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Pseudospectral Method

•Pseudospectral simulations are a widely used numerical tool for
the study of fluid turbulence:

– Fast N logN scaling for N modes.

– Spectral accuracy: more accurate than finite-difference or
finite-element methods.

• Ideal choice for studying homogenous turbulence with periodic
boundary conditions.

•Generalizations such as Chebyshev collocation and penalty
methods allow them to handle more complicated boundary
conditions and geometries.

•However, in many cases pseudospectral methods do not
parallelize well on massively parallel distributed architectures
due to the communication costs of the parallel transpose.
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Dealiasing

•Patterson and Orszag pioneered the pseudospectral method over
40 years ago.

•They emphasized that the convolution theorem necessitates
dealiasing unwanted harmonics arising from the periodicity of
the discrete Fourier transform.
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Discrete Cyclic Convolution

•The FFT provides an efficient tool for computing the discrete
cyclic convolution

N−1∑
p=0

FpGk−p,

where the vectors F and G have period N .

•Define the N th primitive root of unity:

ζN = exp

(
2πi

N

)
.

•The fast Fourier transform method exploits the properties that
ζrN = ζN/r and ζNN = 1.

•However, the pseudospectral method requires a linear
convolution.
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•The unnormalized backwards discrete Fourier transform of
{Fk : k = 0, . . . , N} is

fj
.
=

N−1∑
k=0

ζjkN Fk j = 0, . . . , N − 1.

•The corresponding forward transform is

Fk
.
=

1

N

N−1∑
j=0

ζ−kjN fj k = 0, . . . , N − 1.

•The orthogonality of this transform pair follows from

N−1∑
j=0

ζ`jN =


N if ` = sN for s ∈ Z,
1− ζ`NN
1− ζ`N

= 0 otherwise.
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Convolution Theorem

N−1∑
j=0

fjgjζ
−jk
N =

N−1∑
j=0

ζ−jkN

N−1∑
p=0

ζjpN Fp

N−1∑
q=0

ζjqNGq


=

N−1∑
p=0

N−1∑
q=0

FpGq

N−1∑
j=0

ζ
(−k+p+q)j
N

=N
∑
s

N−1∑
p=0

FpGk−p+sN .

•The terms indexed by s 6= 0 are aliases; we need to remove
them!

• If only the firstm entries of the input vectors are nonzero, aliases
can be avoided by zero padding input data vectors of length m
to length N ≥ 2m− 1.

•Explicit zero padding prevents mode m− 1 from beating with
itself and wrapping around to contaminate modeN = 0 modN . 6



• Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m:

{Fk}m−1
k=0 {Gk}m−1

k=0
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Implicit Padding

•Let N = 2m. For j = 0, . . . , 2m− 1 we want to compute

fj =

2m−1∑
k=0

ζjk2mFk.

• If Fk = 0 for k ≥ m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

f2`=

m−1∑
k=0

ζ2`k2mFk =

m−1∑
k=0

ζ`kmFk,

f2`+1=

m−1∑
k=0

ζ
(2`+1)k
2m Fk =

m−1∑
k=0

ζ`km ζ
k
2mFk, ` = 0, 1, . . .m− 1.

•This requires computing two subtransforms, each of size m,
for an overall computational scaling of order 2m log2m =
N log2m.
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•Odd and even terms of the convolution can then be computed
separately, multiplied term-by-term, and transformed again to
Fourier space:

2mFk=

2m−1∑
j=0

ζ−kj2m fj

=

m−1∑
`=0

ζ−k2`2m f2` +

m−1∑
`=0

ζ
−k(2`+1)
2m f2`+1

=

m−1∑
`=0

ζ−k`m f2` + ζ−k2m

m−1∑
`=0

ζ−k`m f2`+1 k = 0, . . . ,m− 1.

•No bit reversal is required at the highest level.

•A 1D implicitly padded convolution is implemented in our
FFTW++ library.

•This in-place convolution was written to use six out-of-place
transforms, thereby avoiding bit reversal at all levels.
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•The computational complexity is 6Km log2m.

•The numerical error is similar to explicit padding and the
memory usage is identical.

{Fk}m−1
k=0 {Gk}m−1

k=0
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Input: vector f, vector g
Output: vector f
u← fft−1(f);
v← fft−1(g);
u← u ∗ v;
for k = 0 to m− 1 do
f[k]← ζk2mf[k];

g[k]← ζk2mg[k];
end

v← fft−1(f);
f ← fft−1(g);
v← v ∗ f;
f ← fft(u);
u← fft(v);

for k = 0 to m− 1 do
f[k]← f[k] + ζ−k2mu[k];

end
return f/(2m);
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Implicit Padding in 1D
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Convolutions in Higher Dimensions

•An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

F G
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Recursive Convolution

•Naive way to compute a multiple-dimensional convolution:

FN1,...,Nd multiply F−1
N1,...,Nd

•The technique of recursive convolution allows one to avoid
computing and storing the entire Fourier image of the data:

FNd
Nd× convolveN1 ,...,Nd−1 F−1

Nd
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Implicit Padding in 2D

•Extra work memory need not be contiguous with the data.

F G
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Implicit Padding in 2D
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Implicit Padding in 3D
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Centered (Pseudospectral) Convolutions

•For a centered convolution, the Fourier origin (k = 0) is
centered in the domain:

m−1∑
p=k−m+1

fpgk−p

•Need to pad to N ≥ 3m− 2 to remove aliases.

•The ratio (2m− 1)/(3m− 2) of the number of physical to total
modes is asymptotic to 2/3 for large m.

•A Hermitian convolution arises since the input vectors are real:

f−k = fk.
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Multithreaded Hermitian Convolution

•The backwards implicitly padded centered Hermitian transform
appears as

u3`+r =

m−1∑
k=0

ζ`kmwk,r,

where

wk,r
.
=

{
U0 + Re ζ−r3 U−m if k = 0,
ζrk3m
(
Uk + ζ−r3 Um−k

)
if 1 ≤ k ≤ m− 1.

•We exploit the Hermitian symmetry wk,r = wm−k,r to reduce
the problem to three complex-to-real Fourier transforms of the
first c+ 1 components of wk,r (one for each r = −1, 0, 1), where
c
.
= bm/2c zeros.
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•To facilitate an in-place implementation, in our original paper
[SIAM J. Sci. Comput. 33, 386 (2011)], we stored the
transformed values for r = 1 in reverse order in the upper half
of the input vector.

•However, loop dependencies in the resulting algorithm prevented
the top level of the 1D transforms from being multithreaded.
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Multithreaded Hermitian Convolution

•Unrolling the loop to process four inputs and outputs
simultaneously allows loop independence to be achieved,
significantly improving performance in both the serial and
parallel contexts.

0 1 2 3 . . . c− 2 c− 1 c c + 1 c+ 2 . . . 2c− 3 2c− 2 2c− 1

r = 0 r = 1
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Multithreaded Hermitian Convolution

•Unrolling the loop to process four inputs and outputs
simultaneously allows loop independence to be achieved,
significantly improving performance in both the serial and
parallel contexts.

0 1 2 3 . . . c− 2 c− 1 c c + 1 c+ 2 . . . 2c− 3 2c− 2 2c− 1

r = 0 r = 1

•As a result, even in 1D, implicit dealiasing of pseudospectral
convolutions is now significantly faster than explicit zero
padding.
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1D Implicit Hermitian Convolution
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Shared-Memory Parallelization

•Our implicit and explicit convolution routines have been
multithreaded for shared-memory architectures.

23



2D Navier–Stokes Pseudospectral [1 thread]
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2D Navier–Stokes Pseudospectral [4 threads]
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Distributed-Memory Parallelization

•The pseudospectral method uses a matrix transpose to localize
the computation of the multi-dimensional FFTs onto individual
processors.

•Parallel generalized slab/pencil decompositions have recently
been developed for distributed-memory architectures.

•We have compared several distributed matrix transpose
algorithms, both blocking and nonblocking, under pure MPI
and hybrid MPI/OpenMP architectures.

•Local transposition is not required within a single MPI node.

•We have developed an adaptive algorithm, dynamically tuned
to choose the optimal block size.
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8× 8 Block Transpose over 8 processors
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Advantages of Hybrid MPI/OpenMP

•Use hybrid OpenMPI/MPI with the optimal number of threads:

– yields larger communication block size;

– local transposition is not required within a single MPI node;

– allows smaller problems to be distributed over a large number
of processors;

– for 3D FFTs, allows for more slab-like than pencil-like models,
reducing the size of or even eliminating the need for a second
transpose.

– sometimes more efficient (by a factor of 2) than pure MPI.

•The use of nonblocking MPI communications allows us to
overlap computation with communication: this can yield up
to an additional 32% performance gain for implicitly dealiased
convolutions, for which a natural parallelism exists between
communication and computation. 28



Communication Costs: Direct Transpose

• Suppose an N ×N matrix is distributed over P processes with
P | N .

•Direct transposition involves P−1 communications per process,
each of size N 2/P 2, for a total per-process data transfer of

P − 1

P 2
N 2.
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Block Transpose

•Let P = ab. Subdivide N ×M matrix into a × a blocks each
of size N/a×M/a.

• Inner: Over each team of b processes, transpose the a individual
N/a×M/a matrices, grouping all a communications with the
same source and destination together.

•Outer: Over each team of a processes, transpose the a×amatrix
of N/a×M/a blocks.
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Communication Costs

•Let τ` be the typical latency of a message and τd be the time
required to send each matrix element, so that the time to send
a message consisting of n matrix elements is

τ` + nτd

.

•The time required to perform a direct transpose is

TD = τ`(P − 1) + τd
P − 1

P 2
NM = (P − 1)

(
τ` + τd

NM

P 2

)
,

whereas a block transpose requires

TB(a) = τ`

(
a +

P

a
− 2

)
+ τd

(
2P − a− P

a

)
NM

P 2
.

•Let L = τ`/τd be the effective communication block length.
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Direct vs. Block Transposes

• Since

TD − TB = τd

(
P + 1− a− P

a

)(
L− NM

P 2

)
,

we see that a direct transpose is preferred when NM ≥ P 2L,
whereas a block transpose should be used when NM < P 2L.

•To find the optimal value of a for a block transpose consider

T ′B(a) = τd

(
1− P

a2

)(
L− NM

P 2

)
.

•For NM < P 2L, we see that TB is convex, with a minimum at
a =
√
P .
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Optimal Number of Threads

•The minimum value of TB is

TB(
√
P ) = 2τd

(√
P − 1

)(
L +

NM

P 3/2

)
∼ 2τd

√
P

(
L +

NM

P 3/2

)
, P � 1.

•The global minimum of TB over both a and P occurs at

P ≈ (2NM/L)2/3.

• If the matrix dimensions satisfy NM > L, as is typically
the case, this minimum occurs above the transition value
(NM/L)1/2.
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Transpose Communication Costs
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Optimal Number of Threads: 1024× 1024
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Optimal Number of Threads: 4096× 4096
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Windowed Time Averages

• Suppose we evolve an equation of the form

dωk

dt
= Sk.

•Once a statistically stationary state has been achieved, we may
want to compute windowed time averages of moments like |ωk|n
and Skω

∗
k.

•But the saturation time is not normally known until after the
simulation is completed.
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Dynamic Moment Averaging

•Advantageous to precompute time-integrated moments like

Mn(t) =

∫ t

0

|ωk(τ )|n dτ.

•This can be accomplished done by evolving

dMn

dt
= |ωk|n ,

along with the vorticity ωk itself, using the same temporal
discretization.

•These evolved quantities Mn can be used to extract accurate
statistical averages during the post-processing phase, once the
saturation time t1 has been determined by the user:∫ t2

t1

|ωk|n (τ ) dτ = Mn(t2)−Mn(t1).
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Enstrophy Balance

∂ωk

∂t
+ νk2ωk = Sk + fk,

•Multiply by ω∗k and integrate over wavenumber angle ⇒
enstrophy spectrum Z(k) evolves as:

∂

∂t
Z(k) + 2νk2Z(k) = 2T (k) + G(k),

where T (k) and G(k) are the corresponding angular averages of
Re 〈Skω

∗
k〉 and Re 〈fkω∗k〉.
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Nonlinear Enstrophy Transfer Function

∂

∂t
Z(k) + 2νk2Z(k) = 2T (k) + G(k).

•Let

Π(k)
.
= 2

∫ ∞
k

T (p) dp

represent the nonlinear transfer of enstrophy into [k,∞).

• Integrate from k to ∞:

d

dt

∫ ∞
k

Z(p) dp = Π(k)− εZ(k),

where εZ(k)
.
= 2ν

∫ ∞
k

p2Z(p) dp −
∫ ∞
k

G(p) dp is the

total enstrophy transfer, via dissipation and forcing, out of
wavenumbers higher than k.

40



•A positive (negative) value for Π(k) represents a flow of
enstrophy to wavenumbers higher (lower) than k.

•When ν = 0 and fk = 0:

0 =
d

dt

∫ ∞
0

Z(p) dp = 2

∫ ∞
0

T (p) dp,

so that

Π(k) = 2

∫ ∞
k

T (p) dp = −2

∫ k

0

T (p) dp.

•Note that Π(0) = Π(∞) = 0.

• In a steady state, Π(k) = εZ(k).

•This provides an excellent numerical diagnostic for determining
the saturation time t1.
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Forcing at k = 2, friction for k < 3, viscosity for
k ≥ kH = 300 (1023× 1023 dealiased modes)
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Conservative Integration

•Conservative integration [SIAM J. Appl. Math 59, 1112
(1999)] provides a useful diagnostic technique for ensuring
that the underlying dynamical symmetries have been correctly
implemented.
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Conclusions

•For centered convolutions in d dimensions implicit padding
asymptotically uses (2/3)d−1 of the conventional storage.

•The factor of 2 speedup is largely due to increased data locality.

•Highly optimized and parallelized implicit dealiasing routines
have been implemented as a software layer FFTW++ (v 2.00) on
top of the FFTW library and released under the Lesser GNU
Public License: http://fftwpp.sourceforge.net/

•The advent of implicit dealiasing of convolutions makes
overlapping transposition with FFT computation feasible.

•Dynamic moment averaging allows the integration time window
to be specified by the user a posteriori. The cumulative
enstrophy transfer function is an excellent diagnostic for
determining the saturation time.

•Writing of a high-performance dealiased pseudospectral code is
now a relatively straightforward exercise! 48

http://fftwpp.sourceforge.net/
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