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Initial Value Problems

•Given f : Rn+1 → Rn, suppose x ∈ Rn evolves according to

dx

dt
= f (x, t),

with the initial condition x(0) = x0.
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•Given f : Rn+1 → Rn, suppose x ∈ Rn evolves according to

dx

dt
= f (x, t),

with the initial condition x(0) = x0.with the initial condition x(0) = x0.

•Hamiltonian subclass: n = 2k and x = (q,p), where q,p ∈ Rk

satisfy

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q
,

for some function H(q,p, t) : Rn+1 → R.

•Often, the Hamiltonian H has no explicit dependence on t.
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Structure-Preserving Discretizations

• Symplectic integration: conserves phase space structure of
Hamilton’s equations; the time step map is a canonical
transformation. [Ruth 1983], [Channell & Scovel 1990],
[Sanz-Serna & Calvo 1994]
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•Conservative integration: conserves first integrals.
[Bowman et al. 1997], [Shadwick et al. 1999],
[Kotovych & Bowman 2002], [Wan et al. 2017]

•Positivity: preserves positive semi-definiteness of covariance
matrices. [Bowman & Krommes 1997]

•Positivity: preserves positive semi-definiteness of covariance
matrices. [Bowman & Krommes 1997]

•Unitary integration: conserves trace of probability density
matrix. [Shadwick & Buell 1997]

•Exponential integrators: Yield exact evolution on linear time
scale
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Symplectic vs. Conservative Integration

Theorem: (Ge and Marsden 1988) A C1 symplectic map M
with no explicit time-dependence will conserve a C1 time-
independent Hamiltonian H : Rn → R ⇐⇒ M is identical to
the exact evolution, up to a reparametrization of time.

Proof:

•A C1 symplectic scheme is a canonical mapM corresponding to
some approximate C1 Hamiltonian H̃τ(x,t) : Rn+1 → R, where
the label τ denotes the time step.
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Symplectic vs. Conservative Integration

Theorem: (Ge and Marsden 1988) A C1 symplectic map M
with no explicit time-dependence will conserve a C1 time-
independent Hamiltonian H : Rn → R ⇐⇒ M is identical to
the exact evolution, up to a reparametrization of time.

Proof:

•A C1 symplectic scheme is a canonical mapM corresponding to
some approximate C1 Hamiltonian H̃τ(x,t) : Rn+1 → R, where
the label τ denotes the time step.

• If the mapping M does not depend explicitly on time, it can be
generated by the approximate Hamiltonian K(x) = H̃τ(x, 0).
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• Suppose the symplectic map conserves the true Hamiltonian H :

0 =
dH

dt
=

∂H

∂qi

dqi
dt

+
∂H

∂pi

dpi
dt

+
∂H

∂t

/
= [H,K],

where

[H,K] =
∂H

∂qi

∂K

∂pi
−∂H

∂pi

∂K

∂qi
.
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.[H,K] =

∂H

∂qi

∂K

∂pi
−∂H

∂pi

∂K

∂qi
.

• Implicit function theorem: in a neighbourhood of x0 ∈ Rn

∃ a C1 function ϕ : R → R ∋

H(x) = ϕ(K(x)) or K(x) = ϕ(H(x)) ⇐⇒ [H,K] = 0.

•Consequently, the trajectories in Rn generated by the
Hamiltonians H and K coincide.
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Conservative Integration

•Traditional numerical discretizations of nonlinear initial value
problems are based on polynomial functions of the time step.
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•They typically yield spurious secular drifts of nonlinear first
integrals of motion (e.g. total energy).

⇒ the numerical solution will not remain on the energy surface
defined by the initial conditions!
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Conservative Integration

•Traditional numerical discretizations of nonlinear initial value
problems are based on polynomial functions of the time step.

•Traditional numerical discretizations of nonlinear initial value
problems are based on polynomial functions of the time step.

•They typically yield spurious secular drifts of nonlinear first
integrals of motion (e.g. total energy).

⇒ the numerical solution will not remain on the energy surface
defined by the initial conditions!

•There exists a class of nontraditional explicit algorithms that
exactly conserve nonlinear invariants to all orders in the time
step (to machine precision).
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Three-Wave Problem

•Truncated Fourier-transformed Euler equations for an inviscid
2D fluid:

dx1
dt

= f1 = M1x2x3,

dx2
dt

= f2 = M2x3x1,

dx3
dt

= f3 = M3x1x2,

where M1 +M2 +M3 = 0.
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Three-Wave Problem

•Truncated Fourier-transformed Euler equations for an inviscid
2D fluid:

dx1
dt

= f1 = M1x2x3,

dx2
dt

= f2 = M2x3x1,

dx3
dt

= f3 = M3x1x2,

where M1 +M2 +M3 = 0.

•Then∑
k

fkxk = 0 ⇒ energy E
.
=

1

2

∑
k

x2k is conserved.
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Secular Energy Growth

•Energy is not conserved by conventional discretizations.
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Secular Energy Growth

•Energy is not conserved by conventional discretizations.

•The Euler method

xk,i+1 = xk,i + hfk

yields a monotonically increasing energy:

Ei+1 =
1

2

∑
k

[
x2k + 2hfkxk + h2S2

k

]
= E(t) +

1

2
h2

∑
k

S2
k.
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Conservative Euler Algorithm

•Determine a modification of the original equations of motion
leading to exact energy conservation:

dxk
dt

= fk + gk.
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Conservative Euler Algorithm

•Determine a modification of the original equations of motion
leading to exact energy conservation:

dxk
dt

= fk + gk.

•Euler’s method predicts the new energy

Ei+1 =
1

2

∑
k

[xk,i + h(fk + gk)]
2

= Ei +
1

2

∑
k

[
2hgkxk,i + h2(fk + gk)

2
]︸ ︷︷ ︸

set to 0

.
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• Solving for gk yields the C–Euler discretization:

xk,i+1 = sgnxk,i+1

√
x2k,i + 2hfkxk,i.
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xk,i+1 = xk,i

√
1 + 2h

fk
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= xk,i + hfk +O(h2).
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• Solving for gk yields the C–Euler discretization:

xk,i+1 = sgnxk,i+1

√
x2k,i + 2hfkxk,i.xk,i+1 = sgnxk,i+1

√
x2k,i + 2hfkxk,i.

•Reduces to Euler’s method as h → 0:

xk,i+1 = xk,i

√
1 + 2h

fk
xk,i

= xk,i + hfk +O(h2).

•C–Euler is just the usual Euler algorithm applied to

dx2k
dt

= 2fkxk.
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Lemma: ([Shampine 1986]) Let x and c be vectors in Rn. If
f : Rn+1 → Rn has values orthogonal to c, so that I = c · x is
a linear invariant of

dx

dt
= f (x, t),

then each stage of the explicit s-stage discretization

xi+1 = x0 + h
i∑

j=0

aijf (xj, t + aih), i = 0, . . . , s− 1,

also conserves I , where h is the time step and aij ∈ R.
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Higher-Order Conservative Integration

•Find a transformation T : Rn → Rn such that the nonlinear
invariants are linear functions of ξ = T (x).
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invariants are linear functions of ξ = T (x).

•The new value of x is then obtained by inverse transformation:

xi+1 = T−1(ξi+1).

•Problem: T may not be invertible!

– Solution 1: Reduce the time step.

– Solution 2: Use a traditional integrator for that time step.

– Solution 3: Use an implicit backwards step [Shadwick &
Bowman SIAM J. Appl. Math. 59, 1112 (1999), Appendix A].
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•Find a transformation T : Rn → Rn such that the nonlinear
invariants are linear functions of ξ = T (x).

•The new value of x is then obtained by inverse transformation:

xi+1 = T−1(ξi+1).xi+1 = T−1(ξi+1).

•Problem: T may not be invertible!

– Solution 1: Reduce the time step.

– Solution 2: Use a traditional integrator for that time step.

– Solution 3: Use an implicit backwards step [Shadwick &
Bowman SIAM J. Appl. Math. 59, 1112 (1999), Appendix A].

•Only the final corrector stage needs to be computed in the
transformed space.

13



Error Analysis: 1D Autonomous Case

•Exact solution (everything on RHS evaluated at xi):

xi+1 = xi + hf +
h2

2
f ′f +

h3

6
(f ′′f 2 + f ′2f ) +O(h4);
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xi+1 = xi + hf +
h2

2
f ′f +

h3

6
(f ′′f 2 + f ′2f ) +O(h4);

•When T ′(xi) ̸= 0, C–PC yields the solution

xi+1 = xi + hf +
h2

2
f ′f +

h3

4

(
f ′′f 2 +

T ′′′

3T ′f
3

)
+O(h4),

where all of the derivatives are evaluated at xi.
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xi+1 = xi + hf +
h2

2
f ′f +

h3

4

(
f ′′f 2 +

T ′′′

3T ′f
3

)
+O(h4),

where all of the derivatives are evaluated at xi.where all of the derivatives are evaluated at xi.

•On setting T (x) = x, the C–PC solution reduces to the
conventional PC.

•C–PC and PC are both accurate to second order in h;
for T (x) = x2, they agree through third order in h.
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Singular Case

•When T ′(xi) = 0, the conservative corrector reduces to

xi+1 = T−1

(
T (xi) +

h

2
T ′(x̃)f (x̃)

)
,
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Singular Case

•When T ′(xi) = 0, the conservative corrector reduces to

xi+1 = T−1

(
T (xi) +

h

2
T ′(x̃)f (x̃)

)
,

• If T and f are analytic, the existence of a solution is guaranteed
as h → 0+ if the points at which T ′ vanishes are isolated.
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Four-Body Choreography
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Conservative Symplectic Integrators

•Conservative variational symplectic integrators based on
explicitly time-dependent symplectic maps have been proposed
for certain mechanics problems. [Kane, Marsden, and Ortiz
1999]
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Conservative Symplectic Integrators

•Conservative variational symplectic integrators based on
explicitly time-dependent symplectic maps have been proposed
for certain mechanics problems. [Kane, Marsden, and Ortiz
1999]

•These integrators circumvent the conditions of the Ge–Marsden
theorem!
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Linear Stiffness

•Consider for y : R → R and L > 0 the equation

dy

dt
= −Ly,

with the initial condition y(0) = y0 ̸= 0.
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•Consider for y : R → R and L > 0 the equation

dy

dt
= −Ly,

with the initial condition y(0) = y0 ̸= 0.with the initial condition y(0) = y0 ̸= 0.

•We know that the exact solution to this equation is given by

y(t) = y0e
−tL.y(t) = y0e
−tL.

•Apply Euler’s method with time step h:

yi+1 = (1− hL)yi.yi+1 = (1− hL)yi.

•For hL ≥ 2, yn does not converge to the correct steady-state
solution.

• If L is large, the time step is then forced to be unreasonably
small.
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•This phenomenon of linear stiffness manifests itself in general
driven systems of ODEs in Rn:

dy

dt
+ Ly = f (y).
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•This phenomenon of linear stiffness manifests itself in general
driven systems of ODEs in Rn:

dy

dt
+ Ly = f (y).

•When the eigenvalues of L are large compared to the eigenvalues
of f ′, a similar problem will occur.
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Notation
dy

dt
= f (t, y), y(0) = y0,

•General s-stage Runge–Kutta scheme (scalar case):

yi+1 = y0 + h
i∑

j=0

aijf (cjh, yj), i = 0, . . . , s− 1.

0 is the initial time; h is the time step;

ys is the approximation to y(h);

aij are the Runge–Kutta weights;

cj are the step fractions for stage j.

20



Butcher Tableau (s = 3):

c0 = 0, ci+1 =

i∑
j=0

aij.

0
c1 a00
c2 a10 a11
1 a20 a21 a22
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Exponential Integrators

•Circumvent linear stiffness by applying a scheme that is exact
on the time scale of the linear part of the problem.
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on the time scale of the linear part of the problem.

•Consider
dy

dt
+ Ly = f (y).

•Rewrite the above equation as

d(etLy)

dt
= etLf (y)

and integrate to obtain

y(h) = e−hLy(0) +

∫ h

0

e−(h−s)Lf (y(0 + s))ds.
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•Circumvent linear stiffness by applying a scheme that is exact
on the time scale of the linear part of the problem.

•Consider
dy

dt
+ Ly = f (y).

dy

dt
+ Ly = f (y).

•Rewrite the above equation as

d(etLy)

dt
= etLf (y)

and integrate to obtain

y(h) = e−hLy(0) +

∫ h

0

e−(h−s)Lf (y(0 + s))ds.

•A quadrature rule is used to approximate the integral, while
treating the exponential term exactly.
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Stiff-Order Conditions

yi+1 = e−hLy0 + h
i∑

j=0

aij(−hL)f (yj), i = 0, ..., s− 1.

•The weights aij are constructed from linear combinations of ex

and truncations of its Taylor series:

φ0(x) = ex

φk+1(x) =
φk(x)− 1

k!

x
for k ≥ 0,

with φk(0) =
1
k!.
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φk+1(x) =
φk(x)− 1

k!

x
for k ≥ 0,

with φk(0) =
1
k!.

•Care must be exercised when evaluating φ near 0; see the C++
routines at www.math.ualberta.ca/~bowman/phi.h.
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Stiff-Order Conditions

yi+1 = e−hLy0 + h

i∑
j=0

aij(−hL)f (yj), i = 0, ..., s− 1.

•The weights aij are constructed from linear combinations of ex

and truncations of its Taylor series:

φ0(x) = ex

φk+1(x) =
φk(x)− 1

k!

x
for k ≥ 0,

with φk(0) =
1
k!.with φk(0) =
1
k!.

•Care must be exercised when evaluating φ near 0; see the C++
routines at www.math.ualberta.ca/~bowman/phi.h.

•A set of stiff-order conditions on the weights were shown by
Hochbruck and Ostermann to be sufficient to avoid order
reduction when L has large eigenvalues.

23
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Exponential Euler Algorithm

yi+1 = e−hLyi +
1− e−hL

L
f (yi),

•Also called Exponentially Fitted Euler, ETD Euler, filtered
Euler, Lie–Euler.
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L
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• In contrast, the popular Integrating Factor method (I-Euler).

yi+1 = e−hL(yi + hfi)

can at best have an incorrect fixed point: y =
hf (y)

eLh − 1
.
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L
; this is then a

fixed point of the ODE.

• If it has a fixed point, it must satisfy y =
f (y)

L
; this is then a

fixed point of the ODE.

• In contrast, the popular Integrating Factor method (I-Euler).

yi+1 = e−hL(yi + hfi)

can at best have an incorrect fixed point: y =
hf (y)

eLh − 1
.

•As h → 0 the Euler method is recovered:

yi+1 = yi + hf (yi).
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Comparison of Euler Integrators
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History of Exponential Integrators

•Certaine [1960]: Exponential Adams-Moulton

•Nørsett [1969]: Exponential Adams-Bashforth

•Verwer [1977] and van der Houwen [1977]: Exponential linear
multistep method

•Friedli [1978]: Exponential Runge–Kutta

•Hochbruck et al. [1998]: Exponential integrators up to order 4

•Beylkin et al. [1998]: Exact Linear Part (ELP)

•Cox & Matthews [2002]: ETDRK3, ETDRK4; worst case: stiff
order 2

•Lu [2003]: Efficient Matrix Exponential

•Hochbruck & Ostermann [2005a]: Explicit Exponential Runge–
Kutta; stiff order conditions.
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Embedded Pairs for Adaptive Time-Stepping

•An adaptive pair is robust if the order of the low-order method
is never equal to the order n of the high-order method for any
source function G(t) = F (t, y(t)) with a nonzero derivative of
order less than n.
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•An adaptive pair is robust if the order of the low-order method
is never equal to the order n of the high-order method for any
source function G(t) = F (t, y(t)) with a nonzero derivative of
order less than n.

•A nonrobust method can mislead the time step adjustment
algorithm into adopting too large a time step, leading to
catastrophic loss of accuracy.
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(3,2) Robust Embedded Pair ERK32ZB
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(4,3) Robust Embedded Pair ERK43ZB
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Test Problem

•We illustrate robustness by comparing ERK43ZB to ERK43DK
[Ding & Kang 2017] for a test problem from Hochbruck–
Ostermann:
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•For x ∈ [0, 1] and t ≥ 0:

∂y

∂t
(x, t)− ∂2y

∂x2
(x, t) = H(x, t) + Φ(x, t).

H(x, t) =
1

1 + y(x, t)2
.
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.

•Φ is chosen so that the exact solution is

y(x, t) = x(1− x)et.

• 200 spatial grid points, evolve from t = 0 to t = 3.
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•We illustrate robustness by comparing ERK43ZB to ERK43DK
[Ding & Kang 2017] for a test problem from Hochbruck–
Ostermann:

•For x ∈ [0, 1] and t ≥ 0:

∂y

∂t
(x, t)− ∂2y

∂x2
(x, t) = H(x, t) + Φ(x, t).

H(x, t) =
1

1 + y(x, t)2
.H(x, t) =

1

1 + y(x, t)2
.

•Φ is chosen so that the exact solution is

y(x, t) = x(1− x)et.y(x, t) = x(1− x)et.

• 200 spatial grid points, evolve from t = 0 to t = 3.

•We calculate the matrix φk functions with the help of Padé
approximants, along with repeated scaling and squaring.
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Robust vs. Non-Robust Third-Order Estimate
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Robust vs. Non-Robust Time Evolution
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Adaptive Performance of ERK43ZB

•Choose Φ such that y(x, t) = 10(1− x)x(1 + sin t) + 2:
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GOY Shell Model of 3D Turbulence

•ERK43ZB runs over 3 times faster than the classical Cash–Karp
(5,4) pair on a shell model of 3D turbulence exhibiting both
linear and nonlinear stiffness:
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Schur Decomposition

•When L is a nondiagonal matrix, the matrix exponentials
required by exponential integrators are computationally
expensive.
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•When L is a nondiagonal matrix, the matrix exponentials
required by exponential integrators are computationally
expensive.

•Consider the Schur decomposition of L:

L = UTU †,

where U is a unitary matrix and T is an upper triangular matrix.where U is a unitary matrix and T is an upper triangular matrix.

•Decompose T = D + S, where D is a diagonal matrix and S is
a strictly upper triangular matrix.

•We obtain

dy

dt
+ U(D + S)U †y = F (t, y).
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•Multiply by U † on the left:

d(U †y)

dt
+ (D + S)U †y = U †F (t, y).
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•Multiply by U † on the left:

d(U †y)

dt
+ (D + S)U †y = U †F (t, y).

• In terms of the transformed variable Y = U †y:

dY

dt
+DY = U †F (t, UY )− SY.
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•This transformation allows us to replace exponentials of a full
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•This transformation allows us to replace exponentials of a full
matrix with a diagonal matrix of scalar exponentials.

•Being diagonal, the φk functions now require far less storage.•Being diagonal, the φk functions now require far less storage.

•Although the computation of the Schur decomposition of L is
expensive, it only has to be done once.

•The explicit treatment of the upper triangular matrix S
contributes to the overall error, but does not contribute to
stiffness.
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•Moreover, many matrices encountered in practice are normal :
they commute with their Hermitian adjoint.
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•An adaptive exponential method requires re-evaluating the φk

functions whenever the step size is adjusted.
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normal matrix is diagonal.
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embedded ERK methods for step size adjustment becomes
computationally viable, even when L is a nondiagonal matrix.

•With the optimization afforded by Schur decomposition,
embedded ERK methods for step size adjustment becomes
computationally viable, even when L is a nondiagonal matrix.

•An adaptive exponential method requires re-evaluating the φk

functions whenever the step size is adjusted.

•However, since these are now functions of diagonal matrices,
there is no longer a huge computational cost.
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Claim: The term Sy does not incorporate any of the stiffness
inherent in the linear term Ly.

Proof:

•On defining the integrating factor I(t) = etD and ỹ(t) =
I(t)y(t), we can transform the autonomous case to

dỹ

dt
= I(t)U †F (UI−1(t)ỹ)− S̃ỹ,

where S̃ = I(t)SI−1(t) is an m×m strictly upper triangular
matrix.
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Claim: The term Sy does not incorporate any of the stiffness
inherent in the linear term Ly.

Proof:

•On defining the integrating factor I(t) = etD and ỹ(t) =
I(t)y(t), we can transform the autonomous case to

dỹ

dt
= I(t)U †F (UI−1(t)ỹ)− S̃ỹ,

where S̃ = I(t)SI−1(t) is an m×m strictly upper triangular
matrix.

• If the stiffness only enters through the linear term Ly and not
through F (y), the first term on the right-hand side will not
contribute any additional stiffness.
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•When F = 0, we obtain the triangular system of equations

dỹi
dt

=

m∑
j=i+1

S̃ijỹj for i = 1, . . . ,m− 1 and
dỹm
dt

= 0,

which can be solved recursively to obtain the general solution as
a polynomial in t.

41



•When F = 0, we obtain the triangular system of equations

dỹi
dt

=

m∑
j=i+1
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whose order is at least the degree of the solution polynomials.
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•Thus, the decomposed system of equations is not stiff; it can
in fact be solved exactly by a classical Runge–Kutta method
whose order is at least the degree of the solution polynomials.

•Thus, the decomposed system of equations is not stiff; it can
in fact be solved exactly by a classical Runge–Kutta method
whose order is at least the degree of the solution polynomials.

•By linear superposition, the system is not stiff even when F is
linear (and, in particular, when F is constant).

•The linear stiffness is thus entirely contained within the
diagonal term DY .
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Schur Decomposition vs. Full Solution
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Conclusions

•Numerical discretizations that preserve physically relevant
structure or known analytic properties are desirable.
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and nonintegrable Hamiltonian systems and even to non-
Hamiltonian systems such as force-dissipative turbulence.

•The transformation technique is relevant to integrable
and nonintegrable Hamiltonian systems and even to non-
Hamiltonian systems such as force-dissipative turbulence.

•Exponential integrators are explicit schemes for ODEs with a
stiff linearity.

•When the nonlinear source is constant, the time-stepping
algorithm is precisely the analytical solution to the
corresponding first-order linear ODE.
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•Unlike integrating factor methods, exponential integrators have
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•A key requirement is that the pair be robust: if the nonlinear
source function has nonzero total time derivatives, the order of
the low-order estimate should never exceed its design value.

•New robust exponential Runge–Kutta (3,2) and (4,3) embedded
pairs are well-suited to initial value problems with a dominant
linearity.

•A Schur decomposition avoids the need for computing matrix
exponentials, while still circumventing linear stiffness.
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