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I. INTRODUCTION

Over the past few decades, statistical closures have
been widely used to obtain approximate but quantita-
tive descriptions of turbulence. These analytical theories
strive to close the infinite moment hierarchy that results
upon averaging a stochastic nonlinear equation over an
ensemble of initial conditions. Probably the most famil-
iar example of a statistical closure is Kraichnan’s direct-
interaction approximation (DIA).1–5

In Part I of this work,6 a serious deficiency of a popu-
lar analytical theory of turbulence, the DIA-based eddy-
damped Markovian quasinormal (EDQNM) closure, was
pointed out: in the presence of linear waves, that ap-
proximation can lead to (unphysical) negative energies.
An alternative approximation, the realizable Markovian
closure (RMC), was proposed as a remedy. Although
the steady-state EDQNM and RMC equations are equiv-
alent, the RMC provides a realizable7,8 evolution to a
saturated state. This property is crucial to any numeri-
cal implementation; without it, the closure equations can
lead to violent instabilities.

There is yet another difficulty with the DIA-based
EDQNM equations that is not resolved in the RMC.
Like the underlying DIA equations, the EDQNM and
RMC both predict a spurious interaction between the
large- and small-scale eddies. The associated erroneous
transfer of energy associated with this process leads to an
energy spectrum that is shallower than the Kolmogorov
prediction. This discrepancy is the result of a failure
of the DIA equations to obey the statistical property
of the primitive dynamics known as random Galilean
invariance. Although this violation probably does not
significantly affect the predictions of DIA-based closures
at the longest wavelengths, it is a general goal of tur-
bulence theory to recover the correct spectral behav-
ior in each of the energy-injection, inertial, and dissi-
pation ranges. One possible candidate that could accom-
plish this is a closure closely related to the DIA-based
EDQNM known as the test-field model (TFM).9,10 The
TFM is invariant to random Galilean transformations of
the fundamental fields; consequently it predicts the ex-
pected Kolmogorov scalings. Unfortunately, this success
comes with an additional penalty: unlike DIA-based clo-
sures, the TFM contains an adjustable parameter. Sub-
stantial effort has been devoted in the literature to the
search for other random-Galilean-invariant closures (see,
e.g., Refs. 11–14); however, these approximations have
not been extensively used (nevertheless, see Refs. 15
and 16), partly because of the inherent arbitrariness in
their formulations.17 Although these are topics that de-
serve further investigation, we do not pursue them here.
Our primary goal is to develop a realizable version of
the TFM for the Charney–Hasegawa–Mima (or simply,
Hasegawa–Mima) equation, a widely-used description of
drift-wave18,19 and two-dimensional barotropic20 turbu-
lence.

We begin with a brief review of the RMC in Sec. II
and the TFM in Sec. III. Next, we develop in Sec. IV a
new closure, the realizable test-field model (RTFM). Un-
like the TFM, the RTFM is guaranteed to be realizable
even in the presence of the linear waves encountered in
plasma and geophysical turbulence. In the wave-free case
it also exhibits improved transient behavior (although in
a steady state the RTFM equations typically reduce to
the equations for the TFM). Unfortunately, in common
with the TFM, the RTFM contains an adjustable param-
eter. Although it is possible to fix this constant by com-
paring the TFM and DIA in a situation where the DIA is
considered to be reliable,9 the need for such fitting is ad-
mittedly an undesirable weakness. For this reason, we do
not completely abandon the RMC in favor of the RTFM.
In the end, we have at our disposal two complementary
tools for studying drift-wave turbulence: (i) a Marko-
vian statistical closure derived systematically from the
DIA, containing no adjustable constants, that predicts
incorrect inertial-range dynamics; and (ii) a more heuris-
tic approximation, involving adjustable parameters, that
nevertheless yields the expected spectral behavior in an
inertial range. Using these tools, one can learn much
about the statistical properties of the turbulent field.

To facilitate the numerical solution of these approx-
imations, in Sec. V we generalize a recent advance in
the implementation of statistical closures to handle two-
dimensional anisotropic turbulence. Statistical approxi-
mations are well suited to a technique of wave-number
reduction that can greatly extend the inertial range over
which closure solutions can be obtained. The method is
based on a partitioning of wave-number space into bins
over which the statistical variables are presumed to vary
smoothly. Only a single representative mode is evolved
from each bin. One accounts for the number of interact-
ing modes in each triad of wave-number bins via certain
time-independent geometrical weight factors. Since these
weight factors do not involve the dynamical variables,
they need to be computed only once for each new wave-
number partition. The pioneering work on this technique
was done by Leith and Kraichnan;21 however, the energy
spectrum predicted by their scheme converges extremely
slowly as the wave-number partition is refined. The
more exact treatment of the wave-number partitioning
developed in Ref. 22 exhibits dramatically improved con-
vergence and corrects the mistreatment pointed out by
Pouquet23 of nonlocal interactions in the original scheme
of Leith and Kraichnan. We describe in this work an
anisotropic version of the isotropic scheme presented in
Ref. 22.

Next, in Secs. VI and VII we discuss the applica-
tion of this work to the Hasegawa–Mima equation. Re-
lated techniques have previously been applied both to
isotropic turbulence24 and to anisotropic Terry–Horton25

and Hasegawa–Wakatani turbulence.26,27 However, the
present work represents the first application of the RTFM
(and also of the more accurate wave-number partition-
ing scheme developed in Ref. 22) to anisotropic turbu-
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lence. Overall, the results indicate that, for systems with
many interacting modes, the closures work reasonably
well in comparison with direct simulations of the prim-
itive dynamical equations. The algorithm used to com-
pute the geometrical weight factors needed to implement
the wave-number partitioning scheme is discussed in Ap-
pendix A. Finally, in Appendix B we describe the code
DIA

28,29 that was used to obtain the closure solutions
reported in this work.

II. THE REALIZABLE MARKOVIAN CLOSURE

We consider an equation for a scalar field ψ, with zero
mean, that includes an advective nonlinearity of the form
v ·∇Aψ, where A is a linear operator. (For example, the
Hasegawa–Mima equation has this form with v being the

E×B velocity ẑ×∇ψ̂ and A = −∇2
⊥

.) The velocity
field is assumed to be determined from an auxiliary field

ψ̂ such that for passive advection (ψ̂ specified externally)
the Fourier-analyzed equation takes the form

(
∂

∂t
+ νk

)
ψk(t) =

∑

k+p+q=0

MU
kpqψ

∗
p(t)ψ̂∗q (t). (1)

Here the unsymmetrized mode-coupling coefficientMU
kpq,

which describes advection of mode p by mode q, and the
complex coefficient of linear “damping” νk are both in-
dependent of time. Knowledge of MU

kpq is required for
the later discussion of test-field models; however, we are
actually concerned with the self-consistent problem ob-

tained by setting ψ̂ = ψ:
(
∂

∂t
+ νk

)
ψk(t) = 1

2

∑

k+p+q=0

Mkpqψ
∗
p(t)ψ∗q (t), (2)

where Mkpq
.
= MU

kpq + MU
kqp are symmetrized mode-

coupling coefficients (we emphasize definitions with the
notation

.
=).

For some time-independent nonrandom real quan-
tity σk, the Mkpq typically satisfy a further symmetry
of the form

σkMkpq + σpMpqk + σqMqkp = 0; (3)

this implies that the nonlinear terms of Eq. (2) conserve
a total “generalized energy,” defined as

E
.
= 1

2

∑

k

σk〈|ψk(t)|2〉. (4)

Here the angle brackets denote an ensemble average.
For some problems (e.g., two-dimensional turbulence),
Eq. (3) may be satisfied by more than one choice of σk,
each of which corresponds to a distinct nonlinear invari-
ant.

A key statistical variable in our discussion of clo-
sures will be the two-time correlation function Ck(t, t′)

.
=

〈ψk(t)ψ∗k(t′)〉, which in stationary turbulence depends
only on the difference of its time arguments: Ck(t, t′)

.
=

Ck(t − t′). One can express the total energy in terms of
the equal-time correlation function Ck(t)

.
= Ck(t, t):

E = 1
2

∑

k

σkCk(t). (5)

In addition, we define the infinitesimal response function

(nonlinear Green’s function) Rk(t, t′) as the ensemble-
averaged infinitesimal response to a source function η̄k(t)
added to the right-hand side of Eq. (2):

Rk(t, t′)
.
=

〈
δψk(t)

δη̄k(t′)

〉 ∣∣∣
η̄k=0

. (6)

The RMC for Eq. (2) follows from a Markovianization
of the DIA response-function equation,

∂tRk(t, t′) + ηk(t)Rk(t, t′) = δ(t− t′), (7)

with Rk(t,−∞)=0,
and an application of the fluctuation–dissipation (FD)
ansatz6,25

Ck(t, t′) = C
1/2
k (t) r̄k(t, t′)C

1/2
k

∗(t′) (8)

to the two-time correlation functions that appear in the
equal-time covariance equation. The quantity r̄k is re-
lated to the Markovianized nonlinear damping ηk by

r̄k(t, t′)
.
=

{
exp (−

∫ t

t′ P(ηk)(t̄) dt̄) for t ≥ t′,

exp (−
∫ t′

t P(ηk)∗(t̄) dt̄) for t < t′.
(9)

Here P(η)
.
= Re ηH(Re η) + i Im η, where H is the Heav-

iside unit step function. The introduction of the P oper-
ator ensures that r̄k is positive-semidefinite for any value
of ηk and that the Ck(t, t′) determined from Eq. (8) re-
mains bounded as t− t′ → ∞ [assuming that Ck(t) itself
is bounded]. Note that the frequently used steady-state
“single-pole” approximation

Ck(t− t′) ≈ exp(−ηk|t− t′|)Ck(0) (10)

is a special case of Eq. (8).
The resulting equations for the RMC are6

∂tCk(t) + 2 Re ηk(t)Ck(t) = 2Fk(t), (11a)

ηk
.
= νk −

∑

k+p+q=0

MkpqM
∗
pqkΘ∗

pqk C
1/2
q C

−1/2
k , (11b)

Fk
.
= 1

2 Re
∑

k+p+q=0

|Mkpq|2ΘkpqC
1/2
p C1/2

q , (11c)

∂tΘkpq + [ηk + P(ηp) + P(ηq)]Θkpq = C1/2
p C1/2

q , (11d)
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Θkpq(0) = 0. (11e)

In order for Eq. (11d) to have a steady-state solu-
tion, limt→∞ Re[ηk + P(ηp) + P(ηq)] > 0; hence,
limt→∞ Θkpq ≥ 0 for all triads k,p, q. From Eq. (11c) we
then see that Fk ≥ 0, so that Eq. (11a) implies Re ηk ≥ 0
in a steady state. This, in turn, ensures that Eq. (8) re-
duces in a steady state to the equilibrium FD Theorem,

Ck(t, t′) = Rk(t, t′)Ck(∞) (t > t′), (12)

where Rk is the steady-state solution of Eq. (7).
The RMC has many desirable properties, such as the

existence of an underlying Langevin representation and
the conservation of the generalized energies (4) when
νk = 0. However, because it is not invariant to random
Galilean transformations, we are motivated to construct
a related closure that additionally respects this property.

III. THE TEST-FIELD MODEL

In this section we demonstrate that the realizability of
the TFM, like that of the EDQNM closure, is not guar-
anteed in the presence of linear waves (see Fig. 1). Let
us first outline the construction of the TFM for Eq. (1).
In the Navier–Stokes equation, Kraichnan observed that
the rate at which advection couples the solenoidal and
compressive components of a “test” velocity field vk in
the absence of pressure can be taken as a measure of
the interaction of an eddy with an advecting field.9 He
considered a modified Navier–Stokes system in which the
solenoidal component vS

k of a “test” velocity field vk is
distorted by advection of the compressive component vC

k

(and vice versa). That is, in the nonlinearity, the cross
terms that couple the solenoidal and compressive parts of
the test field are removed. Upon applying the FD ansatz

Ck(t, t′) = Rk(t, t′)Ck(t) (t > t′) (13)

and a subsequent Markovianization to the statistical
equations for vS

k and vC
k , Kraichnan obtained a (com-

plex) nonlinear eddy-turnover rate, ηS
k, which he used in

place of ηk in the expression for the DIA-based EDQNM
triad interaction time. What results is a closure invariant
to random Galilean transformations.9,21

Before proceeding, let us correct a typographical error
in the original TFM paper. Equations (4.7) in Ref. 9
should read

ηS(k, t) = πk

∫ ∫

∆

bGkpqΘ
G
pqk(t)U(q, t) pq dp dq, (14a)

ηC(k, t) = 2πk

∫ ∫

∆

bGkpqΘ
G
pqk(t)U(q, t) pq dp dq. (14b)

The quantity ΘG
kpq is in general symmetric only in its

last two indices. An attempt to correct this error was

made in a footnote of Ref. 21, but unfortunately the
same erroneous equation was displayed there. Neverthe-
less, Eqs. (13) and (14) of Ref. 21 in two dimensions are
consistent with our Eqs. (14); furthermore, Eqs. (2.17)
and (2.18) of Ref. 10 are the correct generalizations of
Eqs. (14) to inhomogeneous turbulence.

An early attempt to extend the TFM to dynamics in-
volving oscillatory linear behavior was made by Holloway
and Hendershott30 in the context of Rossby-wave turbu-
lence. However, these authors did not renormalize the
linear frequency. They argued that only the real part
of the damping enters the energy equation. Neverthe-
less, both the real and imaginary parts of the nonlinear
damping should contribute to the evolution of the triad
interaction time; this latter effect was ignored in their
work.31 Furthermore, it can be shown that the closure of
Holloway and Hendershott (which incorporated the bare
linear frequency in the expression for the triad interaction
time) is guaranteed to predict a positive energy spectrum
only in a steady state.6,32

In our notation, the underlying equations for the
solenoidal and compressive components of the test field
appear as

(
∂

∂t
+ νk

)
vS

k(t) = P (k)
∑

k+p+q=0

MU
kpqvC

p
∗(t)ψ̂∗q (t),

(15a)

(
∂

∂t
+ νk

)
vC

k (t) = Π(k)
∑

k+p+q=0

MU
kpqvS

p
∗(t)ψ̂∗q (t).

(15b)

Here P (k)
.
= 1 − Π(k) is the projection tensor, where

Π(k) is the tensor with components Πij
.
= kikj/k

2, vS
k

.
=

P (k)vk, and vC
k

.
= Π(k)vk. The advecting field ψ̂q

is taken to have the correlation function of ψq and the
response function of vS

k .
The evolution of the nonlinear damping rates ηS

k

and ηC
k for the fields vS

k and vC
k may be expressed in

terms of the coefficient

BG(k, p, q)
.
= MU

kpqM
U
pkqP (k) : Π(p). (16)

Since P (k) : Π(p) = P (p) : Π(k), it is convenient to
define modified mode-coupling coefficients

MG
kpq

.
= MU

kpq[P (k) : Π(p)]1/2 (17)

such that BG(k, p, q) = MG
kpqM

G
pkq. In two dimensions,

the tensor contraction P (k) : Π(p) evaluates to

P (k) : Π(p) =
(ẑ · k×p)2

k2p2
. (18)

The final test-field model equations are then

∂tCk + 2 Re ηk Ck = 2Fk, (19a)
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ηk
.
= νk −

∑

k+p+q=0

MkpqM
∗
pqkθ

∗
pqk Cq , (19b)

Fk
.
= 1

2 Re
∑

k+p+q=0

|Mkpq|2θkpqCp Cq, (19c)

∂tθkpq +
(
ηS

k + ηS
p + ηS

q

)
θkpq = 1, θkpq(0) = 0, (19d)

ηS
k

.
= νk + g

∑

k+p+q=0

MG
kpqM

G∗
pkqθ

G∗
pqk Cq, (19e)

ηC
k

.
= νk + λg

∑

k+p+q=0

MG
kpqM

G∗
pkqθ

G∗
pqk Cq, (19f)

∂tθ
G
kpq +

(
ηC

k + ηS
p + ηS

q

)
θGkpq = 1, θGkpq(0) = 0. (19g)

The value of the overall multiplicative factor g entering
the expressions for ηS

k and ηC
k is arbitrarily taken in this

work to be 1.0, in good agreement with the value 1.06 cal-
culated by Kraichnan9 in a comparison of the TFM with
the DIA. This factor comes from a rescaling of the char-
acteristic times for interplay between vS

k and vC
k . The

factor λ represents the number of solenoidal components
associated with each compressive component: in two di-
mensions λ = 1, while in three dimensions λ = 2.

The addition of a uniform field to ψ̂q makes no
contribution to the right-hand sides of Eqs. (15),
since P (k)Π(−k) = Π(k)P (−k) = 0. Equations (19)
are therefore invariant to random Galilean transforma-
tion. As Kraichnan pointed out, the small-wave-number
contributions to the nonlinear damping coefficients ηS

k

and ηC
k are proportional to the mean-square shear rather

than to the kinetic energy.
The proof of realizability for both the TFM and the

EDQNM is based on the reality of the renormalized
damping for Navier–Stokes turbulence.9 Unfortunately,
with the inclusion of wave dynamics, the closure de-
scribed by Eqs. (19) is not always realizable, just as is
the case with the EDQNM. To illustrate, let us apply the
TFM to the degenerate three-mode system that was used
in Part I to establish the nonrealizability of the EDQNM,

(
∂t + 1

2 iω − 1
2γ

)
ψk(t) = Mψ∗pψ∗q , (20a)

(
∂t + 1

2 iω − 1
2γ

)
ψp(t) = −Mψ∗q ψ∗k , (20b)

∂tψq(t) = 0. (20c)

For example, these interaction coefficients can be ob-
tained by truncating the two-dimensional Navier–Stokes
equations for the velocity field down to the single wave-
number triad33,34

k =
√

2M, p =
√

2M, q = 2M. (21)

Let us adopt the normalization ψk = kψ̄k, where ψ̄k is
the stream function. The unsymmetrized mode-coupling
coefficient is given by

MU
kpq =

−p2

kpq
(ẑ·p×q). (22)

Hence

Mkpq =
(q2 − p2)

kpq
(ẑ·p×q), (23a)

and for contributing triads (to within an arbitrary sign)

MG
kpq =

1

kpq
|ẑ·p×q|2, (23b)

consistent with the expressions (15) and (16) in Ref. 21
for B2(k, p, q)

.
= −MkpqMpqk and BG(k, p, q). For the

selected triad, one finds upon noting

|ẑ·p×q|2 =
1

4
(k + p+ q)

×(p+ q − k)(q + k − p)(k + p− q) (24)

that

Mkpq = M, Mpqk = −M, Mqkp = 0, (25a)

and

MG
kpq = MG

kqp = MG
pqk = MG

pkq = MG
qkp = MG

qpk = M.

(25b)

The TFM for (20) is thus

∂tCk − γCk + 2M2 Re θ CqCk = 2M2 Re θ CpCq, (26a)

∂tCp − γCp + 2M2 Re θ CqCp = 2M2 Re θ CkCq, (26b)

∂tCq = 0, (26c)

∂tθ + ηSθ = 1, (26d)

ηS = −γ + iω + 2M2θ∗(Ck + Cp + Cq). (26e)

Let us set Cq(0) = 1, so that Cq(t) = 1 for all t. Note
that

∂t(Ck + Cp) = γ(Ck + Cp), (27)

so that E(t)
.
= 1

2 [Ck(t) + Cp(t)] = E0e
γt, with E0

.
=

1
2 [Ck(0) + Cp(0)] > 0.

In the limit where
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FIG. 1. Demonstration of the nonrealizability of the TFM
in the presence of wave phenomena. The exact, DIA, and
RMC solutions nearly coincide.

ǫ
.
=
M2|θ|[2E0 exp(γt) + 1]

γ
≪ 1, (28)

we obtain for the case Ck(0) = 0 the analytical solution
found in Part I:

Ck(π/γ) = E0e
π{1 − exp (2M2[π + O(ǫ)])}

< 0 (ǫ≪ 1). (29)

We verify a posteriori that ǫ ≪ 1 at the value t = π/γ,
for sufficiently small M . In Fig. 1 we graph the numerical
solution of the TFM for the parameters γ = 0.02, M =
0.003, and E0 = 1. (Actually, for this value of M , the
approximation ǫ ≪ 1 does not hold; nevertheless, the
numerical solution in this case still turns out to be non-
realizable. While smaller values of M satisfying ǫ ≪ 1
lead to qualitatively similar results, the larger value used
in Fig. 1 makes the nonrealizability more clearly visible.)

Some discussion has already appeared in the litera-
ture regarding the application of the TFM to anisotropic
turbulence. In Ref. 35, Herring states that the TFM
equations “for anisotropic, 2D turbulence are a simple
extension of the corresponding formulas for the isotropic
case; to retrieve the latter, one simply suppresses the
φ-dependence of U(k) and g(k).” Nevertheless, be-
cause Markovian closures were originally constructed for
isotropic turbulence, it is conceivable that for anisotropic
applications there may exist more general formulations.36

The TFM has also been generalized and applied to
isotropic passive scalar advection,37–40 where more than
one arbitrary constant enters the formalism. However,
since the principal focus of this paper is on realizability
and not anisotropy (or passive scalar advection), we will

confine our attention to the development of a realizable
version of Eqs. (19).

IV. THE REALIZABLE TEST-FIELD MODEL

Having established the nonrealizability of the TFM, we
now present a modification, based on the FD ansatz (8),
that will restore realizability to this random-Galilean-
invariant closure. One may readily verify that Eqs. (19 a–
d) follow from the time derivative of

Ck(t, t) =

∫ ∞

−∞

dt̄

∫ ∞

−∞

d¯̄t Rk(t, t̄)Fk(t̄, ¯̄t)R∗k(t, ¯̄t), (30)

with Rk given by Eq. (7) and where

Fk(t, t̄) = FS
k(t, t̄) rSk

∗(t, t̄)/r∗k(t, t̄), (31)

FS
k(t, t̄) = 1

2

∑

k+p+q=0

|Mkpq|2

×Cp(t) rS
∗

p (t, t̄)Cq(t) rS
∗

q (t, t̄), (32)

rk(t, t′)
.
=

{
exp (−

∫ t

t′
ηk(t̄) dt̄) for t ≥ t′,

exp (−
∫ t′

t η∗k(t̄) dt̄) for t < t′,
(33)

and

rSk(t, t′)
.
=

{
exp (−

∫ t

t′ η
S
k(t̄) dt̄) for t ≥ t′,

exp (−
∫ t′

t ηS
k
∗(t̄) dt̄) for t < t′.

(34)

The choice of Fk given by Eq. (31) is not manifestly
positive-semidefinite (e.g., see Appendix C of Part I);
moreover, we have seen that it can lead to nonrealizable
behavior. This is a consequence of an improper nonequi-
librium FD ansatz, as was discussed in Part I.

Guided by the derivation of the RMC, we attempt to
enforce realizability by replacing the ansatz (13) with the
modified FD ansatz

Ck(t, t′) = C
1/2
k (t) r̄Sk(t, t′)C

1/2
k

∗(t′), (35)

where

r̄Sk(t, t′)
.
=

{
exp (−

∫ t

t′ P(ηS
k)(t̄) dt̄) for t ≥ t′,

exp (−
∫ t′

t
P(ηS

k)∗(t̄) dt̄) for t < t′.
(36)

This leads to the expression

FS
k(t, t̄) = 1

2

∑

k+p+q=0

|Mkpq|2

×C1/2
p

∗(t) r̄S
∗

p (t, t̄)C1/2
p (t̄)

×C1/2
q

∗(t) r̄S
∗

q (t, t̄)C1/2
q (t̄), (37)
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which, upon employing Theorems 1 and 2 of Part I, is
seen to be positive-semidefinite. However, the additional
factor of rSk(t, t̄)/rk(t, t̄) appearing in Eq. (31) slightly
complicates the situation. To ensure that Fk itself is
positive-semidefinite, we replace (31) with

Fk(t, t̄) = FS
k(t, t̄) r̂∗k(t, t̄), (38)

where FS
k(t, t̄) is given by Eq. (37) and

r̂k(t, t′)
.
=

{
exp (−

∫ t

t′ P [ηS
k(t̄) − ηk(t̄)] dt̄) for t ≥ t′,

exp (−
∫ t′

t
P [ηS

k(t̄) − ηk(t̄)]∗ dt̄) for t < t′.

(39)

Upon inserting Eqs. (38) and (37) into Eq. (30), one
finds that Ck(t) remains real and non-negative, provided
that the initial condition is non-negative. Differentiation
of this expression for Ck(t) with respect to t leads to the
realizable test-field model (RTFM) equations:

∂tCk + 2 Re ηk Ck = 2Fk, (40a)

ηk
.
= νk −

∑

k+p+q=0

MkpqM
∗
pqkΘ∗

pqk C
1/2
q C

−1/2
k , (40b)

Fk
.
= 1

2 Re
∑

k+p+q=0

|Mkpq|2ΘkpqC
1/2
p C1/2

q , (40c)

∂tΘkpq +
[
P(ηS

k − ηk) + ηk + P(ηS
p) + P(ηS

q)
]
Θkpq

= C1/2
p C1/2

q , Θkpq(0) = 0, (40d)

ηS
k

.
= νk + g

∑

k+p+q=0

MG
kpqM

G∗
pkqΘG∗

pqk C
1/2
q C

−1/2
k , (40e)

ηC
k

.
= νk + gλ

∑

k+p+q=0

MG
kpqM

G∗
pkqΘG∗

pqk C
1/2
q C

−1/2
k ,

(40f)

∂tΘ
S
kpq +

[
ηC

k + P(ηS
p) + P(ηS

q)
]
ΘS

kpq = C1/2
p C1/2

q ,

ΘS
kpq(0) = 0. (40g)

These equations typically yield limt→∞(ηS
k − ηk) ≥ 0,

in which case the steady-state forms of the RTFM and
the TFM, Eqs. (19), agree. The restriction ηS

k ≥ ηk is
simply the condition that guarantees that the steady-
state covariance predicted by the TFM,

∫ ∞

−∞

dt̄

∫ ∞

−∞

d¯̄t Rk(∞, t̄)Fk(t̄, ¯̄t)R∗k(∞, ¯̄t), (41)

with Fk given by Eqs. (31) and (32), is non-negative.

The argument used to prove the existence of an under-
lying amplitude equation for the RMC in Part I (see also
Ref. 27) may be used to establish an underlying Langevin
equation for the RTFM:

∂tψk(t) + ηk(t)ψk(t) = fk(t). (42)

Unlike in the corresponding representation of the TFM,
no assumption of δ-correlated statistics is placed on the
noise term f ; for this reason, the RTFM is in general
expected to exhibit improved transient behavior, even in
the absence of linear waves.

The realizability of the RTFM for the degenerate sys-
tem of three interacting waves is evident in Fig. 1: we
see that, unlike the TFM and EDQNM, the RTFM pre-
dicts non-negative energies. Significant discrepancy rel-
ative to the exact, DIA, and RMC solutions is observed
in the RTFM solution; this is presumably a result of the
heuristic construction of test-field models.

By following the construction of the multiple-field
RMC equations, one may in principle construct equa-
tions for a multiple-field realizable test-field model. This
would provide an alternative to the multiple-field TFM
described by Kraichnan10 that has the advantages of re-
alizability in the presence of a linear wave term. Even
in the absence of wave phenomena, this multiple-field
RTFM would conserve all quadratically nonlinear invari-
ants, in contrast to Kraichnan’s inhomogeneous test-field
model, which can only conserve a set of such invariants
for which the corresponding σ matrices are simultane-
ously diagonalizable.25

In two dimensions, there is no distinction between the
compressive and solenoidal damping rates: ηS

k = ηC
k . A

computational savings in Eqs. (40) can then be exploited:
whenever Re ηS

k(t̄) ≥ Re ηk(t̄) for all t̄ ≤ t, it follows that
Θkpq(t) = ΘS

kpq(t).

V. ANISOTROPIC BIN AVERAGING

In this section, we briefly discuss the generalization
of the bin-averaging algorithm developed in Ref. 22 to
anisotropic dynamics. This method exploits the smooth-
ness of the statistical variables in wave-number space (a
property not afforded by the primitive dynamics) and
requires the computation of the integral

∫ k>

k<

k dk

∫ α>

α<

dα

∫ p>

p<

p dp

∫ β>

β<

dβ

∫ q>

q<

q dq

∫ γ>

γ<

dγ

×δ(k + p + q) f(k,p, q), (43)

where α, β, and γ specify the directions of the vec-
tors k, p, and q respectively. Referring to the 3×8 (radial
× angular) bin geometry in Fig. 2, one observes that this
integral represents the product, weighted by the func-
tion f , of the areas of bins P and Q that interact to affect
modes lying in binK. The reduction of this problem from
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FIG. 2. Anisotropic bin geometry.

a six-dimensional integral to a three-dimensional numer-
ical integration is described in Appendix A.

The algorithm we have developed has been subjected
to exhaustive tests, including comparison with known an-
alytical solutions for several anisotropic special cases. In
addition, certain nontrivial consistency properties were
checked. For example, the summation theorem for in-
tegrals was verified for thousands of random subdivi-
sions of the partitions to ensure that no small struc-
tures in the highly discontinuous integrand were being
ignored. In the next two sections, we use this anisotropic
bin-averaging scheme, in the presence of many interact-
ing modes, to obtain statistical-closure solutions of the
Hasegawa–Mima equation.

VI. SHORT-WAVELENGTH HASEGAWA–MIMA

EQUATION

Although the anisotropic drift-wave frequency in the
Hasegawa–Mima equation will not directly affect the evo-
lution of the energy spectrum, it can introduce a fre-
quency mismatch (and anisotropy) into the expression
for the triad interaction time, which in turn will affect
the evolution of the energy spectrum. In the normal-
ization ψk = kψ̄k, where ψ̄k is the stream function, the
scale-invariant mode-coupling coefficients for the short-
wavelength (k ≥ 1) Hasegawa–Mima equation are given
in Eqs. (23a). The restriction to short wavelengths sim-
plifies the analysis of the inertial-range scaling and allows
one to make contact with Rossby-wave turbulence (in the
absence of a free surface).41

We adopt the linear coefficient

νk = iky/k
2 + γk, (44)

where the first term arises from the diamagnetic drift
frequency and the effects of short- and long-wavelength
damping and of non-adiabatic forcing are modeled by the
isotropic growth rate

γk
.
= −D1k

8 −D2k
−4 +

γf

∆f

{
1 if |k − kf | < 1

2∆f ,
0 otherwise.

(45)

As is common practice in numerical simulations of tur-
bulence, hyperviscosities are introduced to reduce the ex-
tent of the active dissipation ranges. We model the wave-
number range between k = 1 and k = 59 and choose

D1 = 10−13, D2 = 0.05, (46a)

kf = 4.212, ∆f = 1.088, γf = 0.0625. (46b)

These parameters are identical to those used previously
in Ref. 42. They were chosen such that the injection
range occupies exactly two radial divisions when the wave
numbers, treated as a continuum, are partitioned into 32
radial × 6 angular bins. This ensures that the forcing
term in Eq. (45) is treated exactly by the wave-number
partitioning scheme.

We exploit the reality condition ψk = ψ∗
−k, so that

only 32 × 3 bins need to be explicitly evolved. To avoid
any redundancy in the mode assignments arising from
the additional symmetry kx → −kx (for fixed ky) of the
growth rate, we align the bin boundaries at θ = −π/2,
where θ represents the angular component of k. The bin
centers are then located at θ = −2π/3, θ = 0, and θ =
2π/3. The linear growth rate and frequency are plotted
in Figs. 3 and 4. The symbols indicate the bin-averaged
values of the growth rate and frequency; the displacement
of these values from the continuous curves results from
the variation of these quantities over a bin.

A. Comparison of closure vs. numerical simulation

The closures were evolved from a statistical-
equilibrium energy spectrum,

E(k) =
1

(2π)2
πk

1 + k2
, (47)

until a steady state was achieved.
In Fig. 5 we compare the steady-state energy spec-

tra (averaged over wave-number angle) predicted by the
RTFM and RMC with the time-averaged spectrum ob-
tained from a direct numerical simulation with a resolu-
tion of 85× 85 dealiased modes (128× 128 total modes).
The discreteness of the DNS solution in wave-number
space, coupled with the anisotropy of the diamagnetic
term, is responsible for the jagged behavior at the largest
scales; the time average was sufficiently long to remove
any temporal noise.
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FIG. 3. Linear growth rate defined in Eq. (45).

FIG. 4. Frequency kyVd/k2 used in the short-wavelength
Hasegawa–Mima problem.

FIG. 5. Comparison of the steady-state energy spectra pre-
dicted by the RTFM, RMC, and conventional numerical sim-
ulation.

We see that the shape of the RTFM spectrum in the
enstrophy inertial range is in rough agreement with the
direct numerical simulation result, although the absolute
energy level is lower. In contrast, the slope of the RMC
is noticeably shallower. To emphasize this difference,
we evaluate the logarithmic slopes of the energy spec-
tra numerically in Figure 6. In the enstrophy range, the
slope predicted by the RTFM closure takes on a max-
imum value of −3.6, to be compared with the slope of
roughly −3.8 obtained for the DNS solution. The RMC,
on the other hand, predicts a maximum slope of −3.2;
this higher value results from the spurious energy trans-
fer from large scales to small scales associated with the
violation of random Galilean invariance. The discrepancy
between these results and the Kolmogorov scaling of −3
is due in part to the fact that the enstrophy range is not
well developed: the dissipation wave number kd ≈ 40 is
only a factor of 8 larger than the maximum injection wave
number. Better illustrations of high-resolution closure
solutions for the enstrophy and energy inertial ranges
of isotropic two-dimensional turbulence can be found in
Refs. 22 and 24.

The dual cascade is clearly evident in the graphs of
the energy and enstrophy transfers, Figs. 7 and 8. Note
that there is significant enstrophy transfer to the long
wavelengths, although the dominant transfer is still to
the small scales. These graphs of the transfer function
are useful for diagnosing the proximity of a solution to
a steady state, where the nonlinear and linear contribu-
tions to the transfer must agree.

One expects the role of the diamagnetic velocity Vd

to be relatively small for this case since the wave num-
bers are all larger than unity. Indeed, anisotropy en-
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FIG. 6. Logarithmic slopes of the RMC and RTFM energy
spectra in Fig. 5.

FIG. 7. Energy transfer for the RTFM solution in Fig. 5.

FIG. 8. Enstrophy transfer for the RTFM solution in Fig. 5.

ters only at the longest wavelengths, as is readily appar-
ent from the angular standard deviation in Fig. 9 of the
spectrum normalized to the mean energy in each wave-
number shell.

In Fig. 10 we illustrate that the removal of the
anisotropic diamagnetic term iky/k

2 from Eq. (44) causes
the RTFM fluctuation level to drop slightly at the longest
wavelengths, but has no discernible effect in the inertial
and dissipation ranges.

We verify the convergence of the wave-number parti-
tioning scheme for the RMC solution in Fig. 11. Varying
either the number of radial divisions or the number of
angular divisions had no noticeable effect on the energy
spectrum.

Finally, we mention a few computation statistics. For
the RTFM, 108 852 distinct triads were evolved a total
of 10 000 time steps (using the adaptive time-stepping
mechanism discussed in Appendix B); saturation was
achieved at t = 2500. This required 4.6 hours of CPU
time on a Sun Ultra-1 SparcStation (the wave-number
averaging required only 79 CPU seconds). In compari-
son, the numerical simulation required about 4 hours on a
CRAY J90. For the RMC, the same computation evolved
101 175 distinct triads and required only 0.85 CPU hours.
In this case, saturation occurred much earlier, at t = 500.

B. Two-time statistics

By initializing the DIA with the steady-state spec-
trum found using the RMC closure with 16 × 8 bins,
we were able to evolve the DIA 200 time steps, or a time
interval of 20. It was found that the energy spectrum
had evolved slightly away from the RMC solution at the
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FIG. 9. Anisotropy of the RTFM energy spectrum of Fig. 5.

FIG. 10. Comparison of the anisotropic and isotropic
RTFM predictions.

FIG. 11. Convergence of the wave-number partition for the
RMC solution in Fig. 5.

smallest scales. At this time some of the modes were
clearly still evolving; we therefore began a second DIA
run initialized with the final energies from the first DIA
run.43 After 300 iterations, or a time interval of 30, there
was no discernible change in the energy spectrum; how-
ever, it is not certain that the system had yet achieved
a true steady state. This second run required 1.7 hours
on a Sun Ultra-1 SparcStation.44 The computational ad-
vantages of a Markovian closure like the RMC over the
DIA are made very clear by this example: the final time
step required 55 CPU seconds and the total computa-
tion time appeared to be increasing as the square of the
number of time steps, as one expects for a system with
many modes.45 Nevertheless, it is interesting to examine
typical two-time correlation and response function data,
as depicted in Figs. 12 and 13. Note that the FD relation
is well satisfied by these statistical quantities.

VII. HASEGAWA–MIMA EQUATION

Let us now consider the complete Hasegawa–Mima
equation,

(1 + k2)
∂Φk

∂t
= −ikyVdΦk + (1 + k2)γkΦk

+ 1
2

∑

k+p+q=0

(q2 − p2)(ẑ · p×q)Φ∗
pΦ∗

q ,

(48)

and adopt the growth-rate function γk used by Waltz,46

γk = 0.06

[
1 − 0.5

( |kx| − 0.5

0.5

)2
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FIG. 12. Typical correlation function obtained by initializ-
ing the DIA with the spectrum of Fig. 5.

FIG. 13. Typical response function obtained by initializing
the DIA with the spectrum of Fig. 5.

FIG. 14. Growth rate used by Waltz.

−0.5

( |ky| − 0.5

0.5

)2
]
− 0.05. (49)

This function is illustrated in Fig. 14. It reaches its max-
imum value of 0.01 at (kx, ky) = (0.5, 0.5) and is damped
at both high and low k. The frequency ikyVd/(1 + k2) is
shown in Fig. 15. The symbols on these plots indicate the
value of the functions at the bin centers, for a (relatively
coarse) 6 × 20 polar bin geometry. Although the reality
condition ψk = ψ∗

−k is exploited to reduce the number
of modes, we do not make explicit use of the additional
symmetry kx → −kx (for fixed ky).

Waltz46 applied the quasistationary EDQNM equa-
tions to Eqs. (48) and (49); in a steady state, these agree
with the RMC equations.47 Using a 10×20 polar bin ge-
ometry from k = 0.1 to k = 1.0, we solved both the RMC
and RTFM for this problem. The RMC was successfully
evolved from a statistical equilibrium distribution to the
stationary state depicted in Fig. 16. This anisotropic
closure computation required 31 CPU minutes on a Sun
Ultra-1 SparcStation, to be compared with 43 minutes on
a CRAY J90 for a conventional 32 × 32 simulation, also
graphed in Fig. 16. The bin averaging for the 68 360 dis-
tinct triads required only 36 CPU seconds. This compar-
ison demonstrates that the computational advantages of
statistical closures are not limited to the case of isotropic
turbulence. In Fig. 17, we graph the anisotropy of the
energy spectrum. In contrast to Fig. 9, we see that the
anisotropy is large and enters over a broad range of wave
numbers.

We found that for this case the RTFM did not relax
to a steady solution; instead, it appeared to oscillate be-
tween two states. The RTFM solution plotted in Fig. 16
corresponds to the state with the maximum energy. It
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FIG. 15. Frequency ikyVd/(1 + k2).

was verified that the TFM also exhibits these oscillations
when applied to this problem. Overall, it would appear
that the RMC is a better candidate than the more heuris-
tic TFM/RTFM for describing the statistical properties
of broad-band turbulence, where no inertial range is ex-
pected and random Galilean invariance is not an issue.

A. Wave-number scaling of the nonlinear damping

In Fig. 18 we depict the angle-averaged scaling of η̂k
.
=

ηk−νk with k for Waltz’s case, as computed by the RMC.
At the long wavelengths, the arguments of Dupree48

might lead one to the (incorrect) scaling49

η̂k ∼ k4D. (50)

Krommes et al.50 have shown that Eq. (50) results from
retaining only the terms that correspond to a passive ap-
proximation. In contrast, a fully self-consistent analysis
based on a Markovian closure may be used to deduce the
approximate scaling relation

η̂k ∼
{
−k3k0D for k ≪ k0,
kVE for k ≫ 1.

(51)

Here, k0 represents a characteristic energy-containing
wave number less than 1 and VE represents the E×B
velocity. We see from Fig. 16 that k0 ≈ 0.4 for our case.

The negative value of the predicted η̂k at small wave
numbers represents nonlinear forcing. In Fig. 18, we
see that η̂k is indeed negative for small k and increases
roughly linearly as k is increased, as expected from
Eq. (51) and contrary to Eq. (50).

FIG. 16. Energy spectra predicted by the RMC, RTFM
and DNS for Waltz’s case.

FIG. 17. Anisotropy of the RMC energy spectrum in
Fig. 16.
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FIG. 18. Scaling of η̂k vs. k for the RMC solution in Fig. 16.

Note that in a true enstrophy inertial range, the scal-
ing η̂k ∼ k would differ from the scaling for the turnover
time τeddy

.
= ℓ/u: from the relation u2 ∼ kE(k) ∼ k−2,

it follows that τeddy is roughly independent of wave num-
ber. In the RTFM, this distinction, between the turnover
rate ηS

k ∼ τ−1
eddy and the predicted nonlinear damping

rate ηk, is fundamental to the issue of random Galilean
invariance; a demonstration of the ηS

k scaling is given in
Ref. 24.

B. Two-time statistics

We were able to obtain a stationary DIA solution for a
6× 20 bin geometry by using a steady-state 6× 20 RMC
solution as an initial condition. The saturation of the
energy E, enstrophy Z, and palinstrophy P , defined by

E
.
= 1

2

∑

k

k2〈|ψk|2〉, (52a)

U
.
= 1

2

∑

k

k4〈|ψk|2〉, (52b)

P
.
= 1

2

∑

k

k6〈|ψk|2〉, (52c)

is depicted in Fig. 19. In this run, 21 040 triads were
evolved 250 time steps (1.3 CPU hours on a Sun Ultra-1
SparcStation) to obtain the final energy spectrum de-
picted in Fig. 20. This result demonstrates that it is
numerically feasible to integrate the DIA for anisotropic
two-dimensional turbulence even in the presence of many
interacting modes.

FIG. 19. Saturation of the DIA for Waltz’s case.

Sample correlation- and response-function data are il-
lustrated in Figs. 21 and 22. We note that although
these statistical quantities do not satisfy the FD rela-
tion perfectly (since a saturated turbulent state is not a
thermodynamic equilibrium), there is still a qualitative
correspondence between their temporal behaviors.

VIII. DISCUSSION

In this work we proposed a new closure, the realizable
test-field model (RTFM), to overcome a flaw of the test-
field model in the presence of linear waves: namely, the
possibility that predicted energies can become negative,
as illustrated in Fig. 1. This closure was applied to ob-
tain statistical solutions of the Charney–Hasegawa–Mima
equation. Because the linear wave term in this equation
is anisotropic, it was necessary to develop a generaliza-
tion of the isotropic wave-number partitioning scheme
discussed in Ref. 22. With this technique, which affords
a dramatic reduction in the number of retained Fourier
modes, it was possible to apply the RTFM to obtain sat-
urated states of drift-wave turbulence in two dimensions.
The results were compared with those obtained using di-
rect numerical simulation and also with two alternative
closures, the RMC and the related DIA.

Another contribution of this work was the extension of
Kraichnan’s test-field model to situations more general
than the isotropic Navier–Stokes turbulence for which
it was originally constructed. While the test-field proce-
dure is clear for cases of pure advection, we remark that it
may lose at least its intuitive content in more complicated
situations of arbitrary (e.g., complex) mode-coupling co-
efficients. What can be said in defense of the general
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FIG. 20. Comparison of the RMC and DIA energy spectra
for Waltz’s case, using a 6 × 20 bin geometry.

FIG. 21. Typical correlation function obtained by applying
the DIA to Waltz’s case.

FIG. 22. Typical response function obtained by applying
the DIA to Waltz’s case.

procedure described in Sec. III is that it leads to random
Galilean invariant-modifications, Eqs. (19) and Eqs. (40),
of the original closure equations.

In a comparison of closure solutions to conventional
numerical simulation data for a special case of the
Hasegawa–Mima problem, reasonable agreement was ob-
tained. The dual-cascade scenario was demonstrated by
examining the energy and enstrophy transfer functions.
With the closure solutions, we also examined the degree
of anisotropy in these problems: in the Hasegawa–Mima
equation, anisotropy enters only at the long wavelengths.

In addition, we obtained DIA solutions for which the
correlation and response functions were found to be in
good correspondence with the FD relation. With the
RMC, we obtained a scaling for the nonlinear damping
coefficients η̂k that contradicts simple passive estimates
but is in reasonable qualitative agreement with analytical
estimates of the self-consistent closure predictions.

It is worth mentioning an alternative to the anisotropic
wave-number partitioning scheme developed in this work.
Herring35 expanded the statistical variables in Fourier
harmonics of the polar angle. If the turbulence is con-
sidered to be approximately isotropic, one can obtain an
accurate representation by truncating the Fourier series
at low order. In the bin procedure this would correspond
to using only a few angular partitions. It would be use-
ful to compare the advantages and disadvantages of the
two approaches. It is likely that one method will be more
accurate than the other for certain specific angular distri-
butions; however, it has not yet been established in gen-
eral which procedure can most probably achieve a given
accuracy with the least computational effort.

Finally, let us comment on a possible use of the
RTFM. It is occasionally asserted that a violation of ran-
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dom Galilean invariance should not materially affect the
computation of plasma transport coefficients (e.g., see
Ref. 27). Detailed comparisons of the RMC and RTFM
solutions could be used to test this assertion for drift-
wave problems more realistic than the ones presented
here. If this turns out to be generally true, then sys-
tematically derived DIA-based statistical closures like the
RMC may turn out to be useful tools for investigating
plasma turbulence, despite their incorrect treatment of
inertial-range dynamics.
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APPENDIX A: GEOMETRIC WEIGHT

FACTORS IN POLAR COORDINATES

We now present a general anisotropic algorithm for
evaluating the geometry weight factors in Eq. (43). Upon
transforming the angular variables of integration to ᾱ

.
=

α − α< and β̄
.
= β − β< and defining ∆α

.
= α> − α<

and ∆β
.
= β> − β<, we evaluate the innermost two inte-

grals of Eq. (43) to obtain
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∫ k>

k<

k dk

∫ ∆α

0

dᾱ

∫ p>

p<

p dp

∫ ∆β

0

dβ̄ [H(q> − |k + p|) − H(q< − |k + p|)]

× [H(γ> − Arg(−k − p)) − H(γ< − Arg(−k − p))] f(k,p,−k − p), (A1)

where Arg denotes the principal branch, taken in the interval [0, 2π). Without loss of generality, we order the variables
so that ∆β ≥ ∆α. In terms of new angular variables r̄

.
= β̄−ᾱ and ᾱ and upon denoting f(k, p, r̄, ᾱ)

.
= f(k,p,−k−p),

one may rewrite the integral as

∫ p>

p<

p dp

∫ k>

k<

k dk

∫ ∆β

−∆α

dr̄ [H(q> − |k + p|) − H(q< − |k + p|)]

×
∫ ᾱ>(r̄)

ᾱ<(r̄)

dᾱ [H(γ> − Arg(−k − p)) − H(γ< − Arg(−k − p))] f(k, p, r̄, ᾱ). (A2)
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Here

ᾱ<(r̄)
.
=

{
0 if r̄ ≥ 0,
−r̄ if r̄ < 0,

(A3)

ᾱ>(r̄)
.
=

{
∆β − r̄ if r̄ ≥ ∆β − ∆α,
∆α if r̄ < ∆β − ∆α.

(A4)

A particular branch of Arg(−k − p) is given by

arg(−k − p) = α+ θ, (A5)

where, in terms of r
.
= β − α = r̄ + β< − α<,

θ
.
= Θ(−k − p cos r,−p sin r) (mod 2π) (A6)

and Θ(x, y) is any given branch of the generalized arct-
angent function:51

Θ(x, y)
.
=

{
arctan y/x if x > 0,
π + arctany/x if x < 0,
0 if x = 0.

(A7)

Thus one branch of the condition

γ< ≤ arg(−k − p) ≤ γ> (A8)

can be written

γ< − α< − θ ≤ ᾱ ≤ γ> − α< − θ. (A9)

This enables one to do the ᾱ integration immediately:
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h(k, p, r̄)
.
=

∫ ᾱ>(r̄)

ᾱ<(r̄)

dᾱ [H(γ> − Arg(−k − p)) − H(γ< − Arg(−k − p))] f(k, p, r̄, ᾱ)

= I [min(ᾱ>, γ> − α< − θ),max(ᾱ<, γ< − α< − θ)]

+I [min(ᾱ>, γ> − α< − θ + 2π),max(ᾱ<, γ< − α< − θ + 2π)]

+I [min(ᾱ>, γ> − α< − θ + 4π),max(ᾱ<, γ< − α< − θ + 4π)] , (A10)
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where I[b, a]
.
= H(b− a) [g(k, p, r̄, b) − g(k, p, r̄, a)] and

g(k, p, r̄, a)
.
=

∫ a

0

dᾱ f(k, p, r̄, ᾱ). (A11)

The latter integral is computed analytically and coded as
a subroutine. For example, in the (usual) case where f is
isotropic one obtains g(k, p, r̄, a) = af(k, p, r̄, 0). The 2π
and 4π offsets of the second and third terms of h(k, p, r̄)
correctly yield the principal branch (Arg), assuming that
the angular variables here are taken between 0 and 2π.
(These offsets arise from the observation that if α ∈
[0, 2π] and β ∈ [0, 2π], then α− β ∈ [−2π, 2π], etc.) The
problem has thus been reduced to a three-dimensional
integration over p, k, and r̄.

The Heaviside restrictions on |k + p| can be trans-
formed into restrictions on the limits of the r̄ integra-
tion, eliminating unnecessary integration when the r̄ in-
tegrand is zero due to the magnitude restriction. For
fixed p and k, one solves the relations

q2
>

= k2 + p2 + 2kp cos r2,3, (A12a)

q2
<

= k2 + p2 + 2kp cos r1,4 (A12b)

for the r’s, taking them to lie in [0, 2π]. The magnitude
restriction is then equivalent to the requirement that the
principal angle of r

.
= β − α lies in [r1, r2] or [r3, r4].

Next, one computes r̄1,2 = r1,2 − roff , where roff is the
principal angle of β< − α<, adjusting r̄1 and r̄2 to lie
between [0, 2π] if possible. (Otherwise, if r̄1 < 0 < r̄2,
the interval [r̄1, r̄2] is split into [0, r̄2] and [2π+r̄1, 2π] and
the following procedure is applied to each sub-interval.)
The r̄ integral then becomes

(∫ min(∆β,r̄2)

max(∆β−∆α,r̄1)

dr̄ +

∫ min(∆β−∆α,r̄2)

max(0,r̄1)

dr̄

+

∫ min(0,r̄2−2π)

max(−∆α,r̄1−2π)

dr̄

)
h(k, p, r̄). (A13)

This procedure is repeated for the [r̄3, r̄4] interval as well.
To get the final answer to Eq. (43), the sum of these two
results is then multiplied by kp and integrated over k
and p.

a. Numerical Considerations

Efficient numerical integration requires some analyti-
cal knowledge of the behavior of the integrand to deter-
mine the appropriate sampling resolution. An adaptive
Simpson method is used to achieve a specified relative ac-
curacy. To work correctly, the integration routine needs
a resolution parameter ∆max, which is set to the size of
the smallest structure in the integrand.

There is a resolution requirement associated with the
angular restriction in Eq. (A13). To circumvent this

problem we make the stipulation, without loss of gen-
erality, that ∆γ

.
= γ> − γ< is larger than ∆β (and hence

also ∆α). Then if Arg(−k − p) lies outside the inter-
val [γ<, γ>] for both the endpoint evaluations of the r̄
integral, it will for every interior point as well, so the
integral must vanish. Otherwise, the integrand will not
vanish for at least one of the endpoints and the desired
structure can be numerically resolved. With the above
ordering, using the value ∆max = π for the r̄ integra-
tion is sufficient to guarantee that the code samples the
integrand with a sufficiently fine resolution.

It is not hard to show that the size of the smallest
structure for the p and k integrals is about q> − q<. To
see this, consider the extreme cases of the magnitude
restriction q< ≤ |k + p| ≤ q>:

p2,3 = −k cos r ±
(
q2

>
− k2 sin2 r

)1/2
, (A14a)

p1,4 = −k cos r ±
(
q2

<
− k2 sin2 r

)1/2
. (A14b)

Note that p3 ≤ p4 ≤ p1 ≤ p2. The integrand is nonzero
only on the intervals [p3, p4] and [p1, p2]. The resolution
is determined by the minimum value, over k and r, of

∆p
.
= p4 − p3 = p2 − p1 ≥ q> − q<. (A15)

The last inequality follows from the monotonicity of the
function f(x)

.
= (x2 − a2)1/2 − x for positive x. It is

thus found that setting ∆max to less than 1
2 (q> − q<)

eliminates any resolution problems. (The factor of 1
2 is

needed since the structure could be split equally among
two adjacent intervals used in the numerical integration.)
In the code ∆max is set to 0.4(q>−q<) for both the p and k
integrals.

APPENDIX B: NUMERICAL CODE

The numerical computations in this work were per-
formed with the multipurpose code DIA.28,29,25 It is de-
signed around a general kernel that implements the DIA,
EDQNM, RMC, TFM, and RTFM for the generic n-field
system

∂

∂t
ψα + να

µψ
µ = 1

2

∑

∆

Mα
βγψ

β∗ψγ∗. (B1)

The code may be tailored to a wide class of physics prob-
lems, including those involving inhomogeneities, kinetic
descriptions, or three-dimensional dynamics, by specify-
ing routines to compute the coefficients να

µ and Mα
βγ .

In Part I of this work, we used this same code to apply
closures to study systems of three interacting waves.

The basic time-stepping algorithm is a predictor–
corrector scheme that is formally accurate to second or-
der in the time step ∆t. For the DIA, we employ the same
scheme used by Kraichnan.52 This semi-implicit method
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guarantees exact energy conservation by the nonlinear
terms and preserves the inviscid equilibrium solutions
that are discussed in Appendix D of Part I. It is used
to evolve the energy equation of all three closures and
also to compute the DIA response function. The scheme
that advances the quantity Θkpq of the RMC solves for
the evolution on the linear time scale exactly. For the
EDQNM closure, a different algorithm that exploits the
Markovian form of the evolution equation is used for ad-
vancing θkpq in a manner that numerically guarantees
the non-negativity of θkpq in the wave-free case.53

The use of a variable time step is advantageous for
problems involving growing amplitudes, in which the
nonlinear time scale becomes progressively shorter as the
run proceeds. We have incorporated a mechanism that
automatically adjusts the time step dynamically based on
stability considerations without user intervention. The
two stages of the predictor–corrector algorithm provide
a convenient means of dynamically estimating the nu-
merical error. We define the error in any particular time
step t to be

ǫ(t)
.
= max

{ |P (t) − C(t)|
max [|C(t)|, |C(t− ∆t)|]

}
, (B2)

where P (t) is the predicted value of some quantity
and C(t) is the corrected value. The outer maximum
is taken over all explicitly evolved variables but not over
derived variables such as η. The previous value C(t−∆t)
is used to assist the time-stepping mechanism during the
transition of a quantity through zero.54

The user specifies two parameters that must bound the
above error:

tolmin ≤ ǫ ≤ tolmax. (B3)

If the inequality on the left (right) is violated, the time
step is multiplied (divided) by a user-specified factor. By
leaving the choice of the two tolerance parameters up to
the user, this scheme effectively avoids all of the com-
plications associated with the estimation of numerical
stability.55
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