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Initial Value Problems

o Given f : R"™ — R" suppose £ € R" evolves according to

dex
E — f(.’L’,t),

with the initial condition &(0) = x.

e Hamiltonian subclass: n = 2k and = (q, p), where q, p € R”
satisty

dq OH
dt — op’
dp  OH
dt ~ dq’

for some function H(q,p,t) : R""™ — R.

e Often, the Hamiltonian H has no explicit dependence on t.
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Structure-Preserving Discretizations

e Symplectic integration: conserves phase space structure of

Hamilton’s equations; the time step map is a canonical
transformation. [Ruth 1983], [Channell & Scovel 1990],
[Sanz-Serna & Calvo 1994]

e Conservative  integration: conserves  first  integrals.
[Bowman et al. 1997], [Shadwick et al. 1999],
[Kotovych & Bowman 2002|, [Wan et al. 2017]

e Positivity: preserves positive semi-definiteness of covariance
matrices. [Bowman & Krommes 1997]

e Unitary integration: conserves trace of probability density
matrix. [Shadwick & Buell 1997]

e ['xponential integrators: Yield exact evolution on linear time
scale



Symplectic vs. Conservative Integration

Theorem: (Ge and Marsden 1988) A C'! symplectic map M

with no explicit time-dependence will conserve a C! time-
independent Hamiltonian H : R" -+ R <= M is identical to
the exact evolution, up to a reparametrization of time.

Proof:

o A C' symplectic scheme is a canonical map M corresponding to
some approximate C'' Hamiltonian Hiwy) R""! — R, where
the label 7 denotes the time step.



Symplectic vs. Conservative Integration

Theorem: (Ge and Marsden 1988) A C'! symplectic map M

with no explicit time-dependence will conserve a C! time-
independent Hamiltonian H : R" —+ R <= M is identical to
the exact evolution, up to a reparametrization of time.

Proof:

o A C' symplectic scheme is a canonical map M corresponding to
some approximate C'' Hamiltonian Hiwy) R"! — R, where
the label 7 denotes the time step.

e If the mapping M does not depend explicitly on time, it can be
generated by the approximate Hamiltonian K (x) = H.(x, 0).



e Suppose the symplectic map conserves the true Hamiltonian H:
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e Suppose the symplectic map conserves the true Hamiltonian H:

0=—-= — — # = |H, K
dt 8qz- dt i 8pz- dt i [ 7 ]7

where

OHOK _8H 0K
Oq; Op;  Op; Og; .

e Implicit function theorem: in a neighbourhood of g € R"
Ja C! function ¢ : R — R 3

[HvK]:

H(z) = ¢(K(@)) or K(x)=o(H(x)) < [H,K]=0.

e Consequently, the trajectories in R"™ generated by the
Hamiltonians H and K coincide.
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Conservative Integration

e Traditional numerical discretizations of nonlinear initial value
problems are based on polynomial functions of the time step.

e They typically vyield spurious secular drifts of nonlinear first
integrals of motion (e.g. total energy).

= the numerical solution will not remain on the energy surface
defined by the initial conditions!

e There exists a class of nontraditional explicit algorithms that
exactly conserve nonlinear invariants to all orders in the time
step (to machine precision).
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Three-Wave Problem

e Truncated Fourier-transformed Euler equations for an inviscid

2D fluid:
dil?l

f_t = f1 = Mixows,

dd_? = fo = Moz,

% = f3 = Msxi29,
where M7 + My + Ms = 0.

e Then

1
Z frrr = 0= energy £ = iz :U% is conserved.
k k
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Secular Energy Growth

e ['nergy is not conserved by conventional discretizations.

e The Fuler method
Thitl = Tri + Rf

yields a monotonically increasing energy:

B = %Z (22 + 2h fray, + h* S]]
k

1 2 2
= E(t) + Sh %:sk.



Conservative FEuler Algorithm

e Determine a modification of the original equations of motion
leading to exact energy conservation:

dxk

E:fk+gk'
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Conservative FEuler Algorithm

e Determine a modification of the original equations of motion
leading to exact energy conservation:

d:vk
pre = fi + g

e [uler’s method predicts the new energy

1
By =5 g i + B+ g0))

= F + - Z thkxkz+h (fx + gr) }
setto()

10



e Solving for g; yields the C—Euler discretization:

_ 2
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e Solving for g; yields the C—Euler discretization:

_ 2
Lki+1 — SEN Lk i+1 \/f/” + thkflm

e Reduces to Euler’s method as h — 0:

Thivl = il?k,z'\/l + 2N Ji

L.

= 11 + hf + O(h?).
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e Solving for g; yields the C—Euler discretization:

_ 2
Lki+1 = SEN Tk i+1 \/%“ T thkxk,i-

e Reduces to Euler’s method as h — 0:

Thivl = 33/@,@\/1 + 2N Ji

L.

= 11 + hf + O(h?).

e C—Euler is just the usual Euler algorithm applied to

dx%
- : 2 L]

11



Lemma: ([Shampine 1986]) Let & and ¢ be vectors in R”. If
f: R"" — R” has values orthogonal to e, so that [ = ¢ - x is
a linear invariant of

dx
E — f(iB,t),

then each stage of the explicit s-stage discretization

(
ZEZ'+1:$Q—|—hzai]‘f($j,t—|-aih>, i:O,...,S—l,
Jj=0

also conserves /, where A 1s the time step and a;; € R.

12



Higher-Order Conservative Integration

e Find a transformation 7' : R" — R" such that the nonlinear
invariants are linear functions of & = T'(x).
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e Iind a transtormation 71" : R" — " such that the nonlinear
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— Solution 2: Use a traditional integrator for that time step.

— Solution 3: Use an implicit backwards step [Shadwick &
Bowman SIAM J. Appl. Math. 59, 1112 (1999), Appendix A].
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Higher-Order Conservative Integration

e Iind a transtormation 71" : R" — " such that the nonlinear
invariants are linear functions of & = T'(x).

e The new value of x is then obtained by inverse transformation:

Li+1 = T_1(€i+1>-
e Problem: 7" may not be invertible!
— Solution 1: Reduce the time step.

— Solution 2: Use a traditional integrator for that time step.

— Solution 3: Use an implicit backwards step [Shadwick &
Bowman SIAM J. Appl. Math. 59, 1112 (1999), Appendix A].

e Only the final corrector stage needs to be computed in the
transformed space.

13



Error Analysis: 1D Autonomous Case

e Eixact solution (everything on RHS evaluated at x;):

h2 hg I 12 4
v = 2+ hf + o f f (P )+ O
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Error Analysis: 1D Autonomous Case

e Fixact solution (everything on RHS evaluated at x;):

2 3

Cir = 3k hf 4 T4 (P 26 + O

e When 7" (z;) # 0, C—PC yields the solution

h2 "N r2 TW 4
Tip1=x; +hf+ ff+ (ff +3T,f)+0<h),

where all of the derivatives are evaluated at x;.

e On setting T(x) = x, the C-PC solution reduces to the
conventional PC.

e C—PC and PC are both accurate to second order in h;
for T(x) = z*, they agree through third order in h.

14



Singular Case

e When 7"(x;) = 0, the conservative corrector reduces to

Tis1 =T (T(xi) + gT’(:i')f (@) ,

15



Singular Case

e When 7"(x;) = 0, the conservative corrector reduces to

i1 =17 (Tlw) + 5T@)f(2) )

o [t T"and f are analytic, the existence of a solution is guaranteed
as h — 07 if the points at which 7" vanishes are isolated.

15



Four-Body Choreography

1l
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PC, symplectic SKP, and C-PC solutions
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Conservative Symplectic Integrators

e Conservative variational symplectic integrators based on
explicitly time-dependent symplectic maps have been proposed

for certain mechanics problems. |[Kane, Marsden, and Ortiz
1999]
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Conservative Symplectic Integrators

e Conservative variational symplectic integrators based on
explicitly time-dependent symplectic maps have been proposed

for certain mechanics problems. |[Kane, Marsden, and Ortiz
1999]

e These integrators circumvent the conditions of the Ge-Marsden
theorem!

17



Linear Stiffness
e Consider for y : R — R and L > 0 the equation
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Linear Stiffness
e Consider for y : R — R and L > 0 the equation

with the initial condition y(0) = gy # 0.

e We know that the exact solution to this equation is given by

y(t) = yoe .

e Apply Euler’s method with time step h:

Yir1 = (1 —hL)y:.

e For hl > 2, y, does not converge to the correct steady-state
solution.

o [f L is large, the time step is then forced to be unreasonably
small.

18



e This phenomenon of linear stifiness manifests itself in general
driven systems of ODEs in R":
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e This phenomenon of linear stifiness manifests itself in general
driven systems of ODEs in R":

e When the eigenvalues of L are large compared to the eigenvalues
of f', a similar problem will occur.

19



Notation
dy

— = ft,y),  y(0)=yo,

e General s-stage Runge-Kutta scheme (scalar case):

yi+1:y0+hzai]’f<6jh,yj>, 1=0,...,8s — 1.

§=0
0 is the initial time; h is the time step;
ys is the approximation to y(h);
a;; are the Runge-Kutta weights;

c; are the step fractions for stage 7.

20



Butcher Tableau (s = 3):

1

co =0, Ciy1 = E jj.

J=0
0
C1 1 Qaopo
Colajp aiy
I |aog as1 a9

21



Exponential Integrators

e Circumvent linear stiffness by applying a scheme that is exact
on the time scale of the linear part of the problem.
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Exponential Integrators

e Circumvent linear stiffness by applying a scheme that is exact
on the time scale of the linear part of the problem.

e Consider
Vi Ly = 1)
p y=Jy
e Rewrite the above equation as
d(etLy) tL

and integrate to obtain

h
y(h) = e My (0) + / eI £ (0 + 5))ds.
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Exponential Integrators

e Circumvent linear stiffness by applying a scheme that is exact
on the time scale of the linear part of the problem.

e Consider

Wi Ly = f(y
e Rewrite the above equation as

d(etLy) tL

and integrate to obtain

h
y(h) = e My (0) + / eI £ (0 + 5))ds.

e A quadrature rule is used to approximate the integral, while
treating the exponential term exactly.

22



Stiff-Order Conditions

Yi+1 — e_hLyo + hz aij(—hL)f(yj), 1 =0,...,s — 1.
j=0

e The weights a;; are constructed from linear combinations of e*
and truncations of its Taylor series:

23



Stiff-Order Conditions

Yiv1 = €_hLyo + hz &¢j<—hL)f(yj>, 1=0,...,s — 1.

7=0

e The weights a;; are constructed from linear combinations of e*
and truncations of its Taylor series:

wo(x) = €”
or(T) — %
i

Ori1(x) = for £ >0,

with g&k<0> = %

e Care must be exercised when evaluating ¢ near 0; see the C4++
routines at www.math.ualberta.ca/~bowman/phi.h.
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Stiff-Order Conditions

Yiv1 = e_hLyo + hz az-j(—hL)f(yj), 1=0,...,s — 1.

7=0

e The weights a;; are constructed from linear combinations of e*
and truncations of its Taylor series:

wo(x) = €”
or(T) — %
i

Ori1(x) = for £ >0,

with 90k<0> = %

e Care must be exercised when evaluating ¢ near 0; see the C4++
routines at www.math.ualberta.ca/~bowman/phi.h.

e A set of stiff-order conditions on the weights were shown by
Hochbruck and Ostermann to be suffictent to avoid order

reduction when L has large eigenvalues.
23
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Exponential Euler Algorithm

1 — €_hL

T f (i),

e Also called Exponentially Fitted Euler, ETD Euler, filtered
Euler, Lie-Euler.

Yirl = G_hLyz' +
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Exponential Euler Algorithm

1 — e—hL

T f (i),

e Also called Exponentially Fitted Euler, ETD Euler, filtered
Euler, Lie-Euler.

Yirl = G_hLyz' +

e If it has a fixed point, it must satisty y = @; this is then a

fixed point of the ODE.
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Exponential Euler Algorithm

1 — e—hL

T f (i),

e Also called Exponentially Fitted Euler, ETD Euler, filtered
Euler, Lie-Euler.

Y1 = e "y +

e [f it has a fixed point, it must satisty y = @; this is then a

fixed point of the ODE.

e In contrast, the popular Integrating Factor method (I-Euler).
yirr = e "y + hfi)

hf(y)
Lh

can at best have an incorrect fixed point: y = -
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Exponential Euler Algorithm

1 — B_hL

T f (i),

e Also called Exponentially Fitted Euler, ETD Euler, filtered
Euler, Lie-Euler.

Y1 = e "y +

e If it has a fixed point, it must satisty y = @; this is then a

fixed point of the ODE.

e In contrast, the popular Integrating Factor method (I-Euler).
yirr = e "y + hfi)

h
can at best have an incorrect fixed point: y = L{<y)1'

e As h — 0 the Euler method is recovered:
Vi1 = Yi + hf(yi).

24



error

Comparison of Euler Integrators

dy

dt

+ Yy = COS Y,

—0.01

—0.02

—0.03 |

euler
i_euler
e_euler

25



History of Exponential Integrators

e Certaine [1960]: Exponential Adams-Moulton
e Norsett [1969]: Exponential Adams-Bashforth

e Verwer [1977] and van der Houwen [1977|: Exponential linear
multistep method

o [riedli [1978]: Exponential Runge-Kutta

e Hochbruck et al. [1998]: Exponential integrators up to order 4
e Beylkin et al. [1998]: Exact Linear Part (ELP)

e Cox & Matthews [2002]: ETDRK3, ETDRK4; worst case: stiff

order 2

e [Lu [2003]: Efficient Matrix Exponential

e Hochbruck & Ostermann [2005al: Explicit Exponential Runge—-
Kutta; stiff order conditions.

26



Embedded Pairs for Adaptive Time-Stepping

e An adaptive pair is robust if the order of the low-order method
is never equal to the order n of the high-order method for any
source function G(t) = F(t,y(t)) with a nonzero derivative of
order less than n.

27



Embedded Pairs for Adaptive Time-Stepping

e An adaptive pair is robust if the order of the low-order method
is never equal to the order n of the high-order method for any
source function G(t) = F(t,y(t)) with a nonzero derivative of
order less than n.

e A nonrobust method can mislead the time step adjustment
algorithm into adopting too large a time step, leading to
catastrophic loss of accuracy:.

27



(3,2) Robust Embedded Pair ERK32ZB

where ¢; = ;(—hL) and

0

1 L

2 2901(__)

3 3hL 3hLy 3 hL

1 3o —an Y~ + (1)

111 — ag — ag — ass 1902 — isﬁg %@2 + %%03

1 a3 a31 32 ass,

28



29 7 3hL 9 hL 3
azp = oP1t 1| ——— | TPl —— | T P2

18 § 4 14 2 4
2 ShL 1 hL 3033 11 hL
Ty (_T> T P2 <—7) ~ o PR 5# <—7>
1 1 ShL 1
a1 = —§801 — 6801 (_T) — 5%02

1 3hL 1 hL +1 +1 hL
7902 A 3902 5 6903 6903 5

9 1 ShL\ 1 ALY | 1
a = — _— - _—— _— = _ —
27 3¥1L T 5P Ty TR W 372

1 3hL 1 hl
Gk (‘T) T 5¥ (‘7)
7 1 3hL 1 hl I
as3 = —6801 — 5901 <——4 ) — 5901 <——2 ) — —12902

L AL\ | 2671 1 Ll
472\ T 140 72373\ T )
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(4,3) Robust Embedded Pair ERK43ZB

0

5 (%)

% %901(—%) — a1l ail

% %@1(—%) — a1 — 22 a21 22

1| o1 — a3 —az — ass as] a32 as3
11— %7902 + %903 B2 — 24¢p3 23—6903 — 1#,1902 43 Q44,

where ¢; = @;(—hL) and

30



LB (_hLY 1 ( hL
11 = 2902 5 2902 G

19 n 1 hl N 1
CL e — - _
21 60901 2@1 5 01

&
hL 13 hiL 3 hL
w25 ) + (=) 59 (-7)
19 | hL | hL
22 = —@801 — 6901 (—7) — 6901 (—?>
1 hL | hL |
S (‘7) RS (‘7) 5
hL hL
azs = P2+ P2 (——) — 63 — 33 <—7>

9 hlL 5 hlL
az1 = 3p2 — =pa| ——— | — zp2| —— | + 6as3 + a

2 2 2 §)
hlL
aso = 63 + 33 —7 — 2a33 + a99
7 10 4 1
43 = P2 — 5 ¥3; A44 = ZP3 — FP2-

9 3 3 9
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Test Problem

e We illustrate robustness by comparing ERK43ZB to ERK43DK
Ding & Kang 2017] for a test problem from Hochbruck-
Ostermann:
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Test Problem

e We illustrate robustness by comparing ERK43ZB to ERK43DK
Ding & Kang 2017] for a test problem from Hochbruck-
Ostermann:

e For z € |0,1] and ¢t > 0:

oy 0%y
E(x’ t) — @(Jj, t)=H(x,t)+ ®(x,1).
H(x,t) =

14 y(x,t)*
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Test Problem

e We illustrate robustness by comparing ERK437B to ERK43DK
Ding & Kang 2017] for a test problem from Hochbruck—
Ostermann:

e For x € |0,1] and ¢t > 0:

oy 0%y B
Fn (x,t) — —8562(:1:, t)=H(x,t)+ P(z,1).
1
H(x,t) = Ty i

e O 1s chosen so that the exact solution is

y(x,t) = x(1 — x)e.
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Test Problem

e We illustrate robustness by comparing ERK437B to ERK43DK
Ding & Kang 2017] for a test problem from Hochbruck—
Ostermann:

e For x € |0,1] and ¢t > 0:

oy 0%y B
E(x, t) — @(az, t)= H(xz,t)+ d(z,t).
1
Hieh =17 y(z,t)?

e O 1s chosen so that the exact solution is
y(x,t) = x(1 — x)e.

e 200 spatial grid points, evolve from ¢ = 0 to t = 3.
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Test Problem

e We illustrate robustness by comparing ERK437B to ERK43DK
Ding & Kang 2017] for a test problem from Hochbruck—
Ostermann:

e For x € |0,1] and ¢t > 0:

oy 0%y B
E(ZC’ t) — @(az, t)= H(xz,t)+ d(z,t).
1
Hieh =17 y(z,t)?

e O is chosen so that the exact solution is
y(z,t) = (1 — x)e.
¢ 200 spatial grid points, evolve from ¢ = 0 to t = 3.

e We calculate the matrix ¢ functions with the help of Padé
approximants, along with repeated scaling and squaring.

32



Robust vs. Non-Robust Third-Order Estimate

@ < O I =
N - G\ i
T Q
1071 F .
S - i
~ 1
= e—— ERK43DK
§ ---o---KERK437B
T
=
S 107°F E
&0
10—30 Lo =+
1072 10~1
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Robust vs. Non-Robust Time Evolution

0.015 [~ -
ERK43DK
--- ERK43ZB

0)

0)

0.01

||error|| e

0.005

A
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Adaptive Performance of ERK43ZB

e Choose @ such that y(x,t) = 10(1 — z)x(1 +sint) + 2

o
YV

D o I @ ! )
0.003 W
8
= 0.002 - -
S
8
T q q q q q
0.001 [
d c§ cﬁ cgb c%
g ﬁ I . I 0))
0



GOY Shell Model of 3D Turbulence

e ERK43%ZB runs over 3 times faster than the classical Cash—Karp
(5,4) pair on a shell model of 3D turbulence exhibiting both
linear and nonlinear stifiness:
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Schur Decomposition

e When L is a nondiagonal matrix, the matrix exponentials
required by exponential integrators are computationally
expensive.
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Schur Decomposition

e When L is a nondiagonal matrix, the matrix exponentials
required by exponential integrators are computationally
expensive.

e Consider the Schur decomposition of L:

L=UTU"

where U is a unitary matrix and 1’ is an upper triangular matrix.

e Decompose T'= D + .S, where D is a diagonal matrix and .S is
a strictly upper triangular matrix.

e We obtain

d
-£+U@+3Wb:F@w.
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o Multiply by UT on the left:

d(U'y)
di

+(D+S)Uly=UTF(t,y).
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o Multiply by UT on the left:

d(U?
(dty> +(D+SUly=UTF(t,y).
o In terms of the transformed variable Y = UTy:
dY

— T DY = U'F(t,UY) — SY.
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o Multiply by UT on the left:

d(UT
(dty) +(D+S)Uy =UF(t,y).
o In terms of the transformed variable Y = UTy:
ay

— T DY = U'F(t,UY) - SY.
e This transformation allows us to replace exponentials of a tull
matrix with a diagonal matrix of scalar exponentials.

e Being diagonal, the ¢} functions now require far less storage.

e Although the computation of the Schur decomposition of L is
expensive, it only has to be done once.

e The explicit treatment of the upper triangular matrix S
contributes to the overall error, but does not contribute to
stiffness.
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e Moreover, many matrices encountered in practice are normal:
they commute with their Hermitian adjoint.
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e Moreover, many matrices encountered in practice are normal:
they commute with their Hermitian adjoint.

e For normal matrices, S = 0:

Lemma: The triangle matrix in the Schur decomposition of a
normal matrix is diagonal.

e With the optimization afforded by Schur decomposition,
embedded ERK methods for step size adjustment becomes
computationally viable, even when L is a nondiagonal matriz.

e An adaptive exponential method requires re-evaluating the o,
functions whenever the step size is adjusted.

e However, since these are now functions of diagonal matrices,
there is no longer a huge computational cost.
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Claim: The term Sy does not incorporate any of the stiffness
inherent in the linear term Ly.

Proot:
¢ On defining the integrating factor I(t) = e'© and g(t) =

I(t)y(t), we can transform the autonomous case to

di ~
— = IOU'FUT ' ()9) - 53,

~

where S = I(¢t)SIY(t) is an mxm strictly upper triangular
matrix.
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Claim: The term Sy does not incorporate any of the stiffness
inherent in the linear term Ly.

Prootf:
¢ On defining the integrating factor I(t) = e and g(t) =

I(t)y(t), we can transform the autonomous case to

di ~
— = IOU'FUT ' ()g) - 53,

~

where S = I(t)SIY(t) is an mxm strictly upper triangular
matrix.

e [f the stiffness only enters through the linear term Ly and not
through F'(y), the first term on the right-hand side will not
contribute any additional stiffness.
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e When F' = 0, we obtain the triangular system of equations

dJi = =~ . . dYm
%jzi;lSijyjforzl,...,m—l and %207

which can be solved recursively to obtain the general solution as
a polynomial in ¢.
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e When F' = 0, we obtain the triangular system of equations

dji = =~ . . dYm
E_j;JrlSijyjforz—l,...,m—l and E:O7

which can be solved recursively to obtain the general solution as
a polynomial in ¢.

e Stiffness arises only when nearby solution curves approach the
solution curve of interest at exponentially fast rates.

e Thus, the decomposed system of equations is not stiff; it can
in fact be solved exactly by a classical Runge-Kutta method
whose order is at least the degree of the solution polynomials.

e By linear superposition, the system is not stiff even when F' is
linear (and, in particular, when F'is constant).

e The linear stiffness is thus entirely contained within the
diagonal term DY .
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Conclusions

e Numerical discretizations that preserve physically relevant
structure or known analytic properties are desirable.
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e Numerical discretizations that preserve physically relevant
structure or known analytic properties are desirable.

e Traditional numerical discretizations of conservative systems
generically yield artificial secular drifts of nonlinear invariants.

e New exactly conservative but explicit integration algorithms
have been developed.

e The transformation technique 1is relevant to integrable
and nonintegrable Hamiltonian systems and even to non-
Hamiltonian systems such as force-dissipative turbulence.

e [ixponential integrators are explicit schemes for ODEs with a
stiff linearity:.

e When the nonlinear source is constant, the time-stepping
algorithm is precisely the analytical solution to the
corresponding first-order linear ODE.
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e Unlike integrating factor methods, exponential integrators have
the correct fixed point behaviour.
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e Unlike integrating factor methods, exponential integrators have
the correct fixed point behaviour.

e We derived adaptive ERK pairs by symbolically solving the
Hochbruck—Ostermann stiff-order conditions.

e A key requirement is that the pair be robust: if the nonlinear
source tunction has nonzero total time derivatives, the order of
the low-order estimate should never exceed its design value.

e New robust exponential Runge-Kutta (3,2) and (4,3) embedded
pairs are well-suited to initial value problems with a dominant
linearity:.

e A Schur decomposition avoids the need for computing matrix
exponentials, while still circumventing linear stiffness.
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