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2D Turbulence in Fourier Space

e Navier—Stokes equation for vorticity w = z2-V Xu:
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2D Turbulence in Fourier Space

e Navier—Stokes equation for vorticity w = 2-V Xu:

%—c:Jru Vw=vVuw+f

e In Fourier space:
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where v =vk®*  and  eppy = (2:pXq)d(k+p+q) s
antisymmetric under permutation of any two indices.



e When v = i, =0,
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conserved:
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Spectral Reduction

e Introduce a coarse-grained grid indexed by K':

Wavenumber Bin Geometry (8 x 3 bins)



e Define new variables
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e Define new variables

1

&hY:<WwK‘£Z;fA

Wik dk:,

where Ay is the area of bin K.

e Evolution of 2k

€
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1
where ( f —= / dk / dp / dq f.
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e Approximate wy, and wq by bin-averaged values {2p and {lg:
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e Define the coarse-grained enstrophy Z and energy E:

- %Z Qxl? A, Z ’QK’
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e Define the coarse-grained enstrophy Z and energy E:
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e Define the coarse-grained enstrophy Z and energy E:

= 3kl Ak Z el
K

e Enstrophy is still conserved by the nonlinearity since

€
<k—gq> antisymmetric in =~ K < P.
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e But energy conservation has been lost!

1
5 <€kgq> NOT antisymmetric in K < Q.
K 4 / KPQ

e Reinstate both desired symmetries with the modified coefficient
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e We call the forced-dissipative version of this approximation
spectral reduction (SR):
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exact dynamics in the limit of small bin size.
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Properties

e We call the forced-dissipative version of this approximation
spectral reduction (SR):

0k
W + <Vk>KQK = ZAPAQ

P.Q
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e SR conserves both energy and enstrophy and reduces to the
exact dynamics in the limit of small bin size.

e [t has the same general structure and symmetries as the original
equation and in this sense may be considered a renormalization.

e SR obeys a Liouville Theorem; in the inviscid limit, it yields
statistical-mechanical (equipartition) solutions.

e However: since the 0g1piq0 factor in the nonlinear coeflicient
€kpq Nas been smoothed over, spectral reduction 1s no longer a
convolution: pseudospectral collocation does not apply.
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Moments

e (). How accurate is spectral reduction?

e A. For large bins, the instantaneous dynamics of SR is
Iaccurate.

e However: the equations for the time-averaged (or ensemble-
averaged) moments predicted by SR closely approximate those
of the exact bin-averaged statistics.

e .o, time average the exact bin-averaged enstrophy equation:

5 €L
pr <\wk] > + 2 Re <Vk\wk\ >K— 2 Re E ApAg <—q12’qwkw wq> ,
PQ KrQ

where the bar means time average and (-) - means bin average.

o Time-averaged quantities such as |wg|® and Wiwaswy  are
generally smooth tunctions of k, p, g on the four- dlmenswna,l
surface defined by the triad condition k +p + q = 0.




e Mean Value Theorem for integrals: for some & € K.
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e Mecan Value Theorem for integrals: for some & € K.

Qk|* = |we]” = |wn]?  Vke K.

e To good accuracy these statistical moments may therefore be
evaluated at the characteristic wavenumbers K., P. Q:
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e To the extent that the wavenumber magnitude ¢ varies slowly
over a bin:
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e Mecan Value Theorem for integrals: for some & € K.

Qk|* = |we]” = |wn]?  Vke K.

e To good accuracy these statistical moments may therefore be
evaluated at the characteristic wavenumbers K. P, Q:

0 €k  OF OF
o Qk|* +2Re () ¢ [Ok]* =2Re Y ApAg <%> Qe 0%,

PO 9 / KPQ
e To the extent that the wavenumber magnitude ¢ varies slowly
over a bin:
Q;Q *+2Re (vi) i |Qk | = 2Re Y ApA <€'“pq>KPQQ* L0
8tK C\Vk)Kg NMK| — S PAQ QQ KYpreqQ-

P.Q

e But this is precisely the time-average of the SR equation!



Noncanonical Hamiltonian Formulation

e Underlying noncanonical Hamiltonian formulation for inviscid
2D vorticity equation:

. 0H
Wk:/dq quﬂa
q

where

H;l/dk‘ka
2 k2

qu = /dpekpqw;.
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Noncanonical Hamiltonian Formulation

e Underlying noncanonical Hamiltonian formulation for inviscid
2D vorticity equation:

. 0H
Wk = /dq JkQ(S

where

H = l/dk ‘wk’2
2 k2
qu = /dpekpqw;.

e Leads to inviscid Navier—Stokes equation:

0
ﬂJFkak = /dp/dqeﬂw*w*.



e Navier—Stokes:

-

5wk
dk —
5wk

Liouville Theorem

J kq / dp € k:pqu

0Jrqg 0H
dk | d 1
/ / q 5wk 5wq J

0°H

q&ukéwq

0.
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Liouville Theorem

e Navier—Stokes:

Jk / dp kaqu

N /dk% /dk/dq OJkg O,
W 5wk 5wq

e Spectral Reduction:

JkQ= Z Ap <€kPQ>KPQ Op
P

0°H

k
q5wk5wq

62

Ok 0Ixq OH
DI o) T JKQ
— 00k 2 D 99 0000

<€kpq>K(—K)Q:0

0.

= 0.

11



Statistical Equipartition

e For mizing dynamics, the Liouville Theorem and the coarse-
grained invariants

Z ’QK’ AK, 7= %Z |QK’2 AK;
K

lead to statistical equipartition of (a/ K2+ ) |Qk|” Ak.
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Statistical Equipartition

e For mizing dynamics, the Liouville Theorem and the coarse-
grained invariants

Z ’QK’ AK7 7= %Z ‘QKF AK;
K

lead to statistical equipartition of (/K2 + ) |Qk|” Ak.
e This is the correct equipartition only for uniform bins.

e However, for nonuniform bins, a rescaling of time by Ak,

1 0k (€kpa) K PQ
N = ApA )7
T + (k) i 2K 1;2 PAQ 02 P Lg;

yields the correct inviscid equipartition: <|Q K\2> = (ﬂ + /3) -



e Unfortunately, the rescaled spectral reduction equations are
hopelessly stiff [Bowman et al. 2001].

102
16x8 bins
21x21 modes
........ mk/ (ot BKE)
—
= 10! |
=]

100

100 10!
k

Relaxation of rescaled spectral reduction to equipartition.



Spectral Reduction on a Lattice

e Reluctantly, we accept the fact that each bin must contain the
same number of modes.
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Spectral Reduction on a Lattice

e Reluctantly, we accept the fact that each bin must contain the
same number of modes.

e Imposing uniform bins has an important advantage: it affords
a pseudospectral implementation of spectral reduction!

e Consider spectral reduction on a coarse-grained lattice, with
r X r modes per rectangular bin.
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e The bin-averaging operations become:
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e The bin-averaging operations become:

1
fe) g = ﬁka,,

kcK
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e Uniform discrete spectral reduction:
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e The bin-averaging operations become:

1
fe) g = ﬁka,,

kcK

(fkpa) KPQ ~ 6 Y S‘ S‘ Jrpg-

ke K peP qeQ

e Uniform discrete spectral reduction:

(%K + (k) i Sl = r4z o0 <€kPQ>KPQ Op + FrE().

o Let £(t) be a unit Gaussian stochastic white-noise process and

" \/Z il

enstrophy Novikov [1964].

choose Fg = to inject on average €y units of
K J
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Discrete Fast Fourier Transform

e Define the Nth primitive root of unity:

(N = exp (%)
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Discrete Fast Fourier Transform

e Define the Nth primitive root of unity:

(N = exp (%)

e The fast Fourier transform (FFT) method exploits the
properties that (y = (yy, and (y =1
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FEFET of a Piecewise Constant Function

e Suppose N = rM and f,xi¢p = Fxfor £ =0,1,...r — 1 and
K=0,1,....M — 1.
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FEFET of a Piecewise Constant Function

e Suppose N = rM and f,gip = Fgfor £ =0,1,...r — 1 and
K=0,1,....M — 1.

ekor J =0,...,.M —1and s = 0,...,r — 1 the backwards
Fourier transform of the coarse-grained data Fk is given by

M—-1r—1
fsM—i—J — Z C](\}SM+J)<TK+5)FK — SJ,SFJ7
K=0 /=0

where

r—1
. E : JO sl
SJ,S — CN ro
/=0

M—-1
[y = Z I Py
K=0
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e The coarse-grained forwards Fourier transform is given by:

FKiL Z Jrk+e = : S: S‘ C&(TKM)(SMJFJ)JESMJFJ
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1D Coarse-Grained Convolution

e The coarse-grained convolution (f * g) » of f and g can then be
computed as

r—1

M-1 r—1
1 _ « 7 .
Z f*9)rkve= 20 Z CMKJZ SJ,sfsM+JgsM+J
J=0 s=0

(=0
M—-1

ﬁIH

(f*9) gk

1

AW EG,

r—1
in terms of the spatial weight factors W; = Z .S J73’2 SJs.
s=0
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e Similarly, the bin-averaged Fourier transform of Fx weighted
by ¢ is given by

M—-1 r—

(sM+J)(rK+¥) s

fSM+ — C KFK:TJ,SFJv
K=0 0

}—l

~
I

where

r—1
Tys =) GG
(=0
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e Similarly, the bin-averaged Fourier transform of Fx weighted
by ¢ is given by

}—l

<<SM+J T‘K—i—f)gFK _ TJ’SFJ,
0

M—1 r—
fSM+
K

~
I

=0

where

r—1
TJS = Z KC]{[E
(=0

o Let W/ =310 S,." T

20



Pseudospectral reduction

oln terms of FV = K,Qp, F! = K /g, F? = Qg, GY =
[(QEI(_QQK'7 Gl = KyK_QQK, and G? = K_QQKZ

1
Z @ <5p+q,k<pa:Qy _ pqu»KPQ QPQQ
PQ

:% Z ([(TK;,; + 0,)2k ] * [(TKy + €y>K_2QK} )rK+£
L

1 —_
2 ([(r Ky + €,)QK] * [(rEy + C) K Qk]), ey
¢
1 K. 0 A nl¥a
B rd N2 Z CMK ! {T2WJxWJy<F9G}T N F}G?’)
J

FrW W, (F3GY — F3GR) 4+ rW, Wi (F3GY — F3G5)]
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Pseudospectral reduction

oln terms of FVY = K, Qg, F' = K /g, F? = Qg, GV =
[(QUI(_QQK*7 Gl = KyK_QQK, and G? = K_ZQKI

1
2 (Op+q.k(Pady — py%s>>KpQ (pllg
@

(]

:% Z ([(rE, + L)%k ] * [(rEKy + £,) K Q] )TK+£
14

LS (K + )0 ¢ [0, + 0]

L
S G [P W (FSGY — F3GY)
J

O

rK-+¢

1
rA N2

FrW W, (F3GY — F3G3) 4+ rW, Wi (F3GY — F3G5)]

e Computational complexity is O(Nlog N), with a coefficient
7/5 = 1.4 times greater that for pseudospectral collocation. 21



31 x 31 bins

Tk
a + Bk?

101

k

Inviscid equipartition of a 31 x 31 pseudospectrally reduced
simulation with radix r = 3.
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10~7

—e— 3412 bins
—— 10232 modes
—=— 3412 modes
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k

Direct cascade.

102
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—e— 3412 bins
—— 10232 modes

101 102
k

Inverse cascade.
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Conclusions

e Spectral reduction affords a dramatic reduction in the number of
degrees of freedom that must be explicitly evolved in turbulence
simulations.

25



Conclusions

e Spectral reduction affords a dramatic reduction in the number of
degrees of freedom that must be explicitly evolved in turbulence

simulations.
e One can evolve a turbulent system for thousands of eddy

turnover times to obtain energy spectra smooth enough to
compare with theory:.

25



Conclusions

e Spectral reduction affords a dramatic reduction in the number of
degrees of freedom that must be explicitly evolved in turbulence
simulations.

e One can evolve a turbulent system for thousands of eddy
turnover times to obtain energy spectra smooth enough to
compare with theory:.

e Recognizing that spectral reduction yields correct inviscid
equipartition spectra only with uniform binning and restricting
our attention to this case only, an eflicient FEFT-based
implementation, which we call pseudospectral reduction, is
proposed.

25



Conclusions

e Spectral reduction affords a dramatic reduction in the number of
degrees of freedom that must be explicitly evolved in turbulence
simulations.

e One can evolve a turbulent system for thousands of eddy
turnover times to obtain energy spectra smooth enough to
compare with theory:.

e Recognizing that spectral reduction yields correct inviscid
equipartition spectra only with uniform binning and restricting
our attention to this case only, an eflicient FEFT-based
implementation, which we call pseudospectral reduction, is
proposed.

e Fiven with uniform binning, the resulting energy spectrum is
much closer to the predictions of the full dynamics than, say,
the spectrum obtained by simply using a smaller spatial domain
(larger mode spacing).
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e We have recently generalized our efficient
Bowman & Roberts 2011| library to support
dealiased 2D coarse-grained Hermitian convolutions:

http://fftwpp.sourceforge.net

FETW++
implicitly
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http://fftwpp.sourceforge.net

e We have recently generalized our efficient FFTW++
'Bowman & Roberts 2011| library to support implicitly
dealiased 2D coarse-grained Hermitian convolutions:

http://fftwpp.sourceforge.net

e Spectral reduction could be used to develop a reliable dynamic
subgrid model: Malcolm Roberts’ recent Ph.D. thesis (2011)
explores ways to couple a pseudospectrally reduced subgrid
model to a large-eddy simulation.
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