The Partial Fourier Transform

John C. Bowman and Zayd Ghoggali
Department of Mathematical and Statistical Sciences
University of Alberta

July 19, 2017

www.math.ualberta.ca/~bowman/talks

Partial Fourier Transform

e The backward 1D discrete partial Fourier transform of a complex
vector {Fy, - k=0,..., N — 1} is defined as

Zg F., j=0,....N—1

e2™/N denotes the Nth primitive root of unity.

where (n
e The partial Fourier transform has applications in seismology.

et can also be used to decompose turbulent inertial-range
transters into nonlocal and local contributions.

e The special case ¢(j) = N — 1 reduces to the usual 1D DFT:

Zg F., j=0,....N—1.

DEFT Conventions

e The backward discrete Fourier transform ot

{Fk:k:O,...,N—l} 1S
N-1
=Y \F j=0,...,N—1.
k=0
e The corresponding forward transform is

N—-1
1 —kj
Fk:NE CNk]fj k=0,...,N —1.
j=0

e The orthogonality of this transform pair follows from

(N if { =sN for s e Z,

N—1 o
0y 1 —
Z CN = 9]\g — (0 otherwise.

Fractional-Phase Fourier Transform

e Consider the partial fractional-phase Fourier transform:

c(7)
f]:ZC&]kaa j:()v"')N_la
k=0

where ¢ = (; = €*™ and a € R.

Special Case of Partial DFT: ¢(j) = j

e Given inputs {Fj : k=0,...,N — 1},
j .
fj£ZCa]ka, j=0,...,N—1.
k=0

e Use jk = % [jz +k*— (5 — k)z}: |Bluestein 1970
J J
fi= Z C%[j2+k2—(j—k)2] F, = Caj2/2 Z C&kQ/Qch—Oz(j—k)Q/?_
k=0

k=0

e This can be written as the convolution of the two sequences
g; = C%'/? and hy = g Fy;

j
fi=9; > hgj
k=0

Evaluating the Partial Convolution

e We wish to compute the (partial) convolution

J
> gy
k=0

e Prepend N zeros to the sequences {g;} and {h;}, indexed as
k=—-N,—N-+1, ..., —1, sothat

J N—-1
D M=) Mg
k=0 k=—N

e The added zeros also avoid aliases when using the cyclic DF'T
to compute a linear convolution.

e The convolution can then be efliciently computed using a cyclic
discrete Fourier transform of length 2./V:

N—1 I L ON—1 o
_ —ky —(j—k)m
Z hkgﬂ—k:(QN)z y: S: Con H. Z Gy G
k=—N ——N (=0 m=0
| 2N—1eN-d N—1 it
—im k(m—/
_<2N)2 S: S: Core HiGr, Z Gon
K:O m=0 ——N
~12N-1
=5 N . Y > " G HGoy 2Ny,
(=0 m=0
;2N
N > G 'H,G,,
(=0
where H; =]kv 1N S hy and Gy,]kvz__lN kG, are the

discrete Fourier transforms of {h;} and { g}

Discrete Cyclic Convolution

e The FF'T provides an efficient tool for computing the discrete
cyclic convolution

N-1
> G,
p=0

where the vectors F' and G have period N.

e The fast Fourier transform (FFT) method exploits the
properties that (i = (ny, and (y =1

Convolution Theorem

N-1 N-1 N-1 N-1
—Jjk __ —Jjk Jp Jq
Ji9iCy" = Gy E :CNFP E :CNGQ
7=0 7=0 p=0 q=0
N—1N-1 N-1
_ (—k+p+q);
— Fqu CN
p=0 ¢=0 Jj=0
N-1
=N E E Fka—p+sN
s p=0

e The terms indexed by s # 0 are aliases; we need to remove
them!

e [f only the first m entries of the input vectors are nonzero, aliases
can be avoided by zero padding input data vectors of length m
to length N > 2m — 1.

e [iaplicit zero padding prevents mode m — 1 from beating with
itself, wrapping around to contaminate mode N = 0 mod V.

Implicit Dealiasing

eLet N =2m. For y =0,...,2m — 1 we want to compute
2m—1
ik
k=0

olf F; = 0 for & > m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

m—1
f%—z G Fe =Y G Fr,
k=0

m—1
(2¢
f2£+1—z G R =N B 0=0,1,. . m L.
k=0

e This requires computing two subtranstorms, each of size m,
for an overall computational scaling of order 2mlog,m =
N logy m.

10

e Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v 2.05) on top
of the FFTW library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/

{Fe}isy {Gr}isy

http://fftwpp.sourceforge.net/

e Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v 2.05) on top
of the FFTW library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/

{Fe}isy {Gr}isy

L T

{fa} s { foes1}0" {g20}7%" {92041}

http://fftwpp.sourceforge.net/

e Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v 2.05) on top
of the FFTW library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/

{Fkl%\‘ {le}?&\‘
{ fae} i { farr1 105" {920} 15" {20117

. ——

{ foegae 7"

{ fort192011 050"

11

http://fftwpp.sourceforge.net/

e Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v 2.05) on top
of the FFTW library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/

{Fkl%\‘ {le}?&\‘
{ fae} i { farr1 105" {920} 15" {20117

. ——

{ foegae 7"

{ fort192011 050"

{(F* Gy

11

http://fftwpp.sourceforge.net/

Full Fractional-Phase Fourier Transtform

e We will also need the full fractional-phase Fourier transform
i=Y (MR, j=0,... ,N—L

e On defining two sequences g; = CO‘JQ/ and hy = gpF}, this
can be computed just like the partial Fourier transform, except
the condition g;—; = 0 when j — k < 0 1s now replaced by

9i—k = Gk—j-

e This symmetry can be enforced by precomputing the inverse
FET's:

{G Nol _ fft—l({c—ozk /2 _|_<= a(k—N) /2})

(Vi = et ({2 = oM,

12

e Then f; can be calculated as the product of g; and the
9th output of the following function applied to the sequence

{hihig

Input: vector f
Output: vector f
fork=0to N —1do
ulk] < Gy fIK];

end

f « £ffe(££t1(f) % G);
u <+ fft(fft 7 (u) * V);
fork=0to N —1do
flk] < f[k] + G ulk):
end

return f/(2N);

e In the above pseudocode, an asterisk (%) denotes an element-
by-element (vector) multiply.

Partial FFT: Special Case ¢(j) = (pj

e Here p, ¢, and s are integers, with p # 0 and

| (pj+s)/q]

Z CY9F i =0,..., M —1.

eletpj+s=qgn+r, withn=0,...,N —1. Then

f] _ Z C}())z(qnnLr—s)kF

a n—i—k2 olr—s
ZQPQ]<p< ey

an Oznk o _
i Zczq Gy G E,

14

: . ~agk? : a(r—s)k
o On setting gr = Cy, and hx = gi(p F}.. the result can be
written as a convolution of two sequences {hy} and {gy}:

fj:gnzhkgn_k, j:O,...,M—l.
k=0

e This general algorithm is only eflicient when p =1 or ¢ = 1.

e The technique can be readily extended to higher dimensions.

15

Rectangular subdivision for ¢(j) = j

A

i

Db,
[B

I

) P

) s ’
A
a1

16

Triangular subdivision for ¢(j) = j

17

(N — 1) sin +

Rectangular: ¢(j) N1

|| m|mp
il s
il I

=

DI:II:I‘
|

i —
0=

DD:4
 — —

\—JD:IZJD:A

o=

Hybrid: ¢(j) = (N — 1) sin

(ﬂﬁ[jDrﬁ
) N
JJ[i
il I
|
i
|
4)
A \

N (s)

2
2

time/ N log

108

107?

10—10

Computation time

106

Rectangular
Hybrid
FFT

20

Application: Kolmogorov Theory of Turbulence

e Although the independence of the local inertial-range energy
flux with wavenumber is one of the key hypothesis underlying
Kolmogorov’s famous 5/3 power-law form for the kinetic
energy spectrum, it has never been directly tested, either
experimentally or numerically:.

e To validate Kolmogorov’s uniform flux hypothesis in a
high-resolution pseudospectral code, detailed wavenumber
constraints must be imposed on the convolution.

e The key tool needed is the partial fast Fourier transform, where
the summation limits are restricted by a spatially-dependent
constraint.

e To this end, we have improved on previous attempts |Ying 2009
to develop a partial FF'T based on the fractional-phase Fourier
transform and Bluestein’s algorithm |Bluestein 1970].

21

Flux Decomposition for a Single (k, p, q) Triad

Lk:Tk‘
S;=0

Lk::_j})

L4=0
Sp=—T,

Sp=T}

e Note that energy is conserved: Lj+ Sy, = T}, = —1,—1,. Thus

. * *
L. = Re g My p wp Wi—pwy, — Re g Mp,k_pwkwk_pwp.

|k|=Fk |k|=Fk
Ip|<k Ip|<k
\k—p|<k \k—p|>k

22

Conclusions

e A fast O(N log N) algorithm for computing the partial fast
Fourier transform is available, but with a relatively large
coefficient.

e Improving on the work of [Ying & Fomel {2009], we obtained a
fast computational scaling, but with a smaller overall coeflicient.

e The partial Fourier transform has applications in decomposing
turbulent transfers into nonlocal and local fluxes.

e These techniques can be used to compute detailed inertial-range
flux profiles and for the first time verify a key underpinning
assumption of Kolmogorov’s famous power-law conjecture for
turbulence.

e This will allow us to verity and exploit inertial-range self-
similarity in 2D turbulence and study the fluz locality profile.

23

References

[Bluestein 1970] L. I. Bluestein, IEEE Trans. Audio and Electroacoustics, 18:451, 1970.
[Bowman & Roberts 2011] J. C. Bowman & M. Roberts, STAM J. Sci. Comput., 33:386, 2011.
[Roberts & Bowman 2017] M. Roberts & J. C. Bowman, Submitted to Journal of Computational Physics, 2017.

[Ying & Fomel 2009 L. Ying & S. Fomel, Multiscale Modeling and Simulation, 8:110, 2009.

