al/z 4| Aul? = (f, Aw).

th

e The Cauchy—5Schwarz and Poincaré inequalities yield
(fow) < ISl and ] < A2

e Since the existence and uniqueness for solutions to the 2D

Navier—Stokes equation has been proven, a global attractor can
be defined 7, 7.



Dynamical Behaviour: Constant Forcing

o If the force f is constant with respect to time, a Gronwall
imequality can be exploited:

Ju@®]” < e lu(0)]” + (1 — e G,

£

V2

where G =

1s a nondimensional Grashof number.

e Similarly;,

2
HAl/QU’(t)H < e—yt

A1/2 H (1— e 2R
e Being on the attractor thus requires

|lul| < vG  and HAl/ZuHSVG.



Z—F Bounds: Constant Forcing

e A trivial lower bound is provided by the Poincaré inequality:

2
|2 < HAWUH -~ E<Z

e An upper bound is given by

Theorem 1 (Dascaliuc, Foias, and Jolly [2005])
For all u € A,

f
|‘j41/2 ‘| H ‘||| H

e That is,

2/ < vGV2FE.
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Z—F Bounds: Constant Forcing
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Extended Norm: Random Forcing

e For a random variable o, with probability density function P,

define the ensemble average

o fo()

e The extended inner product is

[ s ([ o

with norm
1/2
a2 2N d .
1= ([ 4P e

e The n-th order injection rate is €, = (f, A"u).
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Dynamical Behaviour: Random Forcing

e Fnergy balance:

1d |
2dt H’U,H +v(Au,u) + (B(u,u),u) = (f,u) =e

where € = ¢ is the rate of energy injection.

e From the energy conservation identity (B(u,u),u) = 0,

ld

S el +v HAW“’H =

e The Poincaré inequality ||AY?u|| > |Ju|| leads to

ull" <e—vlu
2dt

1 — —2vt
which implies that ||Jw(t)]|” < e~ ||u(0)|* + ( - )6.

vV

o So for every u € A, we expect ||u(t)||* < ¢/v.
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e From ||u(t)|| < 4/€/v we obtain a lower bound for || f||:

< Fow) _F el

lull = [l

e [t is convenient to use this lower bound for || f|| to define a lower
bound for the Grashof number G = || f|| /v* that provides a
normalization G for random forcing:

e We proved the following theorem (JDE 2018):

Theorem 2 (?) For all u € A with energy injection rate €,

2
el <
1

e This leads to the same form as for a constant force: 27 < vGVE.
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Z—FE Bounds: Random Forcing
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27/(vG)?

Z—FE Bounds: Random Forcing
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2D Vorticity Plot: Random Forcing
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3D Vorticity Plot: Random Forcing
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https://www.math.ualberta.ca/~bowman/asygl/bilinear/vort3dz1023pure.html

Large-Scale friction

e In the random-forcing case, we have recently extended the
analysis to include a large-scale friction term:
Ow

En +u-Vw = —1yw+vVaw + f.

e [f we generalize our definition of the Grashof number to account
for vy:

b \/e(u+y0)

12

Y

the resulting analytic bounds retain the same form!
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Z—F Bounds: Random Forcing+Friction
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2D Vorticity Plot: Random Forcing+Friction
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3D Vorticity Plot: Random
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https://www.math.ualberta.ca/~bowman/asygl/bilinear/vort3dz1023.html

P—7 Bounds

e The rate of energy dissipation is 2v 2, while the rate of enstropy
dissipation is 2vP.

e Dascaliuc, Foias, and Jolly also obtained bounds for the
palinstrophy—enstrophy plane.

e A critical step in their argument is the application of the
Cauchy—Schwarz inequality to estimate the bilinear triplet

(B(u,w), A"u) for n = 2.

e For this bound to be sharp: B(u,u) = aA™u a.e. for some
a € R.

e From the self-adjointness of A, such an alignment would require
0= (Blu,u),u) = (aA"u,u) = («A"*u, AV?u)

2
:ozHA"/QuH =  B(u,u) =0 ae,
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which would imply no cascade!

e Numerical simulations show that these quantities are far from
being aligned; in fact they are extremely close to being
perpendicular!

e Consequently, the observed palinstrophy values are much lower
than the predicted bounds.
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P—-Z Upper Bounds
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P—-Z Bounds: Random Forcing+Friction
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Isotropic turbulence

e For statistically isotropic turbulence, (B(w,w), A"u) = 0:

Theorem 3 (?7) In incompressible statistically isotropic 2D
turbulence,

(u-V)u-A"u) =0, Vn € R.
o Proof: Express u = (u,v) = (=, ¥,), where 9 is the stream
function and define:
o = — Uy = 'Qbyzc = Uy, 5 — —Uy = wy% Y — Vyp = wx:ﬁ

e Statistical isotropy then implies

(u-V)u-A"u) = ((uu, + vuy)A"u + (vv, + vv,) A")
= ((—au — fv)A"u + (yu + av)A™v)
= (a(vA"v — uA"u) + (yuA"v — fvA"u))

= 0.

27



Statistical independence of B(u, u) and A*u

e To demonstrate that these two vectors are statistically
independent, denote

cos ! ( (uV)u-Au) >

V{[(u-V)ul?) (A2u?)
by (6).

e We measure (f) for a fully developed 2D turbulence with
random forcing and friction.

28



(@) averaged for 0.1s
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https://www.math.ualberta.ca/~bowman/asygl/bilinear/angle1z1023.html
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400
600
800

1000

800

600

400

200

30


https://www.math.ualberta.ca/~bowman/asygl/bilinear/anglez1023.html

How small is the triplet term?

AU+ (APl 4 (Bl w), Au) = (F, Ault))
2P

31



{((u-V)u-A?%u)

The triplet term is indeed negligible

6 x 10712

4x 1012

£ 2x 10~ 12

—2x 10712

—4x10712

—6x 10712

32


https://www.math.ualberta.ca/~bowman/asygl/bilinear/tripletz1023.html

P vs. Z

o Normalizing to G = \/e1(v + 1) /12,

2P 24
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33



(General upper bound

e For every 0 € R and for all w € A driven by a random forcing
having injection rate equal to €.,

Theorem 4 (7)

€o

e < 5 ]
vV
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P-Z—-F Bounds: Random Forcing—+Friction
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https://www.math.ualberta.ca/~bowman/asygl/bilinear/pzez1023.html

Isotropic Spectrum: Random Forcing—+Friction
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https://www.math.ualberta.ca/~bowman/asygl/bilinear/ekz1023.html

P-Z—-FE Bounds: Random Forcing
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https://www.math.ualberta.ca/~bowman/asygl/bilinear/pzez1023pure.html

Anisotropic Spectrum:

|

— et e el

e e i e A R ety
s e |

O R WP, OO Utk W

e e s ) Y

Random Forcing

38


https://www.math.ualberta.ca/~bowman/asygl/bilinear/ekz1023pure.html

DNS code

e We have released a highly optimized 2D pseudospectral code in
C++: https://github.com/dealias/dns.

e [t uses our FFTW++ library to implicitly dealias the advective
convolution, while exploiting Hermitian symmetry 7, 7, 7.

e Advanced computer memory management, such as hybrid
padding, memory alignment, and dynamic moment averaging
allow DNS to attain its extreme performance.

e The formulation proposed by ? is used to reduce the number of
FFETs required for 2D (3D) incompressible turbulence to 4 (8).

e We also include simplified 2D (146 lines) and 3D (287 lines)

versions called ProtoDNS for educational purposes:
https://github.com/dealias/dns/tree/master/
protodns.

39


https://github.com/dealias/dns
https://github.com/dealias/dns/tree/master/protodns
https://github.com/dealias/dns/tree/master/protodns

Implicit Dealiasing

eLet N =2m. For 1 =0,...,2m — 1 we want to compute
2m—1
ik
k=0

olf I, = 0 for £ > m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

m—1
Jfor = ZCMF = > GiF
k=0

m—1
(24
fars1 = Zcf =k B 0=0,1,..m— 1.
k=0

e This requires computing two subtransforms, each of size m,
for an overall computational scaling of order 2mlog,m =
N logy, m.

40



e Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v3.02) on top of
the FFTW library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/

41


http://fftwpp.sourceforge.net/

Hybrid Dealiasing

e combines the conventional practice of explicit dealiasing
(explicitly padding the input data with zeros) and implicit
dealiasing (mathematically accounting for these zero values);

e oeneralizes implicit dealiasing to arbitrary padding ratios and
includes explicit dealiasing as a special case;

e implements multidimensional convolutions by decomposing
them into lower-dimensional convolutions:;

e supports hybrid OpenMP /MPI parallelism:;

e outperforms explicit dealiasing in one, two, and three
dimensions.

42



Hybrid Dealiasing Performs Consistently Well
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Conclusions

e The upper bound in the Z—FE plane obtained previously for
constant forcing also works for white-noise forcing and large-
scale friction (hypoviscosity).

e Previous bounds in the P-Z plane vastly overestimate the
values obtained from numerical simulations.

e These bounds can be greatly tightened by exploiting isotropy.

e Analytical bounds for random forcing provide a means to
evaluate various heuristic turbulent subgrid (and supergrid!)
models by characterizing the behaviour of the global attractor
under these models.
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