
Journal of Scientific Computing manuscript No.
(will be inserted by the editor)

The Partial Fast Fourier Transform

John C. Bowman · Zayd Ghoggali

Submitted to Journal of Scientific Computing: April 10, 2017

Abstract An efficient algorithm for computing the one-dimensional partial fast

Fourier transform fj =
∑c(j)
k=0 e

2πijk/NFk is presented. Naive computation of the
partial fast Fourier transform requires O(N2) arithmetic operations for input data
of length N . Unlike the standard fast Fourier transform, the partial fast Fourier
transform imposes on the frequency variable k a cutoff function c(j) that depends
on the space variable j; this prevents one from directly applying standard FFT
algorithms. It is shown that the space–frequency domain can be partitioned into
rectangular and trapezoidal subdomains over which efficient algorithms can be
developed. As in the previous work of Ying and Fomel (2009), the contribution
from rectangular regions can be reduced to a series of fractional-phase Fourier
transforms over squares, each of which can be reduced to a convolution. In this
work, we demonstrate that the partial Fourier transform over trapezoidal domains
can also be reduced to a convolution. Since the computational complexity of a
dealiased convolution of N inputs is O(N logN), a fast algorithm for the partial
Fourier transform is achieved, with a lower overall coefficient than obtained by
Ying and Fomel.

Keywords partial Fourier transform · fast Fourier transform · FFT · discrete
Fourier transform · fractional-phase Fourier transform · convolution · implicit
dealiasing

Mathematics Subject Classification (2000) 65T50 · 86A15

This work was supported by the Natural Sciences and Engineering Research Council of Canada
and is based on a report submitted to the University of Alberta in partial fulfillment of the
requirements for the degree of Master of Science.

John C. Bowman
Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Al-
berta T6G 2G1, Canada. E-mail: bowman@ualberta.ca

Zayd Ghoggali
Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Al-
berta T6G 2G1, Canada. E-mail: zayd gho@yahoo.fr

2 John C. Bowman, Zayd Ghoggali

1 Historical context

The discrete Fourier transform (DFT) is one of the most important tools used to
perform spectral analysis in many real-world applications. For example, it is used
to obtain the spectrum (frequency distribution) of a signal and to accelerate the
computation of discrete convolutions [17]. The DFT is the discrete counterpart of
the continuous Fourier transform (CFT). In practice, the values of a given signal
are obtained either via a digital computer or measured at discrete time intervals;
the signal values are thus only known on a discrete grid [1].

The DFT is the natural tool for computing the Fourier transform of discrete
data. Even in the case of continuous input signals that are explicitly defined by
analytic expressions, the DFT often provides a more convenient and practical
approach than the CFT, especially when it comes to getting a global picture
of the frequency spectrum of the input signal: it is often very hard to compute
the CFT analytically due to the difficulty of expressing the required integrals
in closed form [1]. The use of the DFT has expanded quickly over the past few
decades. It has found many diverse applications such as digital filtering, digital
image processing, digital communications, seismic processing, medical electronics,
and wildlife acoustic detection. The motivation behind developing fast DFT and
convolution algorithms stems from the huge computational cost of a direct imple-
mentation: a DFT or a convolution of length N has a computational complexity
proportional to N2, which quickly becomes excessive for large data sets [21].

Fortunately, the computational cost of a DFT can be dramatically reduced by
using a fast Fourier transform (FFT) algorithm, an important example of which
was introduced in 1965 by J. W. Cooley and J. W. Tukey [8]. They showed that a
DFT of highly composite length N can be computed using O(N logN) operations
for N � 1. Since discrete convolutions can be computed via DFTs, the FFT
algorithm can be used as well to reduce the number of arithmetic operations
required to compute a discrete convolution from O(N2) to O(N logN) [21]. The
Cooley–Tukey algorithm was a turning point in the field of digital signal processing
and had a revolutionary effect on numerical analysis [17]. For example, directly
computing a DFT of length 1024 requires about 106 operations. However, only
104 operations are needed when an FFT algorithm is used, an improvement by a
factor of a 100. This factor (N/ log2N) becomes larger as the length of the input
data N increases.

Special cases of the FFT were known long before 1965 [13]; in fact Gauss
used an algorithm quite similar to the FFT to compute the coefficients of a finite
Fourier series [16]. This calculation appeared in his papers dated 1805 and was
published after his death in his collected works [12]. More recently, many new FFT
algorithms beyond the Cooley–Tukey algorithm have been proposed to generalize
and/or further decrease the computational complexity of the DFT. In particular,
Bluestein in 1968 developed an FFT algorithm [4] that computes the discrete
Fourier transform (DFT) for arbitrary lengths with multiplicative complexity of
order O(N logN). The Bluestein algorithm (also known as the chirp z-transform
algorithm) uses an algebraic identity to express the DFT as a linear convolution
of two sequences; the convolution is then computed efficiently using an FFT, after
taking care to remove unwanted aliases (cyclic harmonics). Unlike some other FFT
algorithms, Bluestein’s FFT algorithm is not restricted to power-of-two lengths
and can be used to compute more general transforms [24].

The Partial Fast Fourier Transform 3

The present work is heavily based on Bluestein’s algebraic identity. Let us
begin by defining the DFT. It is convenient to introduce the Nth primitive root
of unity, ζN

.
= exp (2πi/N), where

.
= is used to emphasize a definition. The N -

point unnormalized discrete Fourier transform DFT of a complex input vector
{Fk : k = 0, . . . , N − 1} can be expressed as a weighted sum of powers of ζN :

fj
.
=

N−1∑
k=0

ζjkN Fk, j = 0, . . . , N − 1. (1.1)

The FFT exploits the properties that ζrN = ζN/r and ζNN = 1 for any divisor r
of N .

The partial Fourier transform discussed in this work restricts the summation
over k in Eq. (1.1) with a spatially dependent cutoff c(j):

fj
.
=

c(j)∑
k=0

ζjkN Fk, j = 0, . . . , N − 1.

The important special case where c(j) is a constant K < N is equivalent to a
pruned Fourier transform [19], where all but K of the inputs are known to be
zero. The corresponding inverse transform is called a sparse Fourier transform
[27], where all but K of the outputs are known to be zero. For K � N , practical
algorithms with complexity O(K logN) for the sparse Fourier transform have been
developed [15]. Optimized O(N logN) algorithms for the case K = N/2 and K =
2N/3 have also been developed for dealiasing linear convolutions [5,25].

In contrast to these previous studies, we consider the one-dimensional partial
Fourier transform with a general cutoff c(j) on the frequency variable k, as illus-
trated in Figures 2–4. Such transforms arise in specialized applications in geophys-
ics [28] and inertial-range turbulence theory. The dependence of k on j through
the cutoff c(j) prevents one from using standard FFT algorithms. For some choices
of c(j), the direct computation of the partial Fourier transform can require up to
O(N2) computations for input data of size N . This can be expensive, especially
when the length of the input data is large. We motivate the interest in efficiently
computing the partial Fourier transform with an application in Section 2 and re-
view related literature in Section 3. In Section 4, we describe the fractional-phase
Fourier transform, which we use in Section 5 to develop an efficient algorithm
that reduces the cost of computing the partial Fourier transform from O(N2) to
O(N log2N), with an overall coefficient significantly smaller than that found by
Ying and Fomel [28]. We describe an efficient numerical implementation of our
algorithms in Section 6 and summarize the contributions of this work in Section 7.

2 Motivating application

Partial Fourier transforms arise naturally in certain physical applications. One
challenging application that motivates the development of fast algorithms for par-
tial Fourier transforms is the computation of integrals subject to certain con-
straints. Such integrals appear in reflection seismology when extrapolating wave-
fields using seismic migration methods like the phase-shift-plus-interpolation (PSPI)

4 John C. Bowman, Zayd Ghoggali

method. This method was introduced in 1984 by Gazdag and Sguazzero as a gen-
eralization of the phase-shift method to allow lateral velocity variations [3]. The
PSPI method is based on propagating the wavefield at various depths using a
suitable set of reference velocities to obtain the multi-reference wavefields in the
frequency–wavenumber domain [3,26]. The wavefields obtained by these constant-
velocity continuations are then transformed back into the space domain. Based on
the relationship between the medium velocity and the reference velocities, the final
result is obtained by interpolating the reference wavefields in the frequency–space
domain [3,26].

The two space-domain wavefield extrapolated with wave propagation velocity
v(x) at depth z using the PSPI algorithm is

ΨPSPI(x, z, ω) =
1

2π

∫
R
ψ̂(kx, 0, ω)α(kx, x, ω)eikxxdkx,

where x is the horizontal spatial position, z is the depth, ω is the frequency,
and kx is the horizontal wave number [9]. Here ψ̂(kx, 0, ω) refers to the wavenumber
domain wavefield at z = 0, which is given by the spatial Fourier transform of the
space-domain wavefield Ψ(x, 0, ω) at the surface z = 0:

ψ̂(kx, 0, ω) =

∫
R
Ψ(x, 0, ω)e−ikxx dx.

The phase shift operator α(kx, x, ω) is given by

α(kx, x, ω) =

{
eizkz if |kx| ≤ ω

v(x) ,

e−|zkz| if |kx| > ω
v(x) ,

where kz = ω
v(x)

√
1−

(
v(x)kx
ω

)2
is the vertical wave number. One typically as-

sumes that the wave propagation velocity v(x) depends only on the horizontal
coordinate x and not on the depth z.

In seismic imaging, one is often interested in the propagating modes that arise
from the constraint |kx| ≤ ω/v(x). This leads to the restricted integral

ΨPSPI(x, z, ω) =
1

2π

∫
|kx|≤ ω

v(x)

e
iz ω
v(x)

√
1−(v(x)kxω)

2

eixkx ψ̂(kx, 0, ω) dkx.

For computational efficiency, the factor e
iz ω
v(x)

√
1−(v(x)kxω)

2

can be approximated
by the first few terms of a sum of product of two sequences of functions {fm} and
{hm}: ∑

m

fm(kx)hm(x),

provided that z is sufficiently small [28]. Taking this approximation into consider-
ation, one can write:

ΨPSPI(x, z, ω) ≈
∑
m

hm(x)

∫
|kx|≤ ω

v(x)

fm(kx)ψ̂(kx, 0, ω)eixkx dkx.

The Partial Fast Fourier Transform 5

The task therefore reduces to computing the integral∫
|kx|≤ ω

v(x)

fm(kx)ψ̂(kx, 0, ω)eixkxdkx,

which, after discretization of the domain, can be written as a discrete partial
Fourier transform.

3 Related work

A closely related work was published by Ying and Fomel [28]. They proposed fast
algorithms to compute the partial Fourier transform in one and two dimensions.
The goal of the current work is to improve on their results by using a different
decomposition of the space–frequency domain. Ying and Fomel computed the one-
dimensional partial Fourier transform

fj
.
=

∑
|k|≤c(j)

ζjkN Fk, j = 0, . . . , N − 1

by constructing a recursive multiscale decomposition of the summation domain
D = {(j, k) : |k| ≤ c(j), 0 ≤ j ≤ N − 1, −N/2 ≤ k ≤ N/2 − 1} into a set of
squares with dyadic sizes, where the union of all these squares is exactly equal to D.
The computation associated with each square inside the partitioned domain D is
accelerated using the fractional-phase Fourier transform. The resulting numerical
algorithm scales as O(N log2N) for input data of size N .

To compute the two-dimensional partial Fourier transform

fj
.
=

∑
|k|≤c(j)

ζj·kN Fk,

where j = (j1, j2) and k = (k1, k2), Ying and Fomel decomposed the summation
domain D = {(j1, j2, r) : 0 ≤ j1, j2 ≤ N − 1, 0 ≤ r ≤ c(j1, j2)} into a set of cubes
with dyadic sizes having a union equal to D. The projection of each cube onto the
r axis is a dyadic interval I. The computation associated with each dyadic interval
I involves interactions between points from the circular bands {(k1, k2) ∈ Z× Z :
−N/2 ≤ k1, k2 ≤ N/2 − 1} and {(j1, j2) ∈ Z × Z : 0 ≤ j1, j2 ≤ N − 1}. This
interaction is a special case of the sparse Fourier transform [27], where both the
frequency data and the spatial data are sparse. The butterfly algorithm suggested
in Refs. [20,22,23] is used to accelerate the computation of this sparse Fourier
transform. The resulting algorithm is almost linear for an input of size N ×N and
its overall complexity is O(N2 log2N) [28].

A second related work by Hairer, Lubich, and Schlichte was dedicated to the
computation of the fast temporal convolution [14]. For a given sequence {Fk}N−1

k=0 ,
the discrete temporal convolution is given by

fj =

j∑
k=0

Fkgj−k, j = 0, . . . , N − 1,

where {gj}N−1
j=0 are the convolution weights, which can be constructed from the

Laplace transform of the kernel function for the continuous convolution. Hairer,

6 John C. Bowman, Zayd Ghoggali

Lubich, and Schlichte suggested an algorithm that first partitions the triangular
summation domain D = {(j, k) : 0 ≤ k < j ≤ N − 1} recursively into a set of
squares [14,28]. The union of these squares equals the entire domain D. The FFT
is used to accelerate the computation of the convolution in each square within
this partition. The overall cost of this one-dimensional algorithm is O(N log2N)
arithmetic operations for input data of size N . An issue arises when handling non-
reflecting boundary conditions, where all quadrature weights and past boundary
values need to be kept in active memory during the entire computation process.
This prevents the algorithm from being extended to solve three-dimensional prob-
lems over long periods of time [14,18].

4 The fractional-phase Fourier transform

The definition of the DFT can be generalized to the so-called discrete fractional-
phase Fourier transform (FPFFT), where the fractional root ζα

.
= ζ1/a = e2πiα

is used instead of the primitive root ζN . The FPFFT and its fast algorithm are
useful in many applications, such as high-resolution trigonometric interpolation
and computing DFTs of prime lengths or sparse sequences [2]. For an input vector
{Fk : k = 0, . . . , N−1} of length N , the discrete fractional-phase Fourier transform
is defined as

fj
.
=

N−1∑
k=0

ζαjkFk, j = 0, . . . , N − 1, (4.2)

where ζ
.
= ζ1. Here α is not restricted to a rational number; it can be an arbitrary

real number. Note that by setting α = 1/N , the FPFFT reduces to the ordinary
DFT.

Direct computation of the N values in the above definition requires 8N2 arith-
metic operations, provided the roots of unity have been precomputed. Fortunately,
Bailey and Swarztrauber derived an efficient algorithm for computing the FPFFT
using only 20N log2N floating point operations [2]. The idea behind their al-
gorithm was originally introduced by Bluestein [4], who expressed the chirp z-
transform as an FFT-based convolution. Bailey and Swarztrauber’s algorithm can
be derived by rewriting the power jk of the root of unity in Eq. (4.2) using the
algebraic identity jk = 1

2 [j2 + k2 − (j − k)2].

The discrete fractional-phase Fourier transform can then be rewritten as

fj =

N−1∑
k=0

ζ
α
2 [j2+k2−(j−k)2]Fk = ζαj

2/2
N−1∑
k=0

ζαk
2/2Fkζ

−α(j−k)2/2. (4.3)

On defining gk = ζαk
2/2 and hk = gkFk, Eq. (4.3) can then be expressed in terms

of a discrete convolution:

fj = gj

N−1∑
k=0

hkgj−k, (4.4)

where the bar denotes complex conjugation.

The Partial Fast Fourier Transform 7

The convolution in Eq. (4.4) can be computed using discrete FFTs and the
convolution theorem. However, the convolution theorem can be used only for cir-
cular convolutions, where gj−k = gj−k+N . This condition fails to hold in this case,
due to the symmetry gj−k = gk−j when j − k < 0.

As described in Ref. [2], it is possible to convert the symmetric convolution
in Eq. (4.4) into a circular convolution using zero padding. However, a better
alternative, known as implicit dealiasing [5,25], unrolls and truncates the outer
iteration of the fast Fourier transform to avoid the need for explicit zero padding.
To compute the first N outputs {fj : 0 ≤ j ≤ N − 1} via implicit dealiasing, one
precomputes the inverse FFTs

{Gj}N−1
j=0 = fft

−1({ζ−αk
2/2 + ζ−α(k−N)2/2}N−1

k=0)

and

{Vj}N−1
j=0 = fft

−1({ζk2N [ζ−αk
2/2 − ζ−α(k−N)2/2]}N−1

k=0).

Then fj can be calculated as the product of gj and the jth output of Function conv
applied to the sequence {hk}N−1

k=0 . In the listed pseudocode, an asterisk (∗) denotes
an element-by-element (vector) multiply.

Input: vector f
Output: vector f
for k = 0 to N − 1 do

u[k]← ζk2N f[k]
end

f ← fft(fft−1(f) ∗ G)

u← fft(fft−1(u) ∗ V)

for k = 0 to N − 1 do

f[k]← f[k] + ζ−k2N u[k]
end
return f/(2N)

Function conv(f) computes the in-
place implicitly dealiased symmetric
convolution in Eq. (4.4) of the com-
plex vector f using a temporary vec-
tor u of length N and precomputed
inverse transforms G and V.

5 Evaluating partial FFTs via convolutions

The main idea behind our approach is to decompose the space–frequency domain
D = {(j, k) : 0 ≤ j ≤ N − 1, 0 ≤ k ≤ min{c(j), N − 1}} into a mesh consisting of
rectangles and trapezoids and implement algorithms for each of these special cases.
The rectangles will be subdivided into squares over which a fractional-phase Four-
ier transform can be performed. In contrast, Ying and Fomel [28] decomposed the
space–frequency domainD only into squares. Our algorithm can thus be considered
as a higher-order version of their subdivision scheme since it uses a piecewise linear
rather than a piecewise constant approximation to the constraint function.

8 John C. Bowman, Zayd Ghoggali

Once the mesh is constructed, we compute the partial Fourier transform within
each trapezoid as a convolution, using the identity nk = 1

2 [n2 + k2 − (n − k)2]
originally introduced by Bluestein [4] for computing the full Fourier transform
and later exploited by Bailey and Swarztrauber [2] for computing fractional-phase
Fourier transforms. We consider the case where the cutoff function is an affine
function with rational coefficients c(j) = (pj+s)/q, where p, q, and s are integers,
illustrating the technique first in the special case where p = q = 1 and s = 0.

5.1 Partial fractional-phase FFT: special case c(j) = j

It is convenient to define ζα
.
= ζ1/a = e2πiα so that the unnormalized discrete

partial Fourier transform of a complex vector {Fk : k = 0, . . . , N − 1} can be
written as

fj
.
=

j∑
k=0

ζαjkFk, j = 0, . . . , N − 1.

The identity jk = 1
2

[
j2 + k2 − (j − k)2

]
allows us to express the discrete par-

tial Fourier transform as

fj =

j∑
k=0

ζ
α
2 [j2+k2−(j−k)2]Fk = ζαj

2/2
j∑

k=0

ζαk
2/2Fkζ

−α(j−k)2/2.

On defining gj = ζαj
2/2 = ζαj

2

2 and hk = gkFk, we see that fj can be expressed
as the product of gj and a convolution of the sequences {hk}N−1

k=0 and {gk}N−1
k=0 :

fj = gj

j∑
k=0

hkgj−k. (5.5)

By prepending N zero elements to the sequences {gk} and {hk}, indexed
as k = −N , −N + 1, . . . , −1, the convolution

∑j
k=0 hkgj−k can be efficiently

computed using a cyclic discrete Fourier transform of length 2N , on noting that
gj−k = 0 when k > j:

j∑
k=0

hkgj−k =

N−1∑
k=−N

hkgj−k =
1

(2N)2

N−1∑
k=−N

2N−1∑
`=0

ζ−k`2N H`

2N−1∑
m=0

ζ
−(j−k)m
2N Gm

=
1

(2N)2

2N−1∑
`=0

2N−1∑
m=0

ζ−jm2N H`Gm

N−1∑
k=−N

ζ
k(m−`)
2N

=
1

(2N)2

2N−1∑
`=0

2N−1∑
m=0

ζ−jm2N H`Gm2Nδ`m

=
1

2N

2N−1∑
`=0

ζ−j`2N H`G`, (5.6)

where H` =
∑N−1
k=−N ζ

`k
2Nhk and Gm =

∑N−1
k=−N ζ

mk
2N gk are the discrete Fourier

transforms of the zero-padded sequences {hk} and {gk} of length 2N , respectively.

The Partial Fast Fourier Transform 9

The zero padding of the sequences {hk} and {gk} removes unwanted aliases
(harmonics) that otherwise enter when computing a linear convolution in terms
of cyclic discrete Fourier transforms. However, we again use implicit dealiasing [5,
25] since it is more efficient than explicit zero padding. If we precompute

{Gj}N−1
j=0 = fft

−1({ζ−αk
2/2}N−1

k=0)

and

{Vj}N−1
j=0 = fft

−1({ζk2Nζ−αk
2/2}N−1

k=0),

the value of fj is efficiently determined as the product of gj and the jth output
of Function conv applied to the input data {hk}N−1

k=0 . The overall computational
cost of computing Eq. (5.5) is O(N logN).

5.2 Partial fractional-phase FFT: trapezoidal constraint c(j) = (pj + s)/q

We now illustrate how the previous technique can be generalized to handle the
trapezoidal constraint c(j) = (pj+ s)/q, where p, q, and s are integers, with p 6= 0
and q > 0. In practical applications we will be interested in the case where s is a
multiple of q, in which case, without loss of generality we may take p and q to be
coprime. The unnormalized partial Fourier transform appears as

fj
.
=

b(pj+s)/qc∑
k=0

ζαjkFk, j = 0, . . . ,M − 1,

with b(p(M − 1) + s)/qc = N − 1.
For each j ∈ {0, . . . ,M − 1}, we decompose pj + s = qn + r such that r ∈

{0, . . . , q − 1} and n ∈ {0, . . . , N − 1}. We may then express

fj =
n∑
k=0

ζα(qn+r−s)kp Fk

=
n∑
k=0

ζ
αq[n2+k2−(n−k)2]
2p ζα(r−s)kp Fk

= ζαqn
2

2p

n∑
k=0

ζ
−αq(n−k)2
2p ζαqk

2

2p ζα(r−s)kp Fk. (5.7)

On setting gk = ζαqk
2

2p and hk = gkζ
α(r−s)k
p Fk, the result can again be written as

a convolution of two sequences {hk}N−1
k=0 and {gk}N−1

k=0 :

fj = gn

n∑
k=0

hkgn−k, j = 0, . . . ,M − 1. (5.8)

As long as one of the coprime integers p and q is equal to one, the complexity of
this algorithm is readily seen to be O(N logN). The case where the slope p/q = 0
reduces to the rectangular case, which we describe next.

10 John C. Bowman, Zayd Ghoggali

5.2.1 Fractional-phase FFT: M ×N rectangle

If N > M we pad the N inputs with zeros to obtain an M × pM rectangle,
where p = dN/Me. The fractional-phase FFT over this extended domain can
then be computed as described in Section 5.2.2. Otherwise, if N ≤ M , we define
q = dM/Ne and compute the fractional-phase FFT over a qN × N rectangle, as
described in Section 5.2.3, and then discard all but the first M values of j.

5.2.2 Fractional-phase FFT: M × pM rectangle for p ∈ N

In this case, we wish to compute

fj =

pM−1∑
k=0

ζαjkFk, j = 0, . . . ,M − 1.

On decomposing k = mp+ r, we find

fj =

p−1∑
r=0

ζαjr
M−1∑
m=0

ζαpjmFmp+r, j = 0, . . . ,M − 1.

5.2.3 Fractional-phase FFT: qN ×N rectangle for q ∈ N

To compute

fj =

N−1∑
k=0

ζαjkFk, j = 0, . . . , qN − 1,

we decompose j = mq + r and obtain

fmq+r =

N−1∑
k=0

ζαqmkζαrkFk, m = 0, . . . , N − 1, r = 0, . . . , q − 1.

To complete our implementation of a subdivision procedure, we need to shift
the partial FFT over a rectangular or trapezoidal cell with up to N inputs and M
outputs, as described next.

5.2.4 Shifted M ×N partial FFT

For any constraint c(j), the partial FFT

fj =

c(j)∑
k=k0

ζαjkFk, j = j0, . . . , j0 +M − 1

can be computed by changing to the variables k′ = k− k0 and j′ = j− j0, so that

fj0+j′ = ζα(j0+j
′)k0

c(j0+j
′)−k0∑

k′=0

ζαj
′k′
ζαj0k

′
Fk′+k0

, j′ = 0, . . . ,M − 1.

The Partial Fast Fourier Transform 11

6 Recursive subdivision scheme

We now show how the previous algorithms can be combined to compute the partial
FFT recursively for a general constraint function c(j). For simplicity, we assume
in this discussion that the length N of the input data is a power of two. The
domain is recursively partitioned into two equal halves in both the frequency and
space directions until the resulting subdomain either (i) lies entirely below the
constraint; (ii) lies entirely above the constraint; or (iii) contains only a piecewise
linear portion of the constraint. In the latter case, the trapezoidal algorithm is
used to calculate the partial FFT. Pseudocode for the resulting FFT algorithm is
given in Algorithm 1.

Algorithm 1 partition subdivides {(j, k) : x0 ≤ j ≤ x1, y0 ≤ k ≤ y1}.
Input: int x0,x1,y0,y1, vectors {fa}N−1

a=0
empty ← true; straight ← true
for j = x0 to x1 do

if y0 ≤ c[j] then
below ← true

if c[j] ≤ y1 then
above ← true

if y0 ≤ c[j] and c[j] < y1 then
empty ←false; break

if empty then
if below and above then

empty ←false; straight ←false
else

left ← first j ∈ [x0, x1) such that c(j) ∈ [y0, y1)
right ← last j ∈ [x0, x1) such that c(j) ∈ [y0, y1)
p/q ← round((c[x1 − 1]− c[x0])/(x1 − 1− x0))
for j = left to right do

r ← c[left] ∗ q + (j − left) ∗ p− c[j] ∗ q
if r < 0 or r ≥ q then

straight← false; break
if straight or empty or x0 ≥ x1 − 1 or y0 ≥ y1 − 1 then

if x0 < x1 and y0 < y1 then
if empty then

if y − 1 ≤ c[x0] then
Rectangle(x0, x1, y0, y1)

else
if x0 < left and y1 ≤ c[x0] then

Rectangle(x0, left, y0, y1)
Trapezoid(left,right +1,y0,min(max(c[left], c[right]) + 1, y1), p, q)
if right + 1 < x1 and y1 − 1 ≤ c[right + 1] then

Rectangle(right + 1, x1, y0, y1)
return

if y1 − y0 ≤ x1 − x0 then

partition(x0, (x0+x1)/2, y0, y1, {fa}N−1
a=0)

partition((x0+x1)/2, x1, y0, y1, {fa}N−1
a=0)

else

partition(x0, x1, y0, (y0+y1)/2, {fa}N−1
a=0)

partition(x0, x1, (y0+y1)/2, y1, {fa}N−1
a=0)

12 John C. Bowman, Zayd Ghoggali

6.1 Trigonometric lookup tables

To compute the partial fast Fourier transform fj =
∑c(j)
k=0 ζ

jk
N Fk, we need to pre-

compute the factors {ζαk : k = 0, . . . B − 1}, where α = A/B for coprime integers
A and B. When sufficient low-latency memory is available, these trigonometric
factors can be stored in a lookup table. However, for problems so large that these
tables would not fit in the memory cache, it is advantageous to compute them
“on the fly.” While direct computation of (cos(2παk), sin(2παk)) is normally pro-
hibitively expensive, there are two efficient alternatives: recursion and factoriza-
tion. Although computation of the trigonometric factors ζAkB by straightforward
recursion is numerically unstable, the stable trigonometric recursion described by
Buneman [7,5] in terms of two small precomputed tables, each of size log2B, could
be used to compute the required roots of unity. However, on modern hardware it
is more efficient to calculate ζAkB with a single complex multiply, using two short
precomputed tables Ha = ζasB and Lb = ζbB , where Ak = as + b with s = b

√
Bc,

a = 0, 1, . . . , dB/se − 1, and b = 0, 1, . . . , s − 1. [5]. These one-dimensional tables
require only O(

√
B) complex words of storage. In our implementation, we adapt-

ively choose between trigonometric lookup and factorization, depending on the
problem size.

Since the fractional-phase FFT for N data points is computed as a discrete con-
volution, its computational cost isO(N logN). The same applies to the trapezoidal
partial FFT discussed in Section 5.2. Following [28], one can then compute an up-
per bound to the complexity for a general cutoff function c(j). The contribution to
the overall complexity from each rectangular or trapezoidal cell of size s that fully
satisfies the constraint k ≤ c(j) is O(s log s). The number of cells of area O(s2)
that intersect the discrete curve k = c(j) of length N can be approximated by
O(Ns/s2), each of which costs O(s log s) operations. The complexity for cells of
size s along a band of width s centered on the constraint is therefore O(N log s).
On summing this cost over all possible cell sizes s = 2p, we obtain an upper bound
to the complexity,

O

Nlog2N∑
p=1

log 2p

 = O

Nlog2N∑
p=1

p

 = O
(
N

log2N(log2N + 1)

2

)
= O(N log2N).

While the actual computational cost is a weighted sum of terms O(N log2N) and
O(N logN), the dominant scaling for large N is thus seen to be O(N log2N).
However, in the special case of an affine constraint function c(j) such that either
the slope or its reciprocal is an integer, we have seen that the partial Fourier
transform can be reduced without recursion to a convolution of two sequences of
length N , yielding a slightly reduced complexity of O(N logN).

6.2 Numerical Results

In this section, we demonstrate our hybrid algorithm for different constraint func-
tions c(j) and input data lengths N . The numerical computations were per-
formed on a 64-bit 3.4GHz Intel i7-2600K processor with an 8MB cache. Like the
FFTW-3.3.4 and FFTW++-2.03 libraries [6,10,11], our algorithms were vectorized

The Partial Fast Fourier Transform 13

N Tr Th Cr Ch Td/Th Tr/Th Th/Tf
1024 0.00099 0.00070 2572 860 3.79 1.43 142
2048 0.00216 0.00152 5154 1700 6.94 1.42 127
4096 0.00456 0.00335 10168 3437 12.7 1.36 121
8192 0.00964 0.00724 20520 7132 23.7 1.33 120

16384 0.0208 0.0158 40934 13970 45.2 1.32 107
32768 0.0445 0.0345 81744 27688 89.4 1.29 104
65536 0.0965 0.0758 163694 55338 166 1.27 103

131072 0.213 0.172 327734 110755 298 1.24 108
262144 0.487 0.396 655300 222055 820 1.23 108
524288 1.08 0.891 1310532 441677 2440 1.22 83

1048576 2.32 1.98 2622408 884846 4950 1.17 80

Table 1 Computation statistics of the recursive one-dimensional partial Fourier transform
with c(j) = (N − 1) sin(πj/(N − 1)) for N = 1024 to N = 1048576. Here Tr and Cr are the
computation time and cell count for rectangular subdivision, Th and Ch are the computation
time and cell count for hybrid rectangular/trapezoidal subdivision, Td is the computation time
for direct summation, and Tf is the computation time for an unconstrained FFT of length N .

with specialized single-instruction multiple-data (SIMD) code. They were com-
piled with the optimizations
-fopenmp -fomit-frame-pointer -fstrict-aliasing -ffast-math -msse2

-mfpmath=sse -march=native.
For the constraint function c(j) = (N − 1) sin(πj/(N − 1)), with N ranging

from 1024 to 1048576, we compare in Table 1 a decomposition (using rectangles
only) equivalent to that used by Ying and Fomel [28] and our hybrid decomposition
(using both rectangles and trapezoids) by tabulating the computation statistics
and number of cells required for each subdivision. We use the following notation:
c(j) is the cutoff function of the partial Fourier transform;
N is the length of the input data;
Tr is the computation time for rectangular subdivision;
Cr is the cell count for rectangular subdivision;
Th is the computation time for hybrid subdivision;
Ch is the cell count for hybrid subdivision;
Td is the computation time for direct evaluation of the partial Fourier transform;
Tf is the computation time for the unconstrained FFT of length N .

As explained in the previous section, the computational cost of our hybrid sub-
division algorithm is O(N log2N), far less than the O(N2) direct evaluation cost.
Therefore, as seen in Table 1, one should expect an (almost) linear growth in the
ratio Td/Th with respect to the input data length N . The computation time Th
required by hybrid subdivision is 15–30% less than the time Tr required for rect-
angular subdivision. Furthermore, hybrid subdivision generates far fewer (roughly
34%) cells than produced by rectangular subdivision despite the restriction of the
constraint slope p/q to integral or reciprocal integral values. These computation
times are illustrated graphically in Figure 1 in comparison to the cost of an un-
constrained FFT. For large N , we observe that the computational cost of a partial
FFT scales as O(N log2N), in agreement with the scaling derived in the previous
section.

The geometrical differences between rectangular and hybrid subdivision are
illustrated in Figure 2 for c(j) = j with N = 1024 and in Figures 3 and 4 for
c(j) = (N − 1) sin(πj/(N − 1)) with N = 128 and N = 1024, respectively.

14 John C. Bowman, Zayd Ghoggali

10−10

10−9

10−8

ti
m
e/
N

lo
g
2 2
N

(s
)

104 105 106

N

Rectangular

Hybrid

FFT

Figure 1 Computation times vs. vector length N for rectangular and hybrid subdivision in
comparison with the cost of an unconstrained FFT.

(a) (b)

Figure 2 (a) Subdivision of the summation domain for the triangular constraint c(j) = j
with N = 1024 using (a) a rectangular decomposition, with 1535 cells, and (b) a triangular
decomposition, with only 1 cell. The black dots indicate {c(16j) : j = 0 . . . 63}.

The Partial Fast Fourier Transform 15

(a) (b)

Figure 3 Subdivision of the summation domain for the sinusoidal constraint c(j) = (N −
1) sin(πj/(N − 1)) with N = 128 using (a) a rectangular decomposition, with 306 cells, and
(b) a hybrid decomposition, with only 103 cells.

(a) (b)

Figure 4 Subdivision of the summation domain for the sinusoidal constraint c(j) = (N −
1) sin(πj/(N − 1)) with N = 1024 using (a) a rectangular decomposition, with 2572 cells, and
(b) a hybrid decomposition, with only 983 cells.

7 Conclusion

In this work, an efficient algorithm was developed to compute the partial Four-
ier transform in one dimension. The key idea is based on recursively subdividing
the appropriate space–frequency domain {(j, k) : 0 ≤ j ≤ N − 1, 0 ≤ k ≤
min(c(j), N − 1)} into smaller rectangles and trapezoids, and then applying fast
algorithms on each of these resulting subdomains. The contribution to the partial

16 John C. Bowman, Zayd Ghoggali

Fourier transform from a rectangular region that fully satisfies the constraint can
be computed by subdividing the rectangle into squares, appropriately padded or
truncated, over which the fractional-phase Fourier transform can then be com-
puted. The contribution from trapezoidal regions can be reduced, with the help of
the Bluestein identity, to an implicitly dealiased FFT-based convolution.

On comparing our hybrid subdivision algorithm with Ying and Fomel’s al-
gorithm [28] for different values of the input data length, we see that the hybrid
algorithm is 15–30% faster and generates far fewer cells.

A future generalization of this work would be the extension of the subdivision
recursion to handle input data lengths other than the (frequently encountered) case
of powers of two. Generalizing this work to compute the one-dimensional partial
Fourier transform where the frequency index k is subject to both lower and upper
constraints requires a few minor changes to the current algorithm to handle the
contributions from inverted trapezoids. Also, one should also consider the use of
quasi-uniform grids in the frequency and space domains. In working with quasi-
uniform grids, the major issue is that the fractional-phase Fourier transform cannot
be applied directly because the points inside the grid are no longer uniformly
distributed [28]. Instead, a butterfly algorithm like the one used in Ref. [27] is
needed to do the computation inside each resulting rectangle of the partition. In
a future paper we will demonstrate how nested implementations of this algorithm
can be used to calculate partial Fourier transforms in two and three dimensions. In
view of the closing remark of Ying and Fomel [28], another area of future research is

to consider better approximations to the exponential phase iz ω
v(x)

√
1−

(
v(x)kx
ω

)2
that arises in the constrained integral discussed in Section 2.

Acknowledgements The authors would like to thank Professor Brendan Pass for his com-
ments on an earlier version of this work.

References

1. Amidror, I.: Mastering the discrete Fourier transform in one, two or several dimensions:
pitfalls and artifacts, vol. 43. Springer Science & Business Media (2013)

2. Bailey, D.H., Swarztrauber, P.N.: The fractional Fourier transform and applications. SIAM
review 33(3), 389–404 (1991)

3. Biondi, B.: 3D seismic imaging. No. 14 in Investigations in Geophysics Series. Society of
Exploration Geophysicists Tulsa (2006)

4. Bluestein, L.I.: A linear filtering approach to the computation of discrete Fourier transform.
IEEE Trans. Audio and Electroacoustics 18(4), 451–455 (1970)

5. Bowman, J.C., Roberts, M.: Efficient dealiased convolutions without padding. SIAM J.
Sci. Comput. 33(1), 386–406 (2011)

6. Bowman, J.C., Roberts, M.: FFTW++: A fast Fourier transform C++ header class for the
FFTW3 library. http://fftwpp.sourceforge.net (May 6, 2010)

7. Buneman, O.: Stable on-line creation of sines or cosines of successive angles. Proceedings
of the IEEE 75(10), 1434–1435 (1987)

8. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier
series. Mathematics of Computation 19(90), 297–301 (1965)

9. Ferguson, R.J., Margrave, G.F.: Prestack depth migration by symmetric nonstationary
phase shift. Geophysics 67(2), 594–603 (2002)

10. Frigo, M., Johnson, S.G.: FFTW. http://www.fftw.org

11. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceedings of the
IEEE 93(2), 216–231 (2005)

The Partial Fast Fourier Transform 17

12. Gauss, C.F.: Nachlass: Theoria interpolationis methodo nova tractata. In: Carl Friedrich
Gauss Werke, vol. 3, pp. 265–327. Königliche Gesellschaft der Wissenschaften, Göttingen
(1866)

13. Goldstine, H.H.: A History of Numerical Analysis from the 16th through the 19th Century,
vol. 2. Springer Science & Business Media (2012)

14. Hairer, E., Lubich, C., Schlichte, M.: Fast numerical solution of nonlinear volterra con-
volution equations. SIAM journal on scientific and statistical computing 6(3), 532–541
(1985)

15. Hassanieh, H., Indyk, P., Katabi, D., Price, E.: Simple and practical algorithm for sparse
Fourier transform. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 1183–1194. SIAM (2012)

16. Heideman, M.T., Johnson, D.H., Burrus, C.S.: Gauss and the history of the fast Fourier
transform. ASSP Magazine, IEEE 1(4), 14–21 (1984)

17. Heideman, M.T., Johnson, D.H., Burrus, C.S.: Gauss and the history of the fast Fourier
transform. Archive for history of exact sciences 34(3), 265–277 (1985)

18. Lubich, C., Schädle, A.: Fast convolution for nonreflecting boundary conditions. SIAM
Journal on Scientific Computing 24(1), 161–182 (2002)

19. Markel, J.: FFT pruning. IEEE Transactions on Audio and Electroacoustics 19(4), 305–
311 (1971)

20. Michielssen, E., Boag, A.: A multilevel matrix decomposition algorithm for analyzing
scattering from large structures. Antennas and Propagation, IEEE Transactions on 44(8),
1086–1093 (1996)

21. Nussbaumer, H.J.: Fast Fourier transform and convolution algorithms, vol. 2. Springer
Science & Business Media (2012)

22. O’Neil, M., Rokhlin, V.: A new class of analysis-based fast transforms. Tech. rep., DTIC
Document (2007)

23. O’Neil, M., Woolfe, F., Rokhlin, V.: An algorithm for the rapid evaluation of special func-
tion transforms. Applied and Computational Harmonic Analysis 28(2), 203–226 (2010)

24. Rabiner, L.R., Schafer, R.W., Rader, C.M.: The chirp z-transform algorithm. Audio and
Electroacoustics, IEEE Transactions on 17(2), 86–92 (1969)

25. Roberts, M., Bowman, J.C.: Multithreaded implicitly dealiased convolutions. J. Comput.
Phys. (2017). In press, https://doi.org/10.1016/j.jcp.2017.11.026

26. Schuster, G.T.: Seismic interferometry, vol. 1. Cambridge University Press Cambridge
(2009)

27. Ying, L.: Sparse Fourier transform via butterfly algorithm. SIAM Journal on Scientific
Computing 31(3), 1678–1694 (2009)

28. Ying, L., Fomel, S.: Fast computation of partial Fourier transforms. Multiscale Modeling
and Simulation 8(1), 110–124 (2009)

