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Outline

•Dealiased Pseudospectral Method

• 2D and 3D Skeleton ProtoDNS Codes on GitHub

•Key Ingredients for an Efficient Pseudospectral Solver:

– Hermitian Symmetry (velocity and vorticity fields are real)

– Implicit Dealiasing

– Basdevant Reduction

– Hybrid OpenMP/MPI Parallelization

– Adaptive Time Stepping

– Dynamic Moment Averaging

– Conservative Integration

– Implementation of White-Noise Forcing

•Conclusions
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Pseudospectral Method

•Pseudospectral simulations are a widely used numerical tool for
the study of fluid turbulence:

– fast N logN scaling for N modes.

– spectral accuracy: more accurate than finite-difference or
finite-element methods.

• Ideal choice for studying homogenous turbulence with periodic
boundary conditions.

•Generalizations such as Chebyshev collocation and penalty
methods allow them to handle more complicated boundary
conditions and geometries.

•However, in many cases pseudospectral methods do not
parallelize well on massively parallel distributed architectures
due to the communication costs of the parallel transpose.
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Dealiasing

•Patterson and Orszag pioneered the pseudospectral method over
40 years ago.

•They emphasized that the convolution theorem necessitates
dealiasing unwanted harmonics arising from the periodicity of
the discrete Fourier transform.
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DNS code

•We have released a highly optimized 2D pseudospectral code in
C++: https://github.com/dealias/dns.

• It uses our FFTW++ library to implicitly dealias the
advective convolution, while exploiting Hermitian symmetry
[Bowman & Roberts 2011], [Roberts & Bowman 2018].

•Advanced computer memory management, such as implicit
padding, memory alignment, and dynamic moment averaging
allow DNS to attain its extreme performance.

•The formulation proposed by Basdevant [1983] is used to reduce
the number of FFTs required for 2D (3D) incompressible
turbulence to 4 (8).

•We also include simplified 2D (146 lines) and 3D (287 lines)
versions called ProtoDNS for educational purposes:
https://github.com/dealias/dns/tree/master/

protodns.
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Hermitian Symmetry

• In Fourier space, the reality of the velocity and scalar vorticity
fields leads to the Hermitian symmetries

v−k = vk,

ω−k = ωk.

•The DC mode at the Fourier origin is not evolved (no mean
flow).
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Hermitian Symmetry in 2D

•Only the shaded modes need to be evolved:

(0,0)(−mx + 1, 0) (mx − 1, 0)

(mx − 1, my − 1)(−mx + 1, my − 1)

Nx = 2mx − 1

Ny = 2my − 1

•Warning: since Hermitian convolution routines require input
from the entire blue rectangle, the white modes in the blue box
must agree with their shaded Hermitian conjugates! 7



Discrete Cyclic Convolution

•The FFT is an efficient tool for computing the discrete cyclic
convolution of two vectors vectors F and G with period N :

N−1∑
p=0

FpGk−p.

•But the pseudospectral method requires a linear convolution!

•The backward 1D discrete Fourier transform of a complex
vector {Fk : k = 0, . . . , N − 1} is defined as

fj
.
=

N−1∑
k=0

ζjkN Fk, j = 0, . . . , N − 1,

where ζN = e2πi/N denotes the N th primitive root of unity.

•The fast Fourier transform (FFT) method exploits the
properties that ζrN = ζN/r and ζNN = 1.
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Convolution Theorem

N−1∑
j=0

fjgjζ
−jk
N =

N−1∑
j=0

ζ−jkN

N−1∑
p=0

ζjpN Fp

N−1∑
q=0

ζjqNGq


=

N−1∑
p=0

N−1∑
q=0

FpGq

N−1∑
j=0

ζ
(−k+p+q)j
N

= N
∑
s

N−1∑
p=0

FpGk−p+sN .

•The terms indexed by s 6= 0 are aliases; we need to remove
them!

• If only the firstm entries of the input vectors are nonzero, aliases
can be avoided by zero padding input data vectors of length m
to length N ≥ 2m− 1.
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Explicit Dealiasing

•Explicit zero padding prevents mode m− 1 from beating with
itself, wrapping around to contaminate mode N = 0 modN :
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Implicit Dealiasing

•Let N = 2m. For j = 0, . . . , 2m− 1 we want to compute

fj =

2m−1∑
k=0

ζjk2mFk.

• If Fk = 0 for k ≥ m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

f2` =

m−1∑
k=0

ζ2`k
2mFk =

m−1∑
k=0

ζ`kmFk,

f2`+1 =

m−1∑
k=0

ζ
(2`+1)k
2m Fk =

m−1∑
k=0

ζ`km ζ
k
2mFk, ` = 0, 1, . . .m− 1.

•This requires computing two subtransforms, each of size m,
for an overall computational scaling of order 2m log2m =
N log2m.
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•Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v2.05) on top of
the FFTW library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/

{Fk}m−1
k=0 {Gk}m−1

k=0
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•Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v2.05) on top of
the FFTW library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/

{Fk}m−1
k=0 {Gk}m−1

k=0

{f2ℓ}m−1
ℓ=0 {f2ℓ+1}m−1

ℓ=0 {g2ℓ}m−1
ℓ=0 {g2ℓ+1}m−1

ℓ=0

{f2ℓg2ℓ}m−1
ℓ=0 {f2ℓ+1g2ℓ+1}m−1

ℓ=0

{(F ∗G)k}m−1
k=0
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Input: vector f, vector g
Output: vector f
u← fft−1(f);
v← fft−1(g);
u← u ∗ v;
for k = 0 to m− 1 do
f[k]← ζk2mf[k];

g[k]← ζk2mg[k];
end

v← fft−1(f);
f ← fft−1(g);
v← v ∗ f;
f ← fft(u);
u← fft(v);

for k = 0 to m− 1 do
f[k]← f[k] + ζ−k2mu[k];

end
return f/(2m);
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Implicit Padding in 1D on T threads

2

3

4

5

6

7

ti
m
e/
(m

lo
g
2
m
)
(n
s)

102 103 104 105 106
m

explicit T=1

implicit T=1

explicit T=4

implicit T=4
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Convolutions in Higher Dimensions

•An explicitly padded convolution in 2 dimensions requires 12
padded FFTs and 4 times the memory of a cyclic convolution.

F G
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Convolutions in Higher Dimensions

•An explicitly padded convolution in 2 dimensions requires 12
padded FFTs and 4 times the memory of a cyclic convolution.

F GF G

f g

fg

F ∗GF ∗G

15



Recursive Convolution

•Naive way to compute a multiple-dimensional convolution:

FN1,...,Nd multiply F−1
N1,...,Nd

•The technique of recursive convolution allows one to avoid
computing and storing the entire Fourier image of the data:

FNd
Nd× convolveN1 ,...,Nd−1 F−1

Nd
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Implicit Padding in 2D

•Extra work memory need not be contiguous with the data.

FFT−1
x {F}

even

FFT−1
x {F}
odd

FFT−1
x {G}

even

FFT−1
x {G}
odd
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Implicit Padding in 2D on T threads
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Implicit Padding in 3D on T threads

10

20
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m

3
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(n
s)

101 102
m
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Centered (Pseudospectral) Convolutions

•For a centered convolution, the Fourier origin (k = 0) is
centered in the domain:

m−1∑
p=k−m+1

fpgk−p

•Need to pad to N ≥ 3m− 2 to remove aliases.

•The ratio (2m− 1)/(3m− 2) of the number of physical to total
modes is asymptotic to 2/3 for large m.

•A Hermitian convolution arises since the input vectors are real:

f−k = fk.
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Hermitian Convolution

•The backwards implicitly padded centered Hermitian transform
appears as

u3`+r =

m−1∑
k=0

ζ`kmwk,r,

where

wk,r
.
=

{
U0 + Re ζ−r3 U−m if k = 0,
ζrk3m

(
Uk + ζ−r3 Um−k

)
if 1 ≤ k ≤ m− 1.

•We exploit the Hermitian symmetry wk,r = wm−k,r to reduce
the problem to three complex-to-real Fourier transforms of the
first c+ 1 components of wk,r (one for each r = −1, 0, 1), where
c
.
= bm/2c zeros.
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•To facilitate an in-place implementation, in our original paper
[SIAM J. Sci. Comput. 33, 386 (2011)], we stored the
transformed values for r = 1 in reverse order in the upper half
of the input vector.

•However, loop dependencies in the resulting algorithm prevented
the top level of the 1D transforms from being multithreaded.
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Multithreaded Hermitian Convolution

•Unrolling the loop to process four inputs and outputs
simultaneously allows loop independence to be achieved,
significantly improving performance in both the serial and
parallel contexts.

0

1
. . .

k
. . .

c+ 1− k
. . .

c− 1
c
. . .

c+ k − 1
. . .

2c− k
. . .

2c− 1

r = 0

r = 1
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•As a result, even in 1D, implicit dealiasing of pseudospectral
convolutions is now significantly faster than explicit zero
padding.
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1D Implicit Hermitian Convolution
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3D Basdevant Reduction: 8 FFTs

•Using incompressibility, the 3D momentum equation can be
written in terms of the symmetric tensor Dij = uiuj:

∂ui
∂t

+
∂Dij

∂xj
= − ∂p

∂xi
+ ν

∂2ui
∂x2

j

+ Fi.

•Naive implementation: 3 backward FFTs to compute the
velocity components from their spectral representations,
6 forward FFTs of the independent components of Dij.

•Basdevant [1983]: avoid one FFT by subtracting the divergence
of the symmetric matrix Sij = δij trD/3 from both sides:

∂ui
∂t

+
∂(Dij − Sij)

∂xj
= −∂(pδij + Sij)

∂xj
+ ν

∂2ui
∂x2

j

+ Fi.

•To compute the velocity components ui, 3 backward FFTs are
required. Since the symmetric matrix Dij − Sij is traceless, it
has just 5 independent components.
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•Hence, a total of only 8 FFTs are required per integration stage.

•The effective pressure pδij + Sij is solved as usual from the
inverse Laplacian of the force minus the nonlinearity.
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2D Basdevant Reduction: 4 FFTs

•The vorticity w =∇×u evolves according to

∂w

∂t
+ (u·∇)w = (w·∇)u + ν∇2w +∇×F ,

where in 2D the vortex stretching term (w·∇)u vanishes and w
is normal to the plane of motion.

•For C2 velocity fields, the curl of the nonlinearity can be written
in terms of D̃ij

.
= Dij − Sij:

∂

∂x1

∂

∂xj
D̃2j −

∂

∂x2

∂

∂xj
D̃1j =

(
∂2

∂x2
1

− ∂2

∂x2
2

)
D12 +

∂

∂x1

∂

∂x2
(D22 −D11),

on recalling that S is diagonal and S11 = S22.

•The scalar vorticity ω thus evolves as

∂ω

∂t
+

(
∂2

∂x2
1

− ∂2

∂x2
2

)
(u1u2) +

∂2

∂x1∂x2

(
u2

2 − u2
1

)
= ν∇2ω +

∂F2

∂x1
− ∂F1

∂x2
.
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•To compute u1 and u2 in physical space, we need 2 backward
FFTs.

•The quantities u1u2 and u2
2−u2

1 can then be calculated and then
transformed to Fourier space with 2 additional forward FFTs.

•The advective term in 2D can thus be calculated with just 4
FFTs.
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3D Incompressible MHD: 14 FFTs

∂ui
∂t

+
∂(Dij − Sij)

∂xj
= −∂(pδij + Sij)

∂xj
+ ν

∂2ui
∂x2

j

,

∂Bi

∂t
+
∂Gij

∂xj
= η

∂2Bi

∂x2
j

,

where Dij = uiuj −BiBj, Sij = δij trD/3, and

Gij = Biuj − uiBj.

•The traceless symmetric matrix Dij − Sij has 5 independent
components.

•The antisymmetric matrix Gij has only 3.

•An additional 6 FFT calls are required to compute the
components of u and B in x space.

•The MHD nonlinearity can thus be computed with 14 FFT calls.

30



2D Navier–Stokes Pseudospectral [1 thread]

10−6

ti
m
e/
(m

lo
g
2
m
)2

(s
)

102 103
m

Explicit

Implicit
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2D Navier–Stokes Pseudospectral [4 threads]

10−6
ti
m
e/
(m

lo
g
2
m
)2

(s
)

102 103
m

Explicit

Implicit
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Distributed-Memory Parallelization

•The pseudospectral method uses a matrix transpose to localize
the computation of the multi-dimensional FFTs onto individual
processors.

•Parallel generalized slab/pencil decompositions have recently
been developed for distributed-memory architectures.

•We have compared several distributed matrix transpose
algorithms, both blocking and nonblocking, under pure MPI
and hybrid MPI/OpenMP architectures.

•Local transposition is not required within a single MPI node.

•We have developed an adaptive algorithm, dynamically tuned
to choose the optimal block size.
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8× 8 Block Transpose over 8 processors
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Advantages of Hybrid MPI/OpenMP

•Use hybrid OpenMPI/MPI with the optimal number of threads:

– yields larger communication block size;

– local transposition is not required within a single MPI node;

– allows smaller problems to be distributed over a large number
of processors;

– for 3D FFTs, allows for more slab-like than pencil-like models,
reducing the size of or even eliminating the need for a second
transpose.

– sometimes more efficient (by a factor of 2) than pure MPI.

•The use of nonblocking MPI communications allows us to
overlap computation with communication: this can yield up
to an additional 32% performance gain for implicitly dealiased
convolutions, for which a natural parallelism exists between
communication and computation. 35



2D Forced–Dissipative Turbulence Spectrum
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2D Forced–Dissipative Power Law Exponent
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Conservative Integration

•Conservative integration [SIAM J. Appl. Math 59, 1112
(1999)] provides a useful diagnostic technique for ensuring
that the underlying dynamical symmetries have been correctly
implemented.
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White-Noise Forcing

•The Fourier transform of an isotropic Gaussian white-noise
solenoidal force f has the form

fk(t) = Fk

(
1− kk

k2

)
·ξk(t), k·fk = 0,

where Fk is a real number and ξk(t) is a unit central real Gaussian
random 2D vector that satisfies

〈ξk(t)ξk′(t
′)〉 = δkk′1δ(t− t′).

•This implies

〈fk(t)·fk′(t′)〉 = F 2
kδk,k′ δ(t− t′).
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White-Noise Forcing

•The rate of energy injection ε is given by

ε = (f (x, t),u(x, t)) =

∫
Ω

〈f (x, t)·u(x, t)〉 dx = Re
∑
k

〈fk(t)·uk(t)〉

•Here uk(t) is functional of the forcing:

uk(t) = uk′(t
′) +

∫ t

t′
Ak[u(τ )]dτ +

∫ t

t′
fk(τ )dτ ,

where Ak is a functional of u such that δAk[u(τ)]
δfk′(t′)

is bounded.

•Nonlinear Green’s function:

δuk(t)

δfk′(t′)
=

∫ t

t′

δAk[u(τ )]

δfk′(t′)
dτ + δkk′1H(t− t′),

where H is the Heaviside unit step function.
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•To prescribe the forcing amplitude Fk in terms of ε:

Theorem 1 (Novikov [1964]): If f (x, t) is a Gaussian process,
and u is a functional of f , then

〈f (x, t)u(f )〉 =

∫ ∫
〈f (x, t)f (x′, t′)〉

〈
δu(x, t)

δf (x′, t′)

〉
dx′ dt′.

•For white-noise forcing:

ε = Re
∑
k

〈fk(t)·uk(t)〉 = Re
∑
k,k′

∫ 〈
fk(t)fk′(t

′)
〉
:

〈
δuk(t)

δfk′(t
′)

〉
dt′

=
∑
k

F 2
k

(
1− kk

k2

)
:

(
1− kk

k2

)
H(0)

=
1

2

∑
k

F 2
k,

on noting that H(0) = 1/2.
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Implementation of White-Noise Forcing

•At the end of each time-step, we implement the contribution of
white noise forcing with the discretization

ωk,n+1 = ωk,n +
√

2τηk ξ,

where ξ is a unit complex Gaussian random number with 〈ξ〉 = 0
and

〈
|ξ|2
〉

= 1.

•This yields the mean enstrophy injection〈
|ωk,n+1|2−|ωk,n|2

〉
2τ

= ηk.
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Conclusions

•For centered convolutions in d dimensions, implicit padding
asymptotically uses (2/3)d−1 of the conventional storage.

•The factor of 2 speedup is largely due to increased data locality.

•Highly optimized and parallelized implicit dealiasing routines
have been implemented as a software layer FFTW++ (v 2.05) on
top of the FFTW library and released under the Lesser GNU
Public License: http://fftwpp.sourceforge.net/

•The advent of implicit dealiasing of convolutions makes
overlapping transposition with FFT computation feasible.

•Dynamic moment averaging allows the integration time window
to be specified by the user a posteriori.

•Writing a high-performance dealiased pseudospectral code is
now a relatively straightforward exercise: skeleton 2D and
3D optimized codes are available at https://github.com/

dealias/dns/tree/master/protodns. 43
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