
Implicitly Padded Convolutions on Hybrid
Parallel Architectures

John C. Bowman

University of Alberta

June 8, 2015

www.math.ualberta.ca/∼bowman/talks

Acknowledgements: Malcolm Roberts (Université de Strasbourg)

1



Discrete Cyclic Convolution

•The FFT provides an efficient tool for computing the discrete
cyclic convolution

N−1∑
p=0

FpGk−p,

where the vectors F and G have period N .

•Define the N th primitive root of unity:

ζN = exp

(
2πi

N

)
.

•The fast Fourier transform method exploits the properties that
ζrN = ζN/r and ζNN = 1.

•However, the pseudospectral method requires a linear
convolution.

2



•The unnormalized backwards discrete Fourier transform of
{Fk : k = 0, . . . , N} is

fj
.
=

N−1∑
k=0

ζjkN Fk j = 0, . . . , N − 1.

•The corresponding forward transform is

Fk
.
=

1

N

N−1∑
j=0

ζ−kjN fj k = 0, . . . , N − 1.

•The orthogonality of this transform pair follows from

N−1∑
j=0

ζ`jN =


N if ` = sN for s ∈ Z,
1− ζ`NN
1− ζ`N

= 0 otherwise.

3



Convolution Theorem

N−1∑
j=0

fjgjζ
−jk
N =

N−1∑
j=0

ζ−jkN

N−1∑
p=0

ζjpN Fp

N−1∑
q=0

ζjqNGq


=

N−1∑
p=0

N−1∑
q=0

FpGq

N−1∑
j=0

ζ
(−k+p+q)j
N

=N
∑
s

N−1∑
p=0

FpGk−p+sN .

•The terms indexed by s 6= 0 are aliases; we need to remove
them!

• If only the firstm entries of the input vectors are nonzero, aliases
can be avoided by zero padding input data vectors of length m
to length N ≥ 2m− 1.

•Explicit zero padding prevents mode m− 1 from beating with
itself, wrapping around to contaminate mode N = 0 modN . 4



• Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m:

{Fk}m−1
k=0 {Gk}m−1

k=0

5



• Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m:

{Fk}m−1
k=0 {Gk}m−1

k=0

{Fk}m−1
k=0 {0}m−1

k=0 {Gk}m−1
k=0 {0}m−1

k=0

5



• Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m:

{Fk}m−1
k=0 {Gk}m−1

k=0

{Fk}m−1
k=0 {0}m−1

k=0 {Gk}m−1
k=0 {0}m−1

k=0

{fj}2m−1
j=0

FFT−1

{gj}2m−1
j=0

FFT−1

5



• Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m:

{Fk}m−1
k=0 {Gk}m−1

k=0

{Fk}m−1
k=0 {0}m−1

k=0 {Gk}m−1
k=0 {0}m−1

k=0

{fj}2m−1
j=0

FFT−1

{gj}2m−1
j=0

FFT−1

{fjgj}2m−1
j=0

5



• Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m:

{Fk}m−1
k=0 {Gk}m−1

k=0

{Fk}m−1
k=0 {0}m−1

k=0 {Gk}m−1
k=0 {0}m−1

k=0

{fj}2m−1
j=0

FFT−1

{gj}2m−1
j=0

FFT−1

{fjgj}2m−1
j=0

{F ∗G}m−1
k=0

FFT

5



• Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m:

{Fk}m−1
k=0 {Gk}m−1

k=0

{Fk}m−1
k=0 {0}m−1

k=0 {Gk}m−1
k=0 {0}m−1

k=0

{fj}2m−1
j=0

FFT−1

{gj}2m−1
j=0

FFT−1

{fjgj}2m−1
j=0

{F ∗G}m−1
k=0

FFT

F ∗G

5



Implicit Padding

•Let N = 2m. For j = 0, . . . , 2m− 1 we want to compute

fj =

2m−1∑
k=0

ζjk2mFk.

• If Fk = 0 for k ≥ m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

f2`=

m−1∑
k=0

ζ2`k2mFk =

m−1∑
k=0

ζ`kmFk,

f2`+1=

m−1∑
k=0

ζ
(2`+1)k
2m Fk =

m−1∑
k=0

ζ`km ζ
k
2mFk, ` = 0, 1, . . .m− 1.

•This requires computing two subtransforms, each of size m,
for an overall computational scaling of order 2m log2m =
N log2m.

6



•Odd and even terms of the convolution can then be computed
separately, multiplied term-by-term, and transformed again to
Fourier space:

2mFk=

2m−1∑
j=0

ζ−kj2m fj

=

m−1∑
`=0

ζ−k2`2m f2` +

m−1∑
`=0

ζ
−k(2`+1)
2m f2`+1

=

m−1∑
`=0

ζ−k`m f2` + ζ−k2m

m−1∑
`=0

ζ−k`m f2`+1 k = 0, . . . ,m− 1.

•No bit reversal is required at the highest level.

•A 1D implicitly padded convolution is implemented in our
FFTW++ library.

•This in-place convolution was written to use six out-of-place
transforms, thereby avoiding bit reversal at all levels.

7



•The computational complexity is 6Km log2m.

•The numerical error is similar to explicit padding and the
memory usage is identical.

{Fk}m−1
k=0 {Gk}m−1

k=0

8



•The computational complexity is 6Km log2m.

•The numerical error is similar to explicit padding and the
memory usage is identical.

{Fk}m−1
k=0 {Gk}m−1

k=0

{f2ℓ}m−1
ℓ=0 {f2ℓ+1}m−1

ℓ=0 {g2ℓ}m−1
ℓ=0 {g2ℓ+1}m−1

ℓ=0

8



•The computational complexity is 6Km log2m.

•The numerical error is similar to explicit padding and the
memory usage is identical.

{Fk}m−1
k=0 {Gk}m−1

k=0

{f2ℓ}m−1
ℓ=0 {f2ℓ+1}m−1

ℓ=0 {g2ℓ}m−1
ℓ=0 {g2ℓ+1}m−1

ℓ=0

{f2ℓg2ℓ}m−1
ℓ=0 {f2ℓ+1g2ℓ+1}m−1

ℓ=0

8



•The computational complexity is 6Km log2m.

•The numerical error is similar to explicit padding and the
memory usage is identical.

{Fk}m−1
k=0 {Gk}m−1

k=0

{f2ℓ}m−1
ℓ=0 {f2ℓ+1}m−1

ℓ=0 {g2ℓ}m−1
ℓ=0 {g2ℓ+1}m−1

ℓ=0

{f2ℓg2ℓ}m−1
ℓ=0 {f2ℓ+1g2ℓ+1}m−1

ℓ=0

{(F ∗G)k}m−1
k=0

8



Input: vector f, vector g
Output: vector f
u← fft−1(f);
v← fft−1(g);
u← u ∗ v;
for k = 0 to m− 1 do
f[k]← ζk2mf[k];

g[k]← ζk2mg[k];
end

v← fft−1(f);
f ← fft−1(g);
v← v ∗ f;
f ← fft(u);
u← fft(v);

for k = 0 to m− 1 do
f[k]← f[k] + ζ−k2mu[k];

end
return f/(2m);

9



Implicit Padding in 1D

3

4

5

6

7

8

ti
m
e/
(N

lo
g
2
N
)
(n
s)

102 103 104 105 106

N

explicit

implicit

10



Convolutions in Higher Dimensions

•An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

F G

11



Convolutions in Higher Dimensions

•An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

F GF G

11



Convolutions in Higher Dimensions

•An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

F GF G

f g

11



Convolutions in Higher Dimensions

•An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

F GF G

f g

fg

11



Convolutions in Higher Dimensions

•An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

F GF G

f g

fg

F ∗G

11



Convolutions in Higher Dimensions

•An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

F GF G

f g

fg

F ∗GF ∗G

11



Recursive Convolution

•Naive way to compute a multiple-dimensional convolution:

FN1,...,Nd multiply F−1
N1,...,Nd

•The technique of recursive convolution allows one to avoid
computing and storing the entire Fourier image of the data:

FNd
Nd× convolveN1 ,...,Nd−1 F−1

Nd

12



Implicit Padding in 2D

•Extra work memory need not be contiguous with the data.

F G

13



Implicit Padding in 2D

•Extra work memory need not be contiguous with the data.

FFT−1
x {F}

nx even

FFT−1
x {F}

nx odd

FFT−1
x {G}

nx even

FFT−1
x {G}

nx odd

13



Implicit Padding in 2D

•Extra work memory need not be contiguous with the data.

13



Implicit Padding in 2D

•Extra work memory need not be contiguous with the data.

13



Implicit Padding in 2D

•Extra work memory need not be contiguous with the data.

13



Implicit Padding in 2D

•Extra work memory need not be contiguous with the data.

FFT−1
x {F ∗G}
nx even

FFT−1
x {F ∗G}
nx odd

13



Implicit Padding in 2D

•Extra work memory need not be contiguous with the data.

F ∗G

13



Implicit Padding in 2D

7.5

10

12.5

15

ti
m
e/
(N

2
lo
g
2
N

2
)
(n
s)

102 103

N

explicit

y-pruned

implicit

14



Implicit Padding in 3D

20

30

40

50

60

ti
m
e/
(m

3
lo
g
2
m

3
)
(n
s)

101 102
m

explicit

xz-pruned

implicit

15



Hermitian Convolutions

•Hermitian convolutions arise when the input vectors are
Fourier transforms of real data:

fN−k = fk.

16



Centered Convolutions

•For a centered convolution, the Fourier origin (k = 0) is
centered in the domain:

m−1∑
p=k−m+1

fpgk−p

•Need to pad to N ≥ 3m−2 to prevent mode m−1 from beating
with itself to contaminate the most negative (first) mode, at
wavenumber −m + 1.

•The ratio of the number of physical to total modes, (2m −
1)/(3m− 2) is asymptotic to 2/3 for large m.

•The Hermiticity condition then appears as

f−k = fk.

17



Parallelization

•Our implicit and explicit convolution routines have been
multithreaded for shared-memory architectures.

•Parallel generalized slab/pencil model implementations have
recently been developed for distributed-memory architectures
(available in svn repository and upcoming 1.14 release).

•The key bottleneck is the distributed matrix transpose.

•We have compared several distributed matrix transpose
algorithms, both blocking and nonblocking, under both pure
MPI and hybrid MPI/OpenMP architectures.

•Local transposition is not required within a single MPI node.

•Hybrid MPI/OpenMP offers a larger communication block size
than pure MPI for matrix transposition.

18



•Hybrid MPI/OpenMP is sometimes more efficient (by a
factor of 2) than pure MPI for computing distributed matrix
transposes [Bowman & Roberts 2013].

•We have developed an adaptive algorithm, dynamically tuned
to choose the optimal block size and number of threads.

19



8× 8 Block Transpose over 8 processors

0

1

2

3

4

5

6

7

P
ro
ce
ss

20



8× 8 Block Transpose over 8 processors

0

1

2

3

4

5

6

7

P
ro
ce
ss

20



8× 8 Block Transpose over 8 processors

0

1

2

3

4

5

6

7

P
ro
ce
ss

20



8× 8 Block Transpose over 8 processors

0

1

2

3

4

5

6

7

P
ro
ce
ss

20



8× 8 Block Transpose over 8 processors

0

1

2

3

4

5

6

7

P
ro
ce
ss

20



8× 8 Block Transpose over 8 processors

0

1

2

3

4

5

6

7

P
ro
ce
ss

20



8× 8 Block Transpose over 8 processors

0

1

2

3

4

5

6

7

P
ro
ce
ss

20



Matrix Transpose: Optimal Number of Threads

250

300

350

ti
m
e
(µ
s)

1024× 1 512× 2 256× 4 128× 8
nodes × threads

FFTW: 10242

hybrid: 10242

21



Advantages of Hybrid MPI/OpenMP

• Smaller problems sizes to be distributed over a large number of
processors;

•More slab-like than pencil-like model; this reduces the size of or
even eliminates the need for the second transpose.

•Overlapping computation with communication can yield a
10% speedup for 3D implicitly dealiased convolutions, where
a natural parallelism exists between communication and
computation.

22



Pure MPI Scaling of 2D Implicit Convolutions

1k 2k 4k 8k
Number of cores

100

sp
ee
d
u
p

Strong scaling: cconv2

10242

20482

40962

81922

163842

23



Pure MPI Scaling of 3D Implicit Convolution

1k 2k 4k 8k
Number of cores

100

sp
ee
d
u
p

Strong scaling: cconv3

323

643

1283

2563

5123

10243

20483

24



Multithreaded Hermitian Convolution

•The backwards implicitly padded centered Hermitian transform
appears as

u3`+r =

m−1∑
k=0

ζ`kmwk,r,

where

wk,r
.
=

{
U0 if k = 0,
ζrk3m
(
Uk + ζ−r3 Um−k

)
if 1 ≤ k ≤ m− 1.

•We exploit the Hermitian symmetry wk,r = wm−k,r to reduce
the problem to three complex-to-real Fourier transforms of the
first c+ 1 components of wk,r (one for each r = −1, 0, 1), where
c
.
= bm/2c zeros.

25



•To facilitate an in-place implementation, in our original paper
(SIAM, 2011), we stored the transformed values for r = 1 in
reverse order in the upper half of the input vector.

•However, loop dependencies in the resulting algorithm prevented
the top level of the 1D transforms from being multithreaded.

26



Multithreaded Hermitian Convolution

•Unrolling the loop to process four inputs and outputs
simultaneously allows loop independence to be achieved,
significantly improving performance in both the serial and
parallel contexts.

0 1 2 3 . . . c− 2 c− 1 c c + 1 c+ 2 . . . 2c− 3 2c− 2 2c− 1

r = 0 r = 1

27



Multithreaded Hermitian Convolution

•Unrolling the loop to process four inputs and outputs
simultaneously allows loop independence to be achieved,
significantly improving performance in both the serial and
parallel contexts.

0 1 2 3 . . . c− 2 c− 1 c c + 1 c+ 2 . . . 2c− 3 2c− 2 2c− 1

r = 0 r = 1

•As a result, even in 1D, implicit dealiasing of pseudospectral
convolutions is now significantly faster than explicit zero
padding.

27



1D Implicit Hermitian Convolution

4

5

6

ti
m
e/
(N

lo
g
2
N
)
(n
s)

102 103 104 105 106

N

explicit

implicit

28



2D Pseudospectral Collocation [1 thread]

10−6

ti
m
e/
(m

lo
g
2
m
)2

(s
)

102 103
m

Explicit

Implicit

29



2D Pseudospectral Collocation [4 threads]

10−6
ti
m
e/
(m

lo
g
2
m
)2

(s
)

102 103
m

Explicit

Implicit

30



Conclusions

•Memory savings: in d dimensions implicit padding
asymptotically uses 1/2d−1 [for centered convolutions (2/3)d−1]
of the memory required by conventional explicit padding.

•The factor of 2 speedup with implicit dealiasing is largely due
to increased data locality.

•Highly optimized and parallelized implicit dealiasing routines
have been implemented as a software layer FFTW++ on top of
the FFTW library and released under the Lesser GNU Public
License: http://fftwpp.sourceforge.net/

•Writing a high-performance dealiased pseudospectral code is
now a relatively straightforward exercise!

• Implicit dealiasing has been extended to handle nested
convolutions and autocorrelations.

• Implicit dealiasing can also be applied to signal denoising and
image filtering.

31

http://fftwpp.sourceforge.net/


References
[Bowman & Roberts 2011] J. C. Bowman & M. Roberts, SIAM J. Sci. Comput., 33:386, 2011.

[Bowman & Roberts 2013] J. C. Bowman & M. Roberts, “Adaptive matrix transpose algorithms for distributed multicore
processors,” in Springer Proceedings of the Applied Mathematics, Modeling and Computational
Science, Springer, 2013.


