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Motivation

•Consider for y : R → R and L > 0 the equation

dy

dt
= −Ly,

with the initial condition y(0) = y0 ̸= 0.

•We know that the exact solution to this equation is given by

y(t) = y0e
−tL.

•Apply Euler’s method with time step h:

yn+1 = (1− hL)yn.

•For hL ≥ 2, yn does not converge to the steady state: if L is
too large, the time step is forced to be unreasonably small.
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•This phenomenon of linear stiffness manifests itself in general
driven systems of ODEs in Rn:

dy

dt
+ Ly = f (y).

•When the eigenvalues of L are large compared to the eigenvalues
of f ′, a similar problem will occur.
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Notation
dy

dt
= f (t, y), y(0) = y0,

•General s-stage Runge–Kutta scheme (scalar case):

yi+1 = y0 + h

i∑
j=0

aijf (cjh, yj), i = 0, . . . , s− 1.

0 is the initial time; h is the time step;

ys is the approximation to y(h);

aij are the Runge–Kutta weights;

cj are the step fractions for stage j.
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Butcher Tableau (s = 3):

c0 = 0, ci+1 =

i∑
j=0

aij.

0
c1 a00
c2 a10 a11
1 a20 a21 a22
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Stiffness

Lambert [1991] points out problems with existing notions of
stiffness in the literature, either due to the existence of a
counterexample or due to their qualitative nature:

•Curtiss and Hirschfelder [1952]: A system is said to be stiff
in a given interval of time if, in that interval, neighbouring
solution curves approach the solution curve at a rate which
is very large in comparison with the rate at which the
solution varies.

•Lambert [1991]: If a numerical method with a finite
region of absolute stability, applied to a system with any
initial conditions, is forced to use in a certain interval
of integration a step-length which is excessively small in
relation to the smoothness of the exact solution in that
interval, then the system is said to be stiff in that interval.
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•Cartwright [1999], Zoto & JCB [2024] : A system is stiff in
a given interval if in that interval the most negative local
Lyapunov exponent is much larger in absolute value than
the curvature of the solution curve.

•Let σi(t) be the principal axes of an ellipsoid evolving in phase
space.

• In terms of the ith local Lyapunov exponent

γi(h, t) = lim
σi(h)→0

1

h
log

σi(t + h)

σi(t)

and the curvature κ = y′′(1 + y′2)−3/2 of the solution y, stiffness
may be quantified by the ratio∣∣∣∣ min

1≤i≤n
γi(h, t)

∣∣∣∣
κ(t)

•This definition recognizes that stiffness is a local phenomenon.
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Exponential Integrators

•Circumvent linear stiffness by applying a scheme that is exact
on the time scale of the linear part of the problem.

•Consider
dy

dt
+ Ly = f (y).

•Rewrite the above equation as

d(etLy)

dt
= etLf (y)

• and integrate to obtain

y(h) = e−hLy(0) +

∫ h

0

e−(h−s)Lf (y(0 + s))ds.

•A quadrature rule is used to approximate the integral, while
treating the exponential term exactly.
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Stiff-Order Conditions

yi+1 = e−hLy0 + h
i∑

j=0

aij(−hL)f (yj), i = 0, ..., s− 1.

•The weights aij are constructed from linear combinations of ex

and truncations of its Taylor series:

φ0(x) = ex

φk+1(x) =
φk(x)− 1

k!

x
for k ≥ 0,

with φk(0) =
1
k!.

•Care must be exercised when evaluating φ near 0; see the C++
routines at www.math.ualberta.ca/~bowman/phi.h.

•A set of stiff-order conditions on the weights were shown by
Hochbruck and Ostermann to be sufficient to avoid order
reduction when L has large eigenvalues.
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Exponential Euler Algorithm

yi+1 = e−hLyi +
1− e−hL

L
f (yi),

•Also called Exponentially Fitted Euler, ETD Euler, filtered
Euler, Lie–Euler.

• If it has a fixed point, it must satisfy y =
f (y)

L
; this is then a

fixed point of the ODE.

• In contrast, the popular Integrating Factor method (I-Euler).

yi+1 = e−hL(yi + hfi)

can at best have an incorrect fixed point: y =
hf (y)

eLh − 1
.

•As h → 0 the Euler method is recovered:

yi+1 = yi + hf (yi).
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Comparison of Euler Integrators

dy

dt
+ y = cos y, y(0) = 1.
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History

•Certaine [1960]: Exponential Adams-Moulton

•Nørsett [1969]: Exponential Adams-Bashforth

•Verwer [1977] and van der Houwen [1977]: Exponential linear
multistep method

•Friedli [1978]: Exponential Runge–Kutta

•Hochbruck et al. [1998]: Exponential integrators up to order 4

•Beylkin et al. [1998]: Exact Linear Part (ELP)

•Cox & Matthews [2002]: ETDRK3, ETDRK4; worst case: stiff
order 2

•Lu [2003]: Efficient Matrix Exponential

•Hochbruck & Ostermann [2005a]: Explicit Exponential Runge–
Kutta; stiff order conditions.
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Schur Decomposition

•When L is a nondiagonal matrix, the matrix exponentials
required by exponential integrators are computationally
expensive.

•Consider the Schur decomposition of L:

L = UTU †,

where U is a unitary matrix and T is an upper triangular matrix.

•Decompose T = D + S, where D is a diagonal matrix and S is
a strictly upper triangular matrix.

•We obtain

dy

dt
+ U(D + S)U †y = F (t, y).
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•Multiply by U † on the left:

d(U †y)

dt
+ (D + S)U †y = U †F (t, y).

• In terms of the transformed variable Y = U †y:

dY

dt
+DY = U †F (t, UY )− SY.

•This transformation allows us to replace exponentials of a full
matrix with a diagonal matrix of scalar exponentials.

•Being diagonal, the φk functions now require far less storage.

•Although the computation of the Schur decomposition of L is
expensive, it only has to be done once.

•The explicit treatment of the upper triangular matrix S
contributes to the overall error, but does not contribute to
stiffness.
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•Moreover, many matrices encountered in practice are normal :
they commute with their Hermitian adjoint.

•The following theorem tells us that S = 0 for normal matrices:

Theorem 1:The triangle matrix in the Schur decomposition
of a normal matrix is diagonal.

•With the optimization afforded by Schur decomposition,
embedded ERK methods for step size adjustment becomes
computationally viable, even when L is a nondiagonal matrix.

•An adaptive exponential method requires re-evaluating the φk

functions whenever the step size is adjusted.

•However, since these are now functions of diagonal matrices,
there is no longer a huge computational cost.
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Claim: The term Sy does not incorporate any of the stiffness
inherent in the linear term Ly.

Proof:

•On defining the integrating factor I(t) = etD and ỹ(t) =
I(t)y(t), we can transform the autonomous case to

dỹ

dt
= I(t)U †F (UI−1(t)ỹ)− S̃ỹ,

where S̃ = I(t)SI−1(t) is an m×m strictly upper triangular
matrix.

• If the stiffness only enters through the linear term Ly and not
through F (y), the first term on the right-hand side will not
contribute any additional stiffness.
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•When F = 0, we obtain the triangular system of equations

dỹi
dt

=

m∑
j=i+1

S̃ijỹj for i = 1, . . . ,m− 1 and
dỹm
dt

= 0,

which can be solved recursively to obtain the general solution as
a polynomial in t.

• Stiffness arises only when nearby solution curves approach the
solution curve of interest at exponentially fast rates.

•Thus, the decomposed system of equations is not stiff; it can
in fact be solved exactly by a classical Runge–Kutta method
whose order is at least the degree of the solution polynomials.

•By linear superposition, the system is not stiff even when F is
linear (and, in particular, when F is constant).

•The linear stiffness is thus entirely contained within the
diagonal term DY .
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Hochbruck–Ostermann Test Problems

•For x ∈ [0, 1] and t ≥ 0:

∂y

∂t
(x, t)− ∂2y

∂x2
(x, t) = H(x, t) + Φ(x, t).

Problem 1:

H(x, t) =

∫ 1

0

yN(x, t) dx,

where H–O choose N = 1.

Problem 2:

H(x, t) =
1

1 + y(x, t)2
.

•Φ is chosen so that the exact solution is

y(x, t) = x(1− x)et.

• 200 spatial grid points, evolve from t = 0 to t = 3.
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•A Simpson method is used to approximate the integral in
Problem 1.

•The resulting matrix-vector multiplication is a linear term that
could be combined with the linear term coming from the
discretized Laplacian.

• If the linearities were combined, all exponential integrators
would solve this problem exactly!

•The choice N = 4 prevents the integral from being combined
into the linearity, providing a stricter test.

•We calculate the matrix φk functions with the help of Padé
approximants, along with scaling and squaring.
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Prob. 1: Schur Decomposition vs. Full Solution
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(4,3) Robust Embedded Pair ERK43ZB
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Prob. 1: Fixed-Timestep Methods

•ERK4CM and ERK4K exhibit stiff-order reduction:
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Robustness

•An adaptive pair is robust if the order of the low-order method
is never equal to the order n of the high-order method for any
source function G(t) = F (t, y(t)) with a nonzero derivative of
order less than n.

•A nonrobust method can mislead the time step adjustment
algorithm into adopting too large a time step, leading to
catastrophic loss of accuracy.

•We illustrate nonrobustness with Hochbruck–Ostermann Test
Problem 2.

25



Robust vs. Non-Robust Third-Order Estimate
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Robust vs. Non-Robust Time Evolution
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Adaptive Performance of ERK43ZB

•Choose Φ such that y(x, t) = 10(1− x)x(1 + sin t) + 2:
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Prob. 1: Schur Decomposition vs. Full Solution

10−1

100

gl
ob

al
er
ro
r
/h

4

10−3 10−2 10−1

h

ERK43ZBV
ERK43ZBM

29



Performance: Schur Decomposition with an
Embedded Pair

•Using Schur decomposition to integrate H–O Problem 2 from
t = 0 to t = 200 with ERK43ZB was 117 times faster than the
full matrix formulation, even after taking account of the cost of
the Schur decomposition.

• Since the spatially discretized Laplacian matrix L is normal,
both methods produced identical results.
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GOY Shell Model of 3D Turbulence

•ERK43ZB runs over 3 times faster than the classical Cash–Karp
(5,4) pair on a shell model of 3D turbulence exhibiting both
linear and nonlinear stiffness:
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Conclusions

•Unlike integrating factor methods, exponential integrators have
the correct fixed point behaviour.

•A Schur decomposition avoids the need for computing matrix
exponentials, while still circumventing linear stiffness.

•This technical advance makes adaptive exponential integration
for general matrix linearities practical.

•We derived adaptive ERK pairs by symbolically solving the
Hochbruck–Ostermann stiff-order conditions.

•A key requirement is that the pair be robust: if the nonlinear
source function has nonzero total time derivatives, the order of
the low-order estimate should never exceed its design value.

•We have derived robust exponential Runge–Kutta (3,2) and
(4,3) embedded pairs well-suited to initial value problems with
a dominant linearity.
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