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Pseudospectral Method

e Pseudospectral simulations are a widely used numerical tool for
the study of fluid turbulence:

— Fast N log N scaling for N modes.

— Spectral accuracy: more accurate than finite-difference or
finite-element methods.

e Ideal choice for studying homogenous turbulence with periodic
boundary conditions.

e Generalizations such as Chebyshev collocation and penalty
methods allow them to handle more complicated boundary
conditions and geometries.

e However, in many cases pseudospectral methods do not
parallelize well on massively parallel distributed architectures
due to the communication costs of the parallel transpose.



Dealiasing

e Patterson and Orszag pioneered the pseudospectral method over
40 years ago.

e They emphasized that the convolution theorem necessitates
dealiasing unwanted harmonics arising from the periodicity of
the discrete Fourier transform.



Discrete Cyclic Convolution

e The FF'T provides an efficient tool for computing the discrete
cyclic convolution

N—-1
> Ko,
p=0

where the vectors F' and G have period N.
e Define the Nth primitive root of unity:

(N = exp (%) -

e The fast Fourier transform method exploits the properties that
Cy = Cnyr and C]]\\,[ = 1.

e However, the pseudospectral method requires a [linear
convolution.
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forward transform is
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e The orthogonality of this transform pair follows from

N—-1 |
> =+
j=0

(N if ¢ = sN for s € Z,
1 — (N
N — (0 otherwise.

\ 1_C]<7



Convolution Theorem
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e The terms indexed by s # 0 are aliases; we need to remove
them!

e If only the first m entries of the input vectors are nonzero, aliases
can be avoided by zero padding input data vectors of length m
to length N > 2m — 1.

e [Laplicit zero padding prevents mode m — 1 from beating with
itself and wrapping around to contaminate mode N = 0 mod V.



e Since FEF'T sizes with small prime factors in practice yield
the most eflicient implementations, the padding is normally
extended to N = 2m:
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Implicit Padding
elLet N =2m. For y =0,...,2m — 1 we want to compute

2m—1
f] — Cngk
k=0

olf Fj. = 0 for £ > m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

m—1
f%—z G Fre = G Fr.
k=0

m—1
(20
f2£+1—z G R =N B =01, m L.
k=0

e This requires computing two subtransforms, each of size m,
for an overall computational scaling of order 2mlog,m =
N logy m.



e Odd and even terms of the convolution can then be computed
separately, multiplied term-by-term, and transformed again to
Fourier space:
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e No bit reversal is required at the highest level.

e A 1D implicitly padded convolution is implemented in our
FFTW++ library:.

e This in-place convolution was written to use six out-of-place
transforms, thereby avoiding bit reversal at all levels.



e The computational complexity is 6 K'm log, m.

e The numerical error is similar to explicit padding and the

memory usage is identical.
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e The computational complexity is 6 K'm log, m.
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Input: vector f, vector g

Output: vector f

u <+ fft1(f);

v« fft 1(g);

U< U*xV;

for k=0tom—1do
flk] < G5flk];
glk] < G5elk];

end

v« £t H(f);

f+ fft 1(g);

V < vk f;

f < fft(u);

u< fft(v);

for k=0tom—1do

fIk] < f[k] + Copulk]:

end

return f/(2m);
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Implicit Padding in 1D
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Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.
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Recursive Convolution

e Naive way to compute a multiple-dimensional convolution:

..... Ny > multiply ——~ Sy, y,

e The technique of recursive convolution allows one to avoid
computing and storing the entire Fourier image of the data:

FNd — Nd X COIlVOlVeN1

—1
Nd 1 ‘FNd

..... —

14



Implicit Padding in 2D

e [ixtra work memory need not be contiguous with the data.
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Implicit Padding in 3D
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Centered (Pseudospectral) Convolutions

e For a centered convolution, the Fourier origin (k = 0) is
centered in the domain:

e Need to pad to N > 3m — 2 to remove aliases.

e The ratio (2m — 1)/(3m — 2) of the number of physical to total
modes is asymptotic to 2/3 for large m.

e A Hermaitian convolution arises since the input vectors are real:

foi = T
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Multithreaded Hermitian Convolution

e The backwards implicitly padded centered Hermitian transform
appears as

m—1
U4y — Z Cfr]fwk,ra
k=0
where
I Up+ Re(3 Uy, it k=0,
SETVGE (U + G Uny) 1<k <m—1.

e We exploit the Hermitian symmetry wy, = W, —x, to reduce
the problem to three complex-to-real Fourier transforms of the
first c4+1 components of wy,, (one for each r = —1,0, 1), where
c = |m/2] zeros.

19



e To facilitate an in-place implementation, in our original paper
[SIAM J. Sci. Comput. 33, 386 (2011)], we stored the
transtformed values for » = 1 in reverse order in the upper halt
of the input vector.

e However, loop dependencies in the resulting algorithm prevented
the top level of the 1D transforms from being multithreaded.

20



Multithreaded Hermitian Convolution

e Unrolling the loop to process four inputs and outputs
simultaneously allows loop independence to be achieved,
significantly improving performance in both the serial and
parallel contexts.

0 1 2 3 e le—2c—1 ¢c |c+1ljc+2| -+ |2¢—3|2c—2|2c—1
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Multithreaded Hermitian Convolution

e Unrolling the loop to process four inputs and outputs
simultaneously allows loop independence to be achieved,
significantly improving performance in both the serial and

parallel contexts.

;

¢

¢

3

c+1

c—+ 2

2c — 3

2c — 2

2c —1

r=1

e As a result, even in 1D, implicit dealiasing of pseudospectral
convolutions is now significantly faster than explicit zero

padding.




1D Implicit Hermitian Convolution
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Shared-Memory Parallelization

e Our implicit and explicit convolution routines have been
multithreaded for shared-memory architectures.
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2D Navier—Stokes Pseudospectral |1 thread]
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2D Navier—Stokes Pseudospectral |4 threads|
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Distributed-Memory Parallelization

e The pseudospectral method uses a matrix transpose to localize
the computation of the multi-dimensional FFT's onto individual
Processors.

e Parallel generalized slab/pencil decompositions have recently
been developed for distributed-memory architectures.

e We have compared several distributed matrix transpose
algorithms, both blocking and nonblocking, under pure MPI
and hybrid MPI/OpenMP architectures.

e Local transposition is not required within a single MPI node.

e We have developed an adaptive algorithm, dynamically tuned
to choose the optimal block size.
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8 x 8 Block Transpose over 8 processors

Process
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Advantages of Hybrid MPI/OpenMP

e Use hybrid OpenMPI/MPI with the optimal number of threads:

— yields larger communication block size;
— local transposition is not required within a single MPI node;

— allows smaller problems to be distributed over a large number
of processors;

—for 3D FFTs, allows for more slab-like than pencil-like models,
reducing the size of or even eliminating the need for a second
transpose.

— sometimes more efficient (by a factor of 2) than pure MPL.

e The use of nonblocking MPI communications allows us to
overlap computation with communication: this can yield up
to an additional 32% performance gain for implicitly dealiased
convolutions, for which a natural parallelism exists between
communication and computation.
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Communication Costs: Direct Transpose

e Suppose an N X N matrix is distributed over P processes with
P|N.

e Direct transposition involves P —1 communications per process,
each of size N?/P?, for a total per-process data transfer of

P -1

SV
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Block Transpose

e Let P = ab. Subdivide N x M matrix into a X a blocks each
of size N/a x M/a.

e Inner: Over each team of b processes, transpose the a individual
N/a x M /a matrices, grouping all a communications with the
same source and destination together.

e Outer: Over each team of a processes, transpose the a X a matrix

of N/a x M /a blocks.
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Communication Costs

e Let 7/ be the typical latency of a message and 74 be the time
required to send each matrix element, so that the time to send
a message consisting of n matrix elements is

Tg—l—an

e The time required to perform a direct transpose is

P—1
P2

TD:Tg<P— 1)—|—7'd

NM
NM—(P—l)(TeJer )7

P2

whereas a block transpose requires

P P\ NM
TB(a)—Tg(a+——2>+Td<2P—a— ) .

a a ) P?

e Let L = 7y/7; be the effective communication block length.
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Direct vs. Block Transposes

e Since

P NM
Ip—Ip=1 P+1—a—— L — :
a P?

we see that a direct transpose is preferred when NM > P?L,
whereas a block transpose should be used when NM < P?L.

e To find the optimal value of a for a block transpose consider

ryar 1 2) (- S0,

o For NM < P2?L, we see that Tz is convex, with a minimum at

a=+P.
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Optimal Number of Threads

e The minimum value of Ts 18

T(VP) = 2Td(\/ﬁ ~ 1) (L + NM)

P3/2

NM
~ zfd\/f<L+ P3/2>, P> 1.

e The global minimum of 15 over both a and P occurs at
P~ (2NM/L)*3.

e [f the matrix dimensions satisty NM > L, as is typically
the case, this minimum occurs above the transition value

(NM/L)'Y?.
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Optimal Number of Threads: 1024 x 1024
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Optimal Number of Threads: 4096 x 4096
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Windowed Time Averages

e Suppose we evolve an equation of the form

e Once a statistically stationary state has been achieved, we may
want to compute windowed time averages of moments like |wg|"
and Sgwr,.

e But the saturation time is not normally known until after the
simulation is completed.
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Dynamic Moment Averaging

e Advantageous to precompute time-integrated moments like

t
M, (t) = / |wr(7)|" d.

0
e This can be accomplished done by evolving

dM,
dt

along with the vorticity wy itselt, using the same temporal
discretization.

— ’wk‘nv

e These evolved quantities M,, can be used to extract accurate
statistical averages during the post-processing phase, once the
saturation time t; has been determined by the user:

/ 2 wr|" (7) dT = M, (t2) — M, (t1).

131
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Enstrophy Balance

% + vk*wg = Sk + f,

e Multiply by wp and integrate over wavenumber angle =
enstrophy spectrum Z (k) evolves as:

%Z(k) ©wk2Z(k) = 2T (k) + G(k),

where T'(k) and G(k) are the corresponding angular averages of

Re (Skwy) and Re ( frwy).
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Nonlinear Enstrophy Transfer Function

%Z(k) +20k*Z (k) = 2T(k) + G(k).

o et

(k) =2 / " T(p) dp

represent the nonlinear transfer of enstrophy into |k, 0o).

e Integrate from k to oo:

—/ p) dp = TI(k) — e(k),

O

where ez(k) = 2V/ p*Z(p)dp — / G(p)dp is the
k k
total enstrophy transfer, via dissipation and forcing, out of

wavenumbers higher than k.
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e A positive (negative) value for II(k) represents a flow of
enstrophy to wavenumbers higher (lower) than k.

e When v =0 and f = 0:

d ©.9)

)= —
dt J,

Z(p)dp = Q/OOOT(M dp,
so that
00 k
(k) =2 [ Tp)dp =2 [ Tw)dp

e Note that I1(0) = I1(co) = 0.
e In a steady state, I1(k) = ez (k).

e This provides an excellent numerical diagnostic for determining
the saturation time ¢;.



Forcing at k = 2, friction for k < 3, viscosity for
k> ky =300 (1023 x 1023 dealiased modes)
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logarithmic slope of E(k)

kg = 300
kg =0
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Conservative Integration

e Conservative integration [SIAM J. Appl. Math 59, 1112
(1999)] provides a useful diagnostic technique for ensuring
that the underlying dynamical symmetries have been correctly
implemented.
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Conclusions

e For centered convolutions in d dimensions implicit padding
asymptotically uses (2/3)%~1 of the conventional storage.

e The factor of 2 speedup is largely due to increased data locality:.

e Highly optimized and parallelized implicit dealiasing routines
have been implemented as a software layer FFTW++ (v 2.00) on

top of the FFTW library and released under the Lesser GNU
Public License: http://fftwpp.sourceforge.net/

e The advent of implicit dealiasing of convolutions makes
overlapping transposition with FF'T' computation feasible.

e Dynamic moment averaging allows the integration time window
to be specified by the user a posteriori. The cumulative
enstrophy transfer function is an excellent diagnostic for
determining the saturation time.

e Writing of a high-performance dealiased pseudospectral code is
now a relatively straightforward exercise!
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