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Turbulence

Big wharls have little whirls that feed on their
velocity, and little whirls have littler whirls and so on
to viscosity. . . [Richardson 1922)]

eIn 1941, Kolmogorov conjectured that the energy spectrum
of 3D incompressible turbulence exhibits a self-similar power-
law scaling characterized by a uniform cascade of energy to
molecular (viscous) scales:

E(k) = C&¥3E3,
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Big wharls have little whirls that feed on their
velocity, and little whirls have littler whirls and so on
to viscosity. . . [Richardson 1922)]

eIn 1941, Kolmogorov conjectured that the energy spectrum
of 3D incompressible turbulence exhibits a self-similar power-
law scaling characterized by a uniform cascade of energy to
molecular (viscous) scales:

E(k) = C¥3E™3,

e Here k is the Fourier wavenumber and E(k) is normalized so
that | E(k)dk is the total energy.

e Kolmogorov suggested that C' might be a universal constant.

e He hypothesized that the local energy flux in the inertial range is
independent of wavenumber, presumably due to an underlying
self-similarity:.
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incompressible (V-u = 0) fluid:
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2D Turbulence in Fourier Space

e Navier—-Stokes equation for vorticity w = 2-VXwu of an
incompressible (V-u = 0) fluid:

%—C: +u-Vw =vVw + f.

e In Fourier space:
Ow €k
—k+kak—/dp/dq LIy pWq T Tk

where v =vk?  and  eppg = (2:pXq)d(k+p+q) s
antisymmetric under permutation of any two indices.



%ercwk—/dp/dqepq gt S

e When v = f, =0,

w |’

enstrophy Z = %/ \wk\zdk and energy E = %

conserved:

e antisymmetric in k < p,

— —= antisymmetric in k< q.



Forcing at k = 2, friction for k < 3, viscosity for
k> ky =300 (1023 x 1023 dealiased modes)
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Transter vs. Flux

e Distinguish between transfer and flux.
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Transter vs. Flux

e Distinguish between transfer and flux.

e The mean rate of enstrophy transfer to |k, 0o) is given by

e In a steady state, I1(k) will trivially be constant within a true
inertial range.

e The statement of local wavenumber-independent inertial-
range energy flux is fundamentally different than the trivial
observation that the nonlocal energy transfer is independent
of wavenumber in the inertial range.

e In contrast, the enstrophy flux through a wavenumber £ is
the amount of enstrophy transferred to small scales via triad
interactions involving mode k.
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Uniform flux

e Although the independence of the local inertial-range energy
flux with wavenumber is one of the key hypothesis underlying
Kolmogorov’s famous 5/3 power-law form for the kinetic
energy spectrum, it has never been directly tested, either
experimentally or numerically.

11



Uniform flux

e Although the independence of the local inertial-range energy
flux with wavenumber is one of the key hypothesis underlying
Kolmogorov’s famous 5/3 power-law form for the kinetic
energy spectrum, it has never been directly tested, either
experimentally or numerically.

e To validate Kolmogorov's uniform flux hypothesis in a
high-resolution pseudospectral code, detailed wavenumber
constraints must be imposed on the convolution.

11



Uniform flux

e Although the independence of the local inertial-range energy
flux with wavenumber is one of the key hypothesis underlying
Kolmogorov’s famous 5/3 power-law form for the kinetic
energy spectrum, it has never been directly tested, either
experimentally or numerically.

e To validate Kolmogorov's uniform flux hypothesis in a
high-resolution pseudospectral code, detailed wavenumber
constraints must be imposed on the convolution.

e The key tool needed is the partial fast Fourier transform, where
the summation limits are restricted by a spatially-dependent
constraint.

11



Uniform flux

e Although the independence of the local inertial-range energy
flux with wavenumber is one of the key hypothesis underlying
Kolmogorov’s famous 5/3 power-law form for the kinetic
energy spectrum, it has never been directly tested, either
experimentally or numerically.

e To validate Kolmogorov's uniform flux hypothesis in a
high-resolution pseudospectral code, detailed wavenumber
constraints must be imposed on the convolution.

e The key tool needed is the partial fast Fourier transform, where
the summation limits are restricted by a spatially-dependent
constraint.

e To this end, we have improved on previous attempts [Ying
2009] to develop a partial FFT based on the fractional Fourier
transform and Bluestein’s algorithm |Bluestein 1970].
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Flux Decomposition for a Single (k, p, q) Triad

Ly=T}
S=0

Lk‘:_trp

Ly=0
Sy=—T,

Sp=T}

e Note that energy is conserved: Lj+ Sy, = T}, = =1, —1,. Thus

— k *
L. = Re E My p wp wi—pwy, — Re E Mp,k_pwkwk_pwp.

|k|=Fk |k|=F
Ip|<k Ip|<k
|k—p|<k |k—p|>k
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Discrete Cyclic Convolution

e The FF'T provides an eflicient tool for computing the discrete
cyclic convolution

N-1
> FGip
p=0

where the vectors F' and G have period N.
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Discrete Cyclic Convolution

e The FF'T provides an eflicient tool for computing the discrete
cyclic convolution

N—-1
> FGip
p=0

where the vectors F' and G have period N.
e Define the Nth primitive root of unity:

(N = exp (%)

e The fast Fourier transform (FFT) method exploits the
properties that (i = (n/, and (y =1

e However, the pseudospectral method requires a [inear
convolution.
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e The unnormalized backwards discrete Fourier transform of
{Fkik:O,...,N} 1S

N—-1
=Y 'F j=0,...,N—1.
k=0

14



e The unnormalized backwards discrete Fourier transform of
{Fkik:O,...,N} 1S

N—-1
=Y 'F j=0,...,N—1.
k=0

e The corresponding forward transform is

N—-1
. 12 _kj
Fk:NOCNJfJ ]‘C:O,...,N—l.
]:
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e The unnormalized backwards discrete Fourier transform of
{Fkik:O,...,N} 1S

N-1
=Y F  j=0,...,N—1
k=0
e The corresponding forward transform is

N—-1
] _kj
Fk:ﬁg CNk]fj k=0,...,.N —1.
=0

e The orthogonality of this transform pair follows from

(N if { = sN for s € Z,

— (N
l; 1 —
Z N = ]\g = (0 otherwise.
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Convolution Theorem

N—1 N—-1 N—-1 N—-1
—Jjk __ —Jjk Jp Jq
E :fJQJCN = Gy E :CNFp E :CNGCI
7=0 7=0 p=0 q=0
N—1N-1 N—-1
_ (—k+p+q)j
— Fqu CN
p=0 ¢=0 J=0
N—1
=N E § Fka—p+sN
s  p=0

e The terms indexed by s # 0 are aliases; we need to remove
them!
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to length N > 2m — 1.
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Convolution Theorem

N-1 N-1 N-1 N-1
—jk —jk '
Z fi9iCn"" = (N Z Cn Iy Z (NG
7=0 7=0 p=0 q=0
N—-1N-1 N-1
_ (—k+p+q)J
= F,Gy )y
p=0 ¢q=0 7=0
N-1
NY Y G
s p=0

e The terms indexed by s # 0 are aliases; we need to remove
them!

e If only the first m entries of the input vectors are nonzero, aliases
can be avoided by zero padding input data vectors of length m
to length N > 2m — 1.

e [Laplicit zero padding prevents mode m — 1 from beating with
itself, wrapping around to contaminate mode N = 0 mod V.



Implicit Dealiasing
elLet N =2m. For y =0,...,2m — 1 we want to compute

2m—1

ke
fi= Gnk
k=0
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olet N=2m. For y =0,...,2m — 1 we want to compute

2m—1

fj — Z Cjk
k=0

olf Fj. = 0 for £ > m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:
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Implicit Dealiasing
olet N=2m. For y =0,...,2m — 1 we want to compute

2m—1

f] — Z Cjk
k=0

olf F;. = 0 for £ > m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

m—1
fze—ZC%kF = (NF
k=0

m—1
(20
f2£+1—z G R =N B 0=0,1,. . m L.
k=0

e This requires computing two subtranstorms, each of size m,
for an overall computational scaling of order 2mlogo,m =
N logy m.
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e Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v 2.02) on top
of the FFTW library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/
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Fast Variably Restricted Dealiased Convolution

e We need a practical algorithm for computing many partial
Fourier transforms at once:

= 2. Wl
|k|<c(7)

where (v = 2™/V is the Nth primitive root of unity.
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Fast Variably Restricted Dealiased Convolution

e We need a practical algorithm for computing many partial
Fourier transforms at once:

Z (v Uk

|k|<c(7)

27TZ/N

where (y = is the Nth primitive root of unity.

e Here ¢(7) is a spatially-dependent constraint on the summation
limits.

e Goal: obtain a ‘fast’ computational scaling, following
Ying & Fomel [2009] but with a smaller overall coefficient.
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Partial 1D Fourier Transform
o Let Ccu - Cl/a — eQm'cv.
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Partial 1D Fourier Transform
o [et Ccu - Cl/a — eZm'oz.

e The unnormalized backward discrete partial Fourier transform
of a complex vector {Fy, : k=0,..., N — 1} is defined as

c(j)
fjizcaijk, 7=0,....,.N—1.
k=0
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Special case of partial 1D FFT: ¢(j) = 3

e Given inputs {Fj : k=0,...,N — 1},

J
fjiZCa]ka, j=0,...,N—1.
k=0
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Special case of partial 1D FFT: ¢(j) =3

e Given inputs {Fj : k=0,...,N — 1},
j .
fi=) ¢FE, j=0,... N-L
k=0

o Since jk =3 [j*+ k* — (j — k)?], [Bluestein 1970]

J J
fi = Z C%[J +k*—(j—k) ]Fk = (0 /2 Z ok /QFkC_O‘(]_k> /2
k=0

k=0

~
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Special case of partial 1D FFT: ¢(j) =3

e Given inputs {Fj : k=0,...,N — 1},
j .
fj£ZCa]ka, j=0,...,N—1.
k=0

o Since jk =3 [j*+ k* — (j — k)?|, [Bluestein 1970]
j al 2 2 : 2 -2 ] 2 : 2
fi = Z Cg[g FR2—(j—k) ]Fk _ ¢ /2 Z Cak /szC—a(]—m /27
k=0

k=0

e This can be written as the convolution of the two sequences
2
gi = G and hy, = grF}:

j
fi=9; ) g
k=0
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Partial FFT: Special Case ¢(j) =

e Here p, ¢, and s are integers, with p # 0 and

L(pj+s)/4q]

Z Y, j=0,...

(pJ
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Partial FFT: Special Case ¢(j) = (pj

e Here p, ¢, and s are integers, with p # 0 and

[(pj+s)/4q]

Z CY9E i =0,..., M —1.

eletpj+s=qgn+r, withn=0,..., N —1. Then

f] _ Z C}(Dy(qner—s)kF

aq|n’+k*—
_ZC q + ]ng(rs)ka

an ank o _
i Zcﬂ Gy G E,
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: aqk? a(r—s)k
e On setting gr = Cy, and hy = gi(p F}.. the result can be
written as a convolution of two sequences {hy} and {gy}:

=090 MGy g J=0,...,M—1
k=0

22



: aqk? a(r—s)k
e On setting gr = Cy, and hy = gi(p F}.. the result can be
written as a convolution of two sequences {hy} and {gy}:

=00 MGy g j=0,...,M—1
k=0

e This general algorithm is only eflicient when p =1 or g = 1.
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: aqk? a(r—s)k
e On setting gr = Cy, and hy = gi(p F}.. the result can be
written as a convolution of two sequences {hy} and {gy}:

=00 MGy p  J=0,...,M—1
k=0

e This general algorithm is only efficient when p =1 or ¢ = 1.

e A similar procedure can be used to compute partial
convolutions.

e The technique can be readily extended to higher dimensions.
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Rectangular subdivision for ¢(j) = j
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Triangular subdivision for ¢(j) = j
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Rectangular subdivision for

c(j)=(N —1)sinmj/(N — 1)
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Hybrid subdivision for
(j) = (N = 1)sinmj/(N — 1)
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Casimir Invariants

e Inviscid unforced two dimensional turbulence has uncountably
many other Casimir invariants.
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Casimir Invariants

e Inviscid unforced two dimensional turbulence has uncountably
many other Casimir invariants.

e Any continuously differentiable function of the (scalar) vorticity
is conserved by the nonlinearity:

e Do these invariants also play a fundamental role in the turbulent
dynamics, in addition to the quadratic (energy and enstrophy)
invariants? Do they exhibit cascades?
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Conclusions

e One should distinguish between nonlocal transfer and flux.

e To compute this decomposition efficiently, one needs a partial
convolution.

e Partial dealiased convolutions can be used to compute detailed
inertial-range flux profiles and for the first time verify a key
underpinning assumption of Kolmogorov's famous power-law
conjecture for turbulence.

e This will allow us to verify and exploit inertial-range self-
similarity in 2D turbulence and study the flux locality profile.

e The locality profile can be used to infer the effective eddy
damping contribution from each of truncated (subgrid) modes,
allowing us to build a phenomenological dynamic subgrid model
that on average removes the right amount of energy from each
of the scales near the subgrid wavenumber cutoft.
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