A Fully Lagrangian Advection Scheme

M. Ali Yassaei, John C. Bowman, and Anup Basu
University of Alberta

Dec 6, 2008

www.math.ualberta.ca/~bowman /talks

Outline
e 2D Advection—Diffusion

e Passive Advection
e Casimir Invariants

e Lagrangian Rearrangement

— Weighted Bresenham Algorithm
e Average Complexity
e Operator Splitting

— Diffusion

— Self-advection

e inergy Decay Rate

e Conclusions

Introduction

e 2D advection—diffusion:

%—g +v.VU = DVU.

Introduction

e 2D advection—diffusion:

%—lj +v.VU = DVU.

o U = (w, C) represents
— Scalar vorticity w = 2-V Xwv,

— Concentration field C.

Introduction

e 2D advection—diffusion:

%—lj +v.VU = DVU.

o U = (w, () represents
— Scalar vorticity w = 2-V X,

— Concentration field C.

e The velocity v is incompressible: Vv = 0.

Introduction

e 2D advection—diffusion:

%—lj +v.VU = DVU.

o U = (w, () represents
— Scalar vorticity w = 2-V Xwv,

— Concentration field C.

e The velocity v is incompressible: Vv = 0.
e Diffusion matrix D = diag(v, D):
v = fluid viscosity;,

D = diffusion constant for concentration field.

Fulerian vs. Lagrangian

e Passive advection without diffusion:

oC
E + v-VC = 0.

Fulerian vs. Lagrangian

e Passive advection without diffusion:

oC
E + v-VC = 0.

e Finite difference:
n+1 n n n

T Y 2h

Fulerian vs. Lagrangian

e Passive advection without diffusion:

oC
E + v-VC = 0.

e [Finite difference:
n+1 n n n

T Y 2h

e Problems with Fulerian methods:
— Instability:;

— Upwinding and Lax schemes: numerical diffusion.

Method of Characteristics

e Solution to passive advection problem without diffusion:

Clx,t) = C(&(x,1),0).

Method of Characteristics

e Solution to passive advection problem without diffusion:

Clx,t) = C(&(x,1),0).

e Introduce Lagrangian position

£(t) = & + / o(€(r),7) dr,

where £(t) = x and &y = &y(x, t) is the initial parcel position.

Method of Characteristics

e Solution to passive advection problem without diffusion:

Clx,t) = C(&(x,1),0).

e Introduce Lagrangian position

£(t) = & + / o(€(r),7) dr,

where £(t) = x and &y = &y(x, t) is the initial parcel position.

e Problem of viewing solution on grid: new Lagrangian positions
may not lie on grid points.

Method of Characteristics

e Solution to passive advection problem without diffusion:

Clx,t) = C(&(x,1),0).

e Introduce Lagrangian position

£(t) = & + / o(€(r),7) dr,

where £(t) = x and &y = &y(x, t) is the initial parcel position.

e Problem of viewing solution on grid: new Lagrangian positions
may not lie on grid points.

e Solutions:
— interpolate (semi-Lagrangian): numerical diffusion;

— Lagrangian rearrangement: project advected parcel centroids
onto rearrangment manifold.

Casimir Invariants

e Conservation equation:

dC(z(t),t) dzx oC oC
It _E.VC’—I_E_U.VC—I_E_O’

where v = da /dt.

Casimir Invariants

e Conservation equation:

dC(z(t),t) dzx oC oC

where v = da /dt.

e For any C' function f of concentration (or vorticity) field:

5 [1Crda= [1)t =~ [fiC10vCde

_—/v-Vf(C) dw—/f(C)V-fvda:—O.

Casimir Invariants

e Conservation equation:

dC(z(t),t) dx oC oC

where v = da /dt.

e For any C' function f of concentration (or vorticity) field:

/f) dx = /f —da:— /f’(C)v-VCda:

/ vV £(C) dx = / F(C)\V v dz = 0.

e Enforce a discrete analog of this exact infinitesimal property:

d
pr > f(Ciy)=0
]

Parcel Centroid

e Advection map is continuous and area-preserving =
rearrangement into distinct nonoverlapping parcels.

Parcel Centroid

e Advection map is continuous and area-preserving =
rearrangement into distinct nonoverlapping parcels.

e Represent solution as finite union of piecewise constant
functions.

Parcel Centroid

e Advection map 1is continuous and area-preserving =
rearrangement into distinct nonoverlapping parcels.

e Represent solution as finite union of piecewise constant
functions.

e The resulting discrete constraint

d
-2 [(Ciy) =0
0.J

is equivalent to imposing parcel rearrangement.

Parcel Centroid

e Advection map 1is continuous and area-preserving =
rearrangement into distinct nonoverlapping parcels.

e Represent solution as finite union of piecewise constant
functions.

e The resulting discrete constraint

d
o Z f(Cij) =0
N
is equivalent to imposing parcel rearrangement.

e Use RK4 to advect the parcel centroids.

Parcel Centroid

e Advection map 1is continuous and area-preserving =
rearrangement into distinct nonoverlapping parcels.

e Represent solution as finite union of piecewise constant
functions.

e The resulting discrete constraint

d
i 21 (Cig) =0
i.]
is equivalent to imposing parcel rearrangement.

e Use RK4 to advect the parcel centroids.

e Under this linear map, parcel centroid maps to advected parcel
centroid.

Parcel Centroid

e Advection map 1is continuous and area-preserving =
rearrangement into distinct nonoverlapping parcels.

e Represent solution as finite union of piecewise constant
functions.

e The resulting discrete constraint

d
i 21 (Cig) =0
i.]
is equivalent to imposing parcel rearrangement.

e Use RK4 to advect the parcel centroids.

e Under this linear map, parcel centroid maps to advected parcel
centroid.

e For passive advection without diffusion: only evolve parcel
centroids (no need to actually evolve the quadrilateral vertices).

Lagrangian— FEulerian Projection

e Advection in Lagrangian frame = piles and holes.

Lagrangian— FEulerian Projection

e Advection in Lagrangian frame = piles and holes.

e New state must be a rearrangement of initial state to conserve
Casimir invariants.

Lagrangian— FEulerian Projection

e Advection in Lagrangian frame = piles and holes.

e New state must be a rearrangement of initial state to conserve
Casimir invariants.

e How to map excess parcels (*) to holes?

3
\m
E

Lagrangian Rearrangement

S

*xg

xd

e Start with cells with most parcels.

k< - —4 f
I
|

b* | a
g d*

9

Lagrangian Rearrangement

S

*xg

*d

e Start with cells with most parcels.

k< - —4 f
I
|

b* | a*
g d*

e Find nearest hole (search in rectangular shells about pile).

9

Lagrangian Rearrangement

S

*xg

*d

e Start with cells with most parcels.

k< - —4 f
I
I

b* | a*
g d*

e Find nearest hole (search in rectangular shells about pile).

e Discretize path from pile to hole.

9

Lagrangian Rearrangement

S

*xg

*d

e Start with cells with most parcels.

k< - —4 f
I
I

b* | a*
g d*

e F'ind nearest hole (search in rectangular shells about pile).

e Discretize path from pile to hole.

e Push chain of parcels toward hole.

Searching kth Rectangular Shell

10

Bresenham Algorithm

e Discretize path from pile to hole:

— Reduce to case 0 < m < 1.

— Choose (x+ 1,y) or (x+ 1,y +1).

11

Bresenham Algorithm

e Discretize path from pile to hole:

— Reduce to case 0 < m < 1.

— Choose (x+ 1,y) or (x+ 1,y +1).

e Problem: multiple pushing of parcels = visible streaks.

11

e Randomize path

Mm N OO M|V IMNM O|V (N OM| AN |~ |F | NI | " DOD|N|O| M|~
r WO MDA N[0 | OO |- F| D[RO D[~ DH|O0O|DH | AN FH| D |F -0 N|O|H|D|0
O N F OO AN 0O N|O |0 |0 OO0 | F|lO|F| O~ MD|A]O| M| AN |—H|[00|O|N
g V| = N OO M| OO NN M N | ~|O0|(-MN(0|OD|DH|0|F|(0|lO|DH|O| |0
— || OO N =00 || O O0|FH | F| O | FN MW O M|~ F|A |10 10| —|00|c | —
A | F|O|IF|IO|FH (-4 D|O (O |4 "4 |O| "D ||| A D HF| D 0| DN O |0|D>|M|0|<H
S| N |~ |F | FIDIO|[O0|F|(O| DX N|0|O [0 N0 |F|O|A| | F| I N|DD|O|M|O| A
m N FH~-||D| OO N O M| FIO|F (I~ O|F|O[N N|O0O|—H|O|DH|DOD|MH|OD|O|M
O F| | N[N DD |0 DO F|o|N N DA DA N D= |[IO| DN ||| — | N
a 454952436150214. V| DH|O0 ||| |~ DD~
h | N[O | AN | O | |0 | |0 | |©|DO|© <f|— |00 | O NoRE Ll B Yol INo N He N I Tl I Tl [T
n D= OO NN |F [AN ND| |0 ||| O a0 DO | O | 10| 0 ~Io|Oo|f| O~ |O
e O M| F O |O |~ 10O AN O |- DO | H| 0|~ | D | AN ||| 0
S I~ MmN M ™m0 Mm QO |~ [0 |~ |D| |0 |- |0 S|Io|F | F N =D V|0 ||~ | ™M
e MmO I~ OOl DY|o | |0 | O |~ QO |~ |~ D00 ||~ O[O || — 1D
r |00 |00 | D= D H | F|O|IN || O 0[O || || D= DO MN| O | A |1O 0| N |O|™m |-
B | N | D VDO I NN OV [F O | F| O | OO NoRN bl sl INeR INo N | io] | b=
o0 | 0 QIO D|O| A" DH O |D|O |0 |O |~ |m| DD ||| F || 0| b~
d — | 0O — | MN[0 |O ||~ D0 |<f|[00 ||~ |D~|™M| D= W I~ Mm| O || O |~ b= O | ©
e 24707494‘661706897 VNN |~ |||~ D
+~
= ..
e30)
o r—
WC

12

.
.

Weighted Bresenham Algorithm

e Randomize path

. N O N O |0 [Mm|O O . | | NN O | |0 | N . N | F|-|O0O | N[O |~ D .
N OO M|V ONM| O|V (-~ O AN |~ |F | DN O| | H | O N[O M|~ M
WO MDA N[0 OQC OO |- F|DH[O[OO| D[~ DH|O0O|DH|O N FH| D |F | -0 N|O|H|D|0
N F OO AN 0O N|O |0 |0 OO0 | F|lO|F| O~ MD|A]O| M| AN |—H|[00|O|N
V| N O || O N[O N O NN N[~ N[O DD DH|O0|F | O[O |ODO| |0
|| OO N =00 || O O0|FH | F| O | FN MW O M|~ F|A |10 10| —|00|c | —
|l lF|Oo | F|IO|F|I-| DO/ A~ DA|—~H|O|"A|D|F| D|0O| DD M| O[O0 |MN|00|<H
S| N |~ |F | FIDIO|[O0|F|(O| DX N|0|O [0 N0 |F|O|A| | F| I N|DD|O|M|O| A
M| FH~- ||| O[O N O N F| O|F (I~ ~A|O|F|O NI N|O0O|H|O|DH|ODOD| M| DO M
O F| | N[N DD |0 DO F|o|N N DA DA N D= |[IO| DN ||| — | N
IO | F || N FHF N[O | 10| ||| . A OO0 || |00 |~ |10 b=
| N[O | AN | O | |0 | |0 | |©|DO|© H | |0 | O|H[IMN|N| O |~ 10O || 10|10 |10
D= OO NN |F [AN ND| |0 ||| O (o) N o] DO | O | F | 0| 0D |- | O | |FH|O|=-|O
O M| F O |O |~ 10O AN O |- DO |F |0 || F| NN DO
I~ MmN M ™m0 Mm QO |~ [0 |~ |D| |0 |- |0 S|l |F | F N |- |H|O|0O ||~ |
MmO I~ OOl DY|o | |0 | O |~ O~~~ |0 DN || O 1O || — |10
|00 |00 | D= D H | F|O|IN || O 0[O || || D= DO N | O N[O |10 |DH|[©O (oM | b=
| N | D NV DD N |0 [H| O |F| N OD|D|©O NeRN bl sl INeR ENo R B Ial Nal B Nat il B erR i o
o0 | 0 QIO D|O| A" DH O |D|O |0 |O |~ |m| D H || H|H || F Q|| D~
— | 0O — | MN[0 |O ||~ D0 |<f|[00 ||~ |D~|™M| D= W =M OO == O |

12

e F'ind quasi-optimal local path based on Lagrangian position.

e Theorem 1: The weighted Bresenham algorithm produces
a finite path between any two points on a reqular lattice.
For a unit square lattice, at most [1.82x] steps are needed
to connect two points a distance x apart.

Bl BQ Bl
NW| N | NE N /| NE |
By
E B3= E
SE

e Theorem 1: The weighted Bresenham algorithm produces
a finite path between any two points on a reqular lattice.
For a unit square lattice, at most [1.82x] steps are needed
to connect two points a distance x apart.

B, B, B

NW| N | NE N/NE| |
B
- [
E - E
SE

(a) (b)

e Parcel chains: select parcels with minimal weight.

13

e Theorem 1: The weighted Bresenham algorithm produces
a finite path between any two points on a reqular lattice.
For a unit square lattice, at most [1.82x] steps are needed
to connect two points a distance x apart.

Bl [] B2 Bl

NW| N | NE N/NE| |-
By
- [
E - E
SE

(a) (b)
e Parcel chains: select parcels with minimal weight.

e Multiple holes in same shell: minimize the error.

Approximate Cost/Chain

e Searching for hole:

14

Approximate Cost/Chain

e Searching for hole:

e [dentifying the path:

00 4k(k—1)
1 1 Sk
1.82 Z k2 (1 _ —) (-) ~ 8.6.
= e e/ 1 — (1

14

Approximate Cost/Chain

e Searching for hole:

e [dentifying the path:

00 4k(k—1)
1 1 Sk
1.82 Z k2 (1 _ —) (-) ~ 8.6.
= e e/ 1 — (1

k
)

e Pushing a chain of parcels:

00 ! A4k(k—1)
1.82 Z k2 (1 _ —> ~ 2.7,
e
k=1

14

Diffusion

U
%—t +v-VU = DV?U.

e Use operator splitting to include diffusion:
U(t)=U(ty,ts)

U _ —v-VU, U _ pviu
Oty Ot

= AU = —v-VUAt, + DV?U Ats.

15

Diffusion

U
%—t +v-VU = DV?U.

e Use operator splitting to include diffusion:
U(t)=U(ty,ts)

U _ —v-VU, U _ pviu
Oty Ot

= AU = —v-VUAt, + DV?U Ats.

e Crank-Nicholson scheme solves for diffusive part:

U(t+71)—U(t) _D

VU (t+ 1)+ VU (t)

T 2

15

Diffusion

%—g +v-VU = DV?U.

e Use operator splitting to include diffusion:
U(t)=U(ty,ts)

U _ —v-VU, U _ pviu
Oty Ot

= AU = —v-VUAt + DVU Ats.

e Crank-Nicholson scheme solves for diffusive part:

U(t+71)—U(t) _D

VU (t+ 1)+ VU (t)

T 2

o In the advection equation U [Ot = —v-VU:

15

~ Calculate U , interpolate to Eulerian grid.

e [inite difference:

T 2

U-U o <U+U>_

16

~ Calculate U , interpolate to Eulerian grid.

e [inite difference:

~

U-U

T

e Multigrid:

Lm£:1+%DV2

o <U+l7>
_ 2 |

= L(—7)U = L(1)U.

16

—~

— Calculate U, interpolate to Eulerian grid.

e [inite difference:

U-U_ o <U+U>.
T 2

e Multigrid:

—~

et L=1+ %DVQ = L(-7)U = L(")U.

e Contribution of diffusion to the Lagrangian solution:

~

— Calculate U — U.

— Project to Lagrangian frame.

— Add to parcel values.

16

Self-Advection

e Velocity is now a functional of U determined by 2D vorticity
equation:

({;—j +v-Vw = DV?w.

17

Self-Advection

e Velocity is now a functional of U determined by 2D vorticity
equation:

({;—j +v-Vw = DV?w.

e Use multigrid solver: compute stream function 1 = V "w.

17

Self-Advection

e Velocity is now a functional of U determined by 2D vorticity
equation:

(‘;_c: +v-Vw = DVw.

e Use multigrid solver: compute stream function 1 = V2w,

e Calculate v = 22XV from .

17

Self-Advection

e Velocity is now a functional of U determined by 2D vorticity
equation:

(‘;_c: +v-Vw = DVw.

e Use multigrid solver: compute stream function ¢ = V"%w.
e Calculate v = 22XV from .

e Problem: calculating v from rearranged w =- pushing errors
accumulate:

— Propagation of error via advection term v-Vw.

— Introduces large gradients in w and C' = excessive diffusion.

17

Self-Advection

e Velocity is now a functional of U determined by 2D vorticity
equation:

(‘;_c: +v-Vw = DVw.

e Use multigrid solver: compute stream function ¢ = V"%w.
e Calculate v = 22XV from .

e Problem: calculating v from rearranged w = pushing errors
accumulate:

— Propagation of error via advection term v-Vw.

— Introduces large gradients in w and C' = excessive diffusion.

e Solution: use interpolated rather than rearranged values:
v;-Vw, vVw;, and DV?C}.

17

Self-Advection

e Velocity is now a functional of U determined by 2D vorticity
equation:

(‘;_c: +v-Vw = DVw.

e Use multigrid solver: compute stream function ¢ = V"%w.
e Calculate v = 22XV from .

e Problem: calculating v from rearranged w = pushing errors
accumulate:

— Propagation of error via advection term v-Vw.
— Introduces large gradients in w and C' = excessive diffusion.

e Solution: use interpolated rather than rearranged values:
v;-Vw, vVw;, and DV?C}.

e This interpolation does not destroy the conservation of

Casimirs: velocity need not be a rearrangement. ,

Summary

initial condition Uy — > Lagrangian state U (t) -1 diffused parcels
initialize t+717—1

A

advect: Runge-Kutta (- -
self-advection

y

rearranged U |- Lagrangian prediction U(t + 7)
Lagrange — Fuler

|

diffuse: multigrid _ 3
Crank—Nicholson Lagrange — Euler v=2XVY
diffuse: multigrid A
Y Crank—Nicholson \/
—1/ Ay —1(_ = . i _ -2
LY —7)L(r)U LY (—7)L(7)U |——=—— interpolated U multigrid Y=V w

subtract

output output DV2 ﬁ

Euler — Lagrange

Y y

Lagrangian rearranged semi-Lagrangian
solution Ugr solution Uj

Simulations: 2 Test Cases

e Semi-Lagrangian solution vs. Lagrangian rearrangement:

19

Simulations: 2 Test Cases

e Semi-Lagrangian solution vs. Lagrangian rearrangement:

e Grid scale h = 1.95 x 1073, time step 7 = 1.95 x 1072

19

Simulations: 2 Test Cases

e Semi-Lagrangian solution vs. Lagrangian rearrangement:

e Grid scale h = 1.95 x 1073, time step 7 = 1.95 x 1072

e [nitial condition:
vy = sin(2mx) cos(2my), v, = — cos(2mx) sin(27y).

— Self-advection with no diffusion:

0 (black) and 1 (white) initial condition for C'.

— Self-advection with diffusion:

D=v=2x10""

19

Semi-Lagrangian vs. Lagrangian Rearrangement

After 750 Time Steps (D =0

0.9

0.8
0.7
0.6
05 C
0.4

0.3
0.2
0.1

0.9
0.8
0.7
0.6
05 C
0.4
0.3
0.2
0.1

20

Semi-Lagrangian vs. Lagrangian Rearrangement
After 100 Time Steps (D = v =2 x 107°).

21

Semi-Lagrangian vs. Lagrangian Rearrangement
After 500 Time Steps (D = v =2 x 107°).

0.9
0.8
0.7
0.6
05 C
0.4
0.3
0.2
0.1

22

Semi-Lagrangian vs. Lagrangian Rearrangement
After 1000 Time Steps (D =v =2 x 107°).

23

Energy Decay Rate

%—f +v-VC = DV?C.

e Evolution of concentration energy:

10

2 _ 2
59 C*dx = D/\VC’\ dx.

24

Energy Decay Rate

%—f +v-VC = DV?C.

e ivolution of concentration energy:

10

2 _ 2
59 C*dx = D/\VC’\ dx.

e Compare

9 [2 da —QD/yVCPda;
ot
and

/C’zda: /C’Qdaz

24

Concentration energy

0.17

0.16

0.15

10

20

RO ey

25

Concentration energy growth rate

Energy Decay Rate (D = v =2 x 107Y).

0.010
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002

0.001 f

0.000
—0.001
—0.002
—0.003
—0.004
—0.005
—0.006
—0.007
—0.008
—0.009
—0.010

@)

DO
(e}

26

Conclusions

e New numerical method Lagrangian rearrangement respects
Casimir invariants.

27

Conclusions

e New numerical method Lagrangian rearrangement respects
Casimir invariants.

e Based on a weighted DBresenham Lagrangian-to-FEulerian
projection algorithm.

27

Conclusions

e New numerical method Lagrangian rearrangement respects
Casimir invariants.

e Based on a weighted DBresenham Lagrangian-to-FEulerian
projection algorithm.

e Fully Lagrangian:
— Projected solution is used only for viewing;

— Error does not propagate to future time steps.

27

Conclusions

e New numerical method Lagrangian rearrangement respects
Casimir invariants.

e Based on a weighted Bresenham Lagrangian-to-Eulerian
projection algorithm.

e Fully Lagrangian:
— Projected solution is used only for viewing;

— Error does not propagate to future time steps.

e Can combine with:
— Diffusion

(= more consistent energy behaviour than interpolation);

— Self-advected flow.

27

Conclusions

e New numerical method Lagrangian rearrangement respects
Casimir invariants.

e Based on a weighted DBresenham Lagrangian-to-Eulerian
projection algorithm.

e Fully Lagrangian:
— Projected solution is used only for viewing;

— Error does not propagate to future time steps.

e Can combine with:
— Diffusion

(= more consistent energy behaviour than interpolation);

— Self-advected flow.

e Complexity O(n).

27

Asymptote: 2D & 3D Vector Graphics Language

tote

Andy Hammerlindl, John C. Bowman, Tom Prince

http://asymptote.sf.net

(freely available under the GNU public license)

28

Asymptote Lifts TeX to 3D

|\
|
& g
Cbl

o

&1\3

Q.

=

|
o1

Acknowledgements: Orest Shardt (U. Alberta)

29

3D Graphs

30

