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Abstract. Often in physics and engineering one encounters systems of differential equations that
have a non-trivial dynamic or kinematic structure, e.g., the flow generated by such a system may
satisfy one or more algebraic or differential constraints. Moreover, this structure is often of physical
significance, embodying an important concept such as conservation of energy. Traditional numerical
methods for solving initial value problems typically do not preserve any structure possessed by the
system and can be computationally less efficient than algorithms specifically designed to honour a
system’s structure. Also of interest are “near ideal” systems, where some conservation property is
only weakly violated. Through a series of examples drawn from various physical systems, we discuss
numerical algorithms which, in each case, are specifically constructed to preserve the structure of
the system under consideration. These methods are shown to be of particular interest when the
integration interval is significantly longer than the characteristic time scale(s) of the system.
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1. Introduction. In physics and engineering one often encounters systems de-
scribed by differential equations which possess a non-trivial structure that embodies
important physical properties which can affect the qualitative behaviour of the sys-
tem. We use the term “structure” in a broad sense — we consider any constraint
upon the solutions as structure. Systems of ODEs can possess a wide range of struc-
ture; for example, in classical mechanics the Poincaré differential invariants result in
conservation of (projections of) phase space volume. In addition, systems may pos-
sess constants of motion (first integrals) such as energy or angular momentum, etc.
Systems described by PDEs have the extra complication that they admit the possi-
bility of an (uncountable) infinity of invariants such as the Casimir invariants found
in continuum mechanics [11]. For example, any functional of vorticity is conserved by
Euler’s equations, likewise any functional of the phase-space density is conserved by
the Vlasov equation.

For systems with structure, all numerical errors are not equal. One can think of
the system’s structure as restricting the dynamical variables to some n-dimensional
surface [7] and then separate numerical errors into two categories: those tangent to this
surface and those normal to this surface. As these errors accumulate over many time
steps, those in the latter category are errors that violate the structure of the system
(for example, they may represent energy gain or dissipation in a conservative system)
while those in the former category are more benign as they represent quantitative
rather than qualitative errors.

There is much anecdotal evidence (see for example the discussion in Refs. [8, 13])
that numerical methods which preserve the structure of a system are likely to yield
results superior to (more accurate than) a generic method, or, alternatively, that for a
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given accuracy, a structure preserving method is likely to require less computational
effort. This is in part due to structure-preserving methods having better stability
properties than generic methods; in some cases structure preserving methods can
exhibit unconditional non-linear stability. (Furthermore, for the Korteweg–de Vries
equation it has been rigorously shown [8] that conservative methods exhibit less rapid
error growth than do non-conserving methods.) This seems to be especially true in
cases where the time domain of interest is much larger than the system’s characteristic
time scale(s).

These concepts are also applicable to weakly non-ideal systems, i.e., those systems
that can be viewed as a perturbation to an ideal system. For these systems the
evolution is obtained using operator splitting; one separates the differential operator
into a piece describing the ideal system and a piece describing the perturbation. One
uses a structure-preserving method for the ideal part and a generic method for the
perturbation. The complete evolution is obtained by combining the evolution for the
separate operators and has the desirable property that in the limit as the perturbation
vanishes, the structure-preserving behaviour is recovered [4, 14].

We will proceed by considering several different examples of structure preserving
methods drawn from various branches of physics.

2. Symplectic Integrators. Consider a one-dimensional Hamiltonian system:

q̇ = −∂H

∂p
and ṗ =

∂H

∂q
.(1)

(Throughout, an over-dot will be used to denote a time derivative.) Since this is a
Hamiltonian system, phase space volume is conserved and thus the Poisson bracket
of q and p at any time is unity:

[q(t), p(t)]{q(t′),p(t′)} ≡ ∂q(t)
∂q(t′)

∂p(t)
∂p(t′)

− ∂p(t)
∂q(t′)

∂q(t)
∂p(t′)

= 1.(2)

That is, the dynamical variables at any one time are related to the dynamical variables
at another time by a canonical transformation. Now, suppose one uses Euler’s method
to numerically evolve this system. Denoting the numerical solution at time tn = n τ
by qn and pn, where the derivatives of H are evaluated at qn and pn,

qn+1 = qn − τ
∂H

∂p
(qn, pn),

(3)
pn+1 = pn + τ

∂H

∂q
(qn, pn).

The pertinent question is “Does this time-advance map represent a canonical trans-
formation?” A straightforward calculation reveals

[qn+1, pn+1]{qn,pn} = 1 − τ2

([
∂2H

∂q ∂p

]2
− ∂2H

∂q2

∂2H

∂p2

)
,(4)

where again the derivatives of H are evaluated at qn and pn. We see that evolution
given by (3) is not Hamiltonian, i.e., it will not preserve phase space volume.

The solution, as was originally recognized by De Vogelære [9] in the mid 1950’s,
is to make the numerical approximation to the evolution a canonical transformation.



Structure Preserving Integration Algorithms 3

The net result is that the numerical evolution is the exact solution of some Hamilto-
nian system that approximates the original system. In this way, the numerical error
normal to the constraint surface representing the Poincaré invariants is eliminated.
The importance of this method for numerically evolving Hamiltonian systems was re-
discovered in the 1980’s by accelerator physicists when designing the Superconducting
Super Collider, where it was necessary to understand the smearing of phase space1

due to non-linearities in the machine over 109 particle orbits. In this case, symplec-
tic methods were necessary both to keep the computational demands reasonable and
also to ensure that the phase space distortions seen were solely a consequence of the
machine design and not numerical artifacts. Symplectic methods also figured promi-
nently in the pioneering work of Wisdom and coworkers in exploring the long-term
stability of the solar system, see for example Ref. [16].

For a comprehensive review of these techniques, see the article by Channel and
Scovel [5] as well as the monograph by Sans-Serna and Calvo [12]. A large variety of
methods, both explicit (which are based largely on operator splitting [17]) and implicit
are now known. As a simple example, the Mid-Point rule (where the equations of
motion are differenced between time steps),

qn+1 = qn − τ
∂H

∂p

(
qn+1 + qn

2
,
pn+1 + pn

2

)
,

(5)

pn+1 = pn + τ
∂H

∂q

(
qn+1 + qn

2
,
pn+1 + pn

2

)
.

yields a time-advance map that is a canonical transformation.

3. Exactly Conservative Integrators. We now move on to consider spectral
truncations of the Euler equations. In particular, we consider the “three-wave” prob-
lem obtained by restricting the Fourier-transformed equations to three modes [1, 2,
3, 6, 13]:

φ̇K = MK φP φQ ≡ SK(φ) ,

φ̇P = MP φQ φK ≡ SP (φ) ,(6)

φ̇Q = MQ φK φP ≡ SQ(φ) ,

where φ = (φK , φP , φQ), K, P , and Q are the magnitudes of the Fourier wavenumbers
of the three modes, and the coefficients MK , MP , and MQ satisfy

MK + MP + MQ = 0(7)

and

K2 MK + P 2 MP + Q2 MQ = 0 .(8)

This system possesses two invariants: the total energy

E =
1
2
(
φ2
K + φ2

P + φ2
Q

)
(9)

1Minimizing the phase space occupied by the beam (“emittance” in the language of accelerator
physicists) is critical to obtaining high luminosity and consequently to the usefulness of the collider
for physics experiments.
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and the total enstrophy

Z =
1
2
(
K2 φ2

K + P 2 φ2
P + Q2 φ2

Q

)
.(10)

These invariants follow directly from properties of Sk:∑
k∈{K,P,Q}

φk Sk = 0 ,(11a)

∑
k∈{K,P,Q}

k2 φk Sk = 0 .(11b)

(The equations (6), are identical to Euler’s equations for the rigid body, in which case
the additional invariant is the norm of the total angular momentum.)

When (6) is integrated numerically using standard explicit methods, neither E
nor Z are exactly conserved. This can be illustrated by applying Euler’s method.
Denoting the numerical solution at time tn = n τ by ϕn,

ϕn+1
k = ϕn

k + τ Sk(ϕn) ; k ∈ {K,P,Q} .(12)

The energy at the new time is

E(ϕn+1) =
1
2

∑
k

[ϕn
k + τ Sk(ϕn)]2

= E(ϕn) +
1
2
τ2
∑
k

Sk(ϕn)2 ,(13)

where we have used (11a) in the last step. Thus the total energy is always increasing.
Similarly we find

Z(ϕn+1) = Z(ϕn) +
1
2
τ2
∑
k

k2 Sk(ϕn)2 ,(14)

which is likewise always increasing.
Inspired by the idea of backwards error analysis, one is left to wonder if it possible

to modify the equations of motion such that, for a given integrator, the time-advance
mapping conserves energy and enstrophy while still yielding a numerical approxima-
tion to the original system [13]. More formally, consider the modified system

φ̇k = Sk(φ) + fk ,(15)

where fk is chosen to guarantee exact conservation of energy and enstrophy and to
vanish in the limit τ → 0 sufficiently rapidly that the numerical solution is still
consistent with the original system (i.e., the order of the new time-advance map
should be the same as the original integrator).

We illustrate this analysis using a second-order predictor–corrector algorithm
(Heun’s method [18]). Applying this integrator to the modified system we have

ϕ̃k = ϕn
k + τ (Sk(ϕn) + fk) ,

(16)
ϕn+1
k = ϕn

k +
τ

2

(
Sk(ϕn) + fk + S̃k + f̃k

)
,
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Fig. 3.1. Integration of the three-wave problem using a conventional second-order predictor–
corrector (dotted line) and the conservative predictor–corrector (solid line). Both methods took
approximately 4000 time steps of size 0.05. Initially ϕK =

√
1.5, ϕP = 0, and ϕQ =

√
1.5. The

effect of the 4% energy gain by the conventional method is clearly visible. (From [13].)

where fk is the discretization of fk, S̃k = Sk(ϕ̃) and f̃k = fk(ϕ̃). We expect that it
should be sufficient to modify the corrector:

ϕn+1
k = ϕn

k +
τ

2

(
Sk(ϕn) + S̃k + gk

)
.(17)

The conservation laws imply

τ

2
gk = −

[
ϕn
k +

τ

2

(
Sk(ϕn) + S̃k

)]
(18)

+ sgn(ϕ̃k)
√

(ϕn
k )2 + τ

(
ϕn
k Sk(ϕn) + ϕ̃k S̃k

)
.

It is straightforward, if somewhat tedious, to show that gk = O(τ2), thus preserving
the second-order character of the method. The exactly conservative time-stepper
takes the form

ϕ̃k = ϕn
k + τ Sk(ϕn) ,

(19)

ϕn+1
k = sgn(ϕ̃k)

√
(ϕn

k )2 + τ
(
ϕn
k Sk(ϕn) + ϕ̃k S̃k

)
.
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Comparing these formulas with the original predictor–corrector we see that original
method is altered at all orders in τ beyond second.

In Fig. 3.1, we compare the solution of (6) using the conventional predictor–cor-
rector and the conservative predictor–corrector for a large number of orbits. Clearly
the conservative method gives superior results. (See [13] for additional examples of
conservative integrators and for a more thorough discussion.)

4. Unitary Integrators. As a final example, we consider an n-level quantum
system driven by external fields. The dynamics of the density matrix, ρ, generated
by a Hamiltonian H , is governed by the quantum Liouville equation:

i~ρ̇ = [H , ρ] .(20)

This equation has a non-trivial kinematic structure — the Hioe–Eberly invariants,
tr ρj , j = 1, 2, . . . , n, are non-evolving regardless of the form of the Hamiltonian [10].
These constants are a direct consequence of the unitary evolution of the density matrix
and are the analogues of the Poincaré invariants in classical mechanics. A numerical
solution where these invariants are not preserved is in danger of being unphysical.

The exact dynamics proceeds by unitary evolution

ρ(t + T ) = U(t, t + T )ρ(t)U†(t, t + T ) .(21)

In the spirit of symplectic integrators discussed in §2, the kinematic structure of (20)
will be preserved if the numerical evolution operator is also unitary.

We construct a numerical time-advance mapping by approximating the exact
evolution while retaining the unitary property [15]

U(t, t + τ) ≡ e−iτ A(t,τ) = U(t, t + τ) + O(τκ) ,(22)

where A is a Hermitian matrix that will depend on the Hamiltonian.
By matching the Taylor series solution of (20) term-by-term in τ with the ap-

proximate evolution generated by U(t, t+ τ), the following approximations for A(t, τ)
are obtained: to second order

A = H +
1
2!

τ Ḣ ;(23)

to third order

A = H +
1
2!

τ Ḣ +
1
3!

τ2Ḧ +
i

12
τ2
[
H , Ḣ

]
;(24)

and to fourth order

A = H +
1
2!

τ Ḣ +
1
3!

τ2Ḧ +
1
4!

τ3
...
H +

i

12
τ2
[
H , Ḣ

]
+

i

4!
τ3
[
H , Ḧ

]
,(25)

where [· , ·] is the matrix commutator. Note that to obtain accuracy beyond second-
order, one must take into account that, in general, [H(t1) , H(t2)] 6= 0.

Fortunately, to use these expressions for U , it is not necessary to exponentiate a
(general) n×n matrix. We are free to approximate A in any way consistent with the
order of the method. As described in [14] and [15] it is possible to introduce a suitable
basis, {λk}n2

k=1, such that exponentials of the basis matrices are easily computed. We
then write

e−iτ A(t,τ) =
n2∏
k=1

e−i τ γk ,(26)
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where the γk are determined by matching terms on each side of (26) order-by-order
in τ through O(τκ−2).

As an example, consider a simple two-level system with a time-independent Hamil-
tonian

H =
 ε ω

ω −ε

 .(27)

A second-order integrator is given by

U(τ) =
 cos(ω τ) −i sin(ω τ)

−i sin(ω τ) cos(ω τ)

×
(28)  cos(ε ω τ2) − sin(ε ω τ2)

sin(ε ω τ2) cos(ε ω τ2)

 e−i ε τ 0
0 ei ε τ

 .

In Fig. 4.1(a) and (b), we show the numerical solution of (20) obtained using the
unitary integrator (28) as well as that obtained with a second-order predictor–correc-
tor. The parameters for this example are ε = 1, ω = 0.01, and τ = 0.1 and the initial
condition is

ρ(0) =
1
2

 1 e−iπ/4

eiπ/4 1

 .(29)

In Fig. 4.1(c) and (d) we show the difference between the solutions shown in (a) and (b)
and a high-accuracy integration. It is evident that the error of the unitary integrator
is much smaller than that of the predictor–corrector even though both methods used
the same time step and are both second order. While both methods conserve tr ρ (it
is a linear invariant, and hence preserved by predictor–corrector), this alone is not
sufficient to reproduce the dynamics faithfully.

Fig. 4.1. Results of solving (20) using the unitary integrator (solid line) and a second-order
predictor–corrector (heavy dashes): numerical solution ρ11 (a) and Im ρ12 (b); numerical errors
in ρ11 (c) and Im ρ12 (d).

5. Conclusion. For systems of differential equations that possess structure, bet-
ter numerical results are obtained when the numerical algorithms used to solve these
equations respect this structure. For systems with non-linear algebraic invariants, we
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have shown that it is possible to systematically construct explicit exactly conservative
algorithms. Furthermore, we have seen that kinematic structure is preserved when the
numerical time-advance map shares the group properties of the exact dynamics: for
Hamiltonian mechanics, we preserve the Poincaré invariants when the time-advance
is a canonical transformation; for the quantum Liouville equation, the Hioe–Eberly
invariants are preserved when the time-advance is a unitary transformation. Not only
are the numerical results superior, but by using structure preserving methods, we are
guaranteed the remaining numerical errors do not violate the inherent physics of the
models. The key point is that integrators should have maximum knowledge of the
system they are being used to solve.
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