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2D Turbulence
Navier–Stokes equation forvorticity ω = ẑ·∇×u:

∂ω

∂t
+ u·∇ω = −Dω + f,

whereD = −ν∇2 represents molecular dissipation.

In Fourier space:

∂ωk

∂t
= Sk − Dkωk + fk,

whereDk = νk2.

The steady-state energy spectrumE(k) =
1

2

∑

|k|=k

|ωk|
2

k2
is of

physical interest.



KLB Theory

EnergyE = 1
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E2E2 = E1 + E3, Z2 = Z1 + Z3.

[Fjørtoft 1953]: energy cascades to large scales and enstrophy
cascades to small scales.

[Kraichnan 1967], [Leith 1968], and [Batchelor 1969] (KLB):
k−5/3 inverse energycascade onlargescales,
k−3 direct enstrophycascade onsmallscales.



Let s2 =
∑
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k2
be the ratio of meanenstrophy

to energyinjection.

Typically, s will lie within the band of forced wavenumbers.

Multiply the energy equation
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by s2 and subtract the enstrophy equation
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⇒ steady-statebalance equation[Tran & Bowman 2003]:
s∑

k=1

(s2 − k2)DkE(k) =
∞∑

k=s

(k2 − s2)DkE(k).



Balance Equation
Small and large scale dynamics areintricately coupled:

s∑

k=1

(s2 − k2)DkE(k) =
∞∑

k=s

(k2 − s2)DkE(k).

Explains the discrepancy between the enstrophy-range KLB
predictionE(k) ∼ k−3 and the steep∼ k−5 spectrum typically
seen in numerical simulations.

Unbounded domain:everlasting inverse energy cascade.

Bounded domain:upscale energy cascade is halted at the
lowest wavenumber.

Lower spectral boundary acts in effect as an external forcing.



Large-scale direct cascade?



Energetic reflections at the lower spectral boundary eventually
lead to a large-scaledirect“cascade.”

This would agree with the large-scalek−3 spectra seen
numerically [Borue 1994] and observed in the atmosphere
[Lilly & Peterson 1983].

[Tran & Bowman 2003]: In a bounded domain, the two inertial
range exponentsmust sum to−8 (at high Reynolds number).

Large-scalek−3 spectrum⇒ a small-scalek−5 spectrum.

Consistent with rigorous [Tran & Shepherd 2002] constraint:
the spectrum must beat least as steep ask−5.



Bounded 2D Turbulence
Q. How do the energy balances associated with the hypothetical
steady-state energy spectrum

E(k) = A

{
k−α if k0 ≤ k < s,

sβ−αk−β if s ≤ k ≤ kT

behave in the limitk0 → 0+, kT → ∞?

The energy dissipation would be equal to

ǫ = 2νAs3−α

(
1

3 − α
+

1

β − 3

)
(α < 3, β > 5).

Apply steady-state constraintα + β = 8
[Tran & Bowman 2003].

Let δ = 3 − α = β − 5 :

ǫ = 2νAsδ

(
1

δ
+

1

2 + δ

)
.

If lim
ν→0+

A is finite then lim
ν→0+

δ = 0.



That is, lim
ν→0+

α = 3 and lim
ν→0+

β = 5.

Claim: steady-state high-resolution bounded numerical
simulations, forced at an intermediate wavenumber, approach
this limit.

However, this says nothing about thequasi-steady statein an
unbounded domaindiscussed by KLB(open problem).



Direct k−3 enstrophy Cascade

Zero dissipation for3 < k < 300.



Subgrid Models

Computed data

Discarded data
(computationally expensive)

Must model the effect of red region on blue region.



Hyperviscous Subgrid Model
It is customary to replace interactions with missing small-scale
modes by ahyperviscousterm:

∂ωk

∂t
= S̃k − νk2ωk − νhknωk + fk;

S̃k accounts for the interactions involving only retained modes.

It is often argued that this modification does not affect the
large-scale dynamics.

Inverse cascade⇒ propagation of small-scale (mis)information
back to the large scales?



Supergrid Models
A hypoviscouslarge-scale damping is typically added to thwart
the upscale energy cascade:Dk = ν0k

−p + νk2, wherep > 0.

However, thiscontaminatesthe desiredk−5/3 energy-range
spectrum.

An artificial large-scale damping can cause spurious energetic
reflections orbottleneck effects.

We need a large-scalesupergridmodel that takes energy out of
the large scales in a realistic way (analogous to a small-scale
subgridmodel).

Such a model should be compatible with the Kolmogorov’s
Ansatz of self-similar (wavenumber-independent) energy
transfer.



Enstrophy Transfer
Recall

∂ωk

∂t
= S̃k − νk2ωk + fk.

Write S̃k =
∑

p Mk,p ωp ωk−p in terms of the nonlinear

mode-coupling coefficient:Mk,p = ẑ·k×p
p2 .

The forward enstrophy transferFk through a wavenumberk in
2D can be computed as arestricted convolution:

Fk = Re
∑

|k|=k

|p|<k

|k−p|<k

Mk,p ωp ωk−p ω∗
k+2 Re

∑

|k|=k

|p|<k

|k−p|>k

Mp,k−p ωp ωk−p ω∗
k.



Self-Similarity of Enstrophy Transfer
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Enstrophy transfer rateFk for k < 150.



2D Decaying Turbulence

early stage late stage



Conclusions
A directlarge-scalek−3 “cascade” resulting from reflections at
the lower spectral boundary provides a physical explanation for
numerically observed small-scalek−5 spectra.

Subgridandsupergridmodels could be used together to attempt
to verify the KLB theory for unbounded fluids.

We propose aSelf-Similar Turbulent Subgrid Modelbased on
Kolmogorov’s idea of scale-independent transfer.

This may require the development of afast restricted
convolution.

A proper subgrid model should account for both turbulent
dampingandbackscattereffects.

Decaying turbulence may involve aspatial self-similarity.
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