FFTW++: A Hybrid OpenMP /MPI
Implementation of FFTs and Implicitly
Dealiased Convolutions

John C. Bowman Malcolm Roberts
University of Alberta Advanced Micro Devices

Feb 14, 2020

www.math.ualberta.ca/~bowman/talks

Discrete Cyclic Convolution

e The FF'T provides an efficient tool for computing the discrete
cyclic convolution

N—-1
S R,
p=0

where the vectors F' and G have period N.
e Define the Nth primitive root of unity:

(N = exp (%)

e The fast Fourier transform method exploits the properties that
Gy = Cnyr and (y =1

e However, the pseudospectral method requires a [linear
convolution.

e T'he unnormalized

backwards discrete Fourier transform ot

{Fkik:O,...,N}iS

N-1
=Y &K j=0,...,N-1
k=0

e The corresponding

1
Fk:N

forward transform is

N—-1 |
G k=0,...,N—1
j=0

e The orthogonality of this transform pair follows from

N—-1 |
> =+
=0

(N if { =sN fors e Z,
1 — (N
N — (0 otherwise.

\ 1_CJ<7

Convolution Theorem

N—1 N—1 N—1 N—1
=gk _ —Jjk Jp Jq
Ji9iCN" = E :CN E :CNFp (v Gy
j=0 j=0 p=0 4=0
N—1N-1 N—1
_ (—k+p+q)j
— Fqu CN
p=0 ¢=0 7=0
N—1
— N § Fka—p—i—sN-
s p=0

e The terms indexed by s # 0 are aliases; we need to remove
them!

e If only the first m entries of the input vectors are nonzero, aliases

can be avoided by zero padding input data vectors of length m
to length N > 2m — 1.

e Faplicit zero padding prevents mode m — 1 from beating with
itself and wrapping around to contaminate mode N = 0 mod N .

e Since FFT sizes with small prime factors in practice yield
the most eflicient implementations, the padding is normally
extended to N = 2m:

{Fu}isy {Gr}y

e Since FF'T sizes with small prime factors in practice yield
the most eflicient implementations, the padding is normally
extended to N = 2m:

{Fu}isy {Gr}y

¢ '

{Fi}icy {0} {Gi}isy {0}

e Since FF'T sizes with small prime factors in practice yield
the most eflicient implementations, the padding is normally
extended to N = 2m:

{Fki?—ol {Gki?—ol
{F)i {0} {Gi}isy {0}
FFT_1'2 : FFT_1'2 :
{fitiZo 19; %0

e Since FF'T sizes with small prime factors in practice yield
the most eflicient implementations, the padding is normally
extended to N = 2m:

144 ki?—ol {Gki?—ol
{F)i {0} {Gi}isy {0}
FFT!y FFT-!y
{5 {g; 105"
{fig;i}:l -

e Since FF'T sizes with small prime factors in practice yield
the most eflicient implementations, the padding is normally
extended to N = 2m:

144 ki?—ol {Gki?—ol
{F)i {0} {Gi}isy {0}
FFT!y FFT-!y
{5 {g; 105"
{fig;i}:l -
FET

{F G}y

e Since FF'T sizes with small prime factors in practice yield
the most eflicient implementations, the padding is normally
extended to N = 2m:

144 ki?—ol {Gki?—ol
{F)i {0} {Gi}isy {0}
FFT!y FFT-!y
{5 {g; 105"
{fig;i}:l -
FET
{F G}

¢

Fxd

Implicit Padding

eLet N =2m. For y =0,...,2m — 1 we want to compute

2m—1

f] — Z Cgank
k=0

olf F; = 0 for & > m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

m—1
fzg—ZC%ka ZCfr]ka, 620,1,...772—1.
k=0

m—1
(20+1)
fort1 = E Cz) Fk:E Chey .,
=0

e This requires computing two subtranstorms, each of size m,
for an overall computational scaling of order 2mlog,m =
N log, m.

e Odd and even terms of the convolution can then be computed
separately, multiplied term-by-term, and transformed again to
Fourier space:

2m—1

2mE =Y G f;
=0

m—1

m—1
> Gt Y Com P forn
(=0

14

m

|l
L O

m—1
%Mf%ﬂLCz_n]ﬂfZ%Mf%H k=0,...,m—1
(=0

(=0

e No bit reversal is required at the highest level.

e A 1D implicitly padded convolution is implemented in our
FFTW++ library.

e This in-place convolution was written to use six out-of-place
transforms, thereby avoiding bit reversal at all levels.

e The computational complexity is 6 K'm log, m.

e The numerical error is similar to explicit padding and the
memory usage is identical.

{Fu}is {Gr}isy

e The computational complexity is 6 K'm log, m.

e The numerical error is similar to explicit padding and the
memory usage is identical.

{Fe}isy {Gr}isy

T T

{ fae} i { fae1}i" {920} 725" oy vis

e The computational complexity is 6 K'm log, m.

e The numerical error is similar to explicit padding and the
memory usage is identical.

{fae} 1o {forr1}05' {g20}75%" {g2e1} 75"

. ——

{ foegae} 7ot { fort192011 750"

e The computational complexity is 6 K'm log, m.

e The numerical error is similar to explicit padding and the
memory usage is identical.

{fae}iso' { farr1 o' {920} {goer1}io
{ forgae} 720" { farr192e41 050"
V/

{(F* G}y

Input: vector f, vector g

Output: vector f

u <+ £t 1(f):

v« fft 1(g);

U< U*V;

for k=0tom—1do
flk] < Goflk];
glk] < C,8lk];

end

v < £t 1(f);

f+ £t 1(g);

V< Vv xf;

f < fft(u);

u< fft(v);

for k=0tom—1do

fIK] < fIk] + Gy ulk]:

end

return f/(2m);

Implicit Padding in 1D

-I-lII ! IIIIIIII ! IIIIIIII ! IIIIIIII T T

= [
7 — & — explicit T=1 ;o
i —e— implicit T=1 // '
... explicit T=4 | o
6 — o -implicit T=4 | !

10

Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

11

Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

11

Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

11

Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

F - F G |= G
Y Y
/ g

I

11

Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

F — F G = G
Y Y
/ g
fg
v
F x GG

11

Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

F — F G = G
Y Y
/ g
fg
v
F x G—F x (]

Recursive Convolution

e Naive way to compute a multiple-dimensional convolution:

Fn, ..., —— multiply ——» F N,

e The technique of recursive convolution allows one to avoid
computing and storing the entire Fourier image of the data:

'FNd — Nd X COIlVOlVGN1

—1
Nd 1 ‘FNd

..... —

12

Implicit Padding in 2D

e [ixtra work memory need not be contiguous with the data.

Implicit Padding in 2D

e [ixtra work memory need not be contiguous with the data.

FFT,'{F}

N, even

FFT,'{F}
n, odd

FFT;Y{G}

N, even

FFT,;'{G}
n, odd

13

Implicit Padding in 2D

e [ixtra work memory need not be contiguous with the data.

Implicit Padding in 2D

e [ixtra work memory need not be contiguous with the data.

13

Implicit Padding in 2D

e [ixtra work memory need not be contiguous with the data.

Implicit Padding in 2D

e [ixtra work memory need not be contiguous with the data.

13

Implicit Padding in 2D

e [ixtra work memory need not be contiguous with the data.

13

Implicit Padding in 2D

time/(m? log, m?) (ns)

15 IIIII: | I I |

— & — explicit T=1
—s— implicit T=1

---0-- explicit T=4

—o- - implicit T=4,

14

time/(m?> log, m?) (ns)

Implicit Padding in 3D

o Eoi

<
£
/:
/o

/L
/ .

_’a — explicit T=1
—e— implicit T=1
-@-- explicit T=4 -

—o- - implicit T=4

107
m

15

Centered (Pseudospectral) Convolutions

e For a centered convolution, the Fourier origin (kK = 0) is
centered in the domain:

e Need to pad to N > 3m — 2 to remove aliases.

e The ratio (2m —1)/(3m — 2) of the number of physical to total
modes is asymptotic to 2/3 for large m .

e A Hermaitian convolution arises since the input vectors are real:

fok = fr

16

1D Implicit Hermitian Convolution

L LR LU L ""%‘

T — & — explicit T=1 L

—s— implicit T=1 I

---@-- explicit T=4
—o- - implicit T=4

gl

IIIIII | IIIIIIII | IIIIIIII .?Iﬁ;-l-lu L1 iiniil

102 10° 10* 10> 10°

m

17

Distributed-Memory Parallelization

e The pseudospectral method uses a matrix transpose to localize
the computation of the multi-dimensional FF'T's onto individual
Processors.

e Parallel generalized slab/pencil decompositions have recently
been developed for distributed-memory architectures.

e We have compared several distributed matrix transpose

algorithms, both blocking and nonblocking, under pure MPI
and hybrid MPI/OpenMP architectures.

e Local transposition is not required within a single MPI node.

e We have developed an adaptive algorithm, dynamically tuned
to choose the optimal block size.

18

8 X 8 Block Transpose over 8 processors

Process

N O Ot s W N = O

19

8 X 8 Block Transpose over 8 processors

Process

N O Ot s W N = O

19

8 X 8 Block Transpose over 8 processors

Process

N O Ot s W N = O

19

SIS
NN

NS

S —~ AN n F 0 O b-

8 X 8 Block Transpose over 8 processors

SS9001]

8 X 8 Block Transpose over 8 processors

Process

N O Ot s W N = O

19

S &
H NENSSE

H ENNRW

S —~ AN n F 0 O b-

8 X 8 Block Transpose over 8 processors

SS9001]

8 X 8 Block Transpose over 8 processors

Process

N O Ot s W N = O

19

Advantages of Hybrid MPI/OpenMP

e Use hybrid OpenMP /MPI with the optimal number of threads:

— yields larger communication block size;
— local transposition is not required within a single MPI node;

— allows smaller problems to be distributed over a large number
of processors;

—for 3D FFTs, allows for more slab-like than pencil-like models,
reducing the size of or even eliminating the need for a second
transpose;

— sometimes more efficient (by a factor of 2) than pure MPL.

e The use of nonblocking MPI communications allows us to
overlap computation with communication: this can yield up
to an additional 32% performance gain for implicitly dealiased
convolutions, for which a natural parallelism exists between
communication and computation.

20

time/(m? log, m?) (ns)

Pure MPI 2D Convolutions

ﬁ—l TT | T T T T TTT T T T T TTT T T
'-._ -
B .',' E P OEEEEE P < -
£ |
o \ :
v — & —implicit P=24
\\ - \ m —e— implicit P=192
\ \ .0+ explicit P=24
=\ \ a —o- - explicit P=192
\ ‘. B
\ .. ces. N
\ [
\
‘ \
- _
Y \ .
N A= = L
~ - x T
B) h = /\< x A _§\ 7]
- —e
— e
111 | 1 1 1 11111 o R S . 1 EJL <E_J.£I:E'

time/(m? log, m3) (ns)

Pure MPI 3D Convolutions

T T T T T - —
4 B P EEEER R R c@:]
3% 1
— & —implicit P=24
- | —sa— implicit P=192
--.@-- explicit P=24
—e - explicit P=192
2 N
- .
1 b= - ~ —— T - —e]
- -
i T T : | Nl | | | |E-
107 10
m

22

Hybrid MPI 3D Adaptive Transpose Timing

23

https://www.math.ualberta.ca/~bowman/asygl/siam20/adaptiveTranspose.html

Hybrid MPI 3D Adaptive Transpose Speedup

=TT

10

/"
02

8
7
6
5
4
300 3
2
1

A0/ :
¢ /
A v J
Vi

speedup

24

https://www.math.ualberta.ca/~bowman/asygl/siam20/speedupTranspose.html

Communication Costs: Direct Transpose

e Suppose an IV X N matrix is distributed over P processes with
P|N.

e Direct transposition involves P —1 communications per process,
each of size N?/P?, for a total per-process data transfer of

P—1

SN

25

Block Transpose

e Let P = ab. Subdivide N x M matrix into a X a blocks each
of size N/a x M/a.

e Inner: Over each team of b processes, transpose the a individual
N/a x M /a matrices, grouping all a communications with the
same source and destination together.

e Outer: Over each team of a processes, transpose the a X a matrix
of N/a x M /a blocks.

26

Communication Costs

e Let 7y be the typical latency of a message and 74 be the time
required to send each matrix element, so that the time to send
a message consisting of n matrix elements is

Tg—l—an

e The time required to perform a direct transpose is

P—-1

TD:TK(P— 1>—|—Td 22

NM
NM—(P—l)(Te‘l'Td)7

P2
whereas a block transpose requires

P P\ NM
TB(CL)—7'5<CL—|—E—2> +Td<2P—a— a) IR

o Let L = 7y/7,; be the effective communication block length.

27

Direct vs. Block Transposes

e Since

P
TD—TB—Td<P—|—1—a——><L—

a

NM
P2)’

we see that a direct transpose is preferred when NM > P?L,.
whereas a block transpose should be used when NM < P?L.

e To find the optimal value of a for a block transpose consider

P NM
o =1 2 (- 20)
o For NM < P?L, we see that T is convex, with a minimum at

a=+P.

28

Optimal Number of Threads

e The minimum value of Tg is

Ts(VP) = sz(\/ﬁ - 1) (L + g%)

NM
~ 2 Td\/ﬁ(L+ P3/2>, P> 1.

e The global minimum of T over both a and P occurs at
P~ (2NM/L)*3.

e [f the matrix dimensions satisty NM > L, as is typically
the case, this minimum occurs above the transition value

(NM/L)'/?.

29

Communication Cost

—_
O
(@)

—_
-]
ot

—_
-]
=~

Transpose Communication Costs

10*

P

102

10

103

107

$0°

Zero Latency

Direct
Block
Threads

30

Conclusions

e For centered convolutions in d dimensions implicit padding
asymptotically uses (2/3)%~! of the conventional storage.

e The factor of 2 speedup is largely due to increased data locality:.

e Highly optimized and parallelized implicit dealiasing routines
have been implemented as a software layer FFTW++ (v 2.05) on
top of the FFTW library and released under the Lesser GNU

Public License: http://fftwpp.sourceforge.net/

e Hybrid MPI/OpenMP is often more efficient than pure MPI for
distributed matrix transposes.

e The hybrid paradigm provides an optimal setting for nonlocal
computationally intensive operations found in applications like
the fast Fourier transform.

e The advent of implicit dealiasing of convolutions makes
overlapping transposition with FFT computation feasible.

31

http://fftwpp.sourceforge.net/

e Writing of a high-performance dealiased pseudospectral code is
now a relatively straightforward exercise. For example, see the
protodns project at

http://github.com/dealias/dns

32

http://github.com/dealias/dns

References

[Bowman & Roberts 2011] J. C. Bowman & M. Roberts, STAM J. Sci. Comput., 33:386, 2011.
[Bowman & Roberts 2016] J. C. Bowman & M. Roberts, to be submitted to Parallel computing, 2016.
[Orszag 1971] S. A. Orszag, Journal of the Atmospheric Sciences, 28:1074, 1971.
[Patterson Jr. & Orszag 1971] G. S. Patterson Jr. & S. A. Orszag, Physics of Fluids, 14:2538, 1971.

[Roberts & Bowman 2016] M. Roberts & J. C. Bowman, submitted to STAM J. Sci. Comput., 2016.

