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Discrete Cyclic Convolution

e The FF'T provides an efficient tool for computing the discrete
cyclic convolution

N-1
> G,
p=0

where the vectors F' and G have period N.
e Define the Nth primitive root of unity:

(N = €xp (%)

e The fast Fourier transform method exploits the properties that
Gy = Cnyr and C]]\\,] = 1.

e However, the pseudospectral method requires a [linear
convolution.
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forward transform is
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e The orthogonality of this transform pair follows from
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Convolution Theorem
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e The terms indexed by s # 0 are aliases; we need to remove
them!

e [f only the first m entries of the input vectors are nonzero, aliases

can be avoided by zero padding input data vectors of length m
to length N > 2m — 1.

e [iaplicit zero padding prevents mode m — 1 from beating with
itself, wrapping around to contaminate mode N = 0 mod V.



e Since FFT sizes with small prime factors in practice yield
the most efficient implementations, the padding is normally
extended to N = 2m:
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Implicit Padding

eLet N =2m. For y =0,...,2m — 1 we want to compute
2m—1
ik
k=0

olf F; = 0 for £ > m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:
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e This requires computing two subtranstorms, each of size m,
for an overall computational scaling of order 2mlog,m =
N logy m.



e Odd and even terms of the convolution can then be computed
separately, multiplied term-by-term, and transformed again to
Fourier space:
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e No bit reversal is required at the highest level.

e A 1D implicitly padded convolution is implemented in our
FFTW++ library.

e This in-place convolution was written to use six out-of-place
transforms, thereby avoiding bit reversal at all levels.



e The computational complexity is 6 Km log, m.

e The numerical error is similar to explicit padding and the
memory usage is identical.
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e The computational complexity is 6 K'm log, m.

e The numerical error is similar to explicit padding and the
memory usage is identical.
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e The computational complexity is 6 K'm log, m.

e The numerical error is similar to explicit padding and the
memory usage is identical.
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Input: vector f, vector g

Output: vector f

u <+ £t 1(f):

v« fft 1(g);

U <— U*V;

for k=0tom—1do
flk] < G, fIE];
glk] < C8lk];

end

v« £t 1(f);

f+ £t 1(g);

V < vk f;

f < fft(u);

u< fft(v);

for k=0tom—1do

fIK] < fIk] + Gy ulk]:

end

return f/(2m);




Implicit Padding in 1D
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Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.
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Convolutions in Higher Dimensions
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Recursive Convolution

e Naive way to compute a multiple-dimensional convolution:

Fn, ... .N, —— multiply ——» Fny N,

e The technique of recursive convolution allows one to avoid
computing and storing the entire Fourier image of the data:

FNd — Nd X COI]VO]VGN1

—1
Nd 1 ‘FNd

..... —
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Implicit Padding in 2D

e [ixtra work memory need not be contiguous with the data.
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Implicit Padding in 2D
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Implicit Padding in 3D
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Hermitian Convolutions

e [Hermitian convolutions arise when the input vectors are
Fourier transtorms of real data:

fN—k — ﬁ

16



Centered Convolutions

e For a centered convolution, the Fourier origin (kK = 0) is
centered in the domain:

e Need to pad to NV > 3m —2 to prevent mode m —1 from beating
with itself to contaminate the most negative (first) mode, at
wavenumber —m + 1.

e The ratio of the number of physical to total modes, (2m —
1)/(3m — 2) is asymptotic to 2/3 for large m.

e The Hermiticity condition then appears as

fok = fr
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Parallelization

e Our implicit and explicit convolution routines have been
multithreaded for shared-memory architectures.

e Parallel generalized slab/pencil model implementations have
recently been developed for distributed-memory architectures
(available in svn repository and upcoming 1.14 release).

e The key bottleneck is the distributed matrix transpose.

e We have compared several distributed matrix transpose
algorithms, both blocking and nonblocking, under both pure
MPI and hybrid MPI/OpenMP architectures.

e Local transposition is not required within a single MPI node.

e Hybrid MPI/OpenMP offers a larger communication block size
than pure MPI for matrix transposition.
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e Hybrid MPI/OpenMP is sometimes more efficient (by a
factor of 2) than pure MPI for computing distributed matrix
transposes |Bowman & Roberts 2013].

e We have developed an adaptive algorithm, dynamically tuned
to choose the optimal block size and number of threads.
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Matrix Transpose: Optimal Number of Threads

— __
350 [ ! |
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Advantages of Hybrid MPI/OpenMP

e Smaller problems sizes to be distributed over a large number of
Processors;

e More slab-like than pencil-like model; this reduces the size of or
even eliminates the need for the second transpose.

e Overlapping computation with communication can yield a
10% speedup for 3D implicitly dealiased convolutions, where
a natural parallelism exists between communication and

computation.
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Pure MPI Scaling of 2D Implicit Convolutions

speedup

Strong scaling: cconv2
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Pure MPI Scaling of 3D Implicit Convolution

speedup

Strong scaling: cconv3
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Multithreaded Hermitian Convolution

e The backwards implicitly padded centered Hermitian transtorm
appears as

m—1
U4y — Z Cﬁwk,ra
k=0
where
B Uy it k=0,
Cer = GE (U + ¢ Uy) 1<k <m—1.

e We exploit the Hermitian symmetry wy, = W, —k, to reduce
the problem to three complex-to-real Fourier transforms of the
first c+1 components of wy, - (one for each r = —1,0, 1), where
c = |m/2] zeros.
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e To facilitate an in-place implementation, in our original paper
(STAM, 2011), we stored the transformed values for r = 1 in
reverse order in the upper half of the input vector.

e However, loop dependencies in the resulting algorithm prevented
the top level of the 1D transforms from being multithreaded.
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Multithreaded Hermitian Convolution

e Unrolling the loop to process four inputs and outputs
simultaneously allows loop independence to be achieved,
significantly improving performance in both the serial and
parallel contexts.

0 1 2 3 o je—=2 c—1 ¢c |c+1ljc+2| -+ |2¢—=3|2c—2|2c—1

27



Multithreaded Hermitian Convolution

e Unrolling the loop to process four inputs and outputs
simultaneously allows loop independence to be achieved,
significantly improving performance in both the serial and

parallel contexts.

;
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2c— 3
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e As a result, even in 1D, implicit dealiasing of pseudospectral
convolutions is now significantly faster than explicit zero

padding.




1D Implicit Hermitian Convolution
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2D Pseudospectral Collocation |1 thread]
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: Implicit
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2D Pseudospectral Collocation [4 threads]
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Conclusions

e Memory savings: in d dimensions implicit padding
asymptotically uses 1/2971 [for centered convolutions (2/3)%1]
of the memory required by conventional explicit padding.

e The factor of 2 speedup with implicit dealiasing is largely due
to increased data locality.

e Highly optimized and parallelized implicit dealiasing routines
have been implemented as a software layer FFTW++ on top of

the FFTW library and released under the Lesser GNU Public
License: http://fftwpp.sourceforge.net/

e Writing a high-performance dealiased pseudospectral code is
now a relatively straightforward exercise!

e Implicit dealiasing has been extended to handle nested
convolutions and autocorrelations.

e Implicit dealiasing can also be applied to signal denoising and
image filtering.
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