
The Partial Fourier Transform

John C. Bowman and Zayd Ghoggali
Department of Mathematical and Statistical Sciences

University of Alberta

July 19, 2017

www.math.ualberta.ca/∼bowman/talks

1

Partial Fourier Transform

•The backward 1D discrete partial Fourier transform of a complex
vector {Fk : k = 0, . . . , N − 1} is defined as

fj
.
=

c(j)∑
k=0

ζjkN Fk, j = 0, . . . , N − 1,

where ζN = e2πi/N denotes the Nth primitive root of unity.

•The partial Fourier transform has applications in seismology.

• It can also be used to decompose turbulent inertial-range
transfers into nonlocal and local contributions.

•The special case c(j) = N − 1 reduces to the usual 1D DFT:

fj
.
=

N−1∑
k=0

ζjkN Fk, j = 0, . . . , N − 1.

2

DFT Conventions

•The backward discrete Fourier transform of
{Fk : k = 0, . . . , N − 1} is

fj
.
=

N−1∑
k=0

ζjkN Fk j = 0, . . . , N − 1.

•The corresponding forward transform is

Fk
.
=

1

N

N−1∑
j=0

ζ−kjN fj k = 0, . . . , N − 1.

•The orthogonality of this transform pair follows from

N−1∑
j=0

ζ`jN =


N if ` = sN for s ∈ Z,
1− ζ`NN
1− ζ`N

= 0 otherwise.

3

Fractional-Phase Fourier Transform

•Consider the partial fractional-phase Fourier transform:

fj
.
=

c(j)∑
k=0

ζαjkFk, j = 0, . . . , N − 1,

where ζ
.
= ζ1 = e2πi and α ∈ R.

4

Special Case of Partial DFT: c(j) = j

•Given inputs {Fk : k = 0, . . . , N − 1},

fj
.
=

j∑
k=0

ζαjkFk, j = 0, . . . , N − 1.

•Use jk = 1
2

[
j2 + k2 − (j − k)2

]
: [Bluestein 1970]

fj =

j∑
k=0

ζ
α
2 [j2+k2−(j−k)2]Fk = ζαj

2/2

j∑
k=0

ζαk
2/2Fkζ

−α(j−k)2/2.

•This can be written as the convolution of the two sequences
gj

.
= ζαj

2/2 and hk
.
= gkFk:

fj = gj

j∑
k=0

hkgj−k.

5

Evaluating the Partial Convolution

•We wish to compute the (partial) convolution

j∑
k=0

hkgj−k.

•Prepend N zeros to the sequences {gk} and {hk}, indexed as
k = −N , −N + 1, . . . , −1, so that

j∑
k=0

hkgj−k =

N−1∑
k=−N

hkgj−k.

•The added zeros also avoid aliases when using the cyclic DFT
to compute a linear convolution.

6

•The convolution can then be efficiently computed using a cyclic
discrete Fourier transform of length 2N :

N−1∑
k=−N

hkgj−k=
1

(2N)2

N−1∑
k=−N

2N−1∑
`=0

ζ−k`2N H`

2N−1∑
m=0

ζ
−(j−k)m
2N Gm

=
1

(2N)2

2N−1∑
`=0

2N−1∑
m=0

ζ−jm2N H`Gm

N−1∑
k=−N

ζ
k(m−`)
2N

=
1

(2N)2

2N−1∑
`=0

2N−1∑
m=0

ζ−jm2N H`Gm 2Nδ`m

=
1

2N

2N−1∑
`=0

ζ−j`2N H`G`,

where H` =
∑N−1

k=−N ζ
`k
2Nhk and Gm =

∑N−1
k=−N ζ

mk
2N gk are the

discrete Fourier transforms of {hk} and {gk}.

7

Discrete Cyclic Convolution

•The FFT provides an efficient tool for computing the discrete
cyclic convolution

N−1∑
p=0

FpGk−p,

where the vectors F and G have period N .

•The fast Fourier transform (FFT) method exploits the
properties that ζrN = ζN/r and ζNN = 1.

8

Convolution Theorem

N−1∑
j=0

fjgjζ
−jk
N =

N−1∑
j=0

ζ−jkN

N−1∑
p=0

ζjpN Fp

N−1∑
q=0

ζjqNGq


=

N−1∑
p=0

N−1∑
q=0

FpGq

N−1∑
j=0

ζ
(−k+p+q)j
N

=N
∑
s

N−1∑
p=0

FpGk−p+sN .

•The terms indexed by s 6= 0 are aliases; we need to remove
them!

• If only the firstm entries of the input vectors are nonzero, aliases
can be avoided by zero padding input data vectors of length m
to length N ≥ 2m− 1.

•Explicit zero padding prevents mode m− 1 from beating with
itself, wrapping around to contaminate mode N = 0 modN . 9

Implicit Dealiasing

•Let N = 2m. For j = 0, . . . , 2m− 1 we want to compute

fj =

2m−1∑
k=0

ζjk2mFk.

• If Fk = 0 for k ≥ m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

f2`=

m−1∑
k=0

ζ2`k2mFk =

m−1∑
k=0

ζ`kmFk,

f2`+1=

m−1∑
k=0

ζ
(2`+1)k
2m Fk =

m−1∑
k=0

ζ`km ζ
k
2mFk, ` = 0, 1, . . .m− 1.

•This requires computing two subtransforms, each of size m,
for an overall computational scaling of order 2m log2m =
N log2m.

10

•Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v 2.05) on top
of the FFTW library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/

{Fk}m−1
k=0 {Gk}m−1

k=0

11

http://fftwpp.sourceforge.net/

•Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v 2.05) on top
of the FFTW library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/

{Fk}m−1
k=0 {Gk}m−1

k=0

{f2ℓ}m−1
ℓ=0 {f2ℓ+1}m−1

ℓ=0 {g2ℓ}m−1
ℓ=0 {g2ℓ+1}m−1

ℓ=0

11

http://fftwpp.sourceforge.net/

•Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v 2.05) on top
of the FFTW library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/

{Fk}m−1
k=0 {Gk}m−1

k=0

{f2ℓ}m−1
ℓ=0 {f2ℓ+1}m−1

ℓ=0 {g2ℓ}m−1
ℓ=0 {g2ℓ+1}m−1

ℓ=0

{f2ℓg2ℓ}m−1
ℓ=0 {f2ℓ+1g2ℓ+1}m−1

ℓ=0

11

http://fftwpp.sourceforge.net/

•Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v 2.05) on top
of the FFTW library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/

{Fk}m−1
k=0 {Gk}m−1

k=0

{f2ℓ}m−1
ℓ=0 {f2ℓ+1}m−1

ℓ=0 {g2ℓ}m−1
ℓ=0 {g2ℓ+1}m−1

ℓ=0

{f2ℓg2ℓ}m−1
ℓ=0 {f2ℓ+1g2ℓ+1}m−1

ℓ=0

{(F ∗G)k}m−1
k=0

11

http://fftwpp.sourceforge.net/

Full Fractional-Phase Fourier Transform

•We will also need the full fractional-phase Fourier transform

fj
.
=

N−1∑
k=0

ζαjkFk, j = 0, . . . , N − 1.

•On defining two sequences gj
.
= ζαj

2/2 and hk
.
= gkFk, this

can be computed just like the partial Fourier transform, except
the condition gj−k = 0 when j − k < 0 is now replaced by
gj−k = gk−j.

•This symmetry can be enforced by precomputing the inverse
FFTs:

{Gj}N−1j=0 = fft−1({ζ−αk2/2 + ζ−α(k−N)2/2}N−1k=0),

{Vj}N−1j=0 = fft−1({ζk2N [ζ−αk
2/2 − ζ−α(k−N)2/2]}N−1k=0).

12

•Then fj can be calculated as the product of gj and the
jth output of the following function applied to the sequence
{hk}N−1k=0 .

Input: vector f
Output: vector f
for k = 0 to N − 1 do
u[k]← ζk2N f[k];

end
f ← fft(fft−1(f) ∗ G);
u← fft(fft−1(u) ∗ V);

for k = 0 to N − 1 do
f[k]← f[k] + ζ−k2Nu[k];

end
return f/(2N);

• In the above pseudocode, an asterisk (∗) denotes an element-
by-element (vector) multiply.

13

Partial FFT: Special Case c(j) = (pj + s)/q

•Here p, q, and s are integers, with p 6= 0 and

fj
.
=

b(pj+s)/qc∑
k=0

ζαjkFk, j = 0, . . . ,M − 1.

•Let pj + s = qn + r, with n = 0, . . . , N − 1. Then

fj =

n∑
k=0

ζα(qn+r−s)kp Fk

=

n∑
k=0

ζ
αq[n2+k2−(n−k)2]
2p ζα(r−s)kp Fk

=ζαqn
2

2p

n∑
k=0

ζ
−αq(n−k)2
2p ζαqk

2

2p ζα(r−s)kp Fk

14

•On setting gk
.
= ζαqk

2

2p and hk
.
= gkζ

α(r−s)k
p Fk, the result can be

written as a convolution of two sequences {hk} and {gk}:

fj = gn

n∑
k=0

hkgn−k, j = 0, . . . ,M − 1.

•This general algorithm is only efficient when p = 1 or q = 1.

•The technique can be readily extended to higher dimensions.

15

Rectangular subdivision for c(j) = j

16

Triangular subdivision for c(j) = j

17

Rectangular: c(j) = (N − 1) sin πj
N−1

18

Hybrid: c(j) = (N − 1) sin πj
N−1

19

Computation time

10−10

10−9

10−8

ti
m
e/
N

lo
g
2 2
N

(s
)

104 105 106

N

Rectangular

Hybrid

FFT

20

Application: Kolmogorov Theory of Turbulence

•Although the independence of the local inertial-range energy
flux with wavenumber is one of the key hypothesis underlying
Kolmogorov’s famous 5/3 power-law form for the kinetic
energy spectrum, it has never been directly tested, either
experimentally or numerically.

•To validate Kolmogorov’s uniform flux hypothesis in a
high-resolution pseudospectral code, detailed wavenumber
constraints must be imposed on the convolution.

•The key tool needed is the partial fast Fourier transform, where
the summation limits are restricted by a spatially-dependent
constraint.

•To this end, we have improved on previous attempts [Ying 2009]
to develop a partial FFT based on the fractional-phase Fourier
transform and Bluestein’s algorithm [Bluestein 1970].

21

Flux Decomposition for a Single (k,p, q) Triad
E
(k
)

k

Tp

Tk

p

q

k

Lk=Tk
Sk=0

E
(k
)

k

−Tp

−Tq

p

q

k

Lk=−Tp
Sk=−Tq

E
(k
)

k

Tk

Tqp

q

k

Lk=0
Sk=Tk

•Note that energy is conserved: Lk+Sk = Tk = −Tp−Tq. Thus

Lk = Re
∑
|k|=k
|p|<k
|k−p|<k

Mk,p ωp ωk−p ω
∗
k − Re

∑
|k|=k
|p|<k
|k−p|>k

Mp,k−p ωk ωk−p ω
∗
p.

22

Conclusions

•A fast O(N logN) algorithm for computing the partial fast
Fourier transform is available, but with a relatively large
coefficient.

• Improving on the work of Ying & Fomel [2009], we obtained a
fast computational scaling, but with a smaller overall coefficient.

•The partial Fourier transform has applications in decomposing
turbulent transfers into nonlocal and local fluxes.

•These techniques can be used to compute detailed inertial-range
flux profiles and for the first time verify a key underpinning
assumption of Kolmogorov’s famous power-law conjecture for
turbulence.

•This will allow us to verify and exploit inertial-range self-
similarity in 2D turbulence and study the flux locality profile.

23

References
[Bluestein 1970] L. I. Bluestein, IEEE Trans. Audio and Electroacoustics, 18:451, 1970.

[Bowman & Roberts 2011] J. C. Bowman & M. Roberts, SIAM J. Sci. Comput., 33:386, 2011.

[Roberts & Bowman 2017] M. Roberts & J. C. Bowman, Submitted to Journal of Computational Physics, 2017.

[Ying & Fomel 2009] L. Ying & S. Fomel, Multiscale Modeling and Simulation, 8:110, 2009.

