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Discrete Cyclic Convolution

e The FF'T provides an efficient tool for computing the discrete
cyclic convolution
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where the vectors F' and G have period N.
e Define the Nth primitive root of unity:

(N = exp (%)

e The fast Fourier transform method exploits the properties that
Gy = Cnyr and (y =1

e However, the pseudospectral method requires a [linear
convolution.
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Convolution Theorem
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e The terms indexed by s # 0 are aliases; we need to remove
them!

e If only the first m entries of the input vectors are nonzero, aliases

can be avoided by zero padding input data vectors of length m
to length N > 2m — 1.

e Faplicit zero padding prevents mode m — 1 from beating with
itself and wrapping around to contaminate mode N = 0 mod N .
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Implicit Padding

eLet N =2m. For y =0,...,2m — 1 we want to compute

2m—1
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olf F; = 0 for & > m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:
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e This requires computing two subtranstorms, each of size m,
for an overall computational scaling of order 2mlog,m =
N log, m.



e Odd and even terms of the convolution can then be computed
separately, multiplied term-by-term, and transformed again to
Fourier space:
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e No bit reversal is required at the highest level.

e A 1D implicitly padded convolution is implemented in our
FFTW++ library.

e This in-place convolution was written to use six out-of-place
transforms, thereby avoiding bit reversal at all levels.



e The computational complexity is 6 K'm log, m.

e The numerical error is similar to explicit padding and the
memory usage is identical.
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Input: vector f, vector g

Output: vector f

u <+ £t 1(f):

v« fft 1(g);

U< U*V;

for k=0tom—1do
flk] < Goflk];
glk] < C,8lk];

end

v < £t 1(f);

f+ £t 1(g);

V< Vv xf;

f < fft(u);

u< fft(v);

for k=0tom—1do

fIK] < fIk] + Gy ulk]:

end

return f/(2m);




Implicit Padding in 1D
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Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.
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Recursive Convolution

e Naive way to compute a multiple-dimensional convolution:

Fn, ..., —— multiply ——» F N,

e The technique of recursive convolution allows one to avoid
computing and storing the entire Fourier image of the data:

'FNd — Nd X COIlVOlVGN1

—1
Nd 1 ‘FNd

..... —

12



Implicit Padding in 2D

e [ixtra work memory need not be contiguous with the data.
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Implicit Padding in 2D
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Implicit Padding in 3D
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Centered (Pseudospectral) Convolutions

e For a centered convolution, the Fourier origin (kK = 0) is
centered in the domain:

e Need to pad to N > 3m — 2 to remove aliases.

e The ratio (2m —1)/(3m — 2) of the number of physical to total
modes is asymptotic to 2/3 for large m .

e A Hermaitian convolution arises since the input vectors are real:

fok = fr

16



1D Implicit Hermitian Convolution
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Distributed-Memory Parallelization

e The pseudospectral method uses a matrix transpose to localize
the computation of the multi-dimensional FF'T's onto individual
Processors.

e Parallel generalized slab/pencil decompositions have recently
been developed for distributed-memory architectures.

e We have compared several distributed matrix transpose

algorithms, both blocking and nonblocking, under pure MPI
and hybrid MPI/OpenMP architectures.

e Local transposition is not required within a single MPI node.

e We have developed an adaptive algorithm, dynamically tuned
to choose the optimal block size.
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8 X 8 Block Transpose over 8 processors
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Advantages of Hybrid MPI/OpenMP

e Use hybrid OpenMP /MPI with the optimal number of threads:

— yields larger communication block size;
— local transposition is not required within a single MPI node;

— allows smaller problems to be distributed over a large number
of processors;

—for 3D FFTs, allows for more slab-like than pencil-like models,
reducing the size of or even eliminating the need for a second
transpose;

— sometimes more efficient (by a factor of 2) than pure MPL.

e The use of nonblocking MPI communications allows us to
overlap computation with communication: this can yield up
to an additional 32% performance gain for implicitly dealiased
convolutions, for which a natural parallelism exists between
communication and computation.
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Hybrid MPI 3D Adaptive Transpose Timing
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https://www.math.ualberta.ca/~bowman/asygl/siam20/adaptiveTranspose.html

Hybrid MPI 3D Adaptive Transpose Speedup
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Communication Costs: Direct Transpose

e Suppose an IV X N matrix is distributed over P processes with
P|N.

e Direct transposition involves P —1 communications per process,
each of size N?/P?, for a total per-process data transfer of

P—1

SN
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Block Transpose

e Let P = ab. Subdivide N x M matrix into a X a blocks each
of size N/a x M/a.

e Inner: Over each team of b processes, transpose the a individual
N/a x M /a matrices, grouping all a communications with the
same source and destination together.

e Outer: Over each team of a processes, transpose the a X a matrix
of N/a x M /a blocks.
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Communication Costs

e Let 7y be the typical latency of a message and 74 be the time
required to send each matrix element, so that the time to send
a message consisting of n matrix elements is

Tg—l—an

e The time required to perform a direct transpose is

P—-1

TD:TK(P— 1>—|—Td 22

NM
NM—(P—l)(Te‘l'Td )7

P2
whereas a block transpose requires

P P\ NM
TB(CL)—7'5<CL—|—E—2> +Td<2P—a— a) IR

o Let L = 7y/7,; be the effective communication block length.
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Direct vs. Block Transposes

e Since

P
TD—TB—Td<P—|—1—a——><L—

a

NM
P2 )’

we see that a direct transpose is preferred when NM > P?L,.
whereas a block transpose should be used when NM < P?L.

e To find the optimal value of a for a block transpose consider

P NM
o =1 2 (- 20)
o For NM < P?L, we see that T is convex, with a minimum at

a=+P.
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Optimal Number of Threads

e The minimum value of Tg is

Ts(VP) = sz(\/ﬁ - 1) (L + g%)

NM
~ 2 Td\/ﬁ(L+ P3/2>, P> 1.

e The global minimum of T over both a and P occurs at
P~ (2NM/L)*3.

e [f the matrix dimensions satisty NM > L, as is typically
the case, this minimum occurs above the transition value

(NM/L)'/?.
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Conclusions

e For centered convolutions in d dimensions implicit padding
asymptotically uses (2/3)%~! of the conventional storage.

e The factor of 2 speedup is largely due to increased data locality:.

e Highly optimized and parallelized implicit dealiasing routines
have been implemented as a software layer FFTW++ (v 2.05) on
top of the FFTW library and released under the Lesser GNU

Public License: http://fftwpp.sourceforge.net/

e Hybrid MPI/OpenMP is often more efficient than pure MPI for
distributed matrix transposes.

e The hybrid paradigm provides an optimal setting for nonlocal
computationally intensive operations found in applications like
the fast Fourier transform.

e The advent of implicit dealiasing of convolutions makes
overlapping transposition with FFT computation feasible.
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e Writing of a high-performance dealiased pseudospectral code is
now a relatively straightforward exercise. For example, see the
protodns project at

http://github.com/dealias/dns
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