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2D Turbulence in Fourier Space

e Navier—Stokes equation for vorticity w = z2-V Xw:
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e When v =0 and f = 0:

2
energy B = %Z ‘u];’;‘ and enstrophy 2 = %Z w|” are
k k

conserved.



Kraichnan—Leith—Batchelor Theory

e In an infinite domain
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Kraichnan—Leith—Batchelor Theory

e In an infinite domain

[Kraichnan 1967], [Leith 1968], [Batchelor 1969]:

— large-scale k=3 energy cascade;

— small-scale k73 enstrophy cascade.

e In a bounded domain, the situation may be quite different. . .



Long-Time Behaviour in a Bounded Domain
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Casimir Invariants

e Inviscid unforced two dimensional turbulence has uncountably
many other Casimir invariants.

e Any continuously differentiable function of the (scalar) vorticity
is conserved by the nonlinearity:

/f dx = /f —da:— /f’(w)u-dew

— [wViwde = [ f)V-ude ~0

e Do these invariants also play a fundamental role in the turbulent
dynamics, in addition to the quadratic (energy and enstrophy)
invariants? Do they exhibit cascades?

e Polyakov [1992] has suggested that the higher-order Casimir
invariants cascade to large scales, while Eyink [1996] suggests
that they might cascade to small scales.



High-Wavenumber Truncation

e Only the quadratic invariants survive high-wavenumber
truncation (Montgomery calls them rugged invariants).
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High-Wavenumber Truncation

e Only the quadratic invariants survive high-wavenumber
truncation (Montgomery calls them rugged invariants).
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where €xpq = (2:pXq)d(k+p+q).
e Enstrophy evolution:
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e The absence of an explicit wg in the first term means that setting
we = 0 for £ > K breaks the symmetry in the summations!

e This means that high-wavenumber truncation destroys the
invariance of Zs.

e However, since the missing terms involve wy, and wq for p and ¢
higher than the truncation wavenumber K, one might expect
almost exact invariance of Z3 for a well-resolved simulation.

e We find that this is indeed the case.



Enstrophy Balance

% + vk*wg, = Sk + [,

e Multiply by w, and integrate over wavenumber angle =-

|
enstrophy spectrum Z (k) = 5 / wr|? k df evolves as:

% Z(k) + 2wk’ Z(k) = T(k) + F(k),

where T'(k) = Re/Skw,’; kdf and F(k) = Re/fkw,’; kde.
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Nonlinear Enstrophy Transter Function

%ZU@) + 20k’ Z(k) = T(k) + F(k).

o [t

(k) = / " T(p) dp

represent the nonlinear transfer of enstrophy into [k, 0o).

e Integrate from k to oo:

—/ p)dp = TI(K) — e(k),

where ez (k) = / 2up*Z(p) — F(p)] dp is the total enstrophy

k
transter, via dissipation and forcing, out of wavenumbers higher
than k.
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e A positive (negative) value for II(k) represents a flow of
enstrophy to wavenumbers higher (lower) than k.

e When v =0 and fi = 0:
d 0.0 .0
0=— Z(p)dp=/ T'(p) dp.,
0 0
so that
00 k
o) = [ 7)o =~ [ T)ap
0

e Note that I1(0) = II(co0) = 0.
e In a steady state, II(k) = ez(k).

e This provides an excellent numerical diagnostic for when a
steady state has been reached.
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Forcing at k = 2. friction for k < 3, viscosity for
k > ky =300 (1023 x 1023 dealiased modes)
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logarithmic slope of F(k)
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Vorticity Field with Molecular Viscosity
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Vorticity Field with Viscosity Cutoft
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Vorticity Surtace Plot with Molecular Viscosity
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Nonlinear Casimir Transfer

e Fourier decompose the fourth-order Casimir invariant

Zy = N°® Z w*(z;) in terms of N spatial collocation points z;:

Z Sk Z Wp Wq W—k—p—q T 3wk Z SpWqW_k—p—q

NQZ Sk Zw

J

— E W Wp Wq W—k—p—q-
k.p.q

P q p.q

(k) Here Sk is the nonlinear source term in =

2mg k/N 1 3wy, Z S x] < j>e2m’j.k/N
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Downscale Transter of Z,
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Dealiasing: Explicit 2/4 Zero Padding

e Computing the transter of Z; requires a ternary convolution:
the Fourier transform of the cubic quantity w?.
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Dealiasing: Explicit 2/4 Zero Padding

e Computing the transter of Z4 requires a ternary convolution:
the Fourier transform of the cubic quantity w?.

e Dealiasing a ternary convolution requires a 2/4 zero padding
rule (instead of the usual 2/3 rule for a quadratic convolution).

For a truncation wavenumber of 512 in each direction an explicitly
dealiased pseudospectral simulation would require a bufter of size

2048 x 2048.

e [nstead, use wmplicit padding |Bowman & Roberts 2011]:
roughly twice as fast, 1/2 of the memory required by
conventional explicit padding.

e Memory savings: in d dimensions implicit padding
asymptotically uses (2/3)! or (1/2)%! of the memory
require by conventional explicit padding.
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e Highly optimized implicitly dealiased convolution routines have
been implemented as a software layer FFTW++ on top of the FFTW
library and released under the Lesser GNU Public License.
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Transter vs. Flux

e Distinguish between transfer and flux.
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Transter vs. Flux

e Distinguish between transfer and flux.

e The mean rate of enstrophy transfer to |k, 0o) is given by

e In a steady state, II(k) will trivially be constant within a true
inertial range.

e In contrast, the enstrophy flux through a wavenumber £ is
the amount of enstrophy transferred to small scales via triad
interactions involving mode k.
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Flux Decomposition for a Single (k, p, q) Triad

Li=T, Ly=0
Sp=0

Si=T)

e Note that energy is conserved: Lj+ Sy = T}, = =1, —T1,. Thus

_ * *
L, = Re g My p wp Wi—pwy, — Re g Mp,k_pwkwk_pwp.

|k|=Fk |k|=k
lp|<k |p|<k
|k—p|<k |lk—p|>Fk
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Conclusions

e Even though higher-order Casimir invariants do not survive
wavenumber truncation, it is possible, with sufficiently well
resolved simulations, to check whether they cascade to large
or small scales.
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Conclusions

e Even though higher-order Casimir invariants do not survive
wavenumber truncation, it is possible, with sufficiently well
resolved simulations, to check whether they cascade to large
or small scales.

e Numerical evidence suggests that in the enstrophy inertial range
there is a direct cascade of the globally integrated w* inviscid
invariant to small scales.

e However, for the globally integrated w? inviscid invariant, we
found no systematic cascade: it appears to slosh back and forth
between the large and small scales. This is expected since w?
does not have a definite sign.

e One should distinguish between nonlocal transfer and flux. To
compute this decomposition efficiently, one needs to develop a
restricted Fast Fourier transform.
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Asymptote: 2D & 3D Vector Graphics Language

tote

Andy Hammerlindl, John C. Bowman, Tom Prince

http://asymptote.sf.net

(freely available under the GNU public license)
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