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2D Turbulence
e Navier—Stokes equation foorticity w = 2-V X u:
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whereD = —vV? represents molecular dissipation.

e |n Fourier space:
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whereD;. = vk?.
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e The steady-state energy spectriitk) = 5 Z ‘wk’
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physical interest.
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KLB Theory
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cascades to small scales.
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[Kraichnan 1967],

Leith 1968], and

Batchelor 1€

k—5/3 inverse energgascade ofargescales,
k.~ direct enstrophgascade osmallscales.
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e Lets’ = Z frewy, / Z fk% be the ratio of meannstrophy
k k

to energyinjection.
e Typically, s will lie within the band of forced wavenumbers.
e Multiply the energy equation
1 0 \wk\2 n
262 Ot g2
by s? and subtract the enstrophy equation
10wy’
2 Ot
= steady-statéalance equatiofTran & Bowman 2003]:
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> (s° = K*)DRE(k) =Y (k* — s*)DyE(k).

kzl k:s

_ o Yk Yk
= Skﬁ + fkﬁ

2
+ Dy |w|” = Skw,’; + fkw;;



Balance Equation
Small and large scale dynamics an&icately coupled

i(SZ — k*)D,E(k) = i(kQ — s)DiE(k).
k=1 k=s

Explains the discrepancy between the enstrophy-range KLB

predictionE (k) ~ k3 and the steep k£ —° spectrum typically
seen in numerical simulations.

Unbounded domaireverlasting inverse energy cascade.

Bounded domainupscale energy cascade is halted at the
lowest wavenumber.

Lower spectral boundary acts in effect as an external fgrcin
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L arge-scale direct cascade?
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Energetic reflections at the lower spectral boundary ewadigtu
lead to a large-scal@éirect“cascade.”

This would agree with the large-scale® spectra seen
numerically [Borue 1994] and observed in the atmosphere
[Lilly & Peterson 1983].

[Tran & Bowman 2003]: In a bounded domain, the two inertia
range exponentsiust sum to-8 (at high Reynolds number).

Large-scalé: 3 spectrum=- a small-scalé > spectrum.

Consistent with rigorous [Tran & Shepherd 2002] constraint
the spectrum must b& least as steep as®.



Bounded 2D Turbulence

Q. How do the energy balances associated with the hypod#het
steady-state energy spectrum

’ = if ko < k < s,
PR i s <k < ky

behave in the limiky — 07, bk — 00?

E(k)= A

The energy dissipation would be equal to

1 1
GZQVASB_a (3_&—|—m> (Oé<3,ﬁ>5)

Apply steady-state constraiat+ G = 8
[Tran & Bowman 2003].
leto =3 —a=0-5:
1 1
_ o (2
e = 2UAS <5—|—2+5>.
If lim A s finite thenlim 6 = 0.
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e Thatis, lim a«=3and lim § =5.
v—07t v—07t

e Claim: steady-state high-resolution bounded numerical
simulations, forced at an intermediate wavenumber, aghroa
this limit.

e However, this says nothing about theasi-steady staia an
unbounded domaidiscussed by KLBopen problem).
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Direct k3 enstrophy Cascade

10! ————rrr
109
10-1
10-2
10-3
10-4
10-5
10—6 |
10—'? -
10—8 |
10—9 |
10—10 |

k-3(Ink +1)71/5

10-11 ol
1Q0° 10!

102

k
Zero dissipation foB < k < 300.



Subgrid Models

cececeefecccccccccccoBececccclodecccces

piiiiiliiiii: Computed data 32f:isisi

piiiiiiiiiiiil Discarded data $3iiiiiiis

-sesseoi (computationally expensive): s«

Must model the effect of red region on blue region.



Hyperviscous Subgrid M odel

e |tis customary to replace interactions with missing srsalide

modes by dyperviscougerm:
o -
Tk S — Vk2wk — v k" wp + fr:
ot
S, accounts for the interactions involving only retained mode

It Is often argued that this modification does not affect the
large-scale dynamics.

Inverse cascade- propagation of small-scale (mis)information
back to the large scal@s




Supergrid Models

A hypoviscoudarge-scale damping is typically added to thwat
the upscale energy cascade; = ok + vk?, wherep > 0.

However, thiscontaminatethe desired:—%/3 energy-range

spectrum.

An artificial large-scale damping can cause spurious elerge
reflections obottleneck effects.

We need a large-scasipergriamodel that takes energy out of

the large sca
subgridmode

es in a realistic way (analogous to a smalk-sca

).

Such a mode

should be compatible with the Kolmogorov’s

Ansatz of self-similar (wavenumber-independent) energy

transfer.



Enstrophy Transfer

e Recall

O ~
% = S — V/cka + fk-

e Write Sp, = D p Mk p wp wi—p IN terms of the nonlinear

mode-coupling coefficientisy, , = =<2,
e The forward enstrophy transféj. through a wavenumbeérin
2D can be computed asastricted convolution

* *
Fi. = Re Z My, p wp Wg—p W +2 Re Z My k—p Wp WE—p W
|k|=k |k|=k

p|<k Ip| <k
|lk—p|<k |lk—p|>k



Self-Similarity of Enstrophy Transfer
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2D Decaying Turbulence

early stage late stage



Conclusions

A directlarge-scalé:—? “cascade” resulting from reflections at
the lower spectral boundary provides a physical explandto

numerically observed small-scate® spectra.

Subgridandsupergriomodels could be used together to attem;
to verify the KLB theory for unbounded fluids.

We propose &elf-Similar Turbulent Subgrid Moddased on
Kolmogorov’s idea of scale-independent transfer.

This may require the development ofasst restricted
convolution

A proper subgrid model should account for both turbulent
dampingandbackscatteeffects.

Decaying turbulence may involvesgatial self-similarity
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