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Two-Dimensional Turbulence

•Navier–Stokes equation for vorticity ω = ẑ·∇×u:

∂ω

∂t
+ u·∇ω = −ν∇2ω + f.

• In Fourier space:

∂ωk

∂t
= Sk − νk2ωk + fk,

where Sk =
∑

p

ẑ·p×k

p2
ω∗

p ω∗
−k−p.

•When ν = 0 and fk = 0:

energy E = 1
2

∑

k

|ωk|
2

k2
and enstrophy Z = 1

2

∑

k

|ωk|
2 are

conserved.
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Fjørtoft Dual Cascade Scenario

k1 k2 k3
. . . Z1

E1

Z3

E3

Z2E2

. . .

E2 = E1 + E3, Z2 = Z1 + Z3, Zi ≈ k2
i Ei.

•When k1 = k, k2 = 2k, and k3 = 4k:

E1 ≈
4

5
E2, Z1 ≈

1

5
Z2, E3 ≈

1

5
E2, Z3 ≈

4

5
Z2.

•Fjørtoft [1953]: energy cascades to large scales and enstrophy
cascades to small scales.
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Kraichnan–Leith–Batchelor Theory

• In an infinite domain:

– large scale k−5/3 energy cascade

– small scale k−3 enstrophy cascade

• In a bounded domain, the situation may be quite different. . .
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Long-Time Behaviour in a Bounded Domain

Tran and Bowman, PRE 69, 036303, 1–7 (2004).
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Casimir Invariants

• Inviscid unforced two dimensional turbulence has uncountably
many other Casimir invariants.

•Any continuously differentiable function of the (scalar) vorticity
is conserved by the nonlinearity:

d

dt

∫
f (ω) dx=

∫
f ′(ω)

∂ω

∂t
dx = −

∫
f ′(ω)u·∇ω dx

=−

∫
u·∇f (ω) dx =

∫
f (ω)∇·u dx = 0.

•Do these invariants also play a fundamental role in the turbulent
dynamics, in addition to the quadratic (energy and enstrophy)
invariants? Do they exhibit cascades?

•Polyakov has suggested that the higher-order Casimir invariants
cascade to large scales, while Eyink suggests that they might
cascade to small scales.
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•What is certain is that only the quadratic invariants survive
high-wavenumber truncation (Montgomery calls them rugged
invariants).
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High-Wavenumber Truncation

∂ωk

∂t
=

∑

p,q

ǫkpq

q2
ω∗

p ω∗
q.

where ǫkpq = (ẑ·p×q) δ(k + p + q).

•Enstrophy evolution:

d

dt

∑

k

|ωk|
2 =

∑

k,p,q

ǫkpq

q2
ω∗

kω
∗
p ω∗

q = 0.

• Invariance of Z3 =
∫

ω3 dx follows from:

0 =
∑

k,r,s

[∑

p,q

ǫkpq

q2
ω∗

p ω∗
qω

∗
rω

∗
s + 2 other similar terms

]
.
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•The absence of an explicit ωk in the first term means that
setting ωk = 0 for k > K will make the summations no longer
symmetric!

•However, since the missing terms involve ωp and ωq for p and q
higher than the truncation wavenumber K, one might expect
that a very well-resolved simulation would lead to almost exact
invariance of Z3.

•We will show that this is indeed the case.
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Enstrophy Balance

∂ωk

∂t
+ νk2ωk = Sk + fk,

•Multiply by ω∗
k and integrate over wavenumber angle ⇒

enstrophy spectrum Z(k) evolves as:

∂

∂t
Z(k) + 2νk2Z(k) = 2T (k) + G(k),

where T (k) and G(k) are the corresponding angular averages of
Re 〈Skω

∗
k〉 and Re 〈fkω

∗
k〉.
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Nonlinear Enstrophy Transfer Function

∂

∂t
Z(k) + 2νk2Z(k) = 2T (k) + G(k).

•Let

Π(k)
.
= 2

∫ ∞

k

T (p) dp

represent the nonlinear transfer of enstrophy into [k,∞).

• Integrate from k to ∞:

d

dt

∫ ∞

k

Z(p) dp = Π(k) − ǫZ(k),

where ǫZ(k)
.
= 2ν

∫ ∞

k

p2Z(p) dp −

∫ ∞

k

G(p) dp is the

total enstrophy transfer, via dissipation and forcing, out of
wavenumbers higher than k.
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•A positive (negative) value for Π(k) represents a flow of
enstrophy to wavenumbers higher (lower) than k.

•When ν = 0 and fk = 0:

0 =
d

dt

∫ ∞

0

Z(p) dp = 2

∫ ∞

0

T (p) dp,

so that

Π(k) = 2

∫ ∞

k

T (p) dp = −2

∫ k

0

T (p) dp.

•Note that Π(0) = Π(∞) = 0.

• In a steady state, Π(k) = ǫZ(k).

•This provides an excellent numerical diagnostic for when a
steady state has been reached.
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Forcing at k = 2, friction for k < 3, viscosity for
k ≥ kH = 100 (255 × 255 dealiased modes)
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Nonlinear Casimir Transfer

•Fourier decompose the fourth-order Casimir invariant

Z4 = N 3
∑

j

ω4(xj) in terms of N spatial collocation points xj:

Z4 =
∑

k,p

ωk ωp ωq ω−k−p−q.

d

dt
Z4 =

∑

k



Sk

∑

p

ωp ωq ω−k−p−q + 3ωk

∑

p

Sp ωq ω−k−p−q





d

dt
Z4 =N 2

∑

k



Sk

∑

j

ω3(xj)e
2πij·k/N + 3ωk

∑

j

S(xj)ω
2(xj)e

2πij·k/N





.
=

∑

k

T4(k). Here Sk is the nonlinear source term in ∂
∂tωk.
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Downscale Transfer of Z4
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Third-order Casimir Transfer Function
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No Cascade of Z3
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Transfer vs. Flux

•Distinguish between transfer and flux.

•The mean rate of enstrophy transfer to [k,∞) is given by

Π(k) =

∫ ∞

k

T (k) dk = −

∫ k

0

T (k) dk.

• In a steady state, Π(k) will trivially be constant within a true
inertial range.

• In contrast, the enstrophy flux through a wavenumber k is
the amount of enstrophy transferred to small scales via triad
interactions involving mode k.
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Flux Decomposition for a Single (k,p, q) Triad
E

(k
)

k

Tp

Tk

p

q

k

Lk=Tk

Sk=0

E
(k

)

k

−Tp

−Tq

p

q

k

Lk=−Tp

Sk=−Tq

E
(k

)

k

Tk

Tqp

q

k

Lk=0
Sk=Tk

•Note that energy is conserved: Lk +Sk = Tk = −Tp−Tq. Thus

Lk = Re
∑

|k|=k

|p|<k

|k−p|<k

Mk,p ωp ωk−p ω∗
k − Re

∑

|k|=k

|p|<k

|k−p|>k

Mp,k−p ωk ωk−p ω∗
p.
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Conclusions

•Even though higher-order Casimir invariants do not survive
wavenumber truncation, it is possible, with sufficiently well
resolved simulations, to check whether they cascade to large
or small scales.

•We computed the transfer function of the globally integrated
ω4 inviscid invariant.

•Numerical evidence suggests that in the enstrophy inertial range
there is a direct cascade of this invariant to small scales.

•However, for the globally integrated ω3 inviscid invariant, we
found no systematic cascade: it appears to slosh back and forth
between the large and small scales. This is expected since ω3

does not have a definite sign.

•One should distinguish between nonlocal transfer and flux. To
compute this decomposition efficiently, one needs to develop a
restricted Fast Fourier transform.
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Asymptote: The Vector Graphics Language

symptotesymptotesymptotesymptotesymptotesymptotesymptotesymptotesymptotesymptotesymptote

http://asymptote.sf.net

(freely available under the GNU public license)
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