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Turbulence

Big wharls have little whirls that feed on their
velocity, and little wharls have littler whirls and so on
to viscosity. . . [Richardson 1922

eIn 1941, Kolmogorov conjectured that the energy spectrum
of 3D incompressible turbulence exhibits a selt-similar power-
law scaling characterized by a uniform cascade of energy to
molecular (viscous) scales:

E(k) = C3k=513,

e Here k is the Fourier wavenumber and E(k) is normalized so
that [ E(k)dk is the total energy.

e Kolmogorov suggested that C' might be a universal constant.
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2D Turbulence: Mathematical Formulation

e Consider the Navier—Stokes equations for 2D incompressible
homogeneous isotropic turbulence with density p = 1.

%—?—Vv2u+u-Vu+VP:F,
V.u =0,
/uda:— /Fdw—
0

with £ = |0, 27| x |0, 27?] and periodic boundary conditions on 9.

e Introduce the Hilbert space
H(Q2) =cl {u c (C*(Q)NLYN)?* | Veu =0, / udx = O} .
9)

with inner product (u,v) = |, u( v(x,t)dz and L* norm
ul = (u,u)'/?



e For u € H(?), the Navier—Stokes equations can be expressed:

CZZ_TZ —vwWu+uVu+VP=F.

o Introduce A = —P(V?), f = P(F), and the bilincar map

B(u,u) =P (u-Vu+ VP),
where P is the Helmholtz-Leray projection operator from
(L*(Q))* to H(Q):
P(v) = v — VV *V.v, Yo € (L*(Q))*%
e The dynamical system can then be compactly written:

C;—?erAquB(u,u) = f.



Stokes Operator A

e The operator A = P(—V?) is positive semi-definite and self-
acjoint, with a compact inverse.

e On the periodic domain €2 = |0, 27| x [0, 27|, the eigenvalues of
A are

A=k-k, ke 7 x 7Z\{0}.
e The eigenvalues of A can be arranged as
O<)\0<)\1<)\2<"', A =1

and its eigenvectors w;, ¢ € Ny, form an orthonormal basis for the
Hilbert space H, upon which we can define any quotient power

of A:

A%w; = Nw;, ac R, 5 €N



Subspace of Finite Enstrophy

e We define the subspace of H consisting of solutions with finite
enstrophy:

( )

V=<quecH,| Z)\j(u,wj)2<oo>.

7=0

\ /

e Another suitable norm for elements u € V' is

R AN
— A2y = / 2 = (w,w;)?
lul| = A"l ( o > A(uw)

i=1 j=0

1/2




Properties of the Bilinear Map

e We make use of the antisymmetry
(B(u,v),w) = —(B(u,w),v).
e In 2D, we also have orthogonality:
(B(u,u), Au) =0
and the strong form of enstrophy invariance:
(B(Av,v),u) = (B(u,v), Av).

e In 2D the above properties imply the symmetry

(B(v,v), Au) + (B(v,u), Av) + (B(u,v), Av) = 0.



Dynamical Behaviour

e Qur starting point is the incompressible 2D Navier—Stokes
equation with periodic boundary conditions:

le—?wLuAquB(u,u):f, u € H.
e Take the inner product with w (respectively Au):
SO + Alu)] = (£, u(0)
YTk v||u = (f,u(t)),
1d
S @) + v Au(b)]” = (f, Au(t).

e The Cauchy—Schwarz and Poincaré inequalities yield

(fru(t) < |fllu®)]  and  Ju(t)] < [lu@)]]

e Since the existence and uniqueness for solutions to the 2D

Navier—Stokes equation has been proven, a global attractor can
be defined |Ladyzhenskaya 1975|; [Foias & Temam 1979].
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Dynamical Behaviour: Constant Forcing

o [f the force f is constant with respect to time, a Gronwall
imequality can be exploited:

() < e u(0)? + (1— e (ﬂ) |
f

e Defining a nondimensional Grashof number G = =, the above
v
inequality can be simplified to

w(t)]? < e u(0)] + (1 — e V)G

e Similarly,
[u@®)|* < e [Ju(O)]] + (1 - e)*G*
e Being on the attractor thus requires

u| <vG  and  ||ul|| < vG.
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Attractor Set A4

e Let S be the solution operator:
S(t)ug = u(t), uy = u(0),
where u(t) is the unique solution of the Navier—Stokes equations.

e The closed ball ®B of radius vG about the origin in the space V
is a bounded absorbing set in H.

e That is, for any bounded set B’ there exists a time ¢y such that

S(t)B' C B, Vt>1i,.

e We can then construct the global attractor

A=()5(t)B,

t>0

so A is the largest bounded, invariant set such that S(t)A = A
for all t > 0.
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Z—F Plane Bounds: Constant Forcing

e A trivial lower bound is provided by the Poincaré inequality:

ul” <|lulf = E<Z
e An upper bound is given by

Theorem 1 (Dascaliuc, Foias, and Jolly [2005])
For all u € A,

£
lul]? < —|u.
1%

e That is,

7 < vGVE.
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Z—F Plane Bounds: Constant Forcing
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Extended Norm: Random Forcing

e For a random variable o, with probability density function P,

define the ensemble average

o o)

e The extended inner product is

e e (] e
with norm
o= ([ (rP) a )/
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Dynamical Behaviour: Random Forcing

e Inergy balance:

l1d
2dt

where € is the rate of energy injection.

—|u|’ + v(Au, w) + (B(u,u),u) = (f,u) = ¢,

e From the energy conservation identity (B(w,w),u) = 0,

1d

5%"“‘2 +v||ul| = e
e The Poincaré inequality ||u|| > |u| leads to

1d

Sl < e vl

1 — —2ut
which implies that |w(t)]* < e |u(0)|* + ( - )6.

vV

e So for every u € A, we expect |u(t)]* < ¢/v.

16



e From |u(t)| < 4/€/v we then obtain a lower bound for | f|:

\/V_€<i:<f’u)< ‘f”u‘:’ﬂ

Tlul w7

e [t is convenient to use this lower bound for | f| to define a lower
bound for the Grashof number G' = | f|/v?, which we use as the
normalization G for random forcing:

e We recently proved the following theorem (JDE 2018):

Theorem 2 (Emami & Bowman [2018]) For all u € A
with energy injection rate €,

€
full < /< ol

e This leads to the same form as for a constant force: 2 < VG VE.
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Z—FE Plane Bounds: Random Forcing
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DNS code

e We have released a highly optimized 2D pseudospectral code in
C++: https://github.com/dealias/dns.

ot uses our FFTW++ library to implicitly dealias the
advective convolution, while exploiting Hermitian symmetry

'Bowman & Roberts 2011}, [Roberts & Bowman 2018§].

e Advanced computer memory management, such as implicit
padding, memory alignment, and dynamic moment averaging
allow DNS to attain its extreme performance.

e The formulation proposed by Basdevant [1983] is used to reduce
the number of FFTs required for 2D (3D) incompressible
turbulence to 4 (8).

e We also include simplified 2D (146 lines) and 3D (287 lines)

versions called ProtoDNS for educational purposes:
https://github.com/dealias/dns/tree/master/
protodns.
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Enstrophy Balance

% + vk*wr, = Sk + fr,

o Multiply by w, and integrate over wavenumber angle =
enstrophy spectrum Z (k) evolves as:

%Z(/{) +wk*Z (k) = 2T (k) + G(k),

where T'(k) and G(k) are the corresponding angular averages of

Re (Skwy) and Re (frwy,).
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Nonlinear Enstrophy Transfer Function

%z(k) +20k*Z(k) = 2T(k) + G(k).

o[t
(k) =2 / " T(p) dp

represent the nonlinear transfer of enstrophy into [k, 00).

e Integrate from k to oo:

i / p)dp = TI(k) — e4(k),

where ez(k) = QV/ p*Z(p)dp — / G(p)dp is the
total enstrophy transfer, via dissipation and forcing, out of
wavenumbers higher than k.
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e A positive (negative) value for II(k) represents a flow of
enstrophy to wavenumbers higher (lower) than k.

e When v = 0 and f = 0:
d ®@)

0=—
dt J,

Z(p)dp =2 /OOO T(p) dp,

so that

00 k
16 =2 [ T dp=-2 [ T()dp
0
e Note that 11(0) = I1(oc0) = 0.
e In a steady state, I1(k) = ez (k).

e This provides an excellent numerical diagnostic for determining
the saturation time ¢;.



Vorticity Field with Hypoviscosity
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Energy Spectrum with Hypoviscosity
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Bounds in the

Z—FE Plane for random forcing
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Enstrophy Transter with Hypoviscosity
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Vorticity Field without Hypoviscosity
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Energy Spectrum without Hypoviscosity
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Bounds in the

Z—FE Plane for Random Forcing
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Enstrophy Transter without Hypoviscosity
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Effect of Adding Friction

e Many numerical simulations of turbulence remove the energy
from the large scales by adding a simple friction term —~yu :

%—TZ—FVA’U,-FB(’U,,’U,) = —yu + f.

e Our analysis can be generalized to account for friction by
redefining the effective Grashof number as

O — Ve +7)

12

)

which again leads to the upper bound

7 < vGVE.
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Energy Spectrum with Friction
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Bounds in the Z—FE Plane with Friction
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Special Case: White-Noise Forcing

e The Fourier transform of an isotropic Gaussian white-noise
solenoidal force f has the form

kk

fr(t) = Fi (1 — ﬁ) Ek(t), k-fr =0,

where Fj, is a real number and &(%) is a unit central real Gaussian
random 2D vector that satisfies

(Er(t)€r(t)) = OppLo(t —t').
e This implies

(Fe()-Fw(t)) = Fiokw ot —t).
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Special Case: White-Noise Forcing

e To prescribe the forcing amplitude F}, in terms of e:

Theorem 3 (Novikov [1964]) If f(x,t) is a Gaussian
process, and u 1S a functional of f, then

- / / (@ ) f(@,¢)) < f}gj i,))> da’ dt'

e For white-noise forcing:

e = Re Z (Fo(t) — Re kzkj / Fult) <§Z’“EQ)> o
—ZFk<1——) <1—Z—§)H(O)
— 5;17,{”

on noting that H(0) = 1/2.
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White-Noise Forcing: Implementation

e At the end of each time-step, we implement the contribution of
white noise forcing with the discretization

Wknt+l = Wk p T v 27—77’6 57

where £ is a unit complex Gaussian random number with (£) =

and <’§2‘> = 1.
e This yields the mean enstrophy injection

<‘wk,n—|—1‘2 - ‘wk,n‘2>
2T

0
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3D Basdevant Formulation: 8 FET's

e Using incompressibility, the 3D momentum equation can be
written in terms of the symmetric tensor D;; = u;u;:

ot i ox - _8:1:Z-+V8x?

+ F;.

e Naive implementation: 3 backward FEFTs to compute the
velocity components from their spectral representations,
6 forward FI'Ts of the independent components of D;.

e Basdevant [1983]: avoid one FFT by subtracting the divergence
of the symmetric matrix S;; = d;; tr D/3 from both sides:

ou; 4 G(DZ] — S ) _ _ﬁ(péij + SZ]) + VaQUZ'

F.
Ot 0x; ox; (%? T

e 'To compute the velocity components u;, 3 backward FFTs are
required. Since the symmetric matrix D;; — S;; is traceless, it
has just 5 independent components.
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e Hence, a total of only 8 FF'T's are required per integration stage.

o The effective pressure po;; + S;; is solved as usual from the
inverse Laplacian of the force minus the nonlinearity:.
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2D Basdevant Formulation: 4 FET's

e The vorticity w = V Xu evolves according to

%_C; + (uV)w = (w-V)u + W+ VXF,

where in 2D the vortex stretching term (w-V )u vanishes and w
is normal to the plane of motion.

o For C? velocity fields, the curl of the nonlinearity can be written
in terms of TD;; = D;; — Sij:

o 0 o 0 0* 0 o 0
T Doj — -7 Dy = < )D12+ (D92 — D),

(%% B 833% 85131 8332

on recalling that S is diagonal and S7; = S9.

e The scalar vorticity w thus evolves as

dw [P O 2, , OF OF
E+(8_91:%_8_:133><u1“2)+ax18x2(u2_“)_Nw+a_x1_8—xz'
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e 'To compute uy and w9 in physical space, we need 2 backward
FFTs.

e The quantities ujus and u3 —u? can then be calculated and then

transformed to Fourier space with 2 additional forward FFTs.

e The advective term in 2D can thus be calculated with just 4
FETs.
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Conclusions

e The upper bound in the Z—FE plane obtained previously for
constant forcing also works for white-noise forcing.

e Adding a large-scale hypoviscosity to the Navier—Stokes
equation has a dramatic effect on the turbulent dynamics: it
restricts the global attractor to the region characterized by the
forcing annulus.

e The bounds on the attractor can easily be generalized to handle
a friction term acting on all scales (instead of a large-scale
hypoviscosity).

e With added friction, the observed dynamics lies well within the
bounds on the attractor.

e We plan to study the relation between white-noise and constant
forcings by examining their effects on the global attractor.

e Such analytical bounds provide a means to evaluate various
heuristic turbulent subgrid (and supergrid!) models.
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