Implicitly Padded Convolutions on Hybrid
Parallel Architectures

John C. Bowman

University of Alberta

June 8, 2015

www.math.ualberta.ca/~bowman/talks

Acknowledgements: Malcolm Roberts (Université de Strasbourg)

Discrete Cyclic Convolution

e The FF'T provides an efficient tool for computing the discrete
cyclic convolution

N-1
> G,
p=0

where the vectors F' and G have period N.
e Define the Nth primitive root of unity:

(N = €xp (%)

e The fast Fourier transform method exploits the properties that
Gy = Cnyr and C]]\\,] = 1.

e However, the pseudospectral method requires a [linear
convolution.

e The unnormalized

backwards discrete Fourier transform ot

{Fkikzo,...,N}iS

N—-1
i=> \F j=0,...,N—1.
k=0

e The corresponding

1
Fk:ﬁ

forward transform is

N—-1 .
G k=0,...,N—1
j=0

e The orthogonality of this transform pair follows from

N-1
> =4
=0

(N if { = sN for s € Z,
1 — (N
N — 0 otherwise.

\ 1_Cz<f

Convolution Theorem

N—1 N—1 N—1 N—1
Y L —Jjk Jp Jq
Ji9iCy" = Gy E :CNFP E :CNGQ
J=0 7=0 p=0 q=0
N—1N-1 N—1
_ (—k+p+q);
— Fqu CN
p=0 ¢=0 7=0
N—1
=N E E Fka—p+sN
s p=0

e The terms indexed by s # 0 are aliases; we need to remove
them!

e [f only the first m entries of the input vectors are nonzero, aliases

can be avoided by zero padding input data vectors of length m
to length N > 2m — 1.

e [iaplicit zero padding prevents mode m — 1 from beating with
itself, wrapping around to contaminate mode N = 0 mod V.

e Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m:

{Fe}i {Gr}iss

e Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m:

{Fe}i {Gr}iss

¢ '

{Fe}i {0} {Gr}iy {0}

e Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m:

{ka—o1 {Gki’?—ol
{Foliss {0}y {Ge}isy {0}y
FFT‘1'2 1 FFT‘1'2 1
{fitiZo {95130

e Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m:

{ka—o1 {Gki’?—ol
{Fi}is {0} {Gr)iy {0}
FFT_1'2 : FFT_1'2 :
{fitiZo {9120
{fig:}35t -

e Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m:

{ka—o1 {Gki’?—ol
{Fi}is {0} {Gr)iy {0}
FFT_1'2 : FFT_1'2 :
{fitiZo {9120
{fig:}35t -
FET

{F Gy

e Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m:

{f»'ka—o1 {Gki’?—ol
{Foliss {0}y {Ge}isy {0}y
FET 'y FET 'y
{f ?Zo_l {9 ?20—1
{fig:}35t =
FFT
{F G},

'

Fxd

Implicit Padding

eLet N =2m. For y =0,...,2m — 1 we want to compute
2m—1
ik
k=0

olf F; = 0 for £ > m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

m—1
f%—z G Fe = G Fr.
k=0

m—1
(20
f2€+1—z G R =N B 0=0,1,.m L.
k=0

e This requires computing two subtranstorms, each of size m,
for an overall computational scaling of order 2mlog,m =
N logy m.

e Odd and even terms of the convolution can then be computed
separately, multiplied term-by-term, and transformed again to
Fourier space:

2m—1

2mFy = Z G f;
=0

m—1

m—1
ST o+ o fory
/=0

7T
1L

m—1
C£k€f2£+C§n§ZCﬂ;k€f2£+1 Ek=0,....,m—1.
4 (=0

I
o

e No bit reversal is required at the highest level.

e A 1D implicitly padded convolution is implemented in our
FFTW++ library.

e This in-place convolution was written to use six out-of-place
transforms, thereby avoiding bit reversal at all levels.

e The computational complexity is 6 Km log, m.

e The numerical error is similar to explicit padding and the
memory usage is identical.

{Fe}icy {Gr}isy

e The computational complexity is 6 K'm log, m.

e The numerical error is similar to explicit padding and the
memory usage is identical.

{Fe}iy {Gr}isy

T T

{ fae} i { foes1}0' {920}725" {g2041}7"

e The computational complexity is 6 K'm log, m.

e The numerical error is similar to explicit padding and the
memory usage is identical.

{fa} i { farr1 175" {g2e}15’ {9201}

i

{ foegae} ot { fae+192041} 02"

e The computational complexity is 6 K'm log, m.

e The numerical error is similar to explicit padding and the
memory usage is identical.

{f %QML/UWEH | Yiry

{(F* G}y

Input: vector f, vector g

Output: vector f

u <+ £t 1(f):

v« fft 1(g);

U <— U*V;

for k=0tom—1do
flk] < G, fIE];
glk] < C8lk];

end

v« £t 1(f);

f+ £t 1(g);

V < vk f;

f < fft(u);

u< fft(v);

for k=0tom—1do

fIK] < fIk] + Gy ulk]:

end

return f/(2m);

Implicit Padding in 1D

— o — explicit 7;/
|

—a— implicit

IIII | IIIIIIII | IIIIIIII | IIIIIIII T Ty

10¢ 10° 10* 10°
N

10°

10

Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

11

Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

11

Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

11

Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

F = F G = G
i Y
/ g

Jg

11

Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

F —» F G | G
Y Y
/ g
Iy
v
F x G

11

Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

F —» F G = G
Y Y
/ g
Iy
v
F x Ge—F x (G

Recursive Convolution

e Naive way to compute a multiple-dimensional convolution:

Fn,N, —— multiply ——» Fny N,

e The technique of recursive convolution allows one to avoid
computing and storing the entire Fourier image of the data:

FNd — Nd X COI]VO]VGN1

—1
Nd 1 ‘FNd

..... —

12

Implicit Padding in 2D

e [ixtra work memory need not be contiguous with the data.

Implicit Padding in 2D

e [ixtra work memory need not be contiguous with the data.

FFT;'{F}

Ng even

FFT, ' {F}
n, odd

FFT,'{G}

Ng even

FFT, {G}
n, odd

13

Implicit Padding in 2D

e [ixtra work memory need not be contiguous with the data.

Implicit Padding in 2D

e [ixtra work memory need not be contiguous with the data.

13

Implicit Padding in 2D

e [ixtra work memory need not be contiguous with the data.

Implicit Padding in 2D

e [ixtra work memory need not be contiguous with the data.

13

Implicit Padding in 2D

e [ixtra work memory need not be contiguous with the data.

13

time/(N*log, N?) (ns)

Implicit Padding in 2D

15

12.5

L II | L II |
/
— o — explicit /
/
N y-pruned /
. . . -&
e mpligt T~ o 4 g
/
/
/
/
/ N
- / —
/ N
/ R i T =3
/-e~ - 'EP =
b :
.I.Il | | IIIIII| | L1 1 11

Fal
| I B

107

10°
N

14

Implicit Padding in 3D

60_IIIII| |

S
-

time/(m?>log, m?) (ns)

o)
-
I

— o — explicit

---@-+ xz-pruned

—a— implicit

107

m

15

Hermitian Convolutions

e [Hermitian convolutions arise when the input vectors are
Fourier transtorms of real data:

fN—k — ﬁ

16

Centered Convolutions

e For a centered convolution, the Fourier origin (kK = 0) is
centered in the domain:

e Need to pad to NV > 3m —2 to prevent mode m —1 from beating
with itself to contaminate the most negative (first) mode, at
wavenumber —m + 1.

e The ratio of the number of physical to total modes, (2m —
1)/(3m — 2) is asymptotic to 2/3 for large m.

e The Hermiticity condition then appears as

fok = fr

17

Parallelization

e Our implicit and explicit convolution routines have been
multithreaded for shared-memory architectures.

e Parallel generalized slab/pencil model implementations have
recently been developed for distributed-memory architectures
(available in svn repository and upcoming 1.14 release).

e The key bottleneck is the distributed matrix transpose.

e We have compared several distributed matrix transpose
algorithms, both blocking and nonblocking, under both pure
MPI and hybrid MPI/OpenMP architectures.

e Local transposition is not required within a single MPI node.

e Hybrid MPI/OpenMP offers a larger communication block size
than pure MPI for matrix transposition.

18

e Hybrid MPI/OpenMP is sometimes more efficient (by a
factor of 2) than pure MPI for computing distributed matrix
transposes |Bowman & Roberts 2013].

e We have developed an adaptive algorithm, dynamically tuned
to choose the optimal block size and number of threads.

19

8 X 8 Block Transpose over 8 processors

Process

N O Ot s W N = O

20

8 X 8 Block Transpose over 8 processors

Process

N O Ot s W N = O

20

8 X 8 Block Transpose over 8 processors

Process

N O Ot s W N = O

20

SIS
RNNARS

NS

S —~ AN n F 0 O b-

8 X 8 Block Transpose over 8 processors

SS900I]

8 X 8 Block Transpose over 8 processors

Process

N O Ot s W N = O

20

S &
H NENSE

H ENNRW
M

S —~ AN n F 0 O b-

8 X 8 Block Transpose over 8 processors

SS900I]

8 X 8 Block Transpose over 8 processors

Process

N O Ot s W N = O

20

Matrix Transpose: Optimal Number of Threads

— __
350 [! |
igz 300 / - -~ -FFTW: 1024% |
& RN —— hybrid: 1024
250 |- .
I I
1024 x 1 512 x 2 256 x 4

nodes X threads

128 x 8

21

Advantages of Hybrid MPI/OpenMP

e Smaller problems sizes to be distributed over a large number of
Processors;

e More slab-like than pencil-like model; this reduces the size of or
even eliminates the need for the second transpose.

e Overlapping computation with communication can yield a
10% speedup for 3D implicitly dealiased convolutions, where
a natural parallelism exists between communication and

computation.

22

Pure MPI Scaling of 2D Implicit Convolutions

speedup

Strong scaling: cconv2

1k 2k Ak 8k
Number of cores

—— 10242
—— 20482
—— 40962
—e— 81922

23

Pure MPI Scaling of 3D Implicit Convolution

speedup

Strong scaling: cconv3

C 1 | 1 1 i
1k 2k 4k Sk
Number of cores

—a— 323
—— 643
—— 1283
—— 2563

—— 20483

24

Multithreaded Hermitian Convolution

e The backwards implicitly padded centered Hermitian transtorm
appears as

m—1
U4y — Z Cﬁwk,ra
k=0
where
B Uy it k=0,
Cer = GE (U + ¢ Uy) 1<k <m—1.

e We exploit the Hermitian symmetry wy, = W, —k, to reduce
the problem to three complex-to-real Fourier transforms of the
first c+1 components of wy, - (one for each r = —1,0, 1), where
c = |m/2] zeros.

25

e To facilitate an in-place implementation, in our original paper
(STAM, 2011), we stored the transformed values for r = 1 in
reverse order in the upper half of the input vector.

e However, loop dependencies in the resulting algorithm prevented
the top level of the 1D transforms from being multithreaded.

26

Multithreaded Hermitian Convolution

e Unrolling the loop to process four inputs and outputs
simultaneously allows loop independence to be achieved,
significantly improving performance in both the serial and
parallel contexts.

0 1 2 3 o je—=2 c—1 ¢c |c+1ljc+2| -+ |2¢—=3|2c—2|2c—1

27

Multithreaded Hermitian Convolution

e Unrolling the loop to process four inputs and outputs
simultaneously allows loop independence to be achieved,
significantly improving performance in both the serial and

parallel contexts.

;

¢

¢

3

c+1

c+2

2c— 3

2c — 2

2c—1

r=1

e As a result, even in 1D, implicit dealiasing of pseudospectral
convolutions is now significantly faster than explicit zero

padding.

1D Implicit Hermitian Convolution

6 'I'H'I | IIIIIIII | IIIIIIII o rrrrm L

+ — o — explicit /

n —a— implicit 4

time/(N log, N) (ns)

\ 1 1 IIIIII| L1
102 10% 10* 10> 106
N

2D Pseudospectral Collocation |1 thread]

0 Explicit

: Implicit

1076 -

time/(m log, m)? (s)

29

2D Pseudospectral Collocation [4 threads]

time/(m log, m)? (s)

Explicit

Implicit

107

30

Conclusions

e Memory savings: in d dimensions implicit padding
asymptotically uses 1/2971 [for centered convolutions (2/3)%1]
of the memory required by conventional explicit padding.

e The factor of 2 speedup with implicit dealiasing is largely due
to increased data locality.

e Highly optimized and parallelized implicit dealiasing routines
have been implemented as a software layer FFTW++ on top of

the FFTW library and released under the Lesser GNU Public
License: http://fftwpp.sourceforge.net/

e Writing a high-performance dealiased pseudospectral code is
now a relatively straightforward exercise!

e Implicit dealiasing has been extended to handle nested
convolutions and autocorrelations.

e Implicit dealiasing can also be applied to signal denoising and
image filtering.

31

http://fftwpp.sourceforge.net/

References

[Bowman & Roberts 2011] J. C. Bowman & M. Roberts, STAM J. Sci. Comput., 33:386, 2011.

[Bowman & Roberts 2013] J. C. Bowman & M. Roberts, “Adaptive matrix transpose algorithms for distributed multicore

processors,” in Springer Proceedings of the Applied Mathematics, Modeling and Computational
Science, Springer, 2013.

