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Introduction

e 2D advection—diffusion:

%—lj +v.VU = DVU.

o U = (w, () represents
— Scalar vorticity w = 2-V Xwv,

— Concentration field C.

e The velocity v is incompressible: Vv = 0.
e Diffusion matrix D = diag(v, D):
v = fluid viscosity;,

D = diffusion constant for concentration field.
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Fulerian vs. Lagrangian

e Passive advection without diffusion:

oC
E + v-VC = 0.

e [Finite difference:
n+1 n n n

T Y 2h

e Problems with Fulerian methods:
— Instability:;

— Upwinding and Lax schemes: numerical diffusion.
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Method of Characteristics

e Solution to passive advection problem without diffusion:

Clx,t) = C(&(x,1),0).

e Introduce Lagrangian position

£(t) = & + / o(€(r),7) dr,

where £(t) = x and &y = &y(x, t) is the initial parcel position.

e Problem of viewing solution on grid: new Lagrangian positions
may not lie on grid points.

e Solutions:
— interpolate (semi-Lagrangian): numerical diffusion;

— Lagrangian rearrangement: project advected parcel centroids
onto rearrangment manifold.
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Casimir Invariants

e Conservation equation:

dC(z(t),t) dx oC oC

where v = da /dt.

e For any C' function f of concentration (or vorticity) field:

/f ) dx = /f —da:— /f’(C)v-VCda:

/ vV £(C) dx = / F(C)\V v dz = 0.

e Enforce a discrete analog of this exact infinitesimal property:

d
pr > f(Ciy)=0
]
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Parcel Centroid

e Advection map 1is continuous and area-preserving =
rearrangement into distinct nonoverlapping parcels.

e Represent solution as finite union of piecewise constant
functions.

e The resulting discrete constraint

d
i 21 (Cig) =0
i.]
is equivalent to imposing parcel rearrangement.

e Use RK4 to advect the parcel centroids.

e Under this linear map, parcel centroid maps to advected parcel
centroid.

e For passive advection without diffusion: only evolve parcel
centroids (no need to actually evolve the quadrilateral vertices).
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Lagrangian— FEulerian Projection

e Advection in Lagrangian frame = piles and holes.

e New state must be a rearrangement of initial state to conserve
Casimir invariants.

e How to map excess parcels (*) to holes?

3
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Lagrangian Rearrangement
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Lagrangian Rearrangement

S

*xg

*d

e Start with cells with most parcels.

k< - —4 f
I
I

b* | a*
g d*

e Find nearest hole (search in rectangular shells about pile).

e Discretize path from pile to hole.
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Lagrangian Rearrangement

S

*xg

*d

e Start with cells with most parcels.

k< - —4 f
I
I

b* | a*
g d*

e F'ind nearest hole (search in rectangular shells about pile).

e Discretize path from pile to hole.

e Push chain of parcels toward hole.




Searching kth Rectangular Shell
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Bresenham Algorithm

e Discretize path from pile to hole:

— Reduce to case 0 < m < 1.

— Choose (x+ 1,y) or (x+ 1,y +1).
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Bresenham Algorithm

e Discretize path from pile to hole:

— Reduce to case 0 < m < 1.

— Choose (x+ 1,y) or (x+ 1,y +1).

e Problem: multiple pushing of parcels = visible streaks.
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e Randomize path
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Weighted Bresenham Algorithm

e Randomize path
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e F'ind quasi-optimal local path based on Lagrangian position.



e Theorem 1: The weighted Bresenham algorithm produces
a finite path between any two points on a reqular lattice.
For a unit square lattice, at most [1.82x] steps are needed
to connect two points a distance x apart.
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e Theorem 1: The weighted Bresenham algorithm produces
a finite path between any two points on a reqular lattice.
For a unit square lattice, at most [1.82x] steps are needed
to connect two points a distance x apart.

B, B, B

NW| N | NE N/NE| |
B
- [
E - E
SE

(a) (b)

e Parcel chains: select parcels with minimal weight.

13



e Theorem 1: The weighted Bresenham algorithm produces
a finite path between any two points on a reqular lattice.
For a unit square lattice, at most [1.82x] steps are needed
to connect two points a distance x apart.

Bl [ ] B2 Bl

NW| N | NE N/NE| |-
By
- [
E - E
SE

(a) (b)
e Parcel chains: select parcels with minimal weight.

e Multiple holes in same shell: minimize the error.



Approximate Cost/Chain

e Searching for hole:
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e Searching for hole:

e [dentifying the path:
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Approximate Cost/Chain

e Searching for hole:

e [dentifying the path:

00 4k(k—1)
1 1 Sk
1.82 Z k2 (1 _ —) (-) ~ 8.6.
= e e/ 1 — ( 1

k
)

e Pushing a chain of parcels:

00 ! A4k(k—1)
1.82 Z k2 (1 _ —> ~ 2.7,
e
k=1
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Diffusion

U
%—t +v-VU = DV?U.

e Use operator splitting to include diffusion:
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Diffusion

%—g +v-VU = DV?U.

e Use operator splitting to include diffusion:
U(t)=U(ty,ts)

U _ —v-VU, U _ pviu
Oty Ot

= AU = —v-VUAt + DVU Ats.

e Crank-Nicholson scheme solves for diffusive part:

U(t+71)—U(t) _D

VU (t+ 1)+ VU (t)

T 2

o In the advection equation U [Ot = —v-VU:
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~ Calculate U , interpolate to Eulerian grid.

e [inite difference:

T 2

U-U o <U+U>_
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~ Calculate U , interpolate to Eulerian grid.

e [inite difference:

~

U-U

T

e Multigrid:

Lm£:1+%DV2

o <U+l7>
_ 2 |

= L(—7)U = L(1)U.
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—~

— Calculate U, interpolate to Eulerian grid.

e [inite difference:

U-U_ o <U+U>.
T 2

e Multigrid:

—~

et L=1+ %DVQ = L(-7)U = L(")U.

e Contribution of diffusion to the Lagrangian solution:

~

— Calculate U — U.

— Project to Lagrangian frame.

— Add to parcel values.

16



Self-Advection
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Self-Advection

e Velocity is now a functional of U determined by 2D vorticity
equation:

(‘;_c: +v-Vw = DVw.

e Use multigrid solver: compute stream function ¢ = V"%w.
e Calculate v = 22XV from .

e Problem: calculating v from rearranged w = pushing errors
accumulate:

— Propagation of error via advection term v-Vw.
— Introduces large gradients in w and C' = excessive diffusion.

e Solution: use interpolated rather than rearranged values:
v;-Vw, vVw;, and DV?C}.

e This interpolation does not destroy the conservation of

Casimirs: velocity need not be a rearrangement. ,



Summary

initial condition Uy — > Lagrangian state U (t) -1 diffused parcels
initialize t+717—1

A

advect: Runge-Kutta (- -
self-advection

y

rearranged U |- Lagrangian prediction U(t + 7)
Lagrange — Fuler

|

diffuse: multigrid _ 3
Crank—Nicholson Lagrange — Euler v=2XVY
diffuse: multigrid A
Y Crank—Nicholson \/
—1/ Ay —1(_ = . i _ -2
LY —7)L(r)U LY (—7)L(7)U |——=—— interpolated U multigrid Y=V w

subtract

output output DV2 ﬁ

Euler — Lagrange

Y y

Lagrangian rearranged semi-Lagrangian
solution Ugr solution Uj




Simulations: 2 Test Cases

e Semi-Lagrangian solution vs. Lagrangian rearrangement:
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Simulations: 2 Test Cases

e Semi-Lagrangian solution vs. Lagrangian rearrangement:

e Grid scale h = 1.95 x 1073, time step 7 = 1.95 x 1072

e [nitial condition:
vy = sin(2mx) cos(2my), v, = — cos(2mx) sin(27y).

— Self-advection with no diffusion:

0 (black) and 1 (white) initial condition for C'.

— Self-advection with diffusion:

D=v=2x10""
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Semi-Lagrangian vs. Lagrangian Rearrangement

After 750 Time Steps (D =0
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Semi-Lagrangian vs. Lagrangian Rearrangement
After 100 Time Steps (D = v =2 x 107°).
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Semi-Lagrangian vs. Lagrangian Rearrangement
After 500 Time Steps (D = v =2 x 107°).
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Semi-Lagrangian vs. Lagrangian Rearrangement
After 1000 Time Steps (D =v =2 x 107°).
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Energy Decay Rate

%—f +v-VC = DV?C.

e Evolution of concentration energy:

10

2 _ 2
59 C*dx = D/\VC’\ dx.
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Energy Decay Rate

%—f +v-VC = DV?C.

e ivolution of concentration energy:

10

2 _ 2
59 C*dx = D/\VC’\ dx.

e Compare

9 [ 2 da —QD/yVCPda;
ot
and

/C’zda: /C’Qdaz
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Concentration energy
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Concentration energy growth rate

Energy Decay Rate (D = v =2 x 107Y).
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Conclusions

e New numerical method Lagrangian rearrangement respects
Casimir invariants.
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Conclusions

e New numerical method Lagrangian rearrangement respects
Casimir invariants.

e Based on a weighted DBresenham Lagrangian-to-Eulerian
projection algorithm.

e Fully Lagrangian:
— Projected solution is used only for viewing;

— Error does not propagate to future time steps.

e Can combine with:
— Diffusion

(= more consistent energy behaviour than interpolation);

— Self-advected flow.

e Complexity O(n).
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Asymptote: 2D & 3D Vector Graphics Language

tote

Andy Hammerlindl, John C. Bowman, Tom Prince

http://asymptote.sf.net

(freely available under the GNU public license)
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Asymptote Lifts TeX to 3D
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3D Graphs
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