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Motivation

e Consider for y : R — R and L > 0 the equation

dy
== _F
dt y?

with the initial condition y(0) = yo # 0.
e We know that the exact solution to this equation is given by

y(t) = yge_tL.

e Apply Euler’'s method with time step h:

Yn+1 = (1 — hL)?Jn

e For hL > 2, y,, does not converge to the steady state: it L is
too large, the time step is forced to be unreasonably small.



e This phenomenon of linear stifiness manifests itself in general
driven systems of ODEs in R":

e When the eigenvalues of L are large compared to the eigenvalues
of f', a similar problem will occur.



Notation

dy

— = ft,y),  y(0)=yo,

e General s-stage Runge-Kutta scheme (scalar case):
i
y2+1:y0+hza2]f<cjh7y]>7 220775_1
§=0
0 is the initial time; h is the time step;
ys is the approximation to y(h);
a;; are the Runge-Kutta weights;

c; are the step fractions for stage 7.



Butcher Tableau (s = 3):
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Stiffness

Lambert [1991] points out problems with existing notions of
stiffness in the literature, either due to the existence of a
counterexample or due to their qualitative nature:

e Curtiss and Hirschfelder [1952]: A system is said to be stiff
in a given interval of time if, in that interval, neighbouring
solution curves approach the solution curve at a rate which
15 very large wn comparison with the rate at which the
solution varies.

e Lambert [1991): If a mnumerical method with a finite
region of absolute stability, applied to a system with any
initial conditions, is forced to use in a certain interval
of integration a step-length which 1s excessiwvely small in
relation to the smoothness of the exact solution in that
interval, then the system s said to be stiff in that interval.



e Cartwright [1999], Zoto & JCB [2024] : A system is stiff in
a gwen interval if in that interval the most negative local
Lyapunov exponent 1s much larger in absolute value than
the curvature of the solution curve.

e Let 0;(t) be the principal axes of an ellipsoid evolving in phase
space.

o In terms of the i local Lyapunov exponent

J(ht)= lim -1
lhit) = lm s

and the curvature k = y"(1 4+ ¢'*) /2 of the solution v, stiffness
may be quantified by the ratio

1<i<n
K(t)

e This definition recognizes that stiffness is a local phenomenon.




Exponential Integrators

e Circumvent linear stiffness by applying a scheme that is exact
on the time scale of the linear part of the problem.

e Consider
Wi Ly = f(y
p y=Jy
e Rewrite the above equation as
d(etLy) tL

e and integrate to obtain

h
y(h) = ey (0) + / eI (40 + 5))ds.

e A quadrature rule is used to approximate the integral, while
treating the exponential term exactly:.



Stiff-Order Conditions

Yi+1 — e_hLyo + hz aij(—hL)f(yj), 1 =0,...,s — 1.
j=0

e The weights a;; are constructed from linear combinations of e*
and truncations of its Taylor series:

e Care must be exercised when evaluating ¢ near 0; see the C4++
routines at www.math.ualberta.ca/~bowman/phi.h.

e A set of stiff-order conditions on the weights were shown by
Hochbruck and Ostermann to be sufficient to avoid order

reduction when L has large eigenvalues.
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Exponential Euler Algorithm

1 — €_hL

T f (i),

e Also called Exponentially Fitted Euler, ETD Euler, filtered
Euler, Lie-Euler.

yir1 = e "y +

e If it has a fixed point, it must satisty y = @; this is then a

fixed point of the ODE.
e In contrast, the popular Integrating Factor method (I-Euler).
yirr =€ "My + hfy)
hf(y)
Lh _ 1

can at best have an incorrect fixed point: y =

e As h — 0 the Euler method is recovered:
Vi1 = Yi + hf(yi).
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Comparison of Euler Integrators

dy

dt

+ Yy = COS Y,

y(0)

L.

euler
i_euler
e_euler
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History

e Certaine [1960|: Exponential Adams-Moulton
e Norsett [1969]: Exponential Adams-Bashforth

o Verwer [1977] and van der Houwen [1977]: Exponential linear
multistep method

o [riedli [1978]: Exponential Runge-Kutta
e Hochbruck et al. [1998]: Exponential integrators up to order 4
e Beylkin et al. [1998]: Exact Linear Part (ELP)

o Cox & Matthews [2002]: ETDRK3, ETDRK4; worst case: stiff
order 2

o [u [2003]: Efficient Matrix Exponential

e Hochbruck & Ostermann [2005a]: Explicit Exponential Runge—
Kutta; stiff order conditions.
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Schur Decomposition

e When L is a nondiagonal matrix, the matrix exponentials
required by exponential integrators are computationally
expensive.

e Consider the Schur decomposition of L:

L=UTU"

where U is a unitary matrix and 1’ is an upper triangular matrix.

e Decompose T'= D + .5, where D is a diagonal matrix and .S is
a strictly upper triangular matrix.

e We obtain

d
-£+U@+3Wb:F@w.
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o Multiply by UT on the left:

d(UT
(dty> +(D+S)Uly=UTF(t,y).
o In terms of the transformed variable Y = U'y:
dY

— T DY = U'F(t,UY) — SY.
e This transformation allows us to replace exponentials of a tull
matrix with a diagonal matrix of scalar exponentials.

e Being diagonal, the ¢ functions now require far less storage.

e Although the computation of the Schur decomposition of L is
expensive, it only has to be done once.

e The explicit treatment of the upper triangular matrix S
contributes to the overall error, but does not contribute to
stiffness.
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e Moreover, many matrices encountered in practice are normal:
they commute with their Hermitian adjoint.

e The following theorem tells us that S = 0 for normal matrices:

Theorem 1: The triangle matrix in the Schur decomposition
of a normal matrix s diagonal.

e With the optimization afforded by Schur decomposition,
embedded ERK methods for step size adjustment becomes
computationally viable, even when L is a nondiagonal matriz.

e An adaptive exponential method requires re-evaluating the ;.
functions whenever the step size is adjusted.

e However, since these are now functions of diagonal matrices,
there is no longer a huge computational cost.
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Claim: The term Sy does not incorporate any of the stiffness
inherent in the linear term Ly.

Prootf:
e On defining the integrating factor I(t) = e'© and g(t) =

I(t)y(t), we can transform the autonomous case to

di ~
— = IOU'FUT ' ()g) - 53,

~

where S = I(t)SI Y(t) is an mxm strictly upper triangular
matrix.

e [f the stiffness only enters through the linear term Ly and not
through F'(y), the first term on the right-hand side will not
contribute any additional stiflness.

17



e When F' = 0, we obtain the triangular system of equations

dYi  ~—~ & - .. dy

d_tZ: Z Siyifori=1,...,m—1 and d—;n:O,
j=i+1

which can be solved recursively to obtain the general solution as

a polynomial in ¢.

e Stiffness arises only when nearby solution curves approach the
solution curve of interest at exponentially fast rates.

e Thus, the decomposed system of equations is not stiff; it can
in fact be solved exactly by a classical Runge-Kutta method
whose order is at least the degree of the solution polynomials.

e By linear superposition, the system is not stiff even when F' is
linear (and, in particular, when F'is constant).

e The linear stiffness is thus entirely contained within the
diagonal term DY .
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Hochbruck—Ostermann Test Problems
o For x € [0,1] and ¢t > 0:

0y 0%y B
E(xaﬂ o @(I,t) — H<£E7t> + (D(I,t)

Problem 1:

H(x,t)—/O v (z,1) dz,

where H-O choose N = 1.

Problem 2:
1
1+ y(x,t)*

H(xz,t) =

e O 1s chosen so that the exact solution is
y(x,t) = x(1 — x)e.

e 200 spatial grid points, evolve from ¢ = 0 to t = 3.
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e A Simpson method is used to approximate the integral in
Problem 1.

e The resulting matrix-vector multiplication is a linear term that
could be combined with the linear term coming from the
discretized Laplacian.

o [f the linearities were combined, all exponential integrators
would solve this problem exactly!

e The choice N = 4 prevents the integral from being combined
into the linearity, providing a stricter test.

e We calculate the matrix ¢, functions with the help of Padé
approximants, along with scaling and squaring.
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Prob. 1: Schur Decomposition vs. Full Solution
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(4,3) Robust Embedded Pair ERK43ZB

0
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where ¢; = @;(—hL) and
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Prob. 1. Fixed-Timestep Methods
e ERK4CM and ERK4K exhibit stiff-order reduction:
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Robustness

e An adaptive pair is robust if the order of the low-order method
is never equal to the order n of the high-order method for any
source function G(t) = F(t,y(t)) with a nonzero derivative of
order less than n.

e A nonrobust method can mislead the time step adjustment
algorithm into adopting too large a time step, leading to
catastrophic loss of accuracy.

e We illustrate nonrobustness with Hochbruck—Ostermann Test
Problem 2.
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Robust vs. Non-Robust Third-Order Estimate
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Robust vs. Non-Robust Time Evolution
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Adaptive Performance of ERK43ZB

e Choose @ such that y(x,t) = 10(1 — z)x(1 +sint) + 2
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Prob. 1: Schur Decomposition vs. Full Solution
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Performance: Schur Decomposition with an

Embedded Pair

e Using Schur decomposition to integrate H-O Problem 2 from
t =0 tot = 200 with ERK43ZB was 117 times faster than the
full matrix formulation, even after taking account ot the cost of
the Schur decomposition.

e Since the spatially discretized Laplacian matrix L is normal,
both methods produced identical results.
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GOY Shell Model of 3D Turbulence

e ERK43%ZB runs over 3 times faster than the classical Cash—Karp
(5,4) pair on a shell model of 3D turbulence exhibiting both
linear and nonlinear stifiness:
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Conclusions

e Unlike integrating factor methods, exponential integrators have
the correct fixed point behaviour.

e A Schur decomposition avoids the need for computing matrix
exponentials, while still circumventing linear stifiness.

e This technical advance makes adaptive exponential integration
for general matrix linearities practical.

e We derived adaptive ERK pairs by symbolically solving the
Hochbruck—Ostermann stiff-order conditions.

e A key requirement is that the pair be robust: if the nonlinear
source function has nonzero total time derivatives, the order of
the low-order estimate should never exceed its design value.

e We have derived robust exponential Runge-Kutta (3,2) and
(4,3) embedded pairs well-suited to initial value problems with
a dominant linearity:.
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