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Outline
e Dealiased Pseudospectral Method

e 2D and 3D Skeleton ProtoDNS Codes on GitHub

e Key Ingredients for an Efficient Pseudospectral Solver:
— Hermitian Symmetry (velocity and vorticity fields are real)
— Implicit Dealiasing

— Basdevant Reduction

— Hybrid OpenMP /MPI Parallelization
— Adaptive Time Stepping

— Dynamic Moment Averaging

— Conservative Integration

— Implementation of White-Noise Forcing

e Conclusions



Pseudospectral Method

e Pseudospectral simulations are a widely used numerical tool for
the study of fluid turbulence:

— fast NV log N scaling for N modes.

— spectral accuracy: more accurate than finite-difference or
finite-element methods.

e Ideal choice for studying homogenous turbulence with periodic
boundary conditions.

e Generalizations such as Chebyshev collocation and penalty
methods allow them to handle more complicated boundary
conditions and geometries.

e However, in many cases pseudospectral methods do not
parallelize well on massively parallel distributed architectures
due to the communication costs of the parallel transpose.



Dealiasing

e Patterson and Orszag pioneered the pseudospectral method over
40 years ago.

e They emphasized that the convolution theorem necessitates
dealiasing unwanted harmonics arising from the periodicity of
the discrete Fourier transtform.



DNS code

e We have released a highly optimized 2D pseudospectral code in
C++: https://github.com/dealias/dns.

ot uses our FFTW++ library to implicitly dealias the
advective convolution, while exploiting Hermitian symmetry

[Bowman & Roberts 2011], [Roberts & Bowman 2018].

e Advanced computer memory management, such as implicit
padding, memory alignment, and dynamic moment averaging
allow DNS to attain its extreme performance.

e The formulation proposed by Basdevant [1983] is used to reduce
the number of FFTs required for 2D (3D) incompressible
turbulence to 4 (8).

e We also include simplified 2D (146 lines) and 3D (287 lines)

versions called ProtoDNS for educational purposes:
https://github.com/dealias/dns/tree/master/
protodns.


https://github.com/dealias/dns
https://github.com/dealias/dns/tree/master/protodns
https://github.com/dealias/dns/tree/master/protodns

Hermitian Symmetry

e In Fourier space, the reality of the velocity and scalar vorticity
fields leads to the Hermitian symmetries

V_f = Vg,

W_p — Wk.

e The DC mode at the Fourier origin is not evolved (no mean

flow).



Hermitian Symmetry in 2D
e Only the shaded modes need to be evolved:

(—mg+1,m, — 1) (mgy —1,m, — 1)

N,=2m, -1 (-m,+1,0) (m, — 1,0)

N,=2m, —1

e Warning: since Hermitian convolution routines require input
from the entire blue rectangle, the white modes in the blue box
must agree with their shaded Hermitian conjugates!



Discrete Cyclic Convolution

e The FF'T is an efficient tool for computing the discrete cyclic
convolution of two vectors vectors F' and G with period V:

N-1
> F,Gry,
p=0

e But the pseudospectral method requires a linear convolution!

e The backward 1D discrete Fourier transform of a complex
vector {F, - k=0,..., N — 1} is defined as

N—-1
f]:ZCJJ\kaa ija“‘aN_la
k=0

2w/ N

where (y = € denotes the Nth primitive root of unity.

e The fast Fourier transform (FFT) method exploits the
properties that ¢y = (ny, and (y =1



Convolution Theorem
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N—-1
S0 9) SLTCH
s p=0

e The terms indexed by s # 0 are aliases; we need to remove
them!

e If only the first m entries of the input vectors are nonzero, aliases
can be avoided by zero padding input data vectors of length m

to length N > 2m — 1.



Explicit Dealiasing

e [Laplicit zero padding prevents mode m — 1 from beating with
itself, wrapping around to contaminate mode N = 0 mod /V:
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e [Laplicit zero padding prevents mode m — 1 from beating with
itself, wrapping around to contaminate mode N = 0 mod /V:

Explicit Dealiasing
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Explicit Dealiasing

e [Laplicit zero padding prevents mode m — 1 from beating with
itself, wrapping around to contaminate mode N = 0 mod /V:

(F ) {0} (G} {0}

{fj 2N ' {gj 2N '

.

{fjgj 2N1 <




Implicit Dealiasing

elLet N =2m. For y =0,...,2m — 1 we want to compute

2m—1

f] — Z Cgank
k=0

olf F;. = 0 for & > m, one can easily avoid looping over the
unwanted zero Fourier modes by decimating in wavenumber:

m—1
Jfor = Z G Fr =Y (FFy,
k=0

m—1
(2¢
Jory1 = ZCQZ Tk F. = ZCﬁfoka, ¢=0,1,...m—1.
k=0

e This requires computing two subtranstorms, each of size m,
for an overall computational scaling of order 2mlogo,m =
N logy m.
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e Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v2.05) on top of
the FFTW library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/

{Fu}r {Gr}isy



http://fftwpp.sourceforge.net/

e Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v2.05) on top of
the FFTW library under the Lesser GNU Public License:
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e Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v2.05) on top of
the FFTW library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/

{Fi}iso {Gr}isy
! | ¢ |

{ fae} 75" 1f 2£+|1}7e71:61 {gze]{?l_ol {goer1 i
' +

{f 259%}2”:7)1

{ fort19201 750"

12


http://fftwpp.sourceforge.net/

e Parallelized multidimensional implicit dealiasing routines have
been implemented as a software layer FFTW++ (v2.05) on top of
the FFTW library under the Lesser GNU Public License:

http://fftwpp.sourceforge.net/
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Input: vector f, vector g

Output: vector f

u <+ fft1(f);

v« fft 1(g);

U< U*xV;

for k=0tom—1do
flk] < G5flk];
glk] < 5,.8[K];

end

v < £t 1(f);

f« fft 1(g);

V < vk f;

f < fft(u);

u< fft(v);

for k=0tom—1do

fIK] = fIk] + Conulk];

end

return f/(2m);
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Implicit Padding in 1D on T threads
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Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12
padded FFTs and 4 times the memory of a cyclic convolution.
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Convolutions in Higher Dimensions
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Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12
padded FFTs and 4 times the memory of a cyclic convolution.

F — F G = G
Y Y
/ g
fg
v
F x G—F" x (]




Recursive Convolution

e Naive way to compute a multiple-dimensional convolution:

..... Ny > multiply ——= Sy, y,

e The technique of recursive convolution allows one to avoid
computing and storing the entire Fourier image of the data:

FNd — Nd X COIlVOlVeN1

—1
Nd 1 ‘FNd

..... —
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Implicit Padding in 2D

e [ixtra work memory need not be contiguous with the data.

—» —
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Implicit Padding in 2D on T threads
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Implicit Padding in 3D on T threads

time/(m?> log, m?) (ns)
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Centered (Pseudospectral) Convolutions

e For a centered convolution, the Fourier origin (kK = 0) is
centered in the domain:

e Need to pad to N > 3m — 2 to remove aliases.

e The ratio (2m — 1)/(3m — 2) of the number of physical to total
modes is asymptotic to 2/3 for large m.

e A Hermatian convolution arises since the input vectors are real:

fok = fu
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Hermitian Convolution

e The backwards implicitly padded centered Hermitian transform
appears as

m—1

E : 0k
/U’?)g—H“ — Cm wk‘,?")

k=0

where

)

B UO"‘Rng_TU_m it k=0,
Chr = GE (U + G Upg) if1<k<m—1.

e We exploit the Hermitian symmetry wy, = W, —, to reduce
the problem to three complex-to-real Fourier transforms of the
first ¢4+ 1 components of wy,, (one for each r = —1,0, 1), where
c = |m/2] zeros.
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e To facilitate an in-place implementation, in our original paper
[ISIAM J. Sci. Comput. 33, 386 (2011)], we stored the
transtformed values for » = 1 in reverse order in the upper halt
of the input vector.

e However, loop dependencies in the resulting algorithm prevented
the top level of the 1D transforms from being multithreaded.

22



Multithreaded Hermitian Convolution

e Unrolling the loop to process four inputs and outputs
simultaneously allows loop independence to be achieved,
significantly improving performance in both the serial and
parallel contexts.

0
1
k
r =20
c+1—k
c—1 XX
c
p=14 RS
2c — k
2c — 1
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Multithreaded Hermitian Convolution

e Unrolling the loop to process four inputs and outputs
simultaneously allows loop independence to be achieved,
significantly improving performance in both the serial and
parallel contexts.

c+1—k

c;l XX

c+k [

2c+1 —k

2c — 1
2c
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e As a result, even in 1D, implicit dealiasing of pseudospectral
convolutions is now significantly faster than explicit zero
padding.

24



1D Implicit Hermitian Convolution
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3D Basdevant Reduction: 8 FFT's

e Using incompressibility, the 3D momentum equation can be
written in terms of the symmetric tensor D;; = u;u;:

ot i ox; - _8xi+yc{93§?

+ F;.

e Naive implementation: 3 backward FEFTs to compute the
velocity components from their spectral representations,
6 forward FI'Ts of the independent components of D;.

e Basdevant [1983]: avoid one FF'T by subtracting the divergence
of the symmetric matrix S;; = d;; tr D/3 from both sides:

ou; n 8(Dw — S; ) _ _8(p6@~j + SZ]) + V(??uz-

F.
ot 0x ox; 5’x? i

e To compute the velocity components u;, 3 backward FFTs are
required. Since the symmetric matrix D;; — S;; is traceless, it
has just 5 independent components.
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e Hence, a total of only 8 FF'Ts are required per integration stage.

e The effective pressure po;; + S;; is solved as usual from the
inverse Laplacian of the force minus the nonlinearity:.
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2D Basdevant Reduction: 4 FFT's

e The vorticity w = V Xu evolves according to

%_Tf + (u-V)w = (w-V)u + vV w + VX F,

where in 2D the vortex stretching term (w-V )u vanishes and w
is normal to the plane of motion.

o For C? velocity fields, the curl of the nonlinearity can be written
in terms of Dj; = D;; — Sy

0 0 = 0 0 = oa oA 0 0
DQ-— Dlj—( > +0x18x2

Doy — D
0x1 0 / 0290 (Day 1),

on recalling that S is diagonal and S7; = S9.

e The scalar vorticity w thus evolves as

oo [ O 2, . OF, OF
E—F (a_élf% — a—x%) (U1UQ) -+ D210 (u2 — U ) =vVw+ o1 — 8:52'
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e To compute uy and wug in physical space, we need 2 backward
FFTs.

e The quantities ujus and u3 —u? can then be calculated and then

transtormed to Fourier space with 2 additional forward FFTs.

e The advective term in 2D can thus be calculated with just 4
FETs.
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3D Incompressible MHD: 14 FEF'T's
ou; 8(DZ] — 5 ) 8(p5@-j + SZ]) 82u2-

ot i 0x; T 0x * V(?a;?’
9B, G, OB,

+ T )
o = or; | on?

where Dz’j — WUy — BZ'B]', Sz'j — 52']' tr D/S, and

GZ']' = Bz-uj — UZBJ

e The traceless symmetric matrix D;; — .S;; has 5 independent
components.

e The antisymmetric matrix G;; has only 3.

e An additional 6 FFT -calls are required to compute the
components of w and B in x space.

e The MHD nonlinearity can thus be computed with 14 FF'T calls.

30



2D Navier—Stokes Pseudospectral |1 thread]

time/(mlog, m)? (s)

1076

Explicit

Implicit

31



2D Navier—Stokes Pseudospectral |4 threads|

time/(mlog, m)? (s)

(0]

Explicit

(0]

Implicit
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Distributed-Memory Parallelization

e The pseudospectral method uses a matrix transpose to localize
the computation of the multi-dimensional FFT's onto individual
Processors.

e Parallel generalized slab/pencil decompositions have recently
been developed for distributed-memory architectures.

e We have compared several distributed matrix transpose

algorithms, both blocking and nonblocking, under pure MPI
and hybrid MPI/OpenMP architectures.

e Local transposition is not required within a single MPI node.

e We have developed an adaptive algorithm, dynamically tuned
to choose the optimal block size.

33



8 X 8 Block Transpose over 8 processors

Process

N O Ot s W N = O
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8 X 8 Block Transpose over 8 processors

Process

N O Ot s W N = O
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Advantages of Hybrid MPI/OpenMP

e Use hybrid OpenMPI/MPI with the optimal number of threads:

— yields larger communication block size;
— local transposition is not required within a single MPI node;

— allows smaller problems to be distributed over a large number
of processors;

—for 3D FFTs, allows for more slab-like than pencil-like models,
reducing the size of or even eliminating the need for a second
transpose.

— sometimes more efficient (by a factor of 2) than pure MPL.

e The use of nonblocking MPI communications allows us to
overlap computation with communication: this can yield up
to an additional 32% performance gain for implicitly dealiased
convolutions, for which a natural parallelism exists between
communication and computation.
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2D Forced—Dissipative Turbulence Spectrum
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logarithmic slope of E(k)

2D Forced—Dissipative Power Law Exponent
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kg =
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Conservative Integration

e Conservative integration [SIAM J. Appl. Math 59, 1112
(1999)] provides a useful diagnostic technique for ensuring
that the underlying dynamical symmetries have been correctly
implemented.
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White-Noise Forcing

e The Fourier transform of an isotropic Gaussian white-noise
solenoidal force f has the form

kk

Jr(t) = Fy (1 — ﬁ) -E(l), k-fi=0,

where Fj, is a real number and &(%) is a unit central real Gaussian
random 2D vector that satisfies

(Er()Ew(t)) = opwlo(t —1).

e This implies

(Fe(t) fr(t) = Fporw 6(t —t').
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White-Noise Forcing

e The rate of energy injection € is given by

= (flat).ul@.t) = [ (F@.0-ul@. ) do=Re Y (fult)

k

e Here ug(t) is functional of the forcing:

() = wie(t) + / ldr + / fulr

0 Ag|w
Y (t')

where Ag is a functional of w such that

e Nonlinear Green’s function:

Su(t) _ " 0Ak[u(7) L
0 fr(t') B /t’ O frr(t) dr + 0w LH(t — ),

where H is the Heaviside unit step function.

1s bounded.

ug(t))
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e To prescribe the forcing amplitude Fj, in terms of e:

Theorem 1 (Novikov [1964]): If f(x,t) is a Gaussian process,
and u 18 a functional of f, then

ou(x,t)

et = [ [t s, ) (5o ) ao i

e For white-noise forcing:

L k. k' 57k’(t/>
kk kk
2 .
k
1 2
— §ZFI€7
k

on noting that H(0) = 1/2.
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Implementation of White-Noise Forcing

e At the end of each time-step, we implement the contribution of
white noise forcing with the discretization

Wknt+l = Wk p t v 27—77/6 g)

where £ is a unit complex Gaussian random number with (§) = 0

and (|€]*) = 1.

e This yields the mean enstrophy injection

<‘Wk,n—i—1‘2_’wk,n‘2>
2T
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Conclusions

e For centered convolutions in d dimensions, implicit padding
asymptotically uses (2/3)%~1 of the conventional storage.

e The factor of 2 speedup is largely due to increased data locality:.

e Highly optimized and parallelized implicit dealiasing routines
have been implemented as a software layer FFTW++ (v 2.05) on

top of the FFTW library and released under the Lesser GNU
Public License: http://fftwpp.sourceforge.net/

e The advent of implicit dealiasing of convolutions makes
overlapping transposition with FF'T computation feasible.

e Dynamic moment averaging allows the integration time window
to be specified by the user a posteriors.

e Writing a high-performance dealiased pseudospectral code is
now a relatively straightforward exercise: skeleton 2D and
3D optimized codes are available at https://github.com/
dealias/dns/tree/master/protodns.
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