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STRUCTURE-PRESERVING AND

EXPONENTIAL DISCRETIZATIONS

OF INITIAL VALUE PROBLEMS

JOHN C. BOWMAN

ABSTRACT. Specialized integration algorithms for initial
value problems, obtained by applying conventional explicit dis-
cretizations in a transformed space, are described. One exam-
ple, conservative integration, is motivated by a theorem of Ge
Zhong and Marsden [17] that establishes that in the absence of
explicit time dependence, one must in practice choose between
preserving symplecticity or conserving the Hamiltonian. An-
other example, exponential integration, is well suited to highly
stiff ordinary differential equations. Fully Lagrangian meth-
ods for advection are shown to be a special case of exponential
integration.

1 Introduction Many numerical libraries used in scientific com-
puting offer a so-called “black-box” integrator that attempts to provide
the user with a general solver for a generic ordinary differential equa-
tion. These solvers require little knowledge on part of the user as to the
detailed dynamical behaviour of the system under consideration. This
means that mathematical models are often discretized according to al-
gorithms that have little to do with the original problem. So although
the generic nature of these algorithms is often considered by users to be
advantageous, Iserles [26] has pointed out that this feature is also their
biggest disadvantage, as they cannot exploit the analytical structure of
the equation. Instead, interest in the community is now shifting towards
developing computational algorithms that are tailored to reflect known
structural features of the problem under consideration (e.g., see [13],
[27], [34], [12] and [20]). Such schemes typically end up being numeri-
cally more robust, exhibiting larger regions of stability and allowing the
use of larger time steps.

Indeed, one can devise integration methods that respect desired prop-
erties of ordinary differential equations such as first integrals [33, 28] or
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symplecticity [30, 11, 31]. For example, traditional numerical integra-
tion algorithms, which are polynomials in the time step, typically lead
to systematic drifts of nonlinear first integrals. However, by applying
traditional integrators in a transformed space, it is possible to obtain
integrators that conserve first integrals to machine precision.

For the subclass of ordinary differential equations that are Hamilto-
nian, one can devise schemes that are symplectic; they conserve phase-
space structure (including volume) by making the time step map a
canonical transformation. In this work we revisit an interesting the-
orem of Ge Zhong and Marsden [17]: a symplectic map with no explicit

time-dependence will conserve the actual value of the Hamiltonian only
if it is the exact solution, up to a reparametrization of time. The im-
plication is that unless one has the luxury of having an exact analytical
solution to the problem, one must choose between having a conserva-
tive integrator or a symplectic one. The condition of no explicit time
dependence was actually not mentioned by Ge and Marsden, but it left
open the possibility of conservative variational symplectic integrators
based on explicitly time-dependent symplectic maps, which were later
developed for certain mechanics problems [27]. In this work we carefully
restate and prove the theorem to make this condition explicit.

For time-independent symplectic maps and Hamiltonians, the Ge-
Marsden theorem implies in practice that one must make a choice be-
tween developing a conservative integrator or a symplectic one; for some
problems in classical mechanics, a conservative method can be shown to
be superior (cf. Figure 1).

Conservative integrators are derived by transforming the dependent
variable. Another class of integrators can be derived by transforming
the independent variable and using the technique of operator splitting,
which allows one to combine different numerical discretizations that are
tailored to individual terms of an equation. For example, it can be
applied to initial value problems when the temporal evolution can be
expressed as a slowly varying perturbation of an exactly solvable differ-
ential equation. If the exactly solvable piece is stationary, so that its
Green’s function depends only on relative time differences, it is possible
to discretize the perturbed problem with a scheme that is exact on the
time scale of the solvable part. Examples of this method, exponential
integrators and Lagrangian discretizations of advective equations, are
briefly discussed in Section 3.

Other numerical discretizations that respect analytical structure in-
clude those that preserve the positive semi-definiteness of covariance
matrices [5, 4] and unitarity (which underlies the conservation of the
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trace of quantum-mechanical probability density matrices) [32, 34].

2 Conservative vs. symplectic integrators Given f : R
n+1 →

R
n, we consider the initial value problem obtained by evolving a vector

x ∈ R
n from the initial condition x(0) = x0 according to

(1)
dx

dt
= f(x, t).

If n = 2k and x = (q, p) where q, p ∈ R
k satisfy

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q
,

for some function H(q, p, t) : R
n+1 → R, one says that (1) is Hamilto-

nian. Often, the Hamiltonian H has no explicit dependence on t. For
such systems, Ge and Marsden noticed the following result (although
they did not mention the condition of no explicit time-dependence).

Theorem 1 (Ge Zhong and Marsden 1988). A C1 symplectic map M
with no explicit time-dependence will conserve a C1 time-independent

Hamiltonian H : R
n → R ⇐⇒ M is identical to the exact evolution,

up to a reparametrization of time.

Proof. A C1 symplectic scheme is a canonical map M corresponding
to some approximate C1 Hamiltonian H̃τ (x, t) : R

n+1 → R, where the
label τ denotes the time step. If the mapping M does not depend ex-
plicitly on time, it can be generated by the approximate Hamiltonian
K(x) = H̃τ (x, 0).

Suppose the symplectic map conserves the true Hamiltonian H :

0 =
dH

dt
=

∂H

∂qi

dqi

dt
+

∂H

∂pi

dpi

dt
+

∂H

∂t
= [H, K],

where

[H, K] =
∂H

∂qi

∂K

∂pi

− ∂H

∂pi

∂K

∂qi

.

The implicit function theorem then guarantees that in a neighbour-
hood of x0 ∈ R

n there exists a C1 function φ : R → R such that

H(x) = φ(K(x)) or K(x) = φ(H(x)) ⇐⇒ [H, K] = 0.
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Consequently, the trajectories in R
n generated by the Hamiltonians

H and K coincide.

While conservative variational symplectic integrators based on ex-
plicitly time-dependent symplectic maps have been proposed for certain
mechanics problems [27] to circumvent the conditions of the Ge-Marsden
theorem, in the time-independent case one must make a choice between
symplecticity and conservation. In the 1990s, many papers on symplectic
integration were to be found in the literature, but the available methods
for enforcing conservation laws to machine precision typically required
an a posteriori projection of a nonconservative solution back onto the en-
ergy manifold [1, 25, 9]. The need for a systematic explicit conservative
method that evolves the system directly on the energy manifold, without
arbitrarily removing one particularly degree of freedom (which is seldom
practical [18]), led Shadwick, Bowman and Morrison [33] to develop a
new class of algorithms known as conservative integrators. Traditional
numerical discretizations of nonlinear initial value problems, based on
polynomial functions of the time step, typically yield spurious secular
drifts of nonlinear first integrals of motion (e.g., total energy), so that
the numerical solution will not remain on the energy surface defined by
the initial conditions. Shadwick, et al. [33] proposed a method for devel-
oping nontraditional explicit algorithms that exactly conserve nonlinear
invariants to all orders in the time step (i.e., to machine precision).

For example, a three-mode truncation of the Fourier-transformed Eu-
ler equations for an inviscid 2D fluid

dx1

dt
= f1 = M1x2x3,

dx2

dt
= f2 = M2x3x1,

dx3

dt
= f3 = M3x1x2,

where M1 + M2 + M3 = 0, conserves the energy E = 1
2

∑
k x2

k since∑
k fkxk = 0.

However, E is not conserved by conventional discretizations. For
example, the Euler method xk(t+τ) = xk(t)+τfk yields a monotonically
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increasing new energy:

E(t + τ) =
1

2

∑

k

[
x2

k + 2τfkxk + τ2S2
k

]

= E(t) +
1

2
τ2

∑

k

S2
k .

Shadwick, et al. [33] determined a modification gk of the original
equations of motion that leads to exact energy conservation:

dxk

dt
= fk + gk.

On applying Euler’s method to the system, one sees that the new energy
evolves according to

E(t + τ) =
1

2

∑

k

[xk + τ(fk + gk)]
2

= E(t) +
1

2

∑

k

[
2τgkxk + τ2(fk + gk)2

]
.

Energy conservation can be enforced by requiring that each term of the
sum separately vanishes, thereby treating all modes on an equal footing.
On solving for gk, one then obtains the C-Euler discretization:

xk(t + τ) = sgnxk(t + τ)
√

x2
k + 2τfkxk .

Here, a conventional Euler method can be used to determine the sign
of xk(t + τ). An important property of the C-Euler method is that it
reduces to Euler’s method as τ → 0:

xk(t + τ) = xk

√
1 + 2τ

fk

xk

= xk + τfk + O(τ2).

An easier way to derive the C-Euler scheme is to note that it is the result
of applying the usual Euler algorithm to the transformed equation

dx2
k

dt
= 2fkxk.
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This suggests a general method for conservative integration: simply
transform the dependent variables so that the conserved quantity can
be expressed as a linear function of the transformed variables, apply a
conventional integration method in the new space, and then transform
back to the original space [33]. Indeed, the following trivial lemma [28]
establishes that any multistage Runge-Kutta method will conserve such
linear invariants:

Lemma 1. Let x and c be vectors in R
n. If f : R

n+1 → R
n has values

orthogonal to c, so that I = c · x is a linear invariant of

dx

dt
= f(x, t).

Then each stage of the explicit s-stage discretization

(2) xi = x0 + τ

i−1∑

j=0

aijf(xj , t + bjτ), i = 1, . . . , s,

also conserves I, where τ is the time step and aij ∈ R.

That is, higher-order conservative integration is made possible by
finding a transformation T : R

n → R
n such that the nonlinear invariants

are linear functions of the new variable ξ = T (x). Since the intermediate
stage predictions appear in the final stage only through the function f ,
only the final stage actually needs to be computed in the transformed
space. The new value of x is then obtained by inverse transformation:

x(t + τ) = T−1(ξ(t + τ)).

Of course, the problem immediately arises that T may not be invert-
ible. The following solutions are available:

1. Reduce the time step; for an analytic transformation T , the inversion
will be possible for a sufficiently small time step if the zeros of det(T ′)
are isolated (cf. Appendix A of [28]).

2. Switch to a traditional integrator for that time step.
3. Use an implicit backwards step (cf. Appendix A of [33]).

A simple second-order integrator, the predictor-corrector (PC) algo-
rithm, can be obtained from (2) by setting s = 2, b0 = 0, a10 = b1 = 1,
and a20 = a21 = 1/2. The conservative predictor-corrector (C-PC) ob-
tained with the transformation T (x) = x2 uses the conventional Euler
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method as the predictor and also to determine the correct branch of
T−1:

x̃k = xk + τfk,

xk(t + τ) = sgn(x̃k)

√
x2

k + τ(fkxk + f̃kx̃k),

where f̃k = f(x̃k).
For the one-dimensional autonomous case dx/dt = f(x), the exact

solution may be written as

xτ = x0 + τf +
τ2

2
f ′f +

τ3

6
(f ′′f2 + f ′2f) + O(τ4),

where all quantities on the right-hand side are evaluated at x0. In com-
parison, when T ′(x0) 6= 0, C-PC yields the solution

xτ = x0 + τf +
τ2

2
f ′f +

τ3

4

(
f ′′f2 +

T ′′′

3T ′
f3

)
+ O(τ4).

On setting T (x) = x, one sees that the C-PC solution reduces to
the conventional PC prediction. Both the C-PC and PC algorithms are
accurate to second order in τ ; for T (x) = x2, they agree through third
order in τ .

In the singular case where T ′(x0) = 0, the conservative corrector
reduces to

xτ = T−1
(
T (x0) +

τ

2
T ′(x̃)f(x̃)

)
;

if T and f are both analytic, the existence of a solution is then guaran-
teed as τ → 0+ if the points at which T ′ vanishes are isolated.

Using the time step τ = 10−3, we see for the four-body classical me-
chanics problem in Figure 1 that conservative integration appears to
yield more accurate results than the conventional second-order symplec-
tic kinetic-potential energy (SKP) splitting

p̃i = pi −
τ

2

∂

∂qi

V (q1, q2, . . . , qN ),

q′i = qi + τ
∂

∂p̃i

K(p̃1, p̃2, . . . , p̃N ),

p′i = p̃i −
τ

2

∂

∂q′i
V (q′1, q

′

2, . . . , q
′

N ),
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which evolves the canonical variables (qi, pi) to (q′i, p
′

i) for i = 1, . . . , N .
This second-order scheme is similar to the one described by Ruth [30]
and Forest and Ruth [15], with the roles of the coordinates and momenta
interchanged. It conserves only an approximate Hamiltonian and can
therefore lead to orbital drift.
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FIGURE 1: PC, symplectic SKP and C-PC solutions for a four-body

choreography.

3 Exponential integrators Exponential integrators have a long
history [10, 29, 16, 35, 22, 2, 12, 20, 6] and have been independently
rediscovered many times. These methods respect the exact evolution
of the system on a linear time scale and are therefore ideally suited to
linearly stiff ODEs.

A typical stiff nonlinear initial value problem appears as

(3)
dx

dt
+ η x = f(x, t), x(0) = x0.
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where the nonlinear term f varies slowly in t compared with the value
of the linear coefficient η:

∣∣∣∣
1

f

∂f

∂t

∣∣∣∣ � |η| .

The goal is to solve (3) on the linear time scale exactly, thereby avoiding
the linear time-step restriction ητ � 1. In the presence of the nonlinear
term f , straightforward integrating factor and Rosenbrock methods [19]
do not remove the explicit restriction on the linear time step τ , even if f
is constant with respect to both arguments. In contrast, exponential
integrators are designed to be the exact solution for this case.

Exponential integrators can be derived from the exact evolution equa-
tion

x(t0 + τ) = P−1(t0 + τ)

[
x(t0) +

∫ t0+τ

t0

P (t)f(x, t) dt

]
,

where P (t) = eη(t−t0). On changing the independent variable from t
to P , we find, noting dt P = η−1dP , that

x(t0 + τ) = P−1(t0 + τ)

[
x(t0) + η−1

∫ P (t0+τ)

1

f dP

]
.

A rectangular approximation of the above integral then yields the ex-
ponential Euler algorithm (also known as the exponentially-fitted Euler
method):

xi+1 = P−1
τ

[
xi + η−1(Pτ − 1)fi

]

= P−1
τ xi + η−1(1 − P−1

τ )fi,

where Pτ = eητ and τ is the time step. Note that the discretization is
now with respect to P (t) instead of t and that as ητ → 0, we recover
the classical Euler scheme.

Similarly, a trapezoidal approximation of the integral in Equation (3)
yields a second-order exponential predictor-corrector (E-PC) algorithm:

x̃i+1 = P−1
τ xi + η−1(1 − P−1

τ )fi,

xi+1 = P−1
τ xi + η−1(1 − P−1

τ )

(
fi + f̃i+1

2

)
,
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where f̃i+1 = f(x̃i+1).
The above derivation can be readily generalized by replacing the linear

Green’s function eη(t−t′) above by any stationary Green’s function G(t−
t′). When the scalar variable x is replaced by a vector x, the integrating
factor becomes the matrix exponential P (t) = eηt. It is interesting to
note that Lagrangian discretizations of advection equations can also be
written formally as exponential integrators. For the passive advection
equation

∂u

∂t
+ v

∂

∂x
u = f(x, t, u), u(x, 0) = u0(x),

one sees that η represents the linear operator v∂/∂x and P−1u = e−vt ∂

∂x u
corresponds to the Taylor series of u(x − vt). A Lagrangian method
has the advantage of not introducing any artificial numerical dissipation
or interpolation of infinitesimal parcel values. A new fully Lagrangian
method for passive scalar and self-advection dynamics that respects par-
cel rearrangement has been recently developed by Yassaei, et al. [36]; in
the inviscid limit, it preserves the infinity of Casimir invariants associ-
ated with parcel rearrangement.

3.1 Numerical considerations There are two technical issues that
must be addressed in the implementation of exponential integrators.

First, one must take care in evaluating the factor (1− e−ητ ) to avoid
catastrophic loss of precision when |ητ | < log(1 +

√
ε) ≈ √

ε, where ε is
the machine precision (the smallest positive number that when added
to one in the machine representation yields a result larger than one).
Fortunately, on many computers the function f(x) = ex − 1 is a hard-
ware instruction (to facilitate the accurate computation of hyperbolic
trigonometric functions).

Second, if η < 0 and the nonlinear time is very long, the argument of
the exponential in the inverse integrating factor e−ητ can become so large
in magnitude as to cause numerical overflow. This can be avoided simply
by restricting the maximum size of the time step. (In the situation where
η > 0, an underflow poses no problem if the exponential is approximated
by zero.)

Coupled with a dynamically adjusted (adaptive) time step, expo-
nential integrators have also been found to be very useful in single-
and multiple-field Markovian statistical closure computations of forced-
dissipative turbulence [7, 8, 4, 23, 24]. These algorithms can speed
up such computations by many orders of magnitude, particularly in the
relaxation of the triad interaction time in the dissipation range, where
the linear time scale is short compared to the nonlinear time.
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3.2 A charged particle in electromagnetic fields The motion of
a charged particle in crossed electric and magnetic fields is an impor-
tant problem in plasma physics. In magnetically confined fusion plas-
mas there are typically two widely separated frequencies associated with
this problem, the high cyclotron frequency (typically 1 GHz) and the
much lower frequency (typically 10 kHz) of oscillation of the electric
field E and magnetic field B. Because of this extreme separation of
time scales, exponential integrators are well-suited to numerical integra-
tions of E×B motion, described in cgs units by a vector equation for
the particle velocity v:

m

q

dv

dt
=

1

c
v×B + E.

Here m and q are the particle mass and charge, respectively, and c is
the speed of light.

This requires an efficient means of computing the matrix exponential
exp(Ω), where

Ω = − q

mc
τ




0 Bz −By

−Bz 0 Bx

By −Bx 0


 .

The computation of exp(Ω) was optimized to 2 trigonometric functions,
1 division, 1 square root, and 35 additions or multiplications. The other
necessary matrix factor, Ω−1[exp(Ω)−1] requires care since Ω is singular
(but at least has distinct eigenvalues for B 6= 0); it is evaluated as

lim
λ→0

[(Ω + λ1)−1(eΩ − 1)].

In Figure 2 we plot the trajectory of an electron under the influence
of the stationary magnetic field B = ẑ and the time-varying electric
field E(t) = x̂ exp(cos(t)), adopting the parameters q = m = c = 1.
The initial velocity v = (1, 0, 1) was integrated forward 40 time steps
of size 0.5; the trajectory was then computed from the velocity values
using trapezoidal integration. We see that the E-PC algorithm performs
much better than the conventional predictor-corrector (PC) algorithm,
in comparison with the “exact” solution computed with a fifth-order
Runge-Kutta integrator and a time step of 0.005.

For kinetic simulations of plasmas, exponential algorithms could po-
tentially offer an alternative to gyrokinetic approximations [14] since
they use the exact linear theory to eliminate the problem of widely-
separated time-scales that gyrokinetic-averaging was developed to cir-
cumvent.
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FIGURE 2: The motion of an electron under the Lorentz force as com-

puted with the PC and E-PC integrators, in comparison with the exact

solution.

3.3 Higher-order exponential integrators Higher-order exponen-
tial integrators have been discussed by [21], [12], [20] and [6]. They
require the evaluation of the functions, for n ∈ N,

ϕn(x) = x−n

(
ex −

n−1∑

k=0

xk

k!

)
.

Again, care must be exercised when evaluating ϕ1(x) and ϕ2(x) near 0.
Accurate optimized double precision routines for evaluating these func-
tions are available at www.math.ualberta.ca/˜ bowman/phi.h.

An adaptive exponential version of the highly efficient (3,2) embedded
Bogacki-Shampine Runge-Kutta pair has been used to investigate a shell
model of fluid turbulence [6]. Letting z = −ητ , this four-stage method
uses the coefficients b0 = 0, b1 = 1/2, b2 = 3/4, b3 = 1, and

a10 =
1

2
ϕ1

(
1

2
z

)
,

a20 =
3

4
ϕ1

(
3

4
z

)
− a21, a21 =

9

8
ϕ2

(
3

4
z

)
+

3

8
ϕ2

(
1

2
z

)
,
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a30 =
2

3
ϕ1(z) − a32, a31 =

1

3
ϕ1(z), a32 =

4

3
ϕ2(z) − 2

9
ϕ1(z),

a40 = ϕ1(z) − 17

12
ϕ2(z), a41 =

1

2
ϕ2(z), a42 =

2

3
ϕ2(z), a43 =

1

4
ϕ2(z).

The value x3 provides the desired solution, which can be shown, based
on the work of [20], to have stiff order 3. Here stiff order means that the
order is preserved even when η is a general unbounded linear operator.
The value x4 provides a second-order estimate that can be used to adjust
the time step. Since f(x3) is just f at the initial x0 for the next time
step, no additional source evaluation is required to compute x4. This
is known as the first-same-as-last (FSAL) property. One notes that as
ητ → 0, this exponential scheme reduces to the conventional adaptive
[3,2] Bogacki-Shampine Runge-Kutta pair [3].

4 Conclusions Discretizations of ordinary differential equations
that preserve physically relevant structure or known analytic proper-
ties are becoming of widespread interest. In this work we illustrated
structure-preserving discretizations that can be obtained from conven-
tional ones via transformation of the independent or dependent vari-
ables.

While traditional numerical discretizations of conservative systems
generically yield artificial secular drifts of nonlinear invariants, explicit
exactly conservative integrators obtained by discretizing the dependent
variables in a space in which the conserved quantity is linear can outper-
form conventional (and in at least some cases, symplectic) integrators.
Moreover, the transformation technique here is relevant to integrable
and nonintegrable Hamiltonian systems and even to non-Hamiltonian
systems such as force-dissipative turbulence. Likewise, exponential inte-
grators are known to outperform conventional integrators when applied
to linearly stiff systems. By combining these ideas, it is even possible
to develop conservative exponential integrators. The underlying theme
behind each of these methods is the goal of developing numerical dis-
cretizations that are aware of underlying analytical structure.

The author would like to acknowledge discussions with R. Sydora and
thank the Natural Sciences and Engineering Research Council of Canada
for financial support and Andrew Hammerlindl and Tom Prince for their
contributions to Asymptote (asymptote.sf.net), the descriptive vector
graphics language that was used to produce the figures in this work.
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